1
|
Bilsborough J, Fiorino MF, Henkle BW. Select animal models of colitis and their value in predicting clinical efficacy of biological therapies in ulcerative colitis. Expert Opin Drug Discov 2020; 16:567-577. [PMID: 33245673 DOI: 10.1080/17460441.2021.1851185] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Advancing new therapies from discovery to development usually requires proof-of-concept in animal models to justify the costs of continuing the program. While animal models are useful for understanding the mechanism of action (MOA) of a target, limitations of many published colitis models restrict their value to predict clinical efficacy.Areas covered: The authors focused their literature search on published studies of chronic animal models used to evaluate the pre-clinical efficacy of therapeutic molecules subsequently evaluated in clinical trials for UC. The UC therapies evaluated were anti-α4β7, anti-IL13, anti-IL12p40, and anti-IL23p19. The models of chronic colitis evaluating these molecules were: mdra1a-/-, chronic dextran sulfate sodium (DSS), chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS), and the T cell transfer model.Expert opinion: While some models provide insight into target MOA in UC, none is consistently superior in predicting efficacy. Evaluation of multiple models, with varying mechanisms of colitis induction, is needed to understand potential drug efficacy. Additional models of greater complexity, reflecting the disease chronicity/heterogeneity seen in humans, are needed. Although helpful in prioritizing targets, animal models alone will likely not improve outcomes of UC clinical trials. Transformational changes to clinical efficacy will likely only occur when precision medicine approaches are employed.
Collapse
Affiliation(s)
- Janine Bilsborough
- IBD Drug Discovery and Development Unit, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marie F Fiorino
- IBD Drug Discovery and Development Unit, F. Widjaja Foundation Inflammatory Bowel and Immunbiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bradley W Henkle
- IBD Drug Discovery and Development Unit, F. Widjaja Foundation Inflammatory Bowel and Immunbiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Therapeutic potential of mature adipocyte-derived dedifferentiated fat cells for inflammatory bowel disease. Pediatr Surg Int 2020; 36:799-807. [PMID: 32448932 PMCID: PMC7292821 DOI: 10.1007/s00383-020-04681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Our previous studies demonstrated that mature adipocyte-derived dedifferentiated fat (DFAT) cells possess similar multipotency as mesenchymal stem cells. Here, we examined the immunoregulatory potential of DFAT cells in vitro and the therapeutic effect of DFAT cell transplantation in a mouse inflammatory bowel disease (IBD) model. METHODS The effect of DFAT cell co-culture on T cell proliferation and expression of immunosuppression-related genes in DFAT cells were evaluated. To create IBD, CD4+CD45RBhigh T cells were intraperitoneally injected into SCID mice. One week later, DFAT cells (1 × 105, DFAT group) or saline (Control group) were intraperitoneally injected. Subsequently bodyweight was measured every week and IBD clinical and histological scores were evaluated at 5 weeks after T cell administration. RESULTS The T cell proliferation was inhibited by co-cultured DFAT cells in a cell density-dependent manner. Gene expression of TRAIL, IDO1, and NOS2 in DFAT cells was upregulated by TNFα stimulation. DFAT group improved IBD-associated weight loss, IBD clinical and histological scores compared to Control group. CONCLUSION DFAT cells possess immunoregulatory potential and the cell transplantation promoted recovery from colon damage and improved clinical symptoms in the IBD model. DFAT cells could play an important role in the treatment of IBD.
Collapse
|
3
|
Hsu CC, Patil K, Seamons A, Brabb TL, Treuting PM, Paik J, Meeker SM, Maggio-Price L. Lack of Effect of Murine Norovirus Infection on the CD4 + CD45RB high T-cell Adoptive Transfer Mouse Model of Inflammatory Bowel Disease. Comp Med 2020; 70:16-24. [PMID: 31937392 PMCID: PMC7024779 DOI: 10.30802/aalas-cm-19-000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/24/2019] [Accepted: 04/22/2019] [Indexed: 11/05/2022]
Abstract
Murine norovirus (MNV) infection is highly prevalent in laboratory mice. Although MNV infection does not typically induce clinical disease in most laboratory mice, infection may nonetheless affect mouse models of disease by altering immune responses. We previously reported that MNV altered the bacterial-induced mouse model of inflammatory bowel disease (IBD) using Helicobacter-infected Mdr1a-/- mice. Therefore, we hypothesized that MNV infection would exacerbate another mouse model of IBD, the T-cell adoptive transfer (AT) model. In this model, Helicobacter infection is used to accelerate the progression of IBD induced by AT of naïve CD4+CD45RBhigh T cells into B6.129S7- Rag1tm1Mom/J (Rag1-/-) mice. We evaluated the effects of MNV infection in both Helicobacter-accelerated as well as Helicobacter-free AT models. In our studies, Helicobacter-infected Rag1-/- mice that received CD4+CD45RBhigh T cells through AT rapidly developed weight loss and typhlocolitis; MNV infection had no effect on disease severity or rate of progression. In the absence of Helicobacter infection, progression of IBD caused by AT of CD4+CD45RBhigh T cells was slower and typhlocolitis was less severe; this inflammation likewise was unaltered by MNV infection. These results indicate that MNV infection does not alter IBD progression and severity in the CD4+CD45RBhigh T-cell AT model in Rag1-/- mice.
Collapse
Affiliation(s)
- Charlie C Hsu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington;,
| | | | - Audrey Seamons
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Thea L Brabb
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Piper M Treuting
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Jisun Paik
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Stacey M Meeker
- University Laboratory Animal Resources, Department of Veterinary Preventive Medicine, Ohio State University, Columbus, Ohio
| | - Lillian Maggio-Price
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
4
|
Jones MB, Alvarez CA, Johnson JL, Zhou JY, Morris N, Cobb BA. CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation. PLoS One 2019; 14:e0216893. [PMID: 31120919 PMCID: PMC6533033 DOI: 10.1371/journal.pone.0216893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/30/2019] [Indexed: 01/04/2023] Open
Abstract
CD4+ effector/memory T cells (Tem) represent a leading edge of the adaptive immune system responsible for protecting the body from infection, cancer, and other damaging processes. However, a subset of Tem cells with low expression of CD45Rb (RbLoTem) has been shown to suppress inflammation despite their effector surface phenotype and the lack of FoxP3 expression, the canonical transcription factor found in most regulatory T cells. In this report, we show that RbLoTem cells can suppress inflammation by influencing Treg behavior. Co-culturing activated RbLoTem and Tregs induced high expression of IL-10 in vitro, and conditioned media from RbLoTem cells induced IL-10 expression in FoxP3+ Tregs in vitro and in vivo, indicating that RbLoTem cells communicate with Tregs in a cell-contact independent fashion. Transcriptomic and multi-analyte Luminex data identified both IL-2 and IL-4 as potential mediators of RbLoTem-Treg communication, and antibody-mediated neutralization of either IL-4 or CD124 (IL-4Rα) prevented IL-10 induction in Tregs. Moreover, isolated Tregs cultured with recombinant IL-2 and IL-4 strongly induced IL-10 production. Using house dust mite (HDM)-induced airway inflammation as a model, we confirmed that the in vivo suppressive activity of RbLoTem cells was lost in IL-4-ablated RbLoTem cells. These data support a model in which RbLoTem cells communicate with Tregs using a combination of IL-2 and IL-4 to induce robust expression of IL-10 and suppression of inflammation.
Collapse
Affiliation(s)
- Mark B. Jones
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Carlos A. Alvarez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jenny L. Johnson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Julie Y. Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Nathan Morris
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
The cause of Crohn’s disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients’ inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
6
|
Abstract
The cause of Crohn's disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients' inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
7
|
Bang B, Lichtenberger LM. Methods of Inducing Inflammatory Bowel Disease in Mice. ACTA ACUST UNITED AC 2016; 72:5.58.1-5.58.42. [PMID: 26995548 DOI: 10.1002/0471141755.ph0558s72] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal models of experimentally induced inflammatory bowel disease (IBD) are useful for understanding more about the mechanistic basis of the disease, identifying new targets for therapeutic intervention, and testing novel therapeutics. This unit provides detailed protocols for five widely used mouse models of experimentally induced intestinal inflammation: chemical induction of colitis by dextran sodium sulfate (DSS), hapten-induced colitis via 2,4,6-trinitrobenzene sulfonic acid (TNBS), Helicobacter-induced colitis in mdr1a(-/-) mice, the CD4(+) CD45RB(hi) SCID transfer colitis model, and the IL-10(-/-) colitis model. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Byoungwook Bang
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea.,Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| | - Lenard M Lichtenberger
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
8
|
Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S, Gooley TA, Sommermeyer F, Riddell SR, Shlomchik WD. Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. J Clin Invest 2015; 125:2677-89. [PMID: 26053664 DOI: 10.1172/jci81229] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (HCT). In mice, naive T cells (TN) cause more severe GVHD than memory T cells (TM). We hypothesized that selective depletion of TN from human allogeneic peripheral blood stem cell (PBSC) grafts would reduce GVHD and provide sufficient numbers of hematopoietic stem cells and TM to permit hematopoietic engraftment and the transfer of pathogen-specific T cells from donor to recipient, respectively. METHODS In a single-arm clinical trial, we transplanted 35 patients with high-risk leukemia with TN-depleted PBSC grafts following conditioning with total body irradiation, thiotepa, and fludarabine. GVHD prophylactic management was with tacrolimus immunosuppression alone. Subjects received CD34-selected PBSCs and a defined dose of TM purged of CD45RA+ TN. Primary and secondary objectives included engraftment, acute and chronic GVHD, and immune reconstitution. RESULTS All recipients of TN-depleted PBSCs engrafted. The incidence of acute GVHD was not reduced; however, GVHD in these patients was universally corticosteroid responsive. Chronic GVHD was remarkably infrequent (9%; median follow-up 932 days) compared with historical rates of approximately 50% with T cell-replete grafts. TM in the graft resulted in rapid T cell recovery and transfer of protective virus-specific immunity. Excessive rates of infection or relapse did not occur and overall survival was 78% at 2 years. CONCLUSION Depletion of TN from stem cell allografts reduces the incidence of chronic GVHD, while preserving the transfer of functional T cell memory. TRIAL REGISTRATION ClinicalTrials.gov (NCT 00914940).
Collapse
|
9
|
Han D, Walsh MC, Kim KS, Hong SW, Lee J, Yi J, Rivas G, Surh CD, Choi Y. Microbiota-Independent Ameliorative Effects of Antibiotics on Spontaneous Th2-Associated Pathology of the Small Intestine. PLoS One 2015; 10:e0118795. [PMID: 25689829 PMCID: PMC4331505 DOI: 10.1371/journal.pone.0118795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/15/2015] [Indexed: 11/18/2022] Open
Abstract
We have previously generated a mouse model of spontaneous Th2-associated disease of the small intestine called TRAF6ΔDC, in which dendritic cell (DC)-intrinsic expression of the signaling mediator TRAF6 is ablated. Interestingly, broad-spectrum antibiotic treatment ameliorates TRAF6ΔDC disease, implying a role for commensal microbiota in disease development. However, the relationship between the drug effects and commensal microbiota status remains to be formally demonstrated. To directly assess this relationship, we have now generated TRAF6ΔDC bone marrow chimera mice under germ-free (GF) conditions lacking commensal microbiota, and found, unexpectedly, that Th2-associated disease is actually exacerbated in GF TRAF6ΔDC mice compared to specific pathogen-free (SPF) TRAF6ΔDC mice. At the same time, broad-spectrum antibiotic treatment of GF TRAF6ΔDC mice has an ameliorative effect similar to that observed in antibiotics-treated SPF TRAF6ΔDC mice, implying a commensal microbiota-independent effect of broad-spectrum antibiotic treatment. We further found that treatment of GF TRAF6ΔDC mice with broad-spectrum antibiotics increases Foxp3+ Treg populations in lymphoid organs and the small intestine, pointing to a possible mechanism by which treatment may directly exert an immunomodulatory effect. To investigate links between the exacerbated phenotype of the small intestines of GF TRAF6ΔDC mice and local microbiota, we performed microbiotic profiling of the luminal contents specifically within the small intestines of diseased TRAF6ΔDC mice, and, when compared to co-housed control mice, found significantly increased total bacterial content characterized by specific increases in Firmicutes Lactobacillus species. These data suggest a protective effect of Firmicutes Lactobacillus against the spontaneous Th2-related inflammation of the small intestine of the TRAF6ΔDC model, and may represent a potential mechanism for related disease phenotypes.
Collapse
Affiliation(s)
- Daehee Han
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, 790–784, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790–784, Republic of Korea
| | - Matthew C. Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104, United States of America
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, 790–784, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790–784, Republic of Korea
| | - Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, 790–784, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790–784, Republic of Korea
| | - Junyoung Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, 790–784, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790–784, Republic of Korea
| | - Jaeu Yi
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, 790–784, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790–784, Republic of Korea
| | - Gloriany Rivas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104, United States of America
| | - Charles D. Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, 790–784, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790–784, Republic of Korea
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037, United States of America
- * E-mail: (YC); (CDS)
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104, United States of America
- * E-mail: (YC); (CDS)
| |
Collapse
|
10
|
Abstract
: Little is known about different phases of T-cell maturation in gut mucosa. Based on current knowledge about the migratory pathways of naive and memory T cells, it is believed that access to peripheral, nonlymphoid tissues is restricted to memory T cells. Surprisingly, there is increasing evidence of high numbers of naive T cells in the chronically inflamed gut tissue of patients with inflammatory bowel disease. This could partially be explained by new formation of ectopic lymphoid organs. Ongoing recruitment of naive T cells at inflammatory sites might play a role in the immunopathogenesis of inflammatory bowel disease.
Collapse
|
11
|
Maggio-Price L, Seamons A, Bielefeldt-Ohmann H, Zeng W, Brabb T, Ware C, Lei M, Hershberg RM. Lineage targeted MHC-II transgenic mice demonstrate the role of dendritic cells in bacterial-driven colitis. Inflamm Bowel Dis 2013; 19:174-84. [PMID: 22619032 PMCID: PMC3427724 DOI: 10.1002/ibd.23000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) pathogenesis involves an inadequately controlled immune reaction to intestinal microbiota, and CD4(+) T cells, dependent on MHC class II (MHC-II) processing and presentation by antigen-presenting cells (APC), play important roles. The role of professional APC (macrophages and dendritic cells [DCs]) and nonprofessional APC (intestinal epithelial cells [IECs]) in microbial-driven intestinal inflammation remains controversial. METHODS We generated transgenic animals on an MHC-II(-/-) genetic background in which MHC-II is expressed on 1) DC via the CD11c promoter (CD11cTg) or 2) IEC via the fatty acid binding protein (liver) promoter (EpithTg). These mice were crossed with Rag2(-/-) mice to eliminate T and B cells (CD11cTg/Rag2(-/-) and EpithTg/Rag2(-/-)). Helicobacter bilis (Hb) infection and adoptive transfer (AT) of naïve CD4 T cells were used to trigger IBD. RESULTS CD11cTg/Rag2(-/-) mice infected with Hb+AT developed severe colitis within 3 weeks post-AT, similar to disease in positive control Rag2(-/-) mice infected with Hb+AT. CD11cTg/Rag2(-/-) mice given AT alone or Hb alone had significantly less severe colitis. In contrast, EpithTg/Rag2(-/-) mice infected with Hb+AT developed mild colitis by 3 weeks and even after 16 weeks post-AT had only mild lesions. CONCLUSIONS MHC-II expression restricted to DCs is sufficient to induce severe colitis in the presence of T cells and a microorganism such as Hb within 3 weeks of AT. Expression of MHC-II solely on IEC in the presence of a microbial trigger and T cells was insufficient to trigger severe colitis.
Collapse
Affiliation(s)
| | - Audrey Seamons
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | | | - Weiping Zeng
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Thea Brabb
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Carol Ware
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Mingzu Lei
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
12
|
Ueda A, Zhou L, Stein PL. Fyn promotes Th17 differentiation by regulating the kinetics of RORγt and Foxp3 expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5247-56. [PMID: 22539787 PMCID: PMC3358535 DOI: 10.4049/jimmunol.1102241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Th17 cells constitute a proinflammatory CD4(+) T cell subset that is important for microbial clearance, but also are implicated as propagators of various autoimmune pathologies. Evidence suggests that Th17 cells share common progenitors with immunosuppressive CD4(+) inducible regulatory T cells (T(REG)) and that the developmental pathways of these two subsets are reciprocally regulated. In this study, we show evidence that the Src family tyrosine kinase Fyn helps regulate this Th17/T(REG) balance. When placed under Th17-skewing conditions, CD4(+) T cells from fyn(-/-) mice had decreased levels of IL-17, but increased expression of the T(REG) transcription factor Foxp3. The defect in IL-17 expression occurred independently of the ectopic Foxp3 expression and correlated with a delay in retinoic acid-related orphan receptor γt upregulation and an inability to maintain normal STAT3 activation. Fyn-deficient Th17 cells also exhibited delayed upregulation of Il23r, Il21, Rora, and Irf4, as well as aberrant expression of Socs3, suggesting that Fyn may function upstream of a variety of molecular pathways that contribute to Th17 polarization. The fyn(-/-) mice had fewer IL-17(+)CD4(+) T cells in the large intestinal lamina propria compared with littermate controls. Furthermore, after transfer of either wild-type or fyn(-/-) naive CD4(+) T cells into Rag1(-/-) hosts, recipients receiving fyn(-/-) cells had fewer IL-17-producing T cells, indicating that Fyn may also regulate Th17 differentiation in vivo. These results identify Fyn as a possible novel regulator of the developmental balance between the Th17 cell and T(REG) subsets.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cells, Cultured
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/pharmacokinetics
- Gene Expression Regulation/immunology
- Immunophenotyping
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3/biosynthesis
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Proto-Oncogene Proteins c-fyn/deficiency
- Proto-Oncogene Proteins c-fyn/pharmacokinetics
- Proto-Oncogene Proteins c-fyn/physiology
- STAT3 Transcription Factor/biosynthesis
- STAT3 Transcription Factor/metabolism
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/cytology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Time Factors
Collapse
Affiliation(s)
- Aki Ueda
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Liang Zhou
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Paul L. Stein
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Center for Immunology & Inflammation, SRI International, Menlo Park, California 94025
| |
Collapse
|
13
|
Maxwell JR, Brown WA, Smith CL, Byrne FR, Viney JL. Methods of inducing inflammatory bowel disease in mice. ACTA ACUST UNITED AC 2012; Chapter 5:Unit5.58. [PMID: 22294404 DOI: 10.1002/0471141755.ph0558s47] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Animal models of experimentally induced inflammatory bowel disease (IBD) are useful for understanding more about the mechanistic basis of disease, identifying new targets for therapeutic intervention, and testing novel therapeutic agents. This unit provides detailed protocols for four of the most commonly used mouse models of experimentally induced intestinal inflammation: chemical induction of colitis by dextran sodium sulfate (DSS), hapten-induced colitis via 2,4,6-trinitrobenzene sulfonic acid (TNBS), Helicobacter-induced colitis in mdr1a(-/-) mice, and the CD4(+) CD45RB(hi) SCID transfer colitis model.
Collapse
|
14
|
Impact of dietary gluten on regulatory T cells and Th17 cells in BALB/c mice. PLoS One 2012; 7:e33315. [PMID: 22428018 PMCID: PMC3302844 DOI: 10.1371/journal.pone.0033315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/07/2012] [Indexed: 02/07/2023] Open
Abstract
Dietary gluten influences the development of type 1 diabetes (T1D) and a gluten-free (GF) diet has a protective effect on the development of T1D. Gluten may influence T1D due to its direct effect on intestinal immunity; however, these mechanisms have not been adequately studied. We studied the effect of a GF diet compared to a gluten-containing standard (STD) diet on selected T cell subsets, associated with regulatory functions as well as proinflammatory Th17 cells, in BALB/c mice. Furthermore, we assessed diet-induced changes in the expression of various T cell markers, and determined if changes were confined to intestinal or non-intestinal lymphoid compartments. The gluten-containing STD diet led to a significantly decreased proportion of γδ T cells in all lymphoid compartments studied, although an increase was detected in some γδ T cell subsets (CD8+, CD103+). Further, it decreased the proportion of CD4+CD62L+ T cells in Peyer's patches. Interestingly, no diet-induced changes were found among CD4+Foxp3+ T cells or CD3+CD49b+cells (NKT cells) and CD3−CD49b+ (NK) cells. Mice fed the STD diet showed increased proportions of CD4+CD45RBhigh+ and CD103+ T cells and a lower proportion of CD4+CD45RBlow+ T cells in both mucosal and non-mucosal compartments. The Th17 cell population, associated with the development of autoimmunity, was substantially increased in pancreatic lymph nodes of mice fed the STD diet. Collectively, our data indicate that dietary gluten influences multiple regulatory T cell subsets as well as Th17 cells in mucosal lymphoid tissue while fewer differences were observed in non-mucosal lymphoid compartments.
Collapse
|
15
|
Bleich A, Hansen AK. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis 2012; 35:81-92. [PMID: 22257867 DOI: 10.1016/j.cimid.2011.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/17/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023]
Abstract
The gut microbiota (GM) composition and its impact on animal experiments has become currently dramatically relevant in our days: (1) recent progress in metagenomic technologies, (2) the availability of large scale quantitative analyses to characterize even subtle phenotypes, (3) the limited diversity of laboratory rodent GM due to strict barriers at laboratory animal vendors, and (4) the availability of up to 300.000 different transgenic mouse strains from different sources displaying a huge variety in their GM composition. In this review the GM is described as a variable in animal experiments which need to be reduced for scientific as well as ethical reasons, and strategies how to implement this in routine diagnostic procedures are proposed. We conclude that we have both enough information available to state that the GM has an essential impact on animal models, as well as the methods available to start dealing with these impacts.
Collapse
Affiliation(s)
- André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany, Hannover, Germany.
| | | |
Collapse
|
16
|
Wilk JN, Bilsborough J, Viney JL. The mdr1a-/- mouse model of spontaneous colitis: a relevant and appropriate animal model to study inflammatory bowel disease. Immunol Res 2008; 31:151-9. [PMID: 15778512 DOI: 10.1385/ir:31:2:151] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There are many types of colitis models in animals that researchers use to elucidate the mechanism of action of human inflammatory bowel disease (IBD). These models are also used to test novel therapeutics and therapeutic treatment regimens. Here, we will review the characteristics of the mdr1a -/- model of spontaneous colitis that we believe make this model an important part of the IBD researcher's toolbox. We will also share new data that will reinforce the fact that this model is relevant in the study of IBD. Mdr1a -/- mice lack the murine multiple drug resistance gene for P-glycoprotein 170 that is normally expressed in multiple tissues including intestinal epithelial cells. These mice spontaneously develop a form of colitis at around 12 wk of age. The fact that the complexity of this model mirrors the complexity of disease in humans, as well as recent literature that links MDR1 polymorphisms in humans to Crohn's Disease and Ulcerative Colitis, makes this an appropriate animal model to study.
Collapse
|
17
|
Chidlow JH, Shukla D, Grisham MB, Kevil CG. Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues. Am J Physiol Gastrointest Liver Physiol 2007; 293:G5-G18. [PMID: 17463183 DOI: 10.1152/ajpgi.00107.2007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Angiogenesis is now understood to play a major role in the pathology of chronic inflammatory diseases and is indicated to exacerbate disease pathology. Recent evidence shows that angiogenesis is crucial during inflammatory bowel disease (IBD) and in experimental models of colitis. Examination of the relationship between angiogenesis and inflammation in experimental colitis shows that initiating factors for these responses simultaneously increase as disease progresses and correlate in magnitude. Recent studies show that inhibition of the inflammatory response attenuates angiogenesis to a similar degree and, importantly, that inhibition of angiogenesis does the same to inflammation. Recent data provide evidence that differential regulation of the angiogenic mediators involved in IBD-associated chronic inflammation is the root of this pathological angiogenesis. Many factors are involved in this phenomenon, including growth factors/cytokines, chemokines, adhesion molecules, integrins, matrix-associated molecules, and signaling targets. These factors are produced by various vascular, inflammatory, and immune cell types that are involved in IBD pathology. Moreover, recent studies provide evidence that antiangiogenic therapy is a novel and effective approach for IBD treatment. Here we review the role of pathological angiogenesis during IBD and experimental colitis and discuss the therapeutic avenues this recent knowledge has revealed.
Collapse
Affiliation(s)
- John H Chidlow
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
18
|
Cohavy O, Targan SR. CD56 marks an effector T cell subset in the human intestine. THE JOURNAL OF IMMUNOLOGY 2007; 178:5524-32. [PMID: 17442934 DOI: 10.4049/jimmunol.178.9.5524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
T cells are key mediators of intestinal immunity, and specific T cell subsets can have differing immunoregulatory roles in animal models of mucosal inflammation. In this study, we describe human CD56+ T cells as a morphologically distinct population expressing a mature, nonproliferative phenotype that is frequent in the gut. Enhanced potential for IFN-gamma and TNF synthesis suggested a proinflammatory function, and we directly demonstrate effector function mediated by direct T-T interaction with responder cells in vitro. CD56+ T cells from peripheral blood responded to the gut-related CD2 signal, and were necessary for effective CD2-mediated proliferation of peripheral blood CD56- T cells. Our findings associate CD56+ T cells with the intestinal immune compartment and suggest a putative effector function in human mucosal immunity.
Collapse
Affiliation(s)
- Offer Cohavy
- Cedars-Sinai Inflammatory Bowel Disease Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | |
Collapse
|
19
|
Anderson K, Fitzgerald M, Dupont M, Wang T, Paz N, Dorsch M, Healy A, Xu Y, Ocain T, Schopf L, Jaffee B, Picarella D. Mice deficient in PKC theta demonstrate impaired in vivo T cell activation and protection from T cell-mediated inflammatory diseases. Autoimmunity 2007; 39:469-78. [PMID: 17060026 DOI: 10.1080/08916930600907954] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the present study we have characterized T cell-driven immune function in mice that are genetically deficient in PKC theta. In response to simple immunologic stimulation invoked by in vivo T cell receptor (TCR) cross-linking, these mice showed significantly depressed plasma cytokine levels for IL-2, IL-4, IFNgamma, and TNFalpha compared to wild-type (WT) mice. In parallel, spleen mRNA levels for these cytokines were reduced, and NF-kappaB activation was also reduced in PKC theta knockouts (KO). Injection of allogeneic cells into the footpad of PKC theta deficient mice provoked a significantly diminished local T cell response compared to WT mice similarly challenged. Unlike comparable cells from wild type mice, CD45RBhi T cells harvested from PKC theta deficient mice failed to induce colitis in the SCID-CD45RB cell transfer model of IBD. In another T cell-dependent model of inflammatory disease, PKC theta deficient animals developed far less severe neurologic signs and reduced spinal cord inflammatory cell infiltrate compared to WT controls in the MOG-induced EAE model. A fundamental role for PKC theta in T cell activation and in the development of T cell-mediated inflammatory diseases is indicated by these results.
Collapse
MESH Headings
- Animals
- CD4 Antigens/immunology
- Cell Proliferation
- Cytokines/blood
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Enzyme Activation
- Female
- Inflammation/immunology
- Inflammation/pathology
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/pathology
- Isoenzymes/genetics
- Isoenzymes/immunology
- Leukocyte Common Antigens/immunology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Mice, SCID
- NF-kappa B/metabolism
- Protein Kinase C/genetics
- Protein Kinase C/immunology
- Protein Kinase C-theta
- RNA, Messenger/blood
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/immunology
- Spinal Cord/immunology
- Spinal Cord/pathology
- Spleen/metabolism
Collapse
Affiliation(s)
- Karen Anderson
- Inflammation Department, Millennium Pharmaceuticals Inc., 40 Landsdowne St, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chidlow JH, Langston W, Greer JJM, Ostanin D, Abdelbaqi M, Houghton J, Senthilkumar A, Shukla D, Mazar AP, Grisham MB, Kevil CG. Differential angiogenic regulation of experimental colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:2014-30. [PMID: 17148665 PMCID: PMC1762465 DOI: 10.2353/ajpath.2006.051021] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract with unknown multifactorial etiology that, among other things, result in alteration and dysfunction of the intestinal microvasculature. Clinical observations of increased colon microvascular density during IBD have been made. However, there have been no reports investigating the physiological or pathological importance of angiogenic stimulation during the development of intestinal inflammation. Here we report that the dextran sodium sulfate and CD4+CD45RBhigh T-cell transfer models of colitis stimulate angiogenesis that results in increased blood vessel density concomitant with increased histopathology, suggesting that the neovasculature contributes to tissue damage during colitis. We also show that leukocyte infiltration is an obligatory requirement for the stimulation of angiogenesis. The angiogenic response during experimental colitis was differentially regulated in that the production of various angiogenic mediators was diverse between the two models with only a small group of molecules being similarly controlled. Importantly, treatment with the anti-angiogenic agent thalidomide or ATN-161 significantly reduced angiogenic activity and associated tissue histopathology during experimental colitis. Our findings identify a direct pathological link between angiogenesis and the development of experimental colitis, representing a novel therapeutic target for IBD.
Collapse
Affiliation(s)
- John H Chidlow
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen G, Luke PPW, Yang H, Visser L, Sun H, Garcia B, Qian H, Xiang Y, Huang X, Liu W, Senaldi G, Schneider A, Poppema S, Wang H, Jevnikar AM, Zhong R. Anti-CD45RB monoclonal antibody prolongs renal allograft survival in cynomolgus monkeys. Am J Transplant 2007; 7:27-37. [PMID: 17227555 DOI: 10.1111/j.1600-6143.2006.01598.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previously, an anti-CD45RB monoclonal antibody (mAb) has been shown to induce murine allograft tolerance. The present study was performed to assess the ability of an anti-human CD45RB mAb to prevent rejection in a monkey MHC-mismatched kidney transplant model. The recipients were allocated into the following treatment groups: (1) isotype control IgG; (2) mouse anti-human CD45RB IgG1 (6G3); (3) human-mouse chimeric anti-CD45RB-IgG1 (C6G3-IgG1); (4) human-mouse chimeric anti-CD45RB-IgG2 (C6G3-IgG2); (5) tacrolimus at a subtherapeutic dose and (6) tacrolimus and C6G3-IgG1 in combination. Monotherapy with anti-CD45RB mAb significantly prolonged renal allograft survival to a median survival of 21 days. Adding a subtherapeutic dose of tacrolimus improved the efficacy of the anti-CD45RB mAb, achieving a median survival of 85 days, whereas a subtherapeutic dose of tacrolimus alone only moderately prolonged survival to 27 days. Treatment with anti-CD45RB mAb resulted in an alteration of the CD45RB(hi) : CD45RB(lo) cell ratio in the peripheral blood. We have, for the first time, demonstrated that an anti-human CD45RB mAb (6G3) can prolong graft survival. Induction with an anti-CD45RB mAb improves the efficacy of tacrolimus in the prevention of rejection. These encouraging results indicate that an anti-CD45RB mAb may be valuable in future clinical transplantation.
Collapse
Affiliation(s)
- G Chen
- Department of Surgery, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bleich A, Mahler M. Environment as a Critical Factor for the Pathogenesis and Outcome of Gastrointestinal Disease: Experimental and Human Inflammatory Bowel Disease and Helicobacter-Induced Gastritis. Pathobiology 2006; 72:293-307. [PMID: 16582581 DOI: 10.1159/000091327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/18/2005] [Indexed: 12/20/2022] Open
Abstract
Environmental factors play an important role in the manifestation, course, and prognosis of diseases of the gastrointestinal tract such as inflammatory bowel disease (IBD) and Helicobacter pylori-induced gastritis. These two disease complexes were chosen for a discussion of the contribution of environmental factors to the disease outcome in humans and animal models. Dissecting complex diseases like IBD and Helicobacter-induced gastritis has shown that the outcome of disease depends on the allelic constellation of a host and the microbial and physical environments. Host alleles predisposing to a disease in one genomic and/or environmental milieu may not be deleterious in other constellations; on the other hand, microbes can have different effects in different hosts and under different environmental conditions. The impact of the complex interaction between host genetics and environmental factors, particularly microflora, also underlines the importance of a defined genetic background and defined environments in animal studies and is indicative of the difficulties in analyzing complex diseases in humans.
Collapse
Affiliation(s)
- A Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
23
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:2866-2869. [DOI: 10.11569/wcjd.v13.i24.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Aceituno M, Panés J. Patogenia e inmunoterapia de la enfermedad inflamatoria intestinal: lecciones de los modelos animales. GASTROENTEROLOGIA Y HEPATOLOGIA 2005; 28:576-90. [PMID: 16277967 DOI: 10.1157/13080611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M Aceituno
- Servicio de Gastroenterología, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | | |
Collapse
|
25
|
Lorenz RG, McCracken VJ, Elson CO. Animal models of intestinal inflammation: ineffective communication between coalition members. ACTA ACUST UNITED AC 2005; 27:233-47. [PMID: 16028027 DOI: 10.1007/s00281-005-0208-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Accepted: 04/20/2005] [Indexed: 01/14/2023]
Abstract
The microbiota, epithelial cells, and mucosal immune cells in the intestine comprise an important gastrointestinal coalition. The intestinal microbiota can exert both beneficial as well as deleterious effects on their animal hosts. They interact with the innate defenses provided by epithelial cells through microbial recognition receptors. This communication, under normal conditions, results in a state of controlled inflammation. This article will focus on several animal models of intestinal inflammation, in which spontaneous or induced mutations or other genetic manipulations result in severe alterations in one of the members of the gastrointestinal coalition. These animal models of colitis have shown that alterations in communication between members of this coalition ultimately lead to gastrointestinal disease.
Collapse
Affiliation(s)
- Robin G Lorenz
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
26
|
Chandran P, Satthaporn S, Robins A, Eremin O. Inflammatory bowel disease: dysfunction of GALT and gut bacterial flora (I). Surgeon 2005; 1:63-75. [PMID: 15573623 DOI: 10.1016/s1479-666x(03)80118-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gut-associated lymphoid tissue (GALT) is the largest lymphoid organ in the body. This is not surprising considering the huge load of antigens (Ags) from food and commensal bacteria with which it interacts on a daily basis. Gut-associated lymphoid tissue has to recognise and allow the transfer of beneficial Ags whilst concurrently dealing with and successfully removing putative and overtly harmful Ags. This distinctive biological feature of GALT is believed to be crucial to good health. Deregulation or dysfunction of GALT is thought to predispose to inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. The exact mechanism(s) underlying the pathogenesis of IBD is (are) poorly understood and the immunological defects in GALT are poorly documented. Advances in immunology have highlighted the importance of dendritic cells (DCs), which are the key Ag presenting cells in tissues and lymphoid compartments. Their crucial role in GALT, in health and disease is discussed in this review. Interaction of DCs with T cells in the gut produces a subset of T lymphocytes, which have immunosuppressive function. Inappropriate Ag uptake and presentation to naïve T cells in mesenteric lymph nodes may lead to T cell tolerance in GALT. These various complex factors in the gut are discussed and their possible relevance to IBD evaluated.
Collapse
Affiliation(s)
- P Chandran
- Department of Surgery, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH
| | | | | | | |
Collapse
|
27
|
Cohavy O, Zhou J, Ware CF, Targan SR. LIGHT Is Constitutively Expressed on T and NK Cells in the Human Gut and Can Be Induced by CD2-Mediated Signaling. THE JOURNAL OF IMMUNOLOGY 2005; 174:646-53. [PMID: 15634882 DOI: 10.4049/jimmunol.174.2.646] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The TNF superfamily cytokine, lymphotoxin-like inducible protein that competes with glycoprotein D for binding herpesvirus entry mediator on T cells (LIGHT; TNFSF14), can augment T cell responses inducing IFN-gamma production and can drive pathological gut inflammation when expressed as a transgene in mouse T cells. LIGHT expression by human intestinal T cells suggests the possibility that LIGHT may play a key role in regulation of the mucosal immune system. A nonenzymatic method was developed for the isolation of T cells from the human lamina propria, permitting analysis of native cell surface protein expression. Cell surface LIGHT was constitutively expressed on mucosal T and NK cells and a subpopulation of gut-homing CD4(+) T cells in the periphery. In addition, CD2-mediated stimulation induced efficient LIGHT expression on intestinal CD4(+) T cells, but not on peripheral blood T cells, suggesting a gut-specific, Ag-independent mechanism for LIGHT induction. By contrast, herpesvirus entry mediator expression on gut T cells was unperturbed, implicating the transcriptional regulation of LIGHT as a mechanism modulating signaling activity in the gut. Quantitative analysis of LIGHT mRNA in a cohort of inflammatory bowel disease patients indicated elevated expression in biopsies from small bowel and from inflamed sites, implicating LIGHT as a mediator of mucosal inflammation.
Collapse
MESH Headings
- Adult
- CD2 Antigens/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Humans
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/metabolism
- Inflammatory Bowel Diseases/pathology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Intestine, Small/immunology
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation
- Membrane Proteins/biosynthesis
- Membrane Proteins/blood
- Membrane Proteins/genetics
- RNA, Messenger/biosynthesis
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor, Member 14
- Receptors, Virus/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Offer Cohavy
- Cedars-Sinai Inflammatory Bowel Disease Center, Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|
28
|
Cohavy O, Zhou J, Granger SW, Ware CF, Targan SR. LIGHT Expression by Mucosal T Cells May Regulate IFN-γ Expression in the Intestine. THE JOURNAL OF IMMUNOLOGY 2004; 173:251-8. [PMID: 15210782 DOI: 10.4049/jimmunol.173.1.251] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TNF superfamily of cytokines play an important role in T cell activation and inflammation. Sustained expression of lymphotoxin-like inducible protein that competes with glycoprotein D for binding herpesvirus entry mediator on T cells (LIGHT) (TNFSF14) causes a pathological intestinal inflammation when constitutively expressed by mouse T cells. In this study, we characterized LIGHT expression on activated human T cell subsets in vitro and demonstrated a direct proinflammatory effect on regulation of IFN-gamma. LIGHT was induced in memory CD45RO CD4+ T cells and by IFN-gamma-producing CD4+ T cells. Kinetic analysis indicated rapid induction of LIGHT by human lamina propria T cells, reaching maximal levels by 2-6 h, whereas peripheral blood or lymph node-derived T cells required 24 h. Further analysis of intestinal specimens from a 41 patient cohort by flow cytometry indicated membrane LIGHT induction to higher peak levels in lamina propria T cells from the small bowel or rectum but not colon, when compared with lymph node or peripheral blood. Independent stimulation of the LIGHT receptor, herpesvirus entry mediator, induced IFN-gamma production in lamina propria T cells, while blocking LIGHT inhibited CD2-dependent induction of IFN-gamma synthesis, indicating a role for LIGHT in the regulation of IFN-gamma and as a putative mediator of proinflammatory T-T interactions in the intestinal mucosa. Taken together, these findings suggest LIGHT-herpesvirus entry mediator mediated signaling as an important immune regulatory mechanism in mucosal inflammatory responses.
Collapse
Affiliation(s)
- Offer Cohavy
- Cedars-Sinai Inflammatory Bowel Disease Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
29
|
Ten Hove T, The Olle F, Berkhout M, Bruggeman JP, Vyth-Dreese FA, Slors JFM, Van Deventer SJH, Te Velde AA. Expression of CD45RB functionally distinguishes intestinal T lymphocytes in inflammatory bowel disease. J Leukoc Biol 2004; 75:1010-5. [PMID: 15020649 DOI: 10.1189/jlb.0803400] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The importance of CD45RB expression on T cells was already shown in mice where CD45RB(high) expression determines pathogenic potential. In this study, we analyzed the expression of CD45RA, CD45RB, and CD45RO on CD4(+) T lymphocytes in the intestinal mucosa and in the circulation of patients with inflammatory bowel disease (IBD). In addition, we studied the cytokine profile of these cells. In the circulation, virtually all CD4(+)CD45RB(high) T cells expressed the naive marker CD45RA, and circulating CD4(+)CD45RB(low) cells expressed the memory marker CD45RO in IBD patients and a control patient population. In contrast, the intestinal CD4(+) CD45RB(high) T cells are in normal controls for 90% CD45RO(+). However, in IBD, 27.7% [Crohn's disease (CD)] and 49% [ulcerative colitis (UC)] of the intestinal CD4(+) CD45RB(high) T cells are CD45RA(+). This special CD4CD45RA(+) T cell in IBD can be found in the lamina propria as well as in lymphoid follicles (confocal laser-scanning microscopy). The CD4(+)CD45RB(high) T lymphocytes produce significantly less interleukin (IL)-10 and IL-4 and produce more tumor necrosis factor alpha than CD45RB(low) T lymphocytes in control patients. CD4(+)CD45RB(low) T cells from IBD patients produced less IL-10 than CD4(+)CD45RB(low) T lymphocytes of controls, and interferon-gamma production by both T lymphocyte subsets was decreased in IBD. These data indicate that CD and UC are characterized by an influx of CD4(+)CD45RB(high) T lymphocytes. These CD4(+)CD45RB(high) T lymphocytes seem to be important in the pathogenesis of IBD, as they produce more proinflammatory cytokines and less anti-inflammatory cytokines compared with CD4(+)CD45RB(low) T lymphocytes.
Collapse
Affiliation(s)
- Tessa Ten Hove
- H2-256, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Epidemiology suggests some relationship between the establishment of the gut flora and the risk of developing inflammatory bowel disease. Unrestrained activation of the immune system against commensal bacteria appears to be responsible for the chronicity of these diseases. In animal models, broad-spectrum antibiotics reduce the bacterial load and militate against intestinal inflammation. Several bacterial species found in of the common microflora, including anaerobes, are able to invade the colonic wall when there is dysfunction of the colonic mucosal barrier. Most aerobes provoke focal areas of acute inflammation, but some anaerobes in the predominant flora induce diffuse a fibrogenic transmural response. Current research aims to identify the probiotics that might act against these bacteria. Colonization with specific probiotic strains, including a bacterium genetically engineered to secrete interleukin-10, prevents spontaneous colitis in susceptible mice. Certain lactobacilli exhibit anti-inflammatory properties naturally, i.e. without previous genetic manipulation. Prebiotics may increase colonization by lactobacilli and can prevent mucosal inflammation. Modulation of the gut flora with probiotics may prove useful in the prevention and control of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Francisco Guarner
- Digestive System Research Unit, Hospital General Vall d'Hebron, Barcelona 08035, Spain.
| | | |
Collapse
|
31
|
Asseman C, Read S, Powrie F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:971-8. [PMID: 12847269 DOI: 10.4049/jimmunol.171.2.971] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4(+) regulatory T cells have been shown to prevent intestinal inflammation; however, it is not known whether they act to prevent the priming of colitogenic T cells or actively control these cells as part of the memory T cell pool. In this study, we describe the presence of colitogenic Th1 cells within the CD4(+)CD45RB(low) population. These pathogenic cells enrich within the CD25(-) subset and are not recent thymic emigrants. CD4(+)CD45RB(low) cells from germfree mice were significantly reduced in their ability to transfer colitis to immune deficient recipients, suggesting the presence of commensal bacteria in the donor mice drives colitogenic T cells into the Ag-experienced/memory T cell pool. This potentially pathogenic population of Ag-experienced T cells is subject to T cell-mediated regulation in vivo by both CD4(+)CD25(+) and CD4(+)CD25(-) cells in an IL-10-dependent manner. Furthermore, administration of an anti-IL-10R mAb to unmanipulated adult mice was sufficient to induce the development of colitis. Taken together, these data indicate that colitogenic Th1 cells enter into the Ag-experienced pool in normal mice, but that their function is controlled by regulatory T cells and IL-10. Interestingly, IL-10 was not absolutely required for CD4(+)CD25(+) T cell-mediated inhibition of colitis induced by transfer of naive CD4(+)CD45RB(high) cells, suggesting a differential requirement for IL-10 in the regulation of naive and Ag-experienced T cells.
Collapse
|
32
|
Abstract
The human gut is the natural habitat for a large and dynamic bacterial community, but a substantial part of these bacterial populations are still to be described. However, the relevance and effect of resident bacteria on a host's physiology and pathology has been well documented. Major functions of the gut microflora include metabolic activities that result in salvage of energy and absorbable nutrients, important trophic effects on intestinal epithelia and on immune structure and function, and protection of the colonised host against invasion by alien microbes. Gut flora might also be an essential factor in certain pathological disorders, including multisystem organ failure, colon cancer, and inflammatory bowel diseases. Nevertheless, bacteria are also useful in promotion of human health. Probiotics and prebiotics are known to have a role in prevention or treatment of some diseases.
Collapse
Affiliation(s)
- Francisco Guarner
- Digestive System Research Unit, Hospital General Vall d'Hebron, Barcelona, Spain.
| | | |
Collapse
|
33
|
Bamias G, Marini M, Moskaluk CA, Odashima M, Ross WG, Rivera-Nieves J, Cominelli F. Down-regulation of intestinal lymphocyte activation and Th1 cytokine production by antibiotic therapy in a murine model of Crohn's disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5308-14. [PMID: 12391251 DOI: 10.4049/jimmunol.169.9.5308] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Resident intestinal bacteria likely play an important role in the pathogenesis of Crohn's disease through their interaction with the gut immune system. SAMP1/YitFc mice spontaneously develop chronic, discontinuous, transmural ileitis with many features similar to Crohn's disease. The aim of this study was to determine the effects and elucidate the mechanisms of action of antibiotic treatment in the SAMP1/YitFc mouse model of ileitis. Mice were treated orally with ciprofloxacin and metronidazole before the development of ileitis (prevention protocol) or after ileitis was fully established (treatment protocol). Terminal ilea were harvested for histological scoring, and lamina propria and mesenteric lymph node cells were isolated for analysis of activation markers and cytokine production. Antibiotic therapy significantly decreased the severity of ileitis both in the prevention (40% reduction, p < 0.05) and the treatment (25% reduction, p < 0.01) protocols, compared with untreated, control mice. These effects were associated with a decreased percentage of CD4(+)/CD45RB(high) lymphocytes in mesenteric lymph nodes of antibiotic-treated mice, as well as decreased production of IFN-gamma (prevention: 0.53 +/- 0.21 vs 1.84 +/- 0.04 ng/ml, p < 0.05; treatment: 8.4 +/- 0.4 vs 12.4 +/- 0.7 ng/ml, p < 0.005) and TNF (prevention: 61.5 +/- 13 vs 134 +/- 19 pg/ml, p < 0.01; treatment: 333.5 +/- 11 vs 496 +/- 20 pg/ml, p < 0.001). The number of activated lamina propria lymphocytes was also reduced after antibiotic treatment. In conclusion, antibiotic therapy significantly ameliorates the severity of ileitis in SAMP1/YitFc mice by a mechanism involving down-regulation of activated gut lymphocytes and inhibition of intestinal Th1 cytokine production.
Collapse
Affiliation(s)
- Giorgos Bamias
- Digestive Health Center of Excellence, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Burich A, Hershberg R, Waggie K, Zeng W, Brabb T, Westrich G, Viney JL, Maggio-Price L. Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-deficient mice. Am J Physiol Gastrointest Liver Physiol 2001; 281:G764-78. [PMID: 11518689 DOI: 10.1152/ajpgi.2001.281.3.g764] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) is thought to result from a dysregulated mucosal immune response to luminal microbial antigens, with T lymphocytes mediating the colonic pathology. Infection with Helicobacter spp has been reported to cause IBD in immunodeficient mice, some of which lack T lymphocytes. To further understand the role of T cells and microbial antigens in triggering IBD, we infected interleukin (IL)-10(-/-), recombinase-activating gene (Rag)1(-/-), T-cell receptor (TCR)-alpha(-/-), TCR-beta(-/-), and wild-type mice with Helicobacter hepaticus or Helicobacter bilis and compared the histopathological IBD phenotype. IL-10(-/-) mice developed severe diffuse IBD with either H. bilis or H. hepaticus, whereas Rag1(-/-), TCR-alpha(-/-), TCR-beta(-/-), and wild-type mice showed different susceptibilities to Helicobacter spp infection. Proinflammatory cytokine mRNA expression was increased in the colons of Helicobacter-infected IL-10(-/-) and TCR-alpha(-/-) mice with IBD. These results confirm and extend the role of Helicobacter as a useful tool for investigating microbial-induced IBD and show the importance, but not strict dependence, of T cells in the development of bacterial-induced IBD.
Collapse
Affiliation(s)
- A Burich
- Department of Comparative Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Eaton KA, Mefford M, Thevenot T. The role of T cell subsets and cytokines in the pathogenesis of Helicobacter pylori gastritis in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7456-61. [PMID: 11390498 DOI: 10.4049/jimmunol.166.12.7456] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gastritis due to Helicobacter pylori in mice and humans is considered a Th1-mediated disease, but the specific cell subsets and cytokines involved are still not well understood. The goal of this study was to investigate the immunopathogenesis of H. pylori-induced gastritis and delayed-type hypersensitivity (DTH) in mice. C57BL/6-Prkdc(scid) mice were infected with H. pylori and reconstituted with CD4+, CD4-depleted, CD4+CD45RB(high), or CD4+CD45RB(low) splenocytes from wild-type C57BL/6 mice or with splenocytes from C57BL/6(IFN-gamma-/-) or C57BL/6(IL-10-/-) mice. Four or eight weeks after transfer, DTH to H. pylori Ags was determined by footpad injection; gastritis and bacterial colonization were quantified; and IFN-gamma secretion by splenocytes in response to H. pylori Ag was determined. Gastritis and DTH were present in recipients of unfractionated splenocytes, CD4+ splenocytes, and CD4+CD45RB(high) splenocytes, but absent in the other groups. IFN-gamma secretion in response to H. pylori Ags was correlated with gastritis, although splenocytes from all groups of mice secreted some IFN-gamma. Gastritis was most severe in recipients of splenocytes from IL-10-deficient mice, and least severe in those given IFN-gamma-deficient splenocytes. Bacterial colonization in all groups was inversely correlated with gastritis. These data indicate that 1) CD4+ T cells are both necessary and sufficient for gastritis and DTH due to H. pylori in mice; 2) high expression of CD45RB is a marker for gastritis-inducing CD4+ cells; and 3) IFN-gamma contributes to gastritis and IL-10 suppresses it, but IFN-gamma secretion alone is not sufficient to induce gastritis. The results support the assertion that H. pylori is mediated by a Th1-biased cellular immune response.
Collapse
Affiliation(s)
- K A Eaton
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
37
|
ALEXANDER JSTEVEN, ELROD JOHNW, PARK JAEH. Roles of Leukocyte and Immune Cell Junctional Proteins. Microcirculation 2001. [DOI: 10.1111/j.1549-8719.2001.tb00167.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Trobonjaca Z, Leithäuser F, Möller P, Bluethmann H, Koezuka Y, MacDonald HR, Reimann J. MHC-II-independent CD4+ T cells induce colitis in immunodeficient RAG-/- hosts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3804-12. [PMID: 11238623 DOI: 10.4049/jimmunol.166.6.3804] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CD4(+) alpha beta T cells from either normal C57BL/6 (B6) or MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice engrafted into congenic immunodeficient RAG1(-/-) B6 hosts induced an aggressive inflammatory bowel disease (IBD). Furthermore, CD4(+) T cells from CD1d(-/-) knockout (KO) B6 donor mice but not those from MHC-I(-/-) (homozygous transgenic mice deficient for beta(2)-microglobulin) KO B6 mice induced a colitis in RAG(-/-) hosts. Abundant numbers of in vivo activated (CD69(high)CD44(high)CD28(high)) NK1(+) and NK1(-) CD4(+) T cells were isolated from the inflamed colonic lamina propria (cLP) of transplanted mice with IBD that produced large amounts of TNF-alpha and IFN-gamma but low amounts of IL-4 and IL-10. IBD-associated cLP Th1 CD4(+) T cell populations were polyclonal and MHC-II-restricted when derived from normal B6 donor mice, but oligoclonal and apparently MHC-I-restricted when derived from MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice. cLP CD4(+) T cell populations from homozygous transgenic mice deficient for beta(2)-microglobulin KO B6 donor mice engrafted into RAG(-/-) hosts were Th2 and MHC-II restricted. These data indicate that MHC-II-dependent as well as MHC-II-independent CD4(+) T cells can induce a severe and lethal IBD in congenic, immunodeficient hosts, but that the former need the latter to express its IBD-inducing potential.
Collapse
Affiliation(s)
- Z Trobonjaca
- Department of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Cong Y, Weaver CT, Lazenby A, Elson CO. Colitis induced by enteric bacterial antigen-specific CD4+ T cells requires CD40-CD40 ligand interactions for a sustained increase in mucosal IL-12. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2173-82. [PMID: 10925304 DOI: 10.4049/jimmunol.165.4.2173] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C3H/HeJBir is a mouse substrain that is highly susceptible to colitis. Their CD4+ T cells react to Ags of the commensal enteric bacteria, and the latter can mediate colitis when activated by these Ags and transferred to histocompatible scid recipients. In this study, multiple long-term C3H/HeJBir CD4+ T cell (Bir) lines reactive to commensal enteric bacterial Ags have been generated. All these were Ag specific, pauciclonal, and Th1 predominant; most induced colitis uniformly after transfer to scid recipients. Lesions were focal and marked by increased expression of IL-12p40 and IFN-gamma mRNA and protein. Pathogenic Bir T cell lines expressed CD40 ligand (CD40L) when cultured with Ag-pulsed APCs in vitro. Production of IL-12 was also increased in such cultures, an effect that was Ag- and T cell-dependent and required costimulation by CD40, but not by B7. The two Bir T cell lines that did not induce lesions after transfer failed to significantly express CD40L or increase IL-12 when cultured with Ag-pulsed APCs. Administration of anti-CD40L blocked disease expression induced by pathogenic T cells. We conclude that interactions in the colon mucosa between CD40L-expressing Bir Th1 cells with APCs endogenously loaded with commensal bacterial Ags are critical for sustained increases in local IL-12 production and progression to colitis.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibodies, Blocking/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Bacterial/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- CD4-Positive T-Lymphocytes/transplantation
- CD40 Antigens/metabolism
- CD40 Antigens/physiology
- CD40 Ligand
- Cell Line
- Colitis/immunology
- Colitis/microbiology
- Colitis/pathology
- Colitis/prevention & control
- Cytokines/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Gene Expression Regulation/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Immunophenotyping
- Injections, Intravenous
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interleukin-12/biosynthesis
- Interleukin-12/genetics
- Interleukin-12/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Ligands
- Lymphocyte Activation
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C3H
- Mice, SCID
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Y Cong
- Division of Gastroenterology and Hepatology and Department of Pathology, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
40
|
Ehrhardt RO, Lúdvíksson BR. When immunization leads to autoimmunity: chronic inflammation as a result of thymic and mucosal dysregulation in IL-2 knock-out mice. Int Rev Immunol 2000; 18:591-612. [PMID: 10672503 DOI: 10.3109/08830189909088500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- R O Ehrhardt
- Protein Design Labs, Inc., Fremont, CA 94555, USA.
| | | |
Collapse
|
41
|
Cohavy O, Bruckner D, Gordon LK, Misra R, Wei B, Eggena ME, Targan SR, Braun J. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun 2000; 68:1542-8. [PMID: 10678972 PMCID: PMC97313 DOI: 10.1128/iai.68.3.1542-1548.2000] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria are a suspected pathogenic factor in inflammatory bowel disease, but the identity of the relevant microbial species remains unresolved. The pANCA autoantibody is associated with most cases of ulcerative colitis (UC) and hence reflects an immune response associated with the disease process. This study addresses the hypothesis that pANCA identifies an antigen(s) expressed by bacteria resident in the human colonic mucosa. Libraries of colonic bacteria were generated using aerobic and anaerobic microbiologic culture conditions, and bacterial pools and clonal isolates were evaluated for cross-reactive antigens by immunoblot analysis using the pANCA monoclonal antibody Fab 5-3. Two major species of proteins immunoreactive to pANCA monoclonal antibodies were detected in bacteria from the anaerobic libraries. Colony isolates of the expressing bacteria were identified as Bacteroides caccae and Escherichia coli. Isolation and partial sequencing of the B. caccae antigen identified a 100-kDa protein without database homologous sequences. The E. coli protein was biochemically and genetically identified as the outer membrane porin OmpC. Enzyme-linked immunosorbent assay with human sera demonstrated elevated immunoglobulin G anti-OmpC in UC patients compared to healthy controls. These findings demonstrate that a pANCA monoclonal antibody detects a recurrent protein epitope expressed by colonic bacteria and implicates colonic bacterial proteins as a target of the disease-associated immune response.
Collapse
Affiliation(s)
- O Cohavy
- Department of Pathology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Claesson MH, Bregenholt S, Bonhagen K, Thoma S, Möller P, Grusby MJ, Leithäuser F, Nissen MH, Reimann J. Colitis-Inducing Potency of CD4+ T Cells in Immunodeficient, Adoptive Hosts Depends on Their State of Activation, IL-12 Responsiveness, and CD45RB Surface Phenotype. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We studied the induction, severity, and rate of progression of inflammatory bowel disease (IBD) induced in SCID mice by the adoptive transfer of low numbers of the following purified BALB/c CD4+ T cell subsets: 1) unfractionated, peripheral, small (resting), or large (activated) CD4+ T cells; 2) fractionated, peripheral, small, or large, CD45RBhigh or CD45RBlow CD4+ T cells; and 3) peripheral IL-12-unresponsive CD4+ T cells from STAT-4-deficient mice. The adoptive transfer into SCID host of comparable numbers of CD4+ T cells was used to assess the colitis-inducing potency of these subsets. Small CD45RBhigh CD4+ T lymphocytes and activated CD4+ T blasts induced early (6–12 wk posttransfer) and severe disease, while small resting and unfractionated CD4+ T cells or CD45RBlow T lymphocytes induced a late-onset disease 12–16 wk posttransfer. SCID mice transplanted with STAT-4−/− CD4+ T cells showed a late-onset IBD manifest >20 wk posttransfer. In SCID mice with IBD transplanted with IL-12-responsive CD4+ T cells, the colonic lamina propria CD4+ T cells showed a mucosa-seeking memory/effector CD45RBlow Th1 phenotype abundantly producing IFN-γ and TNF-α. In SCID mice transplanted with IL-12-unresponsive STAT-4−/− CD4+ T cells, the colonic lamina propria, mesenteric lymph node, and splenic CD4+ T cells produced very little IFN-γ but abundant levels of TNF-α. The histopathologic appearance of colitis in all transplanted SCID mice was similar. These data indicate that CD45RBhigh and CD45RBlow, IL-12-responsive and IL-12-unresponsive CD4+ T lymphocytes and lymphoblasts have IBD-inducing potential though of varying potency.
Collapse
Affiliation(s)
- Mogens H. Claesson
- *Laboratory of Experimental Immunology, Department of Medical Anatomy, University of Copenhagen, Copenhagen, Denmark; Departments of
| | - Søren Bregenholt
- *Laboratory of Experimental Immunology, Department of Medical Anatomy, University of Copenhagen, Copenhagen, Denmark; Departments of
| | | | | | | | - Michael J. Grusby
- §Department of Cancer Biology, Harvard School of Public Health, Boston, MA 02115
| | | | - Mogens H. Nissen
- *Laboratory of Experimental Immunology, Department of Medical Anatomy, University of Copenhagen, Copenhagen, Denmark; Departments of
| | | |
Collapse
|
43
|
Snider DP, Liang H, Switzer I, Underdown BJ. IgA production in MHC class II-deficient mice is primarily a function of B-1a cells. Int Immunol 1999; 11:191-8. [PMID: 10069417 DOI: 10.1093/intimm/11.2.191] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mice deficient in MHC class II expression (C2d mice) do not make antibody to protein antigens administered systemically, but their ability to produce IgA antibody to antigen administered at mucosal sites has not been described. We investigated IgA production by C2d mice and their IgA antibody response to antigen given orally. Young C2d mice had normal amounts of serum IgA, intestinal-secreted IgA and normal numbers of intestinal IgA plasma cells, compared to control C57BL/6 mice. IgA production by C2d mice increased with age. Following oral immunization with cholera toxin, C57BL/6 mice responded with IgA and IgG antibody, and had increased numbers of IgA plasma cells, but C2d mice gave no response. The Peyer's patch and mesenteric lymph node tissues of C2d mice contained very few CD4-expressing T cells. Thus, C2d mice have no typical mucosal CD4 Th cells and cannot respond to a strong oral immunogen, yet they still produced and secreted IgA. We hypothesized that B-1 lymphocytes could provide a source of IgA independent of antigen-specific T cell help. Young C2d mice had normal numbers of peritoneal B-1a cells and their frequency increased with age. To test the role of these B-1a cells, we bred C2d mice to obtain mice that had no MHC class II expression and expressed the Xid gene that confers deficiency in B-1a cells. These double-deficient mice had 10-fold less serum and secreted IgA than all other F2 littermates. We conclude that B-1a cells are essential for the majority of IgA production in C2d mice. Thus, the C2d mouse may provide a useful tool for analysis of the role of intestinal IgA provided by B-1a cells.
Collapse
Affiliation(s)
- D P Snider
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Leach MW, Davidson NJ, Fort MM, Powrie F, Rennick DM. The role of IL-10 in inflammatory bowel disease: "of mice and men". Toxicol Pathol 1999; 27:123-33. [PMID: 10367687 DOI: 10.1177/019262339902700124] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a generic term typically used to describe a group of idiopathic inflammatory intestinal conditions in humans that are generally divided into Crohn's disease and ulcerative colitis. Although the etiology of these diseases remains unknown, a number of rodent models of IBD have recently been identified, all sharing the concept that the development of chronic intestinal inflammation occurs as a consequence of alterations in the immune system that lead to a failure of normal immunoregulation in the intestine. On the basis of these models, it has been hypothesized that the development of IBD in humans may be related to a dysregulated immune response to normal flora in the gut. Immunodeficient scid mice injected with CD4+ CD45RB(high) T cells and mice deficient in interleukin (IL)-10 (IL-10-/-) are among the rodent models of IBD. In both models, there is inflammation and evidence of a Th1-like response in the large intestine, characterized by CD4+ T-cell and macrophage infiltrates, and elevated levels of interferon-gamma. Because IL-10 is an immunomodulatory cytokine that is capable of controlling Th1-like responses, the role of IL-10 was investigated in these models. IL-10 was shown to be important in regulating the development of intestinal inflammation in both models. These results provided key data that supported initiation of clinical trials evaluating the efficacy of IL-10 in patients with IBD.
Collapse
Affiliation(s)
- M W Leach
- Schering-Plough Research Institute, Lafayette, New Jersey 07848, USA.
| | | | | | | | | |
Collapse
|
45
|
García-Lafuente A, Antolín M, Guarner F, Crespo E, Salas A, Forcada P, Malagelada J. Derangement of mucosal barrier function by bacteria colonizing the rat colonic mucosa. Eur J Clin Invest 1998; 28:1019-26. [PMID: 9893014 DOI: 10.1046/j.1365-2362.1998.00405.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Interaction between gut flora and the intestinal barrier may involve changes in permeability. METHODS Rats with a colonic segment excluded from faecal transit were surgically prepared. Matched groups were either kept on luminal antibiotics to prevent colonization of the segment or recolonized with mixed rat flora. Permeability to low-dose trinitrobenzenesulphonic acid (TNBS) or trinitrophenol (TNP), and mucosal injury by the compounds at a high dose were tested in antibiotic and recolonized rats (the compounds differ in water solubility but share a common antigenic domain). RESULTS Lumen to blood clearance of the hydrophilic probe (TNBS) was faster in recolonized than in antibiotic rats. The hydrophobic compound TNP was absorbed at faster rates than TNBS, but there was no difference between antibiotic and recolonized rats. Instillation of TNBS at a high dose induced mucosal release of inflammatory mediators and tissue myeloperoxidase accumulation in recolonized rats but not in antibiotic rats. Large necrotic lesions with submucosal involvement after TNBS were only observed in recolonized rats. In contrast, TNP induced mucosal inflammation and large lesions with submucosal necrosis both in recolonized and in antibiotic rats. CONCLUSION Colonizing bacteria may increase intestinal permeability to hydrophilic compounds and render the mucosa susceptible to injury.
Collapse
|
46
|
Elson CO, Cong Y, Brandwein S, Weaver CT, McCabe RP, Mähler M, Sundberg JP, Leiter EH. Experimental models to study molecular mechanisms underlying intestinal inflammation. Ann N Y Acad Sci 1998; 859:85-95. [PMID: 9928372 DOI: 10.1111/j.1749-6632.1998.tb11113.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Experimental animal models, particularly the newer mouse models, have convincingly demonstrated that CD+ T cells play a central role in chronic intestinal inflammation. Such CD4+ effector T cells are induced by the bacterial flora. In at least one model, it is conventional protein antigens that are stimulating these pathogenic T cells. The antigens driving disease seem to be a selective subset of immunodominant proteins, likely derived from a subset of organisms. Multiple genes contribute to colitis susceptibility and a number of these genes are being localized.
Collapse
Affiliation(s)
- C O Elson
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Panwala CM, Jones JC, Viney JL. A Novel Model of Inflammatory Bowel Disease: Mice Deficient for the Multiple Drug Resistance Gene, mdr1a, Spontaneously Develop Colitis. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The murine multiple drug resistance (mdr) gene, mdr1a, encodes a 170-kDa transmembrane protein that is expressed in many tissues including intestinal epithelial cells, a subset of lymphoid cells and hematopoietic cells. We report that mdr1a knockout (mdr1a−/−) mice are susceptible to developing a severe, spontaneous intestinal inflammation when maintained under specific pathogen-free animal facility conditions. The intestinal inflammation seen in mdr1a−/− mice has a pathology similar to that of human inflammatory bowel disease (IBD) and is defined by dysregulated epithelial cell growth and leukocytic infiltration into the lamina propria of the large intestine. Treating mdr1a−/− mice with oral antibiotics can both prevent the development of disease and resolve active inflammation. Lymphoid cells isolated from mice with active colitis are functionally reactive to intestinal bacterial Ags, providing evidence that there is enhanced immunologic responsiveness to the normal bacterial flora during IBD. This study is the first description of spontaneous colitis in a gene knockout mouse with an apparently intact immune system. This novel model of spontaneous colitis may provide new insight into the pathogenesis of IBD, the nature of dysregulated immune reactivity to intestinal bacterial Ags, and the potential functional role of mdr genes expressed in the cells and tissues of the colonic microenvironment.
Collapse
Affiliation(s)
| | - Jon C. Jones
- †Immunobiology, Immunex Corporation, Seattle, WA 98101
| | | |
Collapse
|
48
|
Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998; 66:5224-31. [PMID: 9784526 PMCID: PMC108652 DOI: 10.1128/iai.66.11.5224-5231.1998] [Citation(s) in RCA: 1101] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1998] [Accepted: 08/20/1998] [Indexed: 11/20/2022] Open
Abstract
Mice with targeted deletion of the gene for interleukin-10 (IL-10) spontaneously develop enterocolitis when maintained in conventional conditions but develop only colitis when kept in specific-pathogen-free (SPF) environments. This study tested the hypothesis that enteric bacteria are necessary for the development of spontaneous colitis and immune system activation in IL-10-deficient mice. IL-10-deficient mice were maintained in either SPF conditions or germfree conditions or were populated with bacteria known to cause colitis in other rodent models. IL-10-deficient mice kept in SPF conditions developed colitis in all segments of the colon (cecum and proximal and distal colon). These mice exhibited immune system activation as evidenced by increased expression of CD44 on CD4(+) T cells; increased mesenteric lymph node cell numbers; and increased production of immunoglobulin A (IgA), IgG1, and IL-12 p40 from colon fragment cultures. Mice populated with bacterial strains, including Bacteroides vulgatus, known to induce colitis in other rodent models had minimal colitis. Germfree IL-10-deficient mice had no evidence of colitis or immune system activation. We conclude therefore that resident enteric bacteria are necessary for the development of spontaneous colitis and immune system activation in IL-10-deficient mice.
Collapse
Affiliation(s)
- R K Sellon
- Department of Companion Animal and Special Species, Pathology and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Thoma S, Bonhagen K, Vestweber D, Hamann A, Reimann J. Expression of selectin-binding epitopes and cytokines by CD4+ T cells repopulating scid mice with colitis. Eur J Immunol 1998; 28:1785-97. [PMID: 9645359 DOI: 10.1002/(sici)1521-4141(199806)28:06<1785::aid-immu1785>3.0.co;2-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recruitment into the gut of CD4+ T cells and their activation in the colonic lamina propria (LP) are key events in the development of colitis in scid mice reconstituted with CD4+ T cells from immunocompetent, congenic donor mice. This study investigated the expression of cytokines and selectin-binding epitopes by CD4+ T cells repopulating different tissues of the adoptive scid host. Cells from the inflamed colonic LP of transplanted scid mice produced high amounts of IL-12, IFN-gamma and TNF-alpha but only low amounts IL-4 and IL-10. Intracellular cytokine staining confirmed the presence of large numbers of IFN-gamma- and TNF-alpha-producing effector CD4+ T cells in the colonic LP of scid mice with colitis but also in non-inflamed tissues [spleen (S), peritoneal cavity (PC) and mesenteric lymph nodes (mLN)] of the adoptive host. Cells from these tissues furthermore produced large amounts of IL-12. Ligands for endothelial selectins are involved in recruiting T cells into inflamed tissues. We have analyzed the expression of selectin-binding epitopes on CD4+ T cells repopulating different tissues of the adoptive scid host. We found that a large fraction of CD4+ T cells from inflamed colonic LP and from non-inflamed PC, mLN and S expressed high levels of P- and E-selectin-binding epitopes (P-Lhi) in transplanted scid mice, but not in congenic, immunocompetent control mice. Although P-Lhi CD4+ T cells were enriched in IFN-gamma-producing subsets from most (but not all) tissues, we also found large numbers of in vivo generated P-Llo CD4+ T cells producing pro-inflammatory cytokines. This was in contrast to in vitro generated Th1 CD4+ T blasts that were almost exclusively P-Lhi. In this mouse model, production of Th1-type pro-inflammatory cytokines and expression of surface epitopes binding endothelial selectins are hence strikingly up-regulated in CD4+ T cells residing in inflamed and non-inflamed tissues during the development of colitis.
Collapse
Affiliation(s)
- S Thoma
- Department of Medical Microbiology, University of Ulm, Germany
| | | | | | | | | |
Collapse
|
50
|
Meijssen MA, Brandwein SL, Reinecker HC, Bhan AK, Podolsky DK. Alteration of gene expression by intestinal epithelial cells precedes colitis in interleukin-2-deficient mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G472-9. [PMID: 9530147 DOI: 10.1152/ajpgi.1998.274.3.g472] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells may be actively involved in the immunoregulatory pathways leading to intestinal inflammation. The aim of this study was to assess expression by intestinal epithelial cells of cytokines with potential involvement in the development of intestinal inflammation in interleukin (IL)-2-deficient [(-/-)] mice. Wild-type mice, mice heterozygous for the disrupted IL-2 gene, and IL-2(-/-) mice were studied at 6, 16, and 24 wk of age. The mRNA levels of transforming growth factor-beta 1 (TGF-beta 1), tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, IL-6, IL-15, KC, JE, and CD14 in colonic and small intestinal epithelial cells were assessed by Northern blot analysis. CD14 was also measured by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). TGF-beta 1 mRNA was constitutively expressed in both colonic and small intestinal epithelial cells with increased expression in the colonic epithelium of colitic mice. CD14 was detected only in colonic epithelial cells, and mRNA levels increased severalfold in IL-2(-/-) mice with colitis. Northern analysis demonstrated increased levels of TGF-beta 1 and CD14 mRNA in colonic epithelial cells of IL-2(-/-) mice before the development of signs of colitis. CD14 mRNA and protein expression in the epithelial cells of colitic mice were confirmed by RT-PCR and Western blot analysis of isolated cells. In addition, IL-2(-/-) mice also expressed increased levels of IL-15 mRNA in small intestinal and colonic epithelial cells compared with heterozygous control mice. TNF-alpha, IL-1 beta, IL-6, KC, and JE mRNAs were only detectable in colonic epithelial cells of mice after the onset of colitis. Enhanced expression of TGF-beta 1, IL-15, and CD14 by colonic epithelial cells may play a role in the subsequent development of colitis in IL-2(-/-) mice.
Collapse
Affiliation(s)
- M A Meijssen
- Department of Pathology, Massachusetts General Hospital, Boston, USA
| | | | | | | | | |
Collapse
|