1
|
Rømer TB, Jeppesen R, Christensen RHB, Benros ME. Biomarkers in the cerebrospinal fluid of patients with psychotic disorders compared to healthy controls: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:2277-2290. [PMID: 37169812 DOI: 10.1038/s41380-023-02059-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Psychotic disorders are severe mental disorders with poorly understood etiology. Biomarkers in the cerebrospinal fluid (CSF) could provide etiological clues and diagnostic tools for psychosis; however, an unbiased overview of CSF alterations in individuals with psychotic disorders is lacking. The objective of this study was to summarize all quantifiable findings in CSF from individuals with psychotic disorders compared to healthy controls (HC). Studies published before January 25th, 2023 were identified searching PubMed, EMBASE, Cochrane Library, Web of Science, ClinicalTrials.gov, and PsycINFO. Screening, full-text review, data extraction, and risk of bias assessments were performed by two independent reviewers following PRISMA guidelines. Findings in patients and healthy controls were compared and summarized using random-effects analyses and assessment of publication bias, subgroup and sensitivity analyses were performed. 145 studies, covering 197 biomarkers, were included, of which 163 biomarkers have not previously been investigated in meta-analyses. All studies showed some degree of bias. 55 biomarkers measured in CSF were associated with psychosis and of these were 15 biomarkers measured in ≥2 studies. Patients showed increased levels of noradrenaline (standardized mean difference/SMD, 0.53; 95% confidence interval/CI, 0.16 to 0.90) and its metabolite 3-methoxy-4-hydroxyphenylglycol (SMD, 0.30; 95% CI: 0.05 to 0.55), the serotonin metabolite 5-hydroxyindoleacetic acid (SMD, 0.11; 95% CI: 0.01 to 0.21), the pro-inflammatory neurotransmitter kynurenic acid (SMD, 1.58; 95% CI: 0.34 to 2.81), its precursor kynurenine (SMD,0.99; 95% CI: 0.60 to 1.38), the cytokines interleukin-6 (SMD, 0.58; 95% CI: 0.39 to 0.77) and interleukin-8 (SMD, 0.43; 95% CI: 0.24 to 0.62), the endocannabinoid anandamide (SMD, 0.78; 95% CI: 0.53 to 1.02), albumin ratio (SMD, 0.40; 95% CI: 0.08 to 0.72), total protein (SMD, 0.29; 95% CI: 0.16 to 0.43), immunoglobulin ratio (SMD, 0.45; 95% CI: 0.06 to 0.85) and glucose (SMD, 0.48; 95% CI: 0.01 to 0.94). Neurotensin (SMD, -0.67; 95% CI: -0.89 to -0.46) and γ-aminobutyric acid (SMD, -0.29; 95% CI: -0.50 to -0.09) were decreased. Most biomarkers showed no significant differences, including the dopamine metabolites homovanillic acid and 3,4-dihydroxyphenylacetic acid. These findings suggest that dysregulation of the immune and adrenergic system as well as blood-brain barrier dysfunction are implicated in the pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- Troels Boldt Rømer
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rose Jeppesen
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rune Haubo Bojesen Christensen
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Barranco N, Plá V, Alcolea D, Sánchez-Domínguez I, Fischer-Colbrie R, Ferrer I, Lleó A, Aguado F. Dense core vesicle markers in CSF and cortical tissues of patients with Alzheimer's disease. Transl Neurodegener 2021; 10:37. [PMID: 34565482 PMCID: PMC8466657 DOI: 10.1186/s40035-021-00263-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. Methods Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55).
Results In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. Conclusions These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00263-0.
Collapse
Affiliation(s)
- Neus Barranco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | - Virginia Plá
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Irene Sánchez-Domínguez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | | | - Isidro Ferrer
- Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, and Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Fernando Aguado
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
3
|
Ueda J, Bundo M, Nakachi Y, Kasai K, Kato T, Iwamoto K. Cell type-specific DNA methylation analysis of the prefrontal cortex of patients with schizophrenia. Psychiatry Clin Neurosci 2021; 75:297-299. [PMID: 34164871 PMCID: PMC8457163 DOI: 10.1111/pcn.13282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan.,Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Katus U, Villa I, Ringmets I, Veidebaum T, Harro J. Neuropeptide Y gene variants in obesity, dietary intake, blood pressure, lipid and glucose metabolism: A longitudinal birth cohort study. Peptides 2021; 139:170524. [PMID: 33652060 DOI: 10.1016/j.peptides.2021.170524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Neuropeptide Y affects several physiological functions, notably appetite regulation. We analysed the association between four single nucleotide polymorphisms (SNP) in the NPY gene (rs5574, rs16147, rs16139, rs17149106) and measures of obesity, dietary intake, physical activity, blood pressure, glucose and lipid metabolism from adolescence to young adulthood. METHODS The sample included both birth cohorts of the Estonian Children Personality Behaviour and Health Study at ages 15 (n = 1075 with available complete data), 18 (n = 913) and 25 (n = 926) years. Linear mixed-effects regression models were used for longitudinal association between NPY SNP-s and variables of interest. Associations at ages 15, 18 and 25 were analysed by ANOVA. RESULTS Rs5574 CC-homozygotes had a greater increase per year in waist-to-hip ratio (WHR) and a smaller decrease in daily energy intake and carbohydrate intake from age 15-25 years; fasting glucose and cholesterol were higher in rs5574 CC-homozygotes. Rs16147 TT-homozygotes had higher body weight and a greater increase in sum of 5 skinfolds, waist circumference, WHR and waist-to-height ratio; however, they had lower carbohydrate intake throughout the observation period. Rs16147 TT-homozygotes and both rs16139 and rs17149106 heterozygotes had higher triglyceride levels. All NPY SNP-s were associated with blood pressure: rs5574 TT-and rs16147 CC-homozygotes had a smaller increase in diastolic blood pressure, while rs16139 and rs17149106 heterozygous had lower blood pressure throughout the study. CONCLUSION Variants of the NPY gene were associated with measures of obesity, dietary intake, glucose and lipid metabolism and blood pressure from adolescence to young adulthood.
Collapse
Affiliation(s)
- Urmeli Katus
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Inga Villa
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Inge Ringmets
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia.
| |
Collapse
|
5
|
SWATH-MS analysis of cerebrospinal fluid to generate a robust battery of biomarkers for Alzheimer's disease. Sci Rep 2020; 10:7423. [PMID: 32366888 PMCID: PMC7198522 DOI: 10.1038/s41598-020-64461-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebrospinal fluid (CSF) Aβ42 and tau protein levels are established diagnostic biomarkers of Alzheimer's disease (AD). However, their inadequacy to represent clinical efficacy in drug trials indicates the need for new biomarkers. Sequential window acquisition of all theoretical fragment ion spectra (SWATH)-based mass spectrometry (MS) is an advanced proteomic tool for large-scale, high-quality quantification. In this study, SWATH-MS showed that VGF, chromogranin-A, secretogranin-1, and opioid-binding protein/cell adhesion molecule were significantly decreased in 42 AD patients compared to 39 controls, whereas 14-3-3ζ was increased (FDR < 0.05). In addition, 16 other proteins showed substantial changes (FDR < 0.2). The expressions of the top 21 analytes were closely interconnected, but were poorly correlated with CSF Aβ42, tTau, and pTau181 levels. Logistic regression analysis and data mining were used to establish the best algorithm for AD, which created novel biomarker panels with high diagnostic value (AUC = 0.889 and 0.924) and a strong correlation with clinical severity (all p < 0.001). Targeted proteomics was used to validate their usefulness in a different cohort (n = 36) that included patients with other brain disorders (all p < 0.05). This study provides a list of proteins (and combinations thereof) that could serve as new AD biomarkers.
Collapse
|
6
|
Laguerre F, Anouar Y, Montero-Hadjadje M. Chromogranin A in the early steps of the neurosecretory pathway. IUBMB Life 2019; 72:524-532. [PMID: 31891241 DOI: 10.1002/iub.2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored with hormones and neuropeptides in secretory granules (SG) of most (neuro)endocrine cells and neurons. Since its discovery in 1967, many studies have reported its structural characteristics, biological roles, and mechanisms of action. Indeed, CgA is both a precursor of various biologically active peptides and a granulogenic protein regulating the storage and secretion of hormones and neuropeptides. This review emphasizes the findings and theoretical concepts around the CgA-linked molecular machinery controlling hormone/neuropeptide aggregation and the interaction of CgA-hormone/neuropeptide aggregates with the trans-Golgi membrane to allow hormone/neuropeptide targeting and SG biogenesis. We will also discuss the intriguing alteration of CgA expression and secretion in various neurological disorders, which could provide insights to elucidate the molecular mechanisms underlying these pathophysiological conditions.
Collapse
Affiliation(s)
- Fanny Laguerre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| |
Collapse
|
7
|
Associations between SNPs and immune-related circulating proteins in schizophrenia. Sci Rep 2017; 7:12586. [PMID: 28974776 PMCID: PMC5626704 DOI: 10.1038/s41598-017-12986-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) and proteomic studies have provided convincing evidence implicating alterations in immune/inflammatory processes in schizophrenia. However, despite the convergence of evidence, direct links between the genetic and proteomic findings are still lacking for schizophrenia. We investigated associations between single nucleotide polymorphisms (SNPs) from the custom-made PsychArray and the expression levels of 190 multiplex immunoassay profiled serum proteins in 149 schizophrenia patients and 198 matched controls. We identified associations between 81 SNPs and 29 proteins, primarily involved in immune/inflammation responses. Significant SNPxDiagnosis interactions were identified for eight serum proteins including Factor-VII[rs555212], Alpha-1-Antitrypsin[rs11846959], Interferon-Gamma Induced Protein 10[rs4256246] and von-Willebrand-Factor[rs12829220] in the control group; Chromogranin-A[rs9658644], Cystatin-C[rs2424577] and Vitamin K-Dependent Protein S[rs6123] in the schizophrenia group; Interleukin-6 receptor[rs7553796] in both the control and schizophrenia groups. These results suggested that the effect of these SNPs on expression of the respective proteins varies with diagnosis. The combination of patient-specific genetic information with blood biomarker data opens a novel approach to investigate disease mechanisms in schizophrenia and other psychiatric disorders. Our findings not only suggest that blood protein expression is influenced by polymorphisms in the corresponding gene, but also that the effect of certain SNPs on expression of proteins can vary with diagnosis.
Collapse
|
8
|
Shin JG, Kim JH, Park CS, Kim BJ, Kim JW, Choi IG, Hwang J, Shin HD, Woo SI. Gender-Specific Associations between CHGB Genetic Variants and Schizophrenia in a Korean Population. Yonsei Med J 2017; 58:619-625. [PMID: 28332369 PMCID: PMC5368149 DOI: 10.3349/ymj.2017.58.3.619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Schizophrenia is a devastating mental disorder and is known to be affected by genetic factors. The chromogranin B (CHGB), a member of the chromogranin gene family, has been proposed as a candidate gene associated with the risk of schizophrenia. The secretory pathway for peptide hormones and neuropeptides in the brain is regulated by chromogranin proteins. The aim of this study was to investigate the potential associations between genetic variants of CHGB and schizophrenia susceptibility. MATERIALS AND METHODS In the current study, 15 single nucleotide polymorphisms of CHGB were genotyped in 310 schizophrenia patients and 604 healthy controls. RESULTS Statistical analysis revealed that two genetic variants (non-synonymous rs910122; rs2821 in 3'-untranslated region) were associated with schizophrenia [minimum p=0.002; odds ratio (OR)=0.72], even after correction for multiple testing (p(corr)=0.02). Since schizophrenia is known to be differentially expressed between sexes, additional analysis for sex was performed. As a result, these two genetic variants (rs910122 and rs2821) and a haplotype (ht3) showed significant associations with schizophrenia in male subjects (p(corr)=0.02; OR=0.64), whereas the significance disappeared in female subjects (p>0.05). CONCLUSION Although this study has limitations including a small number of samples and lack of functional study, our results suggest that genetic variants of CHGB may have sex-specific effects on the risk of schizophrenia and provide useful preliminary information for further study.
Collapse
Affiliation(s)
- Joong Gon Shin
- Department of Life Science, Sogang University, Seoul, Korea
- Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Jeong Hyun Kim
- Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Chul Soo Park
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Bong Jo Kim
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Jae Won Kim
- Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Ihn Geun Choi
- Department of Neuropsychiatry, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea
| | - Jaeuk Hwang
- Department of Neuropsychiatry, Soonchunhyang University Hospital, Seoul, Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, Korea
- Research Institute for Basic Science, Sogang University, Seoul, Korea
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Korea.
| | - Sung Il Woo
- Department of Neuropsychiatry, Soonchunhyang University Hospital, Seoul, Korea.
| |
Collapse
|
9
|
Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport. Neuroscience 2015; 293:157-70. [PMID: 25743254 DOI: 10.1016/j.neuroscience.2015.02.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Transactive response DNA-binding protein 43 (TDP-43) is a predominantly nuclear, ubiquitously expressed RNA and DNA-binding protein. It recognizes and binds to UG repeats and is involved in pre-mRNA splicing, mRNA stability and microRNA metabolism. TDP-43 is essential in early embryonic development but accumulates in cytoplasmic aggregates in amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar degeneration (FTLD). It is not known yet whether cytoplasmic aggregates of TDP-43 are toxic or protective but they are often associated with a loss of TDP-43 from the nucleus and neurodegeneration may be caused by a loss of normal TDP-43 function or a gain of toxic function. Here we present a proteomic study to analyze the effect of loss of TDP-43 on the proteome. MS data are available via ProteomeXchange with identifier PXD001668. Our results indicate that TDP-43 is an important regulator of RNA metabolism and intracellular transport. We show that Ran-binding protein 1 (RanBP1), DNA methyltransferase 3 alpha (Dnmt3a) and chromogranin B (CgB) are downregulated upon TDP-43 knockdown. Subsequently, transportin 1 level is increased as a result of RanBP1 depletion. Improper regulation of these proteins and the subsequent disruption of cellular processes may play a role in the pathogenesis of the TDP-43 proteinopathies ALS and FTLD.
Collapse
|
10
|
Zhang K, Biswas N, Gayen JR, Miramontes-Gonzalez JP, Hightower CM, Mustapic M, Mahata M, Huang CT, Hook VY, Mahata SK, Vaingankar S, O'Connor DT. Chromogranin B: intra- and extra-cellular mechanisms to regulate catecholamine storage and release, in catecholaminergic cells and organisms. J Neurochem 2013; 129:48-59. [PMID: 24266713 DOI: 10.1111/jnc.12527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/05/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
Abstract
Chromogranin B (CHGB) is the major matrix protein in human catecholamine storage vesicles. CHGB genetic variation alters catecholamine secretion and blood pressure. Here, effective Chgb protein under-expression was achieved by siRNA in PC12 cells, resulting in ~ 48% fewer secretory granules on electron microscopy, diminished capacity for catecholamine uptake (by ~ 79%), and a ~ 73% decline in stores available for nicotinic cholinergic-stimulated secretion. In vivo, loss of Chgb in knockout mice resulted in a ~ 35% decline in chromaffin granule abundance and ~ 44% decline in granule diameter, accompanied by unregulated catecholamine release into plasma. Over-expression of CHGB was achieved by transduction of a CHGB-expressing lentivirus, resulting in ~ 127% elevation in CHGB protein, with ~ 122% greater abundance of secretory granules, but only ~ 14% increased uptake of catecholamines, and no effect on nicotinic-triggered secretion. Human CHGB protein and its proteolytic fragments inhibited nicotinic-stimulated catecholamine release by ~ 72%. One conserved-region CHGB peptide inhibited nicotinic-triggered secretion by up to ~ 41%, with partial blockade of cationic signal transduction. We conclude that bi-directional quantitative derangements in CHGB abundance result in profound changes in vesicular storage and release of catecholamines. When processed and released extra-cellularly, CHGB proteolytic fragments exert a feedback effect to inhibit catecholamine secretion, especially during nicotinic cholinergic stimulation.
Collapse
Affiliation(s)
- Kuixing Zhang
- Departments of Medicine and Pharmacology, and Institute for Genomic Medicine (IGM), University of California at San Diego, La Jolla, California, USA; VA San Diego Healthcare System, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jakobsson J, Stridsberg M, Zetterberg H, Blennow K, Ekman CJ, Johansson AG, Sellgren C, Landén M. Decreased cerebrospinal fluid secretogranin II concentrations in severe forms of bipolar disorder. J Psychiatry Neurosci 2013; 38:E21-6. [PMID: 23415276 PMCID: PMC3692729 DOI: 10.1503/jpn.120170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bipolar disorder is a common psychiatric mood disorder that is defined by recurrent episodes of abnormally elevated mood and depression. Progressive structural brain changes in individuals with bipolar disorder have been suggested to be associated with defects in the secretion of neurotrophic factors. We sought to assess how the regulated secretory pathway in the brain is affected in patients with bipolar disorder by measuring chromogranin B and secretogranin II, which are 2 cerebrospinal fluid (CSF) biological markers for this process. METHODS We measured the concentrations of chromogranin B (peptide 439-451) and secretogranin II (peptide 154-165) in the CSF of patients with well-defined bipolar disorder and healthy controls. The lifetime severity of bipolar disorder was rated using the Clinical Global Impression (CGI) scale. RESULTS We included 126 patients with bipolar disorder and 71 healthy controls in our analysis. Concentrations of secretogranin II were significantly lower in patients with bipolar disorder type I than in healthy controls. The reduction was most pronounced in patients with high CGI scores (i.e., severe disease). LIMITATIONS The cross-sectional design of the current study limits the ability to pinpoint the causalities behind the observed associations. CONCLUSION This study shows that the CSF marker secretogranin II has the potential to act as a biological marker for severe forms of bipolar disorder. Our findings indicate that patients with bipolar disorder possess defects in the regulatory secretory pathway, which may be of relevance to the progressive structural brain changes seen in those with severe forms of the disease.
Collapse
Affiliation(s)
- Joel Jakobsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin WJ, Salton SR. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms. Front Endocrinol (Lausanne) 2013; 4:96. [PMID: 23964269 PMCID: PMC3734370 DOI: 10.3389/fendo.2013.00096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022] Open
Abstract
The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.
Collapse
Affiliation(s)
- Wei-Jye Lin
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen R. Salton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- *Correspondence: Stephen R. Salton, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA e-mail:
| |
Collapse
|
13
|
Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SRJ. The extended granin family: structure, function, and biomedical implications. Endocr Rev 2011; 32:755-97. [PMID: 21862681 PMCID: PMC3591675 DOI: 10.1210/er.2010-0027] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
14
|
Willis M, Leitner I, Jellinger KA, Marksteiner J. Chromogranin peptides in brain diseases. J Neural Transm (Vienna) 2011; 118:727-35. [PMID: 21533607 DOI: 10.1007/s00702-011-0648-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/12/2011] [Indexed: 12/14/2022]
Abstract
Synaptic disturbances may play a key role in the pathophysiology of neuropsychiatric diseases. In this article, we review immunohistological findings of chromogranin peptides in neurodegenerative and neurodevelopmental disorders, with particular emphasis on Alzheimer's disease, the disorder chromogranins have been studied most extensively. Data was collected from existing and new experimental data and medline research. This review focuses on synaptic changes elicited by chromogranin peptides immunoreactivity in Alzheimer's disease, as well in schizophrenia and amyotrophic lateral sclerosis (ALS). An imbalanced availability of chromogranin peptides may be responsible for impaired neurotransmission and a reduced functioning of dense core vesicles. Since chromogranin A was postulated as a potent proinflammatory agent, we focused on chromogranin A in neuroinflammation in Alzheimer's disease and ALS. Further understanding of role and function of chromogranin peptides in neuropathological conditions is still required.
Collapse
Affiliation(s)
- Michael Willis
- Department of General Psychiatry, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
15
|
Guest PC, Martins-de-Souza D, Vanattou-Saifoudine N, Harris LW, Bahn S. Abnormalities in Metabolism and Hypothalamic–Pituitary–Adrenal Axis Function in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:145-68. [DOI: 10.1016/b978-0-12-387718-5.00006-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Bartolomucci A, Pasinetti GM, Salton SRJ. Granins as disease-biomarkers: translational potential for psychiatric and neurological disorders. Neuroscience 2010; 170:289-97. [PMID: 20600637 DOI: 10.1016/j.neuroscience.2010.06.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 12/12/2022]
Abstract
The identification of biomarkers represents a fundamental medical advance that can lead to an improved understanding of disease pathogenesis, and holds the potential to define surrogate diagnostic and prognostic endpoints. Because of the inherent difficulties in assessing brain function in patients and objectively identifying neurological and cognitive/emotional symptoms, future application of biomarkers to neurological and psychiatric disorders is extremely desirable. This article discusses the biomarker potential of the granin family, a group of acidic proteins present in the secretory granules of a wide variety of endocrine, neuronal and neuroendocrine cells: chromogranin A (CgA), CgB, Secretogranin II (SgII), SgIII, HISL-19 antigen, 7B2, NESP55, VGF and ProSAAS. Their relative abundance, functional significance, and secretion into the cerebrospinal fluid (CSF), saliva, and the general circulation have made granins tractable targets as biomarkers for many diseases of neuronal and endocrine origin, recently impacting diagnosis of a number of neurological and psychiatric disorders including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, frontotemporal dementia, and schizophrenia. Although research has not yet validated the clinical utility of granins as surrogate endpoints for the progression or treatment of neurological or psychiatric disease, a growing body of experimental evidence indicates that the use of granins as biomarkers might be of great potential clinical interest. Advances that further elucidate the mechanism(s) of action of granins, coupled with improvements in biomarker technology and direct clinical application, should increase the translational effectiveness of this family of proteins in disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- A Bartolomucci
- Department of Evolutionary and Functional Biology, University of Parma, 43124 Parma, Italy.
| | | | | |
Collapse
|
17
|
Chu TT, Liu Y. An integrated genomic analysis of gene-function correlation on schizophrenia susceptibility genes. J Hum Genet 2010; 55:285-92. [PMID: 20339380 DOI: 10.1038/jhg.2010.24] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a highly complex inheritable disease characterized by numerous genetic susceptibility elements, each contributing a modest increase in risk for the disease. Although numerous linkage or association studies have identified a large set of schizophrenia-associated loci, many are controversial. In addition, only a small portion of these loci overlaps with the large cumulative pool of genes that have shown changes of expression in schizophrenia. Here, we applied a genomic gene-function approach to identify susceptibility loci that show direct effect on gene expression, leading to functional abnormalities in schizophrenia. We carried out an integrated analysis by cross-examination of the literature-based susceptibility loci with the schizophrenia-associated expression gene list obtained from our previous microarray study (Journal of Human Genetics (2009) 54: 665-75) using bioinformatic tools, followed by confirmation of gene expression changes using qPCR. We found nine genes (CHGB, SLC18A2, SLC25A27, ESD, C4A/C4B, TCP1, CHL1 and CTNNA2) demonstrate gene-function correlation involving: synapse and neurotransmission; energy metabolism and defense mechanisms; and molecular chaperone and cytoskeleton. Our findings further support the roles of these genes in genetic influence and functional consequences on the development of schizophrenia. It is interesting to note that four of the nine genes are located on chromosome 6, suggesting a special chromosomal vulnerability in schizophrenia.
Collapse
Affiliation(s)
- Tearina T Chu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York City, NY 10029, USA.
| | | |
Collapse
|
18
|
Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 2010; 30:950-7. [PMID: 20089903 DOI: 10.1523/jneurosci.2894-09.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromogranins/secretogranins (Cgs) are the major soluble proteins of large dense-core secretory vesicles (LDCVs). We have recently reported that the absence of chromogranin A (CgA) caused important changes in the accumulation and in the exocytosis of catecholamines (CAs) using a CgA-knock-out (CgA-KO) mouse. Here, we have analyzed a CgB-KO mouse strain that can be maintained in homozygosis. These mice have 36% less adrenomedullary epinephrine when compared to Chgb(+/+) [wild type (WT)], whereas the norepinephrine content was similar. The total evoked release of CA was 33% lower than WT mice. This decrease was not due to a lower frequency of exocytotic events but to less secretion per quantum (approximately 30%) measured by amperometry; amperometric spikes exhibited a slower ascending but a normal decaying phase. Cell incubation with L-DOPA increased the vesicle CA content of WT but not of the CgB-KO cells. Intracellular electrochemistry, using patch amperometry, showed that L-DOPA overload produced a significantly larger increase in cytosolic CAs in cells from the KO animals than chromaffin cells from the WT. These data indicate that the mechanisms for vesicular accumulation of CAs in the CgB-KO cells were saturated, while there was ample capacity for further accumulation in WT cells. Protein analysis of LDCVs showed the overexpression of CgA as well as other proteins apparently unrelated to the secretory process. We conclude that CgB, like CgA, is a highly efficient system directly involved in monoamine accumulation and in the kinetics of exocytosis from LDCVs.
Collapse
|
19
|
Nilsson A, Fälth M, Zhang X, Kultima K, Sköld K, Svenningsson P, Andrén PE. Striatal alterations of secretogranin-1, somatostatin, prodynorphin, and cholecystokinin peptides in an experimental mouse model of Parkinson disease. Mol Cell Proteomics 2009; 8:1094-104. [PMID: 19131325 DOI: 10.1074/mcp.m800454-mcp200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The principal causative pathology of Parkinson disease is the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta projecting to the striatum in the brain. The information regarding the expression of neuropeptides in parkinsonism is very limited. Here we have elucidated striatal neuropeptide mechanisms in experimental parkinsonism using the unilateral 6-hydroxydopamine model to degenerate dopamine neurons. A thoroughly controlled sample preparation technique together with a peptidomics approach and targeted neuropeptide sequence collections enabled sensitive detection, identification, and relative quantitation of a great number of endogenous neuropeptides. Previously not recognized alterations in neuropeptide levels were identified in the unilateral lesioned mice with or without subchronic 3,4-dihydroxy-L-phenylalanine administration, the conventional treatment of Parkinson disease. Several of these peptides originated from the same precursor such as secretogranin-1, somatostatin, prodynorphin, and cholecystokinin. Disease-related biotransformation of precursors into individual peptides was observed in the experimental model of Parkinson disease. Several previously unreported potentially biologically active peptides were also identified from the striatal samples. This study provides further evidence that neuropeptides take part in mediating the central nervous system failure associated with Parkinson disease.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry, Uppsala University, SE-75123 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Wu S, Ma J, Xing Q, Xu Y, Meng J, Cao D, Feng G, He L. Further evidence that the chromogranin B gene confers predisposition to schizophrenia: a family-based association study in Chinese. J Neural Transm (Vienna) 2006; 114:641-4. [PMID: 17143778 DOI: 10.1007/s00702-006-0600-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
The Chromogranin B (CHGB) gene has been proposed as a candidate gene for predisposition to schizophrenia due to its location on the genome, the evidence of genetic studies, and its functional role in schizophrenia. To investigate its association with schizophrenia using case-control analysis, we genotyped eight single nucleotide polymorphisms (SNPs) and performed transmission disequilibrium tests (TDT) using 192 Han Chinese trios. The G allele of IVS4 + 808A > G showed a trend of over-transmission from heterozygous parents to affected offspring (P = 0.06), although no significant over-transmission was found for individual markers. Furthermore, a significant transmission was observed for the common haplotype G-G-A-G-C (P = 0.0018). Overall, our results suggest that at least one locus in or close to the CHGB gene confers risk of the disorder and strengthen the evidence that CHGB is a promising susceptibility gene for schizophrenia in Chinese population.
Collapse
Affiliation(s)
- S Wu
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mahapatra NR, Mahata M, Ghosh S, Gayen JR, O'Connor DT, Mahata SK. Molecular basis of neuroendocrine cell type-specific expression of the chromogranin B gene: Crucial role of the transcription factors CREB, AP-2, Egr-1 and Sp1. J Neurochem 2006; 99:119-33. [PMID: 16987240 DOI: 10.1111/j.1471-4159.2006.04128.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular basis of neuroendocrine-specific expression of chromogranin B gene (Chgb) has remained elusive. Utilizing wild-type and mutant Chgb promoter/luciferase reporter constructs, this study established a crucial role for the cAMP response element (CRE) box at -102/-95 bp in endocrine [rat pheochromocytoma (chromaffin) cell line (PC12) and rat pituitary somatotrope cell line (GC)] and neuronal [rat dorsal root ganglion/mouse neuroblastoma hybrid cell line (F-11), cortical and hippocampal primary neurons] cells. Additionally, G/C-rich domains at -134/-127, -125/-117 and -115/-110 bp played especially important roles for endocrine-specific expression of the Chgb gene. Co-transfection of expression plasmids for CREB, activator protein-2 (transcription factor) (AP-2), early growth response protein (transcription factor) (Egr-1) or specificity protein 1 (transcription factor) (Sp1) with the Chgb promoter constructs trans-activated expression of the Chgb gene. Nuclear extracts from either PC12 or F-11 cells formed specific complexes with the Chgb (-110/-87 bp) (CRE) oligonucleotide, which were either supershifted or disrupted by anti-CREB antibodies. In addition PC12 nuclear extracts also formed a specific complex with a Chgb (-140/-104-bp) oligonucleotide containing three G/C-rich regions, which was dose-dependently disrupted by anti-AP-2, anti-Egr-1 or anti-Sp1 antibodies; indeed, any one of these three antibodies completely abolished the complex, suggesting that all three factors bind the region simultaneously, at least in vitro. Chromatin immunoprecipitation assays documented the binding of the transcription factors CREB, AP-2, Egr-1 and Sp1 to the chromosomal Chgb gene promoter in vivo in PC12 cells within the context of chromatin. We conclude that the neuroendocrine-specific expression of Chgb is mediated by the CRE and G/C boxes in cis and the transcription factors CREB, AP-2, Egr-1 and Sp1 in trans.
Collapse
Affiliation(s)
- Nitish R Mahapatra
- Department of Medicine, University of California, California 92093-0838, USA
| | | | | | | | | | | |
Collapse
|
22
|
Iwazaki T, Shibata I, Niwa SI, Matsumoto I. Selective reduction of chromogranin A-like immunoreactivities in the prefrontal cortex of schizophrenic subjects: a postmortem study. Neurosci Lett 2004; 367:293-7. [PMID: 15337252 DOI: 10.1016/j.neulet.2004.06.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 06/04/2004] [Accepted: 06/07/2004] [Indexed: 11/26/2022]
Abstract
It is suggested that secretogranins/chromogranins play a role in regulating secretion of various proteins and amines, including neurotransmitters from secretory granules. Several studies have implicated the importance of altered synaptic connectivity in schizophrenia. We employed immunohistochemical techniques to determine if the level of chromogranin A (CgA)-immunoreactivity (IR) was altered in the subjects with schizophrenia. Nine subjects with schizophrenia and nine age- and sex-matched control subjects were selected for this study. Immunohistochemistry using specific antibody against CgA was performed on sections of prefrontal cortex and hippocampus. Images of CgA-IR were analyzed by computer-based image analyzing software. CgA-IR was significantly decreased in layers III-V of the prefrontal cortex in schizophrenic subjects compared with control subjects. In the hippocampus, no significant difference was observed between two groups. The results indicate that there may be a decrease in the number of CgA positive large dense-core vesicles per terminal, and/or in the number of CgA positive terminals, suggesting possible functional impairment of prefrontal synaptic contact in schizophrenia.
Collapse
Affiliation(s)
- Takeshi Iwazaki
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Hikarigaoka 1 960-1295, Japan
| | | | | | | |
Collapse
|
23
|
Iijima Y, Inada T, Ohtsuki T, Senoo H, Nakatani M, Arinami T. Association between chromogranin b gene polymorphisms and schizophrenia in the Japanese population. Biol Psychiatry 2004; 56:10-7. [PMID: 15219467 DOI: 10.1016/j.biopsych.2004.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 03/08/2004] [Accepted: 03/10/2004] [Indexed: 02/07/2023]
Abstract
BACKGROUND We found in previous work a significant association between schizophrenia and D20S95 on chromosome 20p12.3. In this study, we analyzed 10 microsatellite markers and found an association of schizophrenia with D20S882 and D20S905 that flank D20S95. The chromogranin B gene (CHGB) is 30 kb from D20S905. The chromogranin B (secretogranin I) belongs to a series of acidic secretory proteins that are widely expressed in endocrine and neuronal cells, and its cerebrospinal fluid levels have been reported to decrease in patients with chronic schizophrenia. METHODS We screened for polymorphisms in CHGB with polymerase chain reaction direct sequencing methods in 24 Japanese schizophrenic patients and identified a total of 22 polymorphisms. Allelic and genotypic distributions of detected polymorphisms were compared between unrelated Japanese schizophrenic patients (n = 192) and healthy control subjects (n = 192). RESULTS Statistically significant differences in the allelic distributions were found between schizophrenic patients and control subjects for 1058C/G (A353G) (corrected p = 7.7 x 10(-5)) and 1104A/G (E368E) (corrected p = 8.1 x 10(-6)). The 1058C/G and 1104A/G alleles were in almost complete linkage disequilibrium and were in linkage disequilibrium with D20S95. CONCLUSIONS Results suggest that the CHGB variations are involved in the susceptibility to schizophrenia in our study population.
Collapse
Affiliation(s)
- Yoshimi Iijima
- National Institute of Mental Health (YI), National Center of Neurology and Psychiatry, Ichikawa, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE, Yoo SH. A Functional Interaction between Chromogranin B and the Inositol 1,4,5-Trisphosphate Receptor/Ca2+ Channel. J Biol Chem 2003; 278:49699-706. [PMID: 14506248 DOI: 10.1074/jbc.m309307200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromogranins A and B (CGA and CGB) are high capacity, low affinity calcium (Ca2+) storage proteins found in many cell types most often associated with secretory granules of secretory cells but also with the endoplasmic reticulum (ER) lumen of these cells. Both CGA and CGB associate with inositol 1,4,5-trisphosphate receptor (InsP3R) in a pH-dependent manner. At an intraluminal pH of 5.5, as found in secretory vesicles, both CGA and CGB bind to the InsP3R. When the intraluminal pH is 7.5, as found in the ER, CGA totally dissociates from InsP3R, whereas CGB only partially dissociates. To investigate the functional consequences of the interaction between the InsP3R and CGB monomers or CGA/CGB heteromers, purified mouse InsP3R type I were fused to planar lipid bilayers and activated by 2 microM InsP3. In the presence of luminal CGB monomers or CGA/CGB heteromers the InsP3R/Ca2+ channel open probability and mean open time increased significantly. The channel activity remained elevated when the pH was changed to 7.5, a reflection of CGB binding to the InsP3R even at pH 7.5. These results suggest that CGB may play an important modulatory role in the control of Ca2+ release from the ER. Furthermore, the difference in the ability of CGA and CGB to regulate the InsP3R/Ca2+ channel and the variability of CGA/CGB ratios could influence the pattern of InsP3-mediated Ca2+ release.
Collapse
Affiliation(s)
- Edwin C Thrower
- Department of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Laurent Taupenot
- Department of Medicine, University of California at San Diego, La Jolla 92161, USA
| | | | | |
Collapse
|
26
|
Zhang B, Tan Z, Zhang C, Shi Y, Lin Z, Gu N, Feng G, He L. Polymorphisms of chromogranin B gene associated with schizophrenia in Chinese Han population. Neurosci Lett 2002; 323:229-33. [PMID: 11959426 DOI: 10.1016/s0304-3940(02)00145-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromogranin is a widespread family of proteins in the neurosystem, whose function is guiding the sorting and secretion of neuropeptides. Using functional and positional evidences, chromogranin B was selected as a candidate gene for schizophrenia. We systematically screened all the promoter and exon regions of the gene and detected 15 single nucleotide polymorphisms (SNPs), among which four SNPs (including two non-synonymous SNPs) were selected for association analysis. In a cohort of Chinese Han schizophrenia cases and controls, the results of both the individual SNPs and the haplotypes of SNPs were significantly positive (P<0.01). Our results confirm the role of neuropeptides in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Bifeng Zhang
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | | | | | | | | | | | | | | |
Collapse
|