1
|
Makarchikov AF, Wins P, Bettendorff L. Biochemical and medical aspects of vitamin B 1 research. Neurochem Int 2025; 185:105962. [PMID: 40058602 DOI: 10.1016/j.neuint.2025.105962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Vitamin B1 is an indispensable food factor for the human and animal body. In animals, vitamin B1 is found in the form of thiamine and its phosphate esters - thiamine mono-, di- and triphosphate, as well as an adenylated derivative - adenosine thiamine triphosphate. At present, the only vitamin B1 form with biochemical functions being elucidated is thiamine diphosphate, which serves as a coenzyme for several important enzymes involved in carbohydrate, amino acid, fatty acid and energy metabolism. Here we review the latest developments in the field of vitamin B1 research in animals. Transport, metabolism and biological role of thiamine and its derivatives are considered as well as the involvement of vitamin B1-dependent processes in human diseases and its therapeutic issues, a field that has gained momentum with several important recent developments.
Collapse
Affiliation(s)
- Alexander F Makarchikov
- Grodno State Agrarian University, 28 Tereshkova St., 230005, Grodno, Belarus; Institute of Biochemistry of Biologically Active Compounds of NAS of Belarus, 7 Antoni Tyzenhauz Square, 230023, Grodno, Belarus
| | - Pierre Wins
- Laboratory of Neurophysiology, GIGA Institute, University of Liège, Avenue Hippocrate 15, B-4000, Liege, Belgium
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Institute, University of Liège, Avenue Hippocrate 15, B-4000, Liege, Belgium.
| |
Collapse
|
2
|
Shi Y, Li J, Chen X, Li N, Yang S, Li Y, Zhou M. Diagnosis of a patient with severe sensorineural hearing loss as the initial symptom caused by novel compound heterozygous variant in SLA19A2 gene. Braz J Otorhinolaryngol 2025; 91:101581. [PMID: 40220483 DOI: 10.1016/j.bjorl.2025.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/03/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE Thiamine-Responsive Megaloblastic Anemia (TRMA) syndrome, caused by biallelic variants in the SLC19A2 gene, typically presents with a triad of megaloblastic anemia, diabetes mellitus, and sensorineural hearing loss. This study aims to determine the genetic etiology and clinical phenotype of a patient who presented with severe sensorineural hearing loss as the initial symptom, and to expand our understanding of the SLC19A2 variant spectrum. METHODS Proband-only whole-exome sequencing was performed to screen the candidate variants, which were subsequently validated by Sanger sequencing within the family. cDNA sequencing based on RT-PCR and TA cloning analysis was used to determine the effect of splicing variants on mRNA processing of SLC19A2 gene. Detailed clinical features were evaluated by a diagnostic hearing test, laboratory and imaging examination. RESULTS A 2-year-5-month-old Chinese girl was diagnosed with diabetes mellitus and severe sensorineural hearing loss, without abnormal hemoglobin. DNA sequencing revealed a novel compound heterozygous variant of c.808-1G > A and c.1228C > T (p.Gln410*) in the SLC19A2 gene. Both variants were previously unreported. The c.808-1G > A splicing variant is located in intron 2 of SLC19A2, and is predicted to cause exon 3 skipping. The cDNA experiment confirmed this biological event, further indicating that the splicing variant can cause amino acid frameshift alteration (p.Glu270Valfs*10) in SLC19A2. CONCLUSION We report a patient with TRMA syndrome (without anemia) caused by a novel compound heterozygous variant in SLA19A2 gene. This study suggests that the possibility of TRMA syndrome should be considered when encountering patients with early-onset severe sensorineural hearing loss in clinical practice. LEVEL OF EVIDENCE Level 4.
Collapse
Affiliation(s)
- Yanan Shi
- Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Hainan Branch, Department of Otolaryngology, Sanya, China
| | - Junyang Li
- Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Department of Otolaryngology, Shanghai, China
| | - Xiaoqin Chen
- Fujian Medical University, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fuzhou, China
| | - Niu Li
- Shanghai Jiao Tong University, School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai, China
| | - Sijie Yang
- Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Department of Otolaryngology, Shanghai, China
| | - Youjin Li
- Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Hainan Branch, Department of Otolaryngology, Sanya, China; Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Department of Otolaryngology, Shanghai, China.
| | - Min Zhou
- Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, Department of Hematology and Oncology, Shanghai, China; Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Hainan Branch, Department of Hematology and Oncology, Sanya, China.
| |
Collapse
|
3
|
Li P, Zhu Z, Wang Y, Zhang X, Yang C, Zhu Y, Zhou Z, Chao Y, Long Y, Gao Y, Liu S, Zhang L, Gao P, Qu Q. Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3. Nat Commun 2024; 15:10924. [PMID: 39738067 DOI: 10.1038/s41467-024-55359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases. Additionally, various prescribed medicines, including metformin and fedratinib, manipulate thiamine transporters, complicating the therapeutic effect. Despite their physiological and pharmacological significance, the molecular underpinnings of substrate and drug recognition remain unknown. Here we present ten cryo-EM structures of human thiamine transporters SLC19A3 and SLC19A2 in outward- and inward-facing conformations, complexed with thiamine, pyridoxine, metformin, fedratinib, and amprolium. These structural insights, combined with functional characterizations, illuminate the translocation mechanism of diverse chemical entities, and enhance our understanding of drug-nutrient interactions mediated by thiamine transporters.
Collapse
Affiliation(s)
- Peipei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhini Zhu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yong Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Xuyuan Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chuanhui Yang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yalan Zhu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Zixuan Zhou
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yulin Chao
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yonghui Long
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Yina Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songqing Liu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liguo Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Pu Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Qianhui Qu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Yee SW, Wang J, Giacomini KM. Rare Diseases Linked to Mutations in Vitamin Transporters Expressed in the Human Blood-Brain Barrier. Clin Pharmacol Ther 2024; 116:1513-1520. [PMID: 39234898 PMCID: PMC11567784 DOI: 10.1002/cpt.3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Recent advances have significantly enhanced our understanding of the role of membrane transporters in drug disposition, particularly focusing on their influence on pharmacokinetics, and consequently, pharmacodynamics. The relevance of these transporters in clinical pharmacology is well acknowledged. Recent research has also underscored the critical role of membrane transporters as targets in human diseases, including their involvement in rare genetic disorders. This review focuses on transporters for water-soluble B vitamins, such as thiamine, riboflavin, and biotin, essential cofactors for metabolic enzymes. Mutations in transporters, such as SLC19A3 (thiamine), SLC52A2, and SLC52A3 (riboflavin), and SLC5A6 (multiple B vitamins including pantothenic acid and biotin) are linked to severe neurological disorders due to their role in the blood-brain barrier, which is crucial for brain vitamin supply. Current treatments, mainly involving vitamin supplementation, often result in variable response. This review also provides a short perspective on the role of the transporters in the blood-cerebrospinal fluid barrier and highlights the potential development of pharmacologic treatments for rare disorders associated with mutations in these transporters.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| |
Collapse
|
5
|
Ramamoorthy K, Sabui S, Kim G, Flekenstein JM, Sheikh A, Said HM. IQGAP-2: a novel interacting partner with the human colonic thiamin pyrophosphate transporter. Am J Physiol Cell Physiol 2024; 327:C1451-C1461. [PMID: 39401425 PMCID: PMC11684876 DOI: 10.1152/ajpcell.00484.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 01/30/2025]
Abstract
The human colonic thiamin pyrophosphate transporter (hcTPPT) mediates the uptake of the microbiota-generated and phosphorylated form of vitamin B1 (i.e., thiamin pyrophosphate) in the large intestine. Expression of hcTPPT along the absorptive tract is restricted to the large intestine, and the transporter is exclusively localized at the apical membrane domain of the polarized epithelial cells/colonocytes. Previous studies have characterized different physiological/pathophysiological aspects of the hcTPPT system, but nothing is currently known on whether the transporter has interacting partner(s) that affect its physiology/biology. We addressed this issue using a Y2H to screen a human colonic cDNA library and have identified three putative interactors, namely IQGAP-2, SNX-6, and DMXL-1. Focusing on IQGAP-2 (whose expression in human colonocytes is the highest), we found (using fluorescent microscopy imaging and coimmunoprecipitation approaches) the putative interactor to colocalize with hcTPPT and to directly interact with the transporter. Also, overexpressing IQGAP-2 in NCM460 cells and in human primary differentiated colonoid monolayers was found to lead to significant (P < 0.01) induction in TPP uptake, while knocking down (using gene-specific siRNAs) caused significant (P < 0.01 and P < 0.05) decrease in uptake. Furthermore, overexpressing IQGAP-2 in NCM460 cells was found to lead to a significant enhancement in hcTPPT protein stability. Finally, we found the expression of IQGAP-2 to be markedly suppressed in conditions/factors that negatively impact colonic TPP uptake. These results identify the IQGAP-2 as an interacting partner with the hcTPPT in human colonocytes and show that this interaction has physiological and biological consequences.NEW & NOTEWORTHY This study reports on the identification of IQGAP-2 as an interacting partner with the hcTPPT in human colonocytes and how that impacts the transporter's physiology and cell biology.
Collapse
Affiliation(s)
- Kalidas Ramamoorthy
- Department of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - Subrata Sabui
- Department of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| | - George Kim
- Department of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - James M Flekenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Medicine Service, Infectious Disease Section, Veterans Affairs Health Care System, St. Louis, Missouri, United States
| | - Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Hamid M Said
- Department of Physiology/Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medicine, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| |
Collapse
|
6
|
Gabriel F, Spriestersbach L, Fuhrmann A, Jungnickel KEJ, Mostafavi S, Pardon E, Steyaert J, Löw C. Structural basis of thiamine transport and drug recognition by SLC19A3. Nat Commun 2024; 15:8542. [PMID: 39358356 PMCID: PMC11447181 DOI: 10.1038/s41467-024-52872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Thiamine (vitamin B1) functions as an essential coenzyme in cells. Humans and other mammals cannot synthesise this vitamin de novo and thus have to take it up from their diet. Eventually, every cell needs to import thiamine across its plasma membrane, which is mainly mediated by the two specific thiamine transporters SLC19A2 and SLC19A3. Loss of function mutations in either of these transporters lead to detrimental, life-threatening metabolic disorders. SLC19A3 is furthermore a major site of drug interactions. Many medications, including antidepressants, antibiotics and chemotherapeutics are known to inhibit this transporter, with potentially fatal consequences for patients. Despite a thorough functional characterisation over the past two decades, the structural basis of its transport mechanism and drug interactions has remained elusive. Here, we report seven cryo-electron microscopy (cryo-EM) structures of the human thiamine transporter SLC19A3 in complex with various ligands. Conformation-specific nanobodies enable us to capture different states of SLC19A3's transport cycle, revealing the molecular details of thiamine recognition and transport. We identify seven previously unknown drug interactions of SLC19A3 and present structures of the transporter in complex with the inhibitors fedratinib, amprolium and hydroxychloroquine. These data allow us to develop an understanding of the transport mechanism and ligand recognition of SLC19A3.
Collapse
Affiliation(s)
- Florian Gabriel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Lea Spriestersbach
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Antonia Fuhrmann
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Katharina E J Jungnickel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Siavash Mostafavi
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany.
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| |
Collapse
|
7
|
Gan Y, Li G, Wei Z, Feng Y, Shi Y, Deng Y. Precision diagnosis and treatment of vitamin metabolism-related epilepsy. ACTA EPILEPTOLOGICA 2024; 6:27. [PMID: 40217438 PMCID: PMC11960229 DOI: 10.1186/s42494-024-00169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/23/2024] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is a chronic disorder of the nervous system caused by abnormal discharges from brain cells. Structural, infectious, metabolic, immunologic, and unknown causes can contribute to the development of seizures. In recent years, there has been increasing attention on epilepsy caused by genetic metabolic disorders. More than two hundred inherited metabolic disorders have been identified as potential cause of seizures, and they are mainly associated with energy deficiency in the brain, accumulation of toxic substances, abnormal neurotransmitter transmission, and deficiency of cofactors. Vitamins play a crucial role as components of several enzymes or coenzymes. Impaired metabolism of thiamine, biotin, vitamin B6, vitamin B12 and folic acid can contribute to early-onset seizures and developmental abnormalities in infants. However, timely supplementation therapy can significantly improve patient prognosis of affected patients. Therefore, a thorough understanding and investigation of the metabolic basis of epilepsy is essential for the development of precise therapeutic approaches, which could provide significant therapeutic benefits for patients.
Collapse
Affiliation(s)
- Yajing Gan
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guoyan Li
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zihan Wei
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan Feng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Yuqing Shi
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Yanchun Deng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
- Xijing Institute of Epilepsy and Encephalopathy, Xi'an, 710000, People's Republic of China.
| |
Collapse
|
8
|
Redeker KEM, Brockmöller J. Several orphan solute carriers functionally identified as organic cation transporters: Substrates specificity compared with known cation transporters. J Biol Chem 2024; 300:107629. [PMID: 39098524 PMCID: PMC11406361 DOI: 10.1016/j.jbc.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Organic cations comprise a significant part of medically relevant drugs and endogenous substances. Such substances need organic cation transporters for efficient transfer via cell membranes. However, the membrane transporters of most natural or synthetic organic cations are still unknown. To identify these transporters, genes of 10 known OCTs and 18 orphan solute carriers (SLC) were overexpressed in HEK293 cells and characterized concerning their transport activities with a broad spectrum of low molecular weight substances emphasizing organic cations. Several SLC35 transporters and SLC38A10 significantly enhanced the transport of numerous relatively hydrophobic organic cations. Significant organic cation transport activities have been found in gene families classified as transporters of other substance classes. For instance, SLC35G3 and SLC38A10 significantly accelerated the uptake of several cations, such as clonidine, 3,4-methylenedioxymethamphetamine, and nicotine, which are known as substrates of a thus far genetically unidentified proton/organic cation antiporter. The transporters SLC35G4 and SLC35F5 stood out by their significantly increased choline uptake, and several other SLC transported choline together with a broader spectrum of organic cations. Overall, there are many more polyspecific organic cation transporters than previously estimated. Several transporters had one predominant substrate but accepted some other cationic substrates, and others showed no particular preference for one substrate but transported several organic cations. The role of these transporters in biology and drug therapy remains to be elucidated.
Collapse
Affiliation(s)
- Kyra-Elisa Maria Redeker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany.
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Dang Y, Zhang T, Pidathala S, Wang G, Wang Y, Chen N, Song C, Lee CH, Zhang Z. Substrate and drug recognition mechanisms of SLC19A3. Cell Res 2024; 34:458-461. [PMID: 38503960 PMCID: PMC11143317 DOI: 10.1038/s41422-024-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- Yu Dang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tianyi Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Shabareesh Pidathala
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guopeng Wang
- Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Yijie Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Nanhao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
10
|
Bjørke-Monsen AL, Ueland PM. Vitamin B 6: a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10259. [PMID: 38187791 PMCID: PMC10770651 DOI: 10.29219/fnr.v67.10259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Pyridoxal 5´-phosphate (PLP) is the main form of vitamin B6 in animal tissue and functions as a coenzyme for more than 160 different enzymatic reactions in the metabolism of amino acids, carbohydrates, lipids, and neurotransmitters. Estimated dietary intake of vitamin B6 and plasma PLP values differ a lot between studies, something which may be due to variable use of supplements, variations in dietary assessment and analytical methods. These factors make it difficult to achieve precise data for setting a correct recommended intake of vitamin B6. In addition, a plasma PLP concentration of 30 nmol/L is considered to be sufficient and the current recommendations for vitamin B6 intake is based on this concept. However, the metabolic marker for vitamin B6 status, HK ratio (HKr), starts to increase already when plasma PLP falls below 100 nmol/L and increases more steeply below 50 nmol/L, indicating biochemical deficiency. Consequently, a plasma PLP concentration of 30 nmol/L, may be too low as a marker for an adequate vitamin B6 status.
Collapse
Affiliation(s)
- Anne-Lise Bjørke-Monsen
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Wen A, Zhu Y, Yee SW, Park BI, Giacomini KM, Greenberg AS, Newman JW. The Impacts of Slc19a3 Deletion and Intestinal SLC19A3 Insertion on Thiamine Distribution and Brain Metabolism in the Mouse. Metabolites 2023; 13:885. [PMID: 37623829 PMCID: PMC10456376 DOI: 10.3390/metabo13080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 08/26/2023] Open
Abstract
The Thiamine Transporter 2 (THTR2) encoded by SLC19A3 plays an ill-defined role in the maintenance of tissue thiamine, thiamine monophosphate, and thiamine diphosphate (TDP) levels. To evaluate the impact of THTR2 on tissue thiamine status and metabolism, we expressed the human SLC19A3 transgene in the intestine of total body Slc19a3 knockout (KO) mice. Male and female wildtype (WT) and transgenic (TG) mice were fed either 17 mg/kg (1×) or 85 mg/kg (5×) thiamine hydrochloride diet, while KOs were only fed the 5× diet. Thiamine vitamers in plasma, red blood cells, duodenum, brain, liver, kidney, heart, and adipose tissue were measured. Untargeted metabolomics were performed on the brain tissues of groups with equivalent plasma thiamine. KO mice had ~two- and ~three-fold lower plasma and brain thiamine levels than WT on the 5× diet. Circulating vitamers were sensitive to diet and equivalent in TG and WT mice. However, TG had 60% lower thiamine but normal brain TDP levels regardless of diet, with subtle differences in the heart and liver. The loss of THTR2 reduced levels of nucleic acid and amino acid derivatives in the brain. Therefore, mutation or inhibition of THTR2 may alter the brain metabolome and reduce the thiamine reservoir for TDP biosynthesis.
Collapse
Affiliation(s)
- Anita Wen
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
| | - Ying Zhu
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Brian I. Park
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Andrew S. Greenberg
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - John W. Newman
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
- USDA Western Human Nutrition Research Center, Davis, CA 95616, USA
| |
Collapse
|
12
|
Burgunder JM. Mechanisms underlying phenotypic variation in neurogenetic disorders. Nat Rev Neurol 2023:10.1038/s41582-023-00811-4. [PMID: 37202496 DOI: 10.1038/s41582-023-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
Neurological diseases associated with pathogenic variants in a specific gene, or even with a specific pathogenic variant, can show profound phenotypic variation with regard to symptom presentation, age at onset and disease course. Highlighting examples from a range of neurogenetic disorders, this Review explores emerging mechanisms that are involved in this variability, including environmental, genetic and epigenetic factors that influence the expressivity and penetrance of pathogenic variants. Environmental factors, some of which can potentially be modified to prevent disease, include trauma, stress and metabolic changes. Dynamic patterns of pathogenic variants might explain some of the phenotypic variations, for example, in the case of disorders caused by DNA repeat expansions such as Huntington disease (HD). An important role for modifier genes has also been identified in some neurogenetic disorders, including HD, spinocerebellar ataxia and X-linked dystonia-parkinsonism. In other disorders, such as spastic paraplegia, the basis for most of the phenotypic variability remains unclear. Epigenetic factors have been implicated in disorders such as SGCE-related myoclonus-dystonia and HD. Knowledge of the mechanisms underlying phenotypic variation is already starting to influence management strategies and clinical trials for neurogenetic disorders.
Collapse
|
13
|
Zhou D, Wang C, Zheng J, Zhao J, Wei S, Xiong Y, Limbu SM, Kong Y, Cao F, Ding Z. Dietary thiamine modulates carbohydrate metabolism, antioxidant status, and alleviates hypoxia stress in oriental river prawn Macrobrachium nipponense (de Haan). FISH & SHELLFISH IMMUNOLOGY 2022; 131:42-53. [PMID: 36191902 DOI: 10.1016/j.fsi.2022.09.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Hypoxia is one of the challenges in prawns aquaculture. However, the role of thiamine, which is a coenzyme in carbohydrate metabolism with antioxidant properties, in reducing hypoxia in prawns aquaculture is currently unknown. We investigated the effects of thiamine on antioxidant status, carbohydrate metabolism and acute hypoxia in oriental river prawn, Macrobrachium nipponense. One thousand eight hundred prawns (0.123 ± 0.003 g) were fed five diets (60 prawns each tank, six replicates per diet) supplemented with graded thiamine levels (5.69, 70.70, 133.67, 268.33 and 532.00 mg/kg dry mater) for eight weeks and then exposed to hypoxia stress for 12 h followed by reoxyegnation for 12 h. The results showed that, under normoxia, prawns fed the 133.67 or 268.33 mg/kg thiamine diet had significantly lower glucose 6-phosphatedehydrogenase, succinate dehydrogenase and phosphoenolpyruvate carboxykinase activities than those fed the other diets. Moreover, total antioxidant capacity (T-AOC) increased significantly when prawns were fed the 133.67 mg/kg thiamine diet. Superoxide dismutase (SOD) activity and malonaldehyde (MDA) content also increased significantly when prawns were fed the 268.33 or 532.00 mg/kg thiamine diet under hypoxia. And the significantly increased SOD activity and MDA level also observed in prawns fed 532.00 mg/kg thiamine under reoxygenation. Under normoxia, prawns fed the 70.70 or 133.67 mg/kg thiamine diet decreased the mRNA expressions of AMP-activated protein kinase-alpha (AMPK-α), pyruvate dehydrogenase-E1-α subunit (PDH-E1-α) and hypoxia-inducible factor-1s (HIF-1α, HIF-1β), but increased the mRNA expressions of phosphofructokinase (PFK) significantly. After 12 h of hypoxia, the energy metabolism related genes (AMPK-β, AMPK-γ, PFK, PDH-E1-α), hypoxia-inducible factor related genes (HIF-1α, HIF-1β) and thiamine transporter gene (SLC19A2) were up-regulated significantly in prawns fed the 133.67 or 268.33 mg/kg thiamine diets. After 12 h of reoxygenation, prawns fed the 133.67 or 268.33 mg/kg diet significantly decreased the SOD activity, MDA level and SLC19A2 mRNA expression compared with other diets. The optimum thiamine was 161.20 mg/kg for minimum MDA content and 143.17 mg/kg for maximum T-AOC activity based on cubic regression analysis. In summary, supplementing 143.17 to 161.20 mg/kg thiamine in the diets for M. nipponense improves the antioxidant capacity under normoxia and reduces the oxidative damage under hypoxia stress.
Collapse
Affiliation(s)
- Dongsheng Zhou
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Chengli Wang
- Jiangsu Agri-animal Husbandry Vocational College, Jiangsu, China
| | - Jinxian Zheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Jianhua Zhao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Shanshan Wei
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Yunfeng Xiong
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P.O. Box 35091, Dar es Salaam, Tanzania
| | - Youqin Kong
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Fang Cao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Zhili Ding
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
14
|
Palmieri F, Monné M, Fiermonte G, Palmieri L. Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD + , and related diseases: A review. IUBMB Life 2022; 74:592-617. [PMID: 35304818 PMCID: PMC9311062 DOI: 10.1002/iub.2612] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Multiple mitochondrial matrix enzymes playing key roles in metabolism require cofactors for their action. Due to the high impermeability of the mitochondrial inner membrane, these cofactors need to be synthesized within the mitochondria or be imported, themselves or one of their precursors, into the organelles. Transporters belonging to the protein family of mitochondrial carriers have been identified to transport the coenzymes: thiamine pyrophosphate, coenzyme A, FAD and NAD+ , which are all structurally similar to nucleotides and derived from different B-vitamins. These mitochondrial cofactors bind more or less tightly to their enzymes and, after having been involved in a specific reaction step, are regenerated, spontaneously or by other enzymes, to return to their active form, ready for the next catalysis round. Disease-causing mutations in the mitochondrial cofactor carrier genes compromise not only the transport reaction but also the activity of all mitochondrial enzymes using that particular cofactor and the metabolic pathways in which the cofactor-dependent enzymes are involved. The mitochondrial transport, metabolism and diseases of the cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+ are the focus of this review.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- Department of SciencesUniversity of BasilicataPotenzaItaly
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| |
Collapse
|
15
|
Yamashiro T, Yasujima T, Yuasa H. Animal species differences in the pyridoxine transport function of SLC19A3: absence of Slc19a3-mediated pyridoxine uptake in the rat small intestine. Drug Metab Pharmacokinet 2022; 44:100456. [DOI: 10.1016/j.dmpk.2022.100456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
|
16
|
Pereira MJ, Andersson‐Assarsson JC, Jacobson P, Kamble P, Taube M, Sjöholm K, Carlsson LMS, Svensson P. Human adipose tissue gene expression of solute carrier family 19 member 3 ( SLC19A3); relation to obesity and weight-loss. Obes Sci Pract 2022; 8:21-31. [PMID: 35127120 PMCID: PMC8804923 DOI: 10.1002/osp4.541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Adipose tissue is a specialized endocrine organ that is involved in modulating whole-body energy homeostasis and expresses a specific subset of genes, which may play a role in adipose tissue metabolism. The aim of this study was to search for novel adipose tissue-specific genes using a tissue panel of RNAseq expression profiles. METHODS RNAseq expression profiles from 53 human tissues were downloaded from the GTex database. SLC19A3 expression was analyzed by microarray or real-time PCR in two sets of paired subcutaneous and omental adipose tissue samples, in two studies with adipose tissue from persons with high or low body mass index (BMI), in adipose tissue from patients who underwent weight loss with a very-low caloric diet and during preadipocyte-adipocyte differentiation. RESULTS The RNAseq-based tissue distribution expression screen identified SLC19A3 (encoding the thiamine transporter 2) as adipose tissue-specific. SLC19A3 expression was higher in subcutaneous compared with omental adipose tissue in both sample sets (p = 0.043 and p < 0.001). Preadipocyte differentiation towards adipocytes resulted in increased SLC19A3 gene expression (p = 0.018 or less at all-time points). Subcutaneous adipose tissue expression of SLC19A3 was lower in persons with high BMI in both cohorts (p = 0.008, and p < 0.001) and increased during a weight-loss intervention (p = 0.006). CONCLUSION The specific adipose tissue expression pattern of SLC19A3, together with its regulation in obesity and during weight loss, indicate that it plays a key role in adipocyte metabolism.
Collapse
Affiliation(s)
- Maria J. Pereira
- Department of Medical SciencesClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
| | - Johanna C. Andersson‐Assarsson
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Peter Jacobson
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Prasad Kamble
- Department of Medical SciencesClinical Diabetes and MetabolismUppsala UniversityUppsalaSweden
| | - Magdalena Taube
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kajsa Sjöholm
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Lena M. S. Carlsson
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Per‐Arne Svensson
- Department of Molecular and Clinical MedicineInstitute of Medicine at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Health and Care Sciences at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
17
|
Ma Y, Wang C, Elmhadi M, Zhang H, Liu F, Gao X, Wang H. Dietary supplementation of thiamine enhances colonic integrity and modulates mucosal inflammation injury in goats challenged by lipopolysaccharide and low pH. Br J Nutr 2022; 128:1-11. [PMID: 35057872 DOI: 10.1017/s0007114522000174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The current study aimed to investigate the protective effects of dietary thiamine supplementation on the regulation of colonic integrity and mucosal inflammation in goats fed a high-concentrate (HC) diet. Twenty-four Boer goats (live weight of 35·62 (sem 2·4) kg) were allocated to three groups (CON: concentrate/forage = 30:70; HC; concentrate/forage = 70:30 and HCT: concentrate/forage = 70:30 with 200 mg thiamine/kg DMI) for 12 weeks. Results showed that compared with the HC treatment, the HCT group had a significantly higher ruminal pH value from 0 to 12 h after the feeding. The haematoxylin-eosin staining showed that desquamation and severe cellular damage were observed in the colon epithelium of the HC group, whereas the HCT group exhibited more structural integrity of the epithelial cell morphology. Compared with the HC treatment, the HCT group showed a markedly increase in pyruvate dehydrogenase and α-ketoglutarate dehydrogenase enzymes activity. The mRNA expressions in the colonic epithelium of SLC19A2, SLC19A3, SLC25A19, Bcl-2, occludin, claudin-1, claudin-4 and ZO-1 in the HCT group were significantly increased in comparison with the HC diet treatment. Compared with the HC treatment, the HCT diet significantly increased the protein expression of claudin-1 and significantly decreased the protein expression of NF-κB-related proteins p65. The results show that dietary thiamine supplementation could improve the colon epithelial barrier function and alleviate mucosal inflammation injury in goats after lipopolysaccharide and low pH challenge.
Collapse
Affiliation(s)
- Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Queen Elizabeth II Medical Centre, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Chao Wang
- Queen Elizabeth II Medical Centre, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Mawda Elmhadi
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Fuyuan Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, People's Republic of China
| | - Xingliang Gao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, People's Republic of China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
18
|
OUP accepted manuscript. Lab Med 2022; 53:640-650. [DOI: 10.1093/labmed/lmac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
19
|
Picó S, Parras A, Santos-Galindo M, Pose-Utrilla J, Castro M, Fraga E, Hernández IH, Elorza A, Anta H, Wang N, Martí-Sánchez L, Belloc E, Garcia-Esparcia P, Garrido JJ, Ferrer I, Macías-García D, Mir P, Artuch R, Pérez B, Hernández F, Navarro P, López-Sendón JL, Iglesias T, Yang XW, Méndez R, Lucas JJ. CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington's disease. Sci Transl Med 2021; 13:eabe7104. [PMID: 34586830 DOI: 10.1126/scitranslmed.abe7104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sara Picó
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Alberto Parras
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - María Santos-Galindo
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Julia Pose-Utrilla
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - Margarita Castro
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain
| | - Enrique Fraga
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Ivó H Hernández
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Facultad de Ciencias, Departamento de Biología (Unidad Docente Fisiología Animal), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ainara Elorza
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Héctor Anta
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada I+D+i IMIM-IIBB (CSIC), Barcelona 08003, Spain.,Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Nan Wang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Laura Martí-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Barcelona 08950, Spain
| | - Eulàlia Belloc
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Paula Garcia-Esparcia
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Juan J Garrido
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Department of Molecular, Cellular, and Developmental Neurobiology, Instituto Cajal (CSIC), Madrid 28002, Spain
| | - Isidro Ferrer
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Daniel Macías-García
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Pablo Mir
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain.,Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Barcelona 08950, Spain
| | - Belén Pérez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid,28029, Spain
| | - Félix Hernández
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada I+D+i IMIM-IIBB (CSIC), Barcelona 08003, Spain.,Institute of Biomedical Research of Barcelona (IIBB-CSIC), Barcelona 08036, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - José Luis López-Sendón
- Department of Neurology, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Teresa Iglesias
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Raúl Méndez
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - José J Lucas
- Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain
| |
Collapse
|
20
|
Shulpekova Y, Nechaev V, Kardasheva S, Sedova A, Kurbatova A, Bueverova E, Kopylov A, Malsagova K, Dlamini JC, Ivashkin V. The Concept of Folic Acid in Health and Disease. Molecules 2021; 26:molecules26123731. [PMID: 34207319 PMCID: PMC8235569 DOI: 10.3390/molecules26123731] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Folates have a pterine core structure and high metabolic activity due to their ability to accept electrons and react with O-, S-, N-, C-bounds. Folates play a role as cofactors in essential one-carbon pathways donating methyl-groups to choline phospholipids, creatine, epinephrine, DNA. Compounds similar to folates are ubiquitous and have been found in different animals, plants, and microorganisms. Folates enter the body from the diet and are also synthesized by intestinal bacteria with consequent adsorption from the colon. Three types of folate and antifolate cellular transporters have been found, differing in tissue localization, substrate affinity, type of transferring, and optimal pH for function. Laboratory criteria of folate deficiency are accepted by WHO. Severe folate deficiencies, manifesting in early life, are seen in hereditary folate malabsorption and cerebral folate deficiency. Acquired folate deficiency is quite common and is associated with poor diet and malabsorption, alcohol consumption, obesity, and kidney failure. Given the observational data that folates have a protective effect against neural tube defects, ischemic events, and cancer, food folic acid fortification was introduced in many countries. However, high physiological folate concentrations and folate overload may increase the risk of impaired brain development in embryogenesis and possess a growth advantage for precancerous altered cells.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Vladimir Nechaev
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Svetlana Kardasheva
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Alla Sedova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Anastasia Kurbatova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Elena Bueverova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Arthur Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
| | - Kristina Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
- Correspondence: ; Tel.: +7-499-764-9878
| | | | - Vladimir Ivashkin
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| |
Collapse
|
21
|
Saini AG, Sharma S. Biotin-Thiamine-Responsive Basal Ganglia Disease in Children: A Treatable Neurometabolic Disorder. Ann Indian Acad Neurol 2021; 24:173-177. [PMID: 34220059 PMCID: PMC8232498 DOI: 10.4103/aian.aian_952_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Biotin-thiamine-responsive basal ganglia disease is a rare, autosomal recessive, treatable, neurometabolic disorder associated with biallelic pathogenic variations in the SLC19A3 gene. The condition may present as an early-childhood encephalopathy, an early-infantile lethal encephalopathy with lactic acidosis, with or without infantile spasms, or a late-onset Wernicke-like encephalopathy. The key radiological features are bilateral, symmetrical lesions in the caudate, putamen, and medial thalamus, with variable extension into the brain stem, cerebral cortex, and cerebellum. Treatment is life long and includes initiation of high dose biotin and thiamine. Genetic testing confirms the diagnosis. The prognosis depends on the time from diagnosis to the time of vitamin supplementation. The genotype-phenotype correlations are not clear yet, but the early infantile phenotype portends a poorer prognosis. We provide a brief overview of the disorder and emphasize the initiation of high-dose biotin and thiamine in infants and children with unexplained encephalopathy and basal ganglia involvement.
Collapse
Affiliation(s)
- Arushi G. Saini
- Pediatric Neurology, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
22
|
Yamashiro T, Yasujima T, Said HM, Yuasa H. pH-dependent pyridoxine transport by SLC19A2 and SLC19A3: Implications for absorption in acidic microclimates. J Biol Chem 2020; 295:16998-17008. [PMID: 33008889 PMCID: PMC7863892 DOI: 10.1074/jbc.ra120.013610] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/01/2020] [Indexed: 11/06/2022] Open
Abstract
SLC19A2 and SLC19A3, also known as thiamine transporters (THTR) 1 and 2, respectively, transport the positively charged thiamine (vitamin B1) into cells to enable its efficient utilization. SLC19A2 and SLC19A3 are also known to transport structurally unrelated cationic drugs, such as metformin, but whether this charge selectivity extends to other molecules, such as pyridoxine (vitamin B6), is unknown. We tested this possibility using Madin-Darby canine kidney II (MDCKII) cells and human embryonic kidney 293 (HEK293) cells for transfection experiments, and also using Caco-2 cells as human intestinal epithelial model cells. The stable expression of SLC19A2 and SLC19A3 in MDCKII cells (as well as their transient expression in HEK293 cells) led to a significant induction in pyridoxine uptake at pH 5.5 compared with control cells. The induced uptake was pH-dependent, favoring acidic conditions over neutral to basic conditions, and protonophore-sensitive. It was saturable as a function of pyridoxine concentration, with an apparent Km of 37.8 and 18.5 μm, for SLC19A2 and SLC19A3, respectively, and inhibited by the pyridoxine analogs pyridoxal and pyridoxamine as well as thiamine. We also found that silencing the endogenous SLC19A3, but not SLC19A2, of Caco-2 cells with gene-specific siRNAs lead to a significant reduction in carrier-mediated pyridoxine uptake. These results show that SLC19A2 and SLC19A3 are capable of recognizing/transporting pyridoxine, favoring acidic conditions for operation, and suggest a possible role for these transporters in pyridoxine transport mainly in tissues with an acidic environment like the small intestine, which has an acidic surface microclimate.
Collapse
Affiliation(s)
- Takahiro Yamashiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hamid M Said
- Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California, USA; Department of Veterans Affairs Medical Center, Long Beach, California, USA
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
23
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
24
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020; 295:701-714. [PMID: 31767680 PMCID: PMC6970920 DOI: 10.1074/jbc.aw119.008150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Apicomplexa phylum comprises diverse parasitic organisms that have evolved from a free-living ancestor. These obligate intracellular parasites exhibit versatile metabolic capabilities reflecting their capacity to survive and grow in different hosts and varying niches. Determined by nutrient availability, they either use their biosynthesis machineries or largely depend on their host for metabolite acquisition. Because vitamins cannot be synthesized by the mammalian host, the enzymes required for their synthesis in apicomplexan parasites represent a large repertoire of potential therapeutic targets. Here, we review recent advances in metabolic reconstruction and functional studies coupled to metabolomics that unravel the interplay between biosynthesis and salvage of vitamins and cofactors in apicomplexans. A particular emphasis is placed on Toxoplasma gondii, during both its acute and latent stages of infection.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva CMU, 1 Rue Michel-Servet, 1211 Geneva 4 Switzerland
| |
Collapse
|
25
|
Krishnan A, Kloehn J, Lunghi M, Soldati-Favre D. Vitamin and cofactor acquisition in apicomplexans: Synthesis versus salvage. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49928-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Mittal S, Ashhar MU, Qizilbash FF, Qamar Z, Narang JK, Kumar S, Ali J, Baboota S. Ligand Conjugated Targeted Nanotherapeutics for Treatment of Neurological Disorders. Curr Pharm Des 2020; 26:2291-2305. [PMID: 32303160 DOI: 10.2174/1381612826666200417141600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human brain is amongst the most complex organs in human body, and delivery of therapeutic agents across the brain is a tedious task. Existence of blood brain barrier (BBB) protects the brain from invasion of undesirable substances; therefore it hinders the transport of various drugs used for the treatment of different neurological diseases including glioma, Parkinson's disease, Alzheimer's disease, etc. To surmount this barrier, various approaches have been used such as the use of carrier mediated drug delivery; use of intranasal route, to avoid first pass metabolism; and use of ligands (lactoferrin, apolipoprotein) to transport the drug across the BBB. Ligands bind with proteins present on the cell and facilitate the transport of drug across the cell membrane via. receptor mediated, transporter mediated or adsorptive mediated transcytosis. OBJECTIVE The main focus of this review article is to illustrate various studies performed using ligands for delivering drug across BBB; it also describes the procedure used by various researchers for conjugating the ligands to the formulation to achieve targeted action. METHODS Research articles that focused on the used of ligand conjugation for brain delivery and compared the outcome with unconjugated formulation were collected from various search engines like PubMed, Science Direct and Google Scholar, using keywords like ligands, neurological disorders, conjugation, etc. Results and Conclusion: Ligands have shown great potential in delivering drug across BBB for treatment of various diseases, yet extensive research is required so that the ligands can be used clinically for treating neurological diseases.
Collapse
Affiliation(s)
- Saurabh Mittal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Muhammad U Ashhar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Farheen F Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Jasjeet K Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Uttar Pradesh, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
27
|
Beltramo E, Mazzeo A, Lopatina T, Trento M, Porta M. Thiamine transporter 2 is involved in high glucose-induced damage and altered thiamine availability in cell models of diabetic retinopathy. Diab Vasc Dis Res 2020; 17:1479164119878427. [PMID: 31726874 PMCID: PMC7510357 DOI: 10.1177/1479164119878427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Thiamine prevents high glucose-induced damage in microvasculature, and progression of retinopathy and nephropathy in diabetic animals. Impaired thiamine availability causes renal damage in diabetic patients. Two single-nucleotide polymorphisms in SLC19A3 locus encoding for thiamine transporter 2 are associated with absent/minimal diabetic retinopathy and nephropathy despite long-term type 1 diabetes. We investigated the involvement of thiamine transporter 1 and thiamine transporter 2, and their transcription factor specificity protein 1, in high glucose-induced damage and altered thiamine availability in cells of the inner blood-retinal barrier. Human endothelial cells, pericytes and Müller cells were exposed to hyperglycaemic-like conditions and/or thiamine deficiency/over-supplementation in single/co-cultures. Expression and localization of thiamine transporter 1, thiamine transporter 2 and transcription factor specificity protein 1 were evaluated together with intracellular thiamine concentration, transketolase activity and permeability to thiamine. The effects of thiamine depletion on cell function (viability, apoptosis and migration) were also addressed. Thiamine transporter 2 and transcription factor specificity protein 1 expression were modulated by hyperglycaemic-like conditions. Transketolase activity, intracellular thiamine and permeability to thiamine were decreased in cells cultured in thiamine deficiency, and in pericytes in hyperglycaemic-like conditions. Thiamine depletion reduced cell viability and proliferation, while thiamine over-supplementation compensated for thiamine transporter 2 reduction by restoring thiamine uptake and transketolase activity. High glucose and reduced thiamine determine impairment in thiamine transport inside retinal cells and through the inner blood-retinal barrier. Thiamine transporter 2 modulation in our cell models suggests its major role in thiamine transport in retinal cells and its involvement in high glucose-induced damage and impaired thiamine availability.
Collapse
Affiliation(s)
- Elena Beltramo
- Department of Medical Sciences, University of Turin,
Turin, Italy
| | - Aurora Mazzeo
- Department of Medical Sciences, University of Turin,
Turin, Italy
| | - Tatiana Lopatina
- Department of Medical Sciences, University of Turin,
Turin, Italy
| | - Marina Trento
- Department of Medical Sciences, University of Turin,
Turin, Italy
| | - Massimo Porta
- Department of Medical Sciences, University of Turin,
Turin, Italy
| |
Collapse
|
28
|
Enterohemorrhagic Escherichia coli infection inhibits colonic thiamin pyrophosphate uptake via transcriptional mechanism. PLoS One 2019; 14:e0224234. [PMID: 31639155 PMCID: PMC6804999 DOI: 10.1371/journal.pone.0224234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 01/19/2023] Open
Abstract
Colonocytes possess a specific carrier-mediated uptake process for the microbiota-generated thiamin (vitamin B1) pyrophosphate (TPP) that involves the TPP transporter (TPPT; product of the SLC44A4 gene). Little is known about the effect of exogenous factors (including enteric pathogens) on the colonic TPP uptake process. Our aim in this study was to investigate the effect of Enterohemorrhagic Escherichia coli (EHEC) infection on colonic uptake of TPP. We used human-derived colonic epithelial NCM460 cells and mice in our investigation. The results showed that infecting NCM460 cells with live EHEC (but not with heat-killed EHEC, EHEC culture supernatant, or with non-pathogenic E. Coli) to lead to a significant inhibition in carrier-mediated TPP uptake, as well as in level of expression of the TPPT protein and mRNA. Similarly, infecting mice with EHEC led to a significant inhibition in colonic TPP uptake and in level of expression of TPPT protein and mRNA. The inhibitory effect of EHEC on TPP uptake by NCM460 was found to be associated with reduction in the rate of transcription of the SLC44A4 gene as indicated by the significant reduction in the activity of the SLC44A4 promoter transfected into EHEC infected cells. The latter was also associated with a marked reduction in the level of expression of the transcription factors CREB-1 and ELF3, which are known to drive the activity of the SLC44A4 promoter. Finally, blocking the ERK1/2 and NF-kB signaling pathways in NCM460 cells significantly reversed the level of EHEC inhibition in TPP uptake and TPPT expression. Collectively, these findings show, for the first time, that EHEC infection significantly inhibit colonic uptake of TPP, and that this effect appears to be exerted at the level of SLC44A4 transcription and involves the ERK1/2 and NF-kB signaling pathways.
Collapse
|
29
|
Ion Transporters, Channelopathies, and Glucose Disorders. Int J Mol Sci 2019; 20:ijms20102590. [PMID: 31137773 PMCID: PMC6566632 DOI: 10.3390/ijms20102590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/19/2023] Open
Abstract
Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal and smooth muscle cells, neurons, and endocrine cells. In pancreatic beta-cells, for example, potassium KATP channels link the metabolic signals generated inside the cell to changes in the beta-cell membrane potential, and ultimately regulate insulin secretion. Mutations in the genes encoding some ion transporter and channel proteins lead to disorders of glucose homeostasis (hyperinsulinaemic hypoglycaemia and different forms of diabetes mellitus). Pancreatic KATP, Non-KATP, and some calcium channelopathies and MCT1 transporter defects can lead to various forms of hyperinsulinaemic hypoglycaemia (HH). Mutations in the genes encoding the pancreatic KATP channels can also lead to different types of diabetes (including neonatal diabetes mellitus (NDM) and Maturity Onset Diabetes of the Young, MODY), and defects in the solute carrier family 2 member 2 (SLC2A2) leads to diabetes mellitus as part of the Fanconi–Bickel syndrome. Variants or polymorphisms in some ion channel genes and transporters have been reported in association with type 2 diabetes mellitus.
Collapse
|
30
|
Saleem S, Kazmi I, Ahmad A, Abuzinadah MF, Samkari A, Alkrathy HM, Khan R. Thiamin Regresses the Anticancer Efficacy of Methotrexate in the Amelioration of Diethyl Nitrosamine-Induced Hepatocellular Carcinoma in Wistar Strain Rats. Nutr Cancer 2019; 72:170-181. [PMID: 31088230 DOI: 10.1080/01635581.2019.1614199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and occurs frequently in patients with liver cirrhosis. HCC is the leading cause of cancer-related mortality around the globe.Aim: This study assessed the effects of thiamin in the anticancer activity of methotrexate (MTX) in diethyl nitrosamine (DEN) induced hepatocellular Carcinoma in Wistar strain male rats.Method: Fifty rats were randomly segregated in five groups with 10 rats in each group. HCC was induced by single intraperitoneal (i.p) dose of DEN (200 mg/kg) and HCC promoter phenobarbital was used in the basal diet (0.05%) for 5 days per week until the termination of the study in all the rats except for the normal control (NC) group. Disease control (DC) was given no treatment, while DM (DEN + MTX) and DT (DEN + thiamin) groups were given MTX (5 mg/kg, i.p per week for 16 weeks) and thiamin (25 mg/kg, orally, daily for 16 weeks), respectively. DMT (DEN + MTX + thiamin) group was given the combined dose of MTX and thiamin. Histopathological study was carried out to confirm the liver function tests such as α-feto protein (AFP), alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TB), and total protein (TP) along with antioxidants vascular endothelial growth factor (VEGF), lipid per-oxidation (LPO), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT).Results: Results showed that liver biomarkers and antioxidants parameters were still abnormal in the DC group while DM group showed significant restoration, but DT group showed less significant normalization. DMT showed mild recovery of these parameters.Conclusion: The mechanism of action of MTX and thiamin is antiparallel to each other and hence their concomitant administration may lead to inefficient anticancer activity of MTX.
Collapse
Affiliation(s)
- Shakir Saleem
- Department of Pharmacology, School of Medical and Allied Sciences, KR Mangalam University, Gurugram, Haryana, India
| | - Imran Kazmi
- College of Pharmacy, Shine Abdur Razzaq Institute of Health Education and Research Centre Irba, Ranchi, Jharkhand, India
| | - Aftab Ahmad
- Health Information Technology Department, Jeddah Community College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed F Abuzinadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Samkari
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda M Alkrathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Pharmacology, Siddhartha Institute of Pharmacy, Dehradun, India
| |
Collapse
|
31
|
Chandrakumar A, Bhardwaj A, 't Jong GW. Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff psychosis. J Basic Clin Physiol Pharmacol 2018; 30:153-162. [PMID: 30281514 DOI: 10.1515/jbcpp-2018-0075] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Wernicke encephalopathy (WE) and Korsakoff psychosis (KP), together termed Wernicke-Korsakoff syndrome (WKS), are distinct yet overlapping neuropsychiatric disorders associated with thiamine deficiency. Thiamine pyrophosphate, the biologically active form of thiamine, is essential for multiple biochemical pathways involved in carbohydrate utilization. Both genetic susceptibilities and acquired deficiencies as a result of alcoholic and non-alcoholic factors are associated with thiamine deficiency or its impaired utilization. WKS is underdiagnosed because of the inconsistent clinical presentation and overlapping of symptoms with other neurological conditions. The identification and individualized treatment of WE based on the etiology is vital to prevent the development of the amnestic state associated with KP in genetically predisposed individuals. Through this review, we bring together the existing data from animal and human models to expound the etiopathogenesis, diagnosis, and therapeutic interventions for WE and KP.
Collapse
Affiliation(s)
- Abin Chandrakumar
- Clinical Research Unit, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Aseem Bhardwaj
- Clinical Research Unit, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Geert W 't Jong
- Clinical Research Unit, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
- Department of Pediatrics, University of Manitoba, Winnipeg, Canada, Phone: +1 204 480 1328, Fax: +1 204 789 3907
| |
Collapse
|
32
|
Abstract
Nine compounds are classified as water-soluble vitamins, eight B vitamins and one vitamin C. The vitamins are mandatory for the function of numerous enzymes and lack of one or more of the vitamins may lead to severe medical conditions. All the vitamins are supplied by food in microgram to milligram quantities and in addition some of the vitamins are synthesized by the intestinal microbiota. In the gastrointestinal tract, the vitamins are liberated from binding proteins and for some of the vitamins modified prior to absorption. Due to their solubility in water, they all require specific carriers to be absorbed. Our current knowledge concerning each of the vitamins differs in depth and focus and is influenced by the prevalence of conditions and diseases related to lack of the individual vitamin. Because of that we have chosen to cover slightly different aspects for the individual vitamins. For each of the vitamins, we summarize the physiological role, the steps involved in the absorption, and the factors influencing the absorption. In addition, for some of the vitamins, the molecular base for absorption is described in details, while for others new aspects of relevance for human deficiency are included. © 2018 American Physiological Society. Compr Physiol 8:1291-1311, 2018.
Collapse
Affiliation(s)
- Hamid M Said
- University of California-School of Medicine, Irvine, California, USA.,VA Medical Center, Long Beach, California, USA
| | - Ebba Nexo
- Department of Clinical Medicine, Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
33
|
Abstract
As the co-enzyme of pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, thiamine plays a critical role in carbohydrate metabolism in dairy cows. Apart from feedstuff, microbial thiamine synthesis in the rumen is the main source for dairy cows. However, the amount of ruminal thiamine synthesis, which is influenced by dietary N levels and forage to concentrate ratio, varies greatly. Notably, when dairy cows are overfed high-grain diets, subacute ruminal acidosis (SARA) occurs and results in thiamine deficiency. Thiamine deficiency is characterised by decreased ruminal and blood thiamine concentrations and an increased blood thiamine pyrophosphate effect to >45 %. Thiamine deficiency caused by SARA is mainly related to the increased thiamine requirement during high grain feeding, decreased bacterial thiamine synthesis in the rumen, increased thiamine degradation by thiaminase, and decreased thiamine absorption by transporters. Interestingly, thiamine deficiency can be reversed by exogenous thiamine supplementation in the diet. Besides, thiamine supplementation has beneficial effects in dairy cows, such as increased milk and component production and attenuated SARA by improving rumen fermentation, balancing bacterial community and alleviating inflammatory response in the ruminal epithelium. However, there is no conclusive dietary thiamine recommendation for dairy cows, and the impacts of thiamine supplementation on protozoa, solid-attached bacteria, rumen wall-adherent bacteria and nutrient metabolism in dairy cows are still unclear. This knowledge is critical to understand thiamine status and function in dairy cows. Overall, the present review described the current state of knowledge on thiamine nutrition in dairy cows and the major problems that must be addressed in future research.
Collapse
|
34
|
Habeb AM, Flanagan SE, Zulali MA, Abdullah MA, Pomahačová R, Boyadzhiev V, Colindres LE, Godoy GV, Vasanthi T, Al Saif R, Setoodeh A, Haghighi A, Haghighi A, Shaalan Y, Hattersley AT, Ellard S, De Franco E. Pharmacogenomics in diabetes: outcomes of thiamine therapy in TRMA syndrome. Diabetologia 2018; 61:1027-1036. [PMID: 29450569 PMCID: PMC6449001 DOI: 10.1007/s00125-018-4554-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Diabetes is one of the cardinal features of thiamine-responsive megaloblastic anaemia (TRMA) syndrome. Current knowledge of this rare monogenic diabetes subtype is limited. We investigated the genotype, phenotype and response to thiamine (vitamin B1) in a cohort of individuals with TRMA-related diabetes. METHODS We studied 32 individuals with biallelic SLC19A2 mutations identified by Sanger or next generation sequencing. Clinical details were collected through a follow-up questionnaire. RESULTS We identified 24 different mutations, of which nine are novel. The onset of the first TRMA symptom ranged from birth to 4 years (median 6 months [interquartile range, IQR 3-24]) and median age at diabetes onset was 10 months (IQR 5-27). At presentation, three individuals had isolated diabetes and 12 had asymptomatic hyperglycaemia. Follow-up data was available for 15 individuals treated with thiamine for a median 4.7 years (IQR 3-10). Four patients were able to stop insulin and seven achieved better glycaemic control on lower insulin doses. These 11 patients were significantly younger at diabetes diagnosis (p = 0.042), at genetic testing (p = 0.01) and when starting thiamine (p = 0.007) compared with the rest of the cohort. All patients treated with thiamine became transfusion-independent and adolescents achieved normal puberty. There were no additional benefits of thiamine doses >150 mg/day and no reported side effects up to 300 mg/day. CONCLUSIONS/INTERPRETATION In TRMA syndrome, diabetes can be asymptomatic and present before the appearance of other features. Prompt recognition is essential as early treatment with thiamine can result in improved glycaemic control, with some individuals becoming insulin-independent. DATA AVAILABILITY SLC19A2 mutation details have been deposited in the Decipher database ( https://decipher.sanger.ac.uk/ ).
Collapse
Affiliation(s)
- Abdelhadi M Habeb
- Paediatric Department, Prince Mohammed bin Abdulaziz Hospital, National Guard Ministry, P.O. Box 40740, Al Madinah, 41511, Kingdom of Saudi Arabia.
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Mohamed A Zulali
- Paediatric Department, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia
| | | | - Renata Pomahačová
- Department of Paediatrics, Charles University, Medical Faculty and University Hospital Pilsen, Pilsen, Czech Republic
| | | | | | | | | | - Ramlah Al Saif
- Paediatric Department, Maternity and Children's Hospital, Dammam, Kingdom of Saudi Arabia
| | - Aria Setoodeh
- Growth & Development Research Centre, University of Tehran, Medical Sciences, Tehran, Iran
| | - Amirreza Haghighi
- Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Alireza Haghighi
- Department of Genetics and Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institutes of Harvard and MIT, Cambridge, MA, USA
- Partners HealthCare Laboratory for Molecular Medicine, Cambridge, MA, USA
| | | | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
35
|
Kloss O, Eskin NM, Suh M. Thiamin deficiency on fetal brain development with and without prenatal alcohol exposure. Biochem Cell Biol 2018; 96:169-177. [DOI: 10.1139/bcb-2017-0082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adequate thiamin levels are crucial for optimal health through maintenance of homeostasis and viability of metabolic enzymes, which require thiamine as a co-factor. Thiamin deficiency occurs during pregnancy when the dietary intake is inadequate or excessive alcohol is consumed. Thiamin deficiency leads to brain dysfunction because thiamin is involved in the synthesis of myelin and neurotransmitters (e.g., acetylcholine, γ-aminobutyric acid, glutamate), and its deficiency increases oxidative stress by decreasing the production of reducing agents. Thiamin deficiency also leads to neural membrane dysfunction, because thiamin is a structural component of mitochondrial and synaptosomal membranes. Similarly, in-utero exposure to alcohol leads to fetal brain dysfunction, resulting in negative effects such as fetal alcohol spectrum disorder (FASD). Thiamin deficiency and prenatal exposure to alcohol could act synergistically to produce negative effects on fetal development; however, this area of research is currently under-studied. This minireview summarizes the evidence for the potential role of thiamin deficiency in fetal brain development, with or without prenatal exposure to alcohol. Such evidence may influence the development of new nutritional strategies for preventing or mitigating the symptoms of FASD.
Collapse
Affiliation(s)
- Olena Kloss
- Department of Human Nutritional Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Human Nutritional Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - N.A. Michael Eskin
- Department of Human Nutritional Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Human Nutritional Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Miyoung Suh
- Department of Human Nutritional Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Human Nutritional Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
36
|
Intestinal Absorption of Water-Soluble Vitamins: Cellular and Molecular Mechanisms. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018. [DOI: 10.1016/b978-0-12-809954-4.00054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Scheller K, Kalmring F, Scheller C, Schubert J, Bialek J. Oral vitamin B1-substitution does not decrease genetically determined cleft rate in mice (A/WySn). J Craniomaxillofac Surg 2017; 45:1948-1954. [PMID: 29037922 DOI: 10.1016/j.jcms.2017.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Cleft lip and palate (CL/P) are one of the most common human birth defects. Animal experiments and clinical investigations show a clear reduction of teratogenic clefts by a high-dose vitamin B supplementation during early pregnancy, especially in families at risk (reduction of recurrence). The aim of this work was to examine the influence of thiamine (vitamin B1) on CL/P appearance in genetically determined A/WySn mice within different supplementation starting points. MATERIALS AND METHODS A total of 24 A/WySn female mice were orally supplemented with high doses (80 mg/kg) of thiamine at different times of pregnancy (5 groups, n = 90). The influence of thiamine on the abortion rate and CL/P appearance in the offspring was analyzed with respect to the concentration of thiamine in the serum and amniotic fluid (HPLC-chromatography). Immunochemical analyses of the ThTr-1 und ThTr-2 receptor-status were performed in midface sections of A/WySn-fetuses and the corresponding placenta, with and without CL/P. RESULTS High doses of orally supplemented thiamine did not reduce the CL/P appearance in A/WySn mice. However, the different starting points of vitamin B1 substitution had some influence. Additionally, an obvious decrease in aborted fetuses was noticed in all supplemented groups. The oral substitution caused a clear increase of the serum concentration in all mothers, but showed no increase of the amniotic fluid concentration. Then immunohistochemistry detected an overexpression of ThTr-1 in the midface and an irregular localization of ThTr-2 in the placenta of fetuses with clefts. CONCLUSION Our results suggest a time-dependent influence of thiamine on CL/P appearance in female mice. The prophylactic/periconceptional, but not the therapeutic supplementation, starting point can be proposed as a crucial step for regular facial and palatal fusion in embryonic development. The absolute rate of CL/P was not reduced, and the concentration of the water-soluble thiamine could not increase in the amniotic fluid. Thus the proposed local effect of thiamine failed in the development of genetically determined mice.
Collapse
Affiliation(s)
- Konstanze Scheller
- Department of Oral and Maxillofacial and Facial Plastic Surgery, Martin-Luther-University Halle-Wittenberg (Head: Prof. Dr. Dr. A.W. Eckert), Ernst-Grube-Straße 40, 06120 Halle, Germany.
| | - Florian Kalmring
- Department of Oral and Maxillofacial and Facial Plastic Surgery, Martin-Luther-University Halle-Wittenberg (Head: Prof. Dr. Dr. A.W. Eckert), Ernst-Grube-Straße 40, 06120 Halle, Germany
| | - Christian Scheller
- Department of Neurosurgery, Martin-Luther-University Halle-Wittenberg (Head: Prof. Dr. C. Strauss), Ernst-Grube-Straße 40, 06120 Halle, Germany
| | | | - Joanna Bialek
- Department of Human Genetics, Martin-Luther-University Halle-Wittenberg (Head: Prof. Dr. K. Hoffmann), Magdeburger Straße 2, 06112 Halle, Germany
| |
Collapse
|
38
|
Anandam KY, Srinivasan P, Subramanian VS, Said HM. Molecular mechanisms involved in the adaptive regulation of the colonic thiamin pyrophosphate uptake process. Am J Physiol Cell Physiol 2017; 313:C655-C663. [PMID: 28931541 DOI: 10.1152/ajpcell.00169.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A considerable amount of the thiamin generated by gut microbiota exists in the form of thiamin pyrophosphate (TPP). We have previously shown that human colonocytes possess an efficient carrier-mediated uptake process for TPP that involves the SLC44A4 system and this uptake process is adaptively regulated by prevailing extracellular TPP level. Little is known about the molecular mechanisms that mediate this adaptive regulation. We addressed this issue using human-derived colonic epithelial NCM460 cells and mouse colonoids as models. Maintaining NCM460 cells in the presence of a high level of TPP (1 mM) for short (2 days)- and long-term (9 days) periods was found to lead to a significant reduction in [3H] TPP uptake compared with cells maintained in its absence. Short-term exposure showed no changes in level of expression of SLC44A4 protein in total cell homogenate (although there was a decreased expression in the membrane fraction), mRNA, and promoter activity. However, a significant reduction in the level of expression of the SLC44A4 protein, mRNA, and promoter activity was observed upon long-term maintenance with the substrate. Similar changes in Slc44a4 mRNA expression were observed when mouse colonoids were maintained with TPP for short- and long-term periods. Expression of the transcription factors ELF3 and CREB-1 (which drive the SLC44A4 promoter) following long-term exposure was unchanged, but their binding affinity to the promoter was decreased and specific histone modifications were also observed. These studies demonstrate that, depending on the period of exposure, different mechanisms are involved in the adaptive regulation of colonic TPP uptake by extracellular substrate level.
Collapse
Affiliation(s)
- Kasin Yadunandam Anandam
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California School of Medicine , Irvine, California
| | - Padmanabhan Srinivasan
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California School of Medicine , Irvine, California
| | - Veedamali S Subramanian
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California School of Medicine , Irvine, California
| | - Hamid M Said
- Department of Medical Research, VA Medical Center , Long Beach, California.,Departments of Medicine and Physiology/Biophysics, University of California School of Medicine , Irvine, California
| |
Collapse
|
39
|
Ferreira CR, Whitehead MT, Leon E. Biotin-thiamine responsive basal ganglia disease: Identification of a pyruvate peak on brain spectroscopy, novel mutation in SLC19A3, and calculation of prevalence based on allele frequencies from aggregated next-generation sequencing data. Am J Med Genet A 2017; 173:1502-1513. [PMID: 28402605 PMCID: PMC10506158 DOI: 10.1002/ajmg.a.38189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/03/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
Abstract
Biotin-thiamine responsive basal ganglia disease is an inborn error of metabolism caused by mutations in SLC19A3, encoding a transporter of thiamine across the plasma membrane. We report a novel mutation identified in the homozygous state in a patient with typical brain MRI changes. In addition, this patient had markedly elevated CSF pyruvate, a low lactate-to-pyruvate molar ratio, and an abnormal pyruvate peak at 2.4 ppm on brain magnetic resonance spectroscopy. Using aggregated exome sequencing data, we calculate the carrier frequency of mutations in SLC19A3 as 1 in 232 individuals in the general population, for an estimated prevalence of the disease of approximately 1 in 215,000 individuals. The disease is thus more frequent than previously recognized, and the presence of a pyruvate peak on spectroscopy could serve as an important diagnostic clue.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Division of Genetics and Metabolism, Children’s National Health System, Washington, District of Columbia
- The George Washington University School of Medicine, Washington, District of Columbia
| | - Matthew T. Whitehead
- The George Washington University School of Medicine, Washington, District of Columbia
- Division of Diagnostic Imaging and Radiology, Children’s National Health System, Washington, District of Columbia
| | - Eyby Leon
- Division of Genetics and Metabolism, Children’s National Health System, Washington, District of Columbia
| |
Collapse
|
40
|
Pan XH, Yang L, Beckers Y, Xue FG, Tang ZW, Jiang LS, Xiong BH. Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows. J Dairy Sci 2017; 100:5329-5342. [PMID: 28501402 DOI: 10.3168/jds.2016-11966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/30/2017] [Indexed: 02/05/2023]
Abstract
An experiment was conducted to uncover the effects of increasing dietary grain levels on expression of thiamine transporters in ruminal epithelium, and to assess the protective effects of thiamine against high-grain-induced inflammation in dairy cows. Six rumen-fistulated, lactating Holstein dairy cows (627 ± 16.9 kg of body weight, 180 ± 6 d in milk; mean ± standard deviation) were randomly assigned to a replicated 3 × 3 Latin square design trial. Three treatments were control (20% dietary starch, dry matter basis), high-grain diet (HG, 33.2% dietary starch, DM basis), and HG diet supplemented with 180 mg of thiamine/kg of dry matter intake. On d 19 and 20 of each period, milk performance was measured. On d 21, ruminal pH, endotoxic lipopolysaccharide (LPS), and thiamine contents in rumen and blood, and plasma inflammatory cytokines were detected; a rumen papillae biopsy was taken on d 21 to determine the gene and protein expression of toll-like receptor 4 (TLR4) signaling pathways. The HG diet decreased ruminal pH (5.93 vs. 6.49), increased milk yield from 17.9 to 20.2 kg/d, and lowered milk fat and protein from 4.28 to 3.83%, and from 3.38 to 3.11%, respectively. The HG feeding reduced thiamine content in rumen (2.89 vs. 8.97 μg/L) and blood (11.66 vs. 17.63 μg/L), and the relative expression value of thiamine transporter-2 (0.37-fold) and mitochondrial thiamine pyrophosphate transporter (0.33-fold) was downregulated by HG feeding. The HG-fed cows exhibited higher endotoxin LPS in rumen fluid (134,380 vs. 11,815 endotoxin units/mL), and higher plasma concentrations of lipopolysaccharide binding protein and pro-inflammatory cytokines when compared with the control group. The gene and protein expression of tumor necrosis factor α (TNFα), IL1B, and IL6 in rumen epithelium increased when cows were fed the HG diet, indicating that local inflammation occurred. The depressions in ruminal pH, milk fat, and protein of HG-fed cows were reversed by thiamine supplementation. Thiamine supplementation increased thiamine contents in rumen and blood, and also upregulated the relative expression of thiamine transporters compared with the HG group. Thiamine supplementation decreased ruminal LPS (49,361 vs. 134,380 endotoxin units/mL) and attenuated the HG-induced inflammation response as indicated by a reduction in plasma IL6, and decreasing gene and protein expression of pro-inflammatory cytokines in rumen epithelium. Western bottling analysis showed that thiamine suppressed the protein expression of TLR4 and the phosphorylation of nuclear factor kappa B (NFκB) unit p65. In conclusion, HG feeding inhibits thiamine transporter expression in ruminal epithelium. Thiamine could attenuate the epithelial inflammation during high-grain feeding, and the protective effects may be due to its ability to suppress TLR4-mediated NFκB signaling pathways.
Collapse
Affiliation(s)
- X H Pan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China; Gembloux Agro-Bio Tech, Precision Livestock and Nutrition, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - L Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Y Beckers
- Gembloux Agro-Bio Tech, Precision Livestock and Nutrition, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - F G Xue
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Z W Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - L S Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, P. R. China.
| | - B H Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
41
|
Giacomini MM, Hao J, Liang X, Chandrasekhar J, Twelves J, Whitney JA, Lepist EI, Ray AS. Interaction of 2,4-Diaminopyrimidine-Containing Drugs Including Fedratinib and Trimethoprim with Thiamine Transporters. Drug Metab Dispos 2017; 45:76-85. [PMID: 27803021 DOI: 10.1124/dmd.116.073338] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/28/2016] [Indexed: 01/19/2023] Open
Abstract
Inhibition of thiamine transporters has been proposed as a putative mechanism for the observation of Wernicke's encephalopathy and subsequent termination of clinical development of fedratinib, a Janus kinase inhibitor (JAKi). This study aimed to determine the potential for other JAKi to inhibit thiamine transport using human epithelial colorectal adenocarcinoma (Caco-2) and thiamine transporter (THTR) overexpressing cells and to better elucidate the structural basis for interacting with THTR. Only JAKi containing a 2,4-diaminopyrimidine were observed to inhibit thiamine transporters. Fedratinib inhibited thiamine uptake into Caco-2 cells (IC50 = 0.940 µM) and THTR-2 (IC50 = 1.36 µM) and, to a lesser extent, THTR-1 (IC50 = 7.10 µM) overexpressing cells. Two other JAKi containing this moiety, AZD1480 and cerdulatinib, were weaker inhibitors of the thiamine transporters. Other JAKi-including monoaminopyrimidines, such as momelotinib, and nonaminopyrimidines, such as filgotinib-did not have any inhibitory effects on thiamine transport. A pharmacophore model derived from the minimized structure of thiamine suggests that 2,4-diaminopyrimidine-containing compounds can adopt a conformation matching several key features of thiamine. Further studies with drugs containing a 2,4-diaminopyrimidine resulted in the discovery that the antibiotic trimethoprim also potently inhibits thiamine uptake mediated by THTR-1 (IC50 = 6.84 µM) and THTR-2 (IC50 = 5.56 µM). Fedratinib and trimethoprim were also found to be substrates for THTR, a finding with important implications for their disposition in the body. In summary, our results show that not all JAKi have the potential to inhibit thiamine transport and further establish the interaction of these transporters with xenobiotics.
Collapse
Affiliation(s)
- Marilyn M Giacomini
- Drug Metabolism Department, Gilead Sciences, Inc., (primary laboratory of origin) (M.M.G., J.H., J.T., E.-I.L., A.S.R.), Biology Department (J.A.W.), and Structural Chemistry Department (J.C.), Gilead Sciences, Inc., Foster City, California; and Department of Biopharmaceutical Sciences and Therapeutics, University of California, San Francisco, California (X.L.)
| | - Jia Hao
- Drug Metabolism Department, Gilead Sciences, Inc., (primary laboratory of origin) (M.M.G., J.H., J.T., E.-I.L., A.S.R.), Biology Department (J.A.W.), and Structural Chemistry Department (J.C.), Gilead Sciences, Inc., Foster City, California; and Department of Biopharmaceutical Sciences and Therapeutics, University of California, San Francisco, California (X.L.)
| | - Xiaomin Liang
- Drug Metabolism Department, Gilead Sciences, Inc., (primary laboratory of origin) (M.M.G., J.H., J.T., E.-I.L., A.S.R.), Biology Department (J.A.W.), and Structural Chemistry Department (J.C.), Gilead Sciences, Inc., Foster City, California; and Department of Biopharmaceutical Sciences and Therapeutics, University of California, San Francisco, California (X.L.)
| | - Jayaraman Chandrasekhar
- Drug Metabolism Department, Gilead Sciences, Inc., (primary laboratory of origin) (M.M.G., J.H., J.T., E.-I.L., A.S.R.), Biology Department (J.A.W.), and Structural Chemistry Department (J.C.), Gilead Sciences, Inc., Foster City, California; and Department of Biopharmaceutical Sciences and Therapeutics, University of California, San Francisco, California (X.L.)
| | - Jolyn Twelves
- Drug Metabolism Department, Gilead Sciences, Inc., (primary laboratory of origin) (M.M.G., J.H., J.T., E.-I.L., A.S.R.), Biology Department (J.A.W.), and Structural Chemistry Department (J.C.), Gilead Sciences, Inc., Foster City, California; and Department of Biopharmaceutical Sciences and Therapeutics, University of California, San Francisco, California (X.L.)
| | - J Andrew Whitney
- Drug Metabolism Department, Gilead Sciences, Inc., (primary laboratory of origin) (M.M.G., J.H., J.T., E.-I.L., A.S.R.), Biology Department (J.A.W.), and Structural Chemistry Department (J.C.), Gilead Sciences, Inc., Foster City, California; and Department of Biopharmaceutical Sciences and Therapeutics, University of California, San Francisco, California (X.L.)
| | - Eve-Irene Lepist
- Drug Metabolism Department, Gilead Sciences, Inc., (primary laboratory of origin) (M.M.G., J.H., J.T., E.-I.L., A.S.R.), Biology Department (J.A.W.), and Structural Chemistry Department (J.C.), Gilead Sciences, Inc., Foster City, California; and Department of Biopharmaceutical Sciences and Therapeutics, University of California, San Francisco, California (X.L.)
| | - Adrian S Ray
- Drug Metabolism Department, Gilead Sciences, Inc., (primary laboratory of origin) (M.M.G., J.H., J.T., E.-I.L., A.S.R.), Biology Department (J.A.W.), and Structural Chemistry Department (J.C.), Gilead Sciences, Inc., Foster City, California; and Department of Biopharmaceutical Sciences and Therapeutics, University of California, San Francisco, California (X.L.)
| |
Collapse
|
42
|
Ortigoza Escobar JD, Pérez Dueñas B. Treatable Inborn Errors of Metabolism Due to Membrane Vitamin Transporters Deficiency. Semin Pediatr Neurol 2016; 23:341-350. [PMID: 28284395 DOI: 10.1016/j.spen.2016.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B vitamins act as cofactors for strategic metabolic processes. The SLC19 gene family of solute carriers has a significant structural similarity, transporting substrates with different structure and ionic charge. Three proteins of this family are expressed ubiquitously and mediate the transport of 2 important water-soluble vitamins, folate, and thiamine. SLC19A1 transports folate and SLC19A2 and SLC19A3 transport thiamine. PCFT and FOLR1 ensure intestinal absorption and transport of folate through the blood-brain barrier and SLC19A25 transports thiamine into the mitochondria. Several damaging genetic defects in vitamin B transport and metabolism have been reported. The most relevant feature of thiamine and folate transport defects is that both of them are treatable disorders. In this article, we discuss the biology and transport of thiamine and folate, as well as the clinical phenotype of the genetic defects.
Collapse
Affiliation(s)
- Juan Darío Ortigoza Escobar
- Department of Child Neurology, Pediatric Research Institute, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Belén Pérez Dueñas
- Department of Child Neurology, Pediatric Research Institute, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
43
|
Ortega-Sáenz P, Macías D, Levitsky KL, Rodríguez-Gómez JA, González-Rodríguez P, Bonilla-Henao V, Arias-Mayenco I, López-Barneo J. Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion. J Physiol 2016; 594:7229-7248. [PMID: 27570189 DOI: 10.1113/jp272961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Biotin, a vitamin whose main role is as a coenzyme for carboxylases, accumulates at unusually large amounts within cells of the carotid body (CB). In biotin-deficient rats biotin rapidly disappears from the blood; however, it remains at relatively high levels in CB glomus cells. The CB contains high levels of mRNA for SLC5a6, a biotin transporter, and SLC19a3, a thiamine transporter regulated by biotin. Animals with biotin deficiency exhibit pronounced metabolic lactic acidosis. Remarkably, glomus cells from these animals have normal electrical and neurochemical properties. However, they show a marked decrease in the size of quantal dopaminergic secretory events. Inhibitors of the vesicular monoamine transporter 2 (VMAT2) mimic the effect of biotin deficiency. In biotin-deficient animals, VMAT2 protein expression decreases in parallel with biotin depletion in CB cells. These data suggest that dopamine transport and/or storage in small secretory granules in glomus cells depend on biotin. ABSTRACT Biotin is a water-soluble vitamin required for the function of carboxylases as well as for the regulation of gene expression. Here, we report that biotin accumulates in unusually large amounts in cells of arterial chemoreceptors, carotid body (CB) and adrenal medulla (AM). We show in a biotin-deficient rat model that the vitamin rapidly disappears from the blood and other tissues (including the AM), while remaining at relatively high levels in the CB. We have also observed that, in comparison with other peripheral neural tissues, CB cells contain high levels of SLC5a6, a biotin transporter, and SLC19a3, a thiamine transporter regulated by biotin. Biotin-deficient rats show a syndrome characterized by marked weight loss, metabolic lactic acidosis, aciduria and accelerated breathing with normal responsiveness to hypoxia. Remarkably, CB cells from biotin-deficient animals have normal electrophysiological and neurochemical (ATP levels and catecholamine synthesis) properties; however, they exhibit a marked decrease in the size of quantal catecholaminergic secretory events, which is not seen in AM cells. A similar differential secretory dysfunction is observed in CB cells treated with tetrabenazine, a selective inhibitor of the vesicular monoamine transporter 2 (VMAT2). VMAT2 is highly expressed in glomus cells (in comparison with VMAT1), and in biotin-deficient animals VMAT2 protein expression decreases in parallel with the decrease of biotin accumulated in CB cells. These data suggest that biotin has an essential role in the homeostasis of dopaminergic transmission modulating the transport and/or storage of transmitters within small secretory granules in glomus cells.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - David Macías
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Konstantin L Levitsky
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - José A Rodríguez-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Victoria Bonilla-Henao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
44
|
Hiffler L, Rakotoambinina B, Lafferty N, Martinez Garcia D. Thiamine Deficiency in Tropical Pediatrics: New Insights into a Neglected but Vital Metabolic Challenge. Front Nutr 2016; 3:16. [PMID: 27379239 PMCID: PMC4906235 DOI: 10.3389/fnut.2016.00016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022] Open
Abstract
In humans, thiamine is a micronutrient prone to depletion that may result in severe clinical abnormalities. This narrative review summarizes current knowledge on thiamine deficiency (TD) and bridges the gap between pathophysiology and clinical presentation by integrating thiamine metabolism at subcellular level with its function to vital organs. The broad clinical spectrum of TD is outlined, with emphasis on conditions encountered in tropical pediatric practice. In particular, TD is associated with type B lactic acidosis and classic forms of beriberi in children, but it is often unrecognized. Other severe acute conditions are associated with hypermetabolism, inducing a functional TD. The crucial role of thiamine in infant cognitive development is also highlighted in this review, along with analysis of the potential impact of TD in refeeding syndrome during severe acute malnutrition (SAM). This review aims to increase clinical awareness of TD in tropical settings where access to diagnostic tests is poor, and advocates for an early therapeutic thiamine challenge in resource-limited settings. Moreover, it provides evidence for thiamine as treatment in critical conditions requiring metabolic resuscitation, and gives rationale to the consideration of increased thiamine supplementation in therapeutic foods for malnourished children.
Collapse
Affiliation(s)
- Laurent Hiffler
- Dakar Unit, Medical Department, Médecins Sans Frontières (MSF) , Dakar , Senegal
| | | | - Nadia Lafferty
- Pediatric Team, Medical Department, Médecins Sans Frontières (MSF) , Barcelona , Spain
| | | |
Collapse
|
45
|
Ortigoza-Escobar JD, Molero-Luis M, Arias A, Martí-Sánchez L, Rodriguez-Pombo P, Artuch R, Pérez-Dueñas B. Treatment of genetic defects of thiamine transport and metabolism. Expert Rev Neurother 2016; 16:755-63. [DOI: 10.1080/14737175.2016.1187562] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Department of Child Neurology, Hospital General de Granollers, Barcelona, Spain
| | - Marta Molero-Luis
- Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Angela Arias
- Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Laura Martí-Sánchez
- Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Pilar Rodriguez-Pombo
- Departamento de Biología Molecular, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, IDIPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Rafael Artuch
- Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Belén Pérez-Dueñas
- Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
46
|
Sabui S, Subramanian VS, Kapadia R, Said HM. Structure-function characterization of the human mitochondrial thiamin pyrophosphate transporter (hMTPPT; SLC25A19): Important roles for Ile(33), Ser(34), Asp(37), His(137) and Lys(291). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1883-90. [PMID: 27188525 DOI: 10.1016/j.bbamem.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
Thiamin plays a critical role in cellular energy metabolism. Mammalian cells obtain the vitamin from their surroundings, converted it to thiamin pyrophosphate (TPP) in the cytoplasm, followed by uptake of TPP by mitochondria via a carrier-mediated process that involves the MTPPT (product of the SLC25A19 gene). Previous studies have characterized different physiological/biological aspects of the human MTPPT (hMTPPT), but less is known about structural features that are important for its function. Here, we used a protein-docking model ("Phyre2" and "DockingServer") to predict residues that may be important for function (substrate recognition) of the hMTPPT; we also examined the role of conserved positively-charged residues predicted ("PRALINE") to be in the trans-membrane domains (TMDs) in uptake of the negatively-charged TPP. Among the six residues predicted by the docking model (i.e., Thr(29), Arg(30), Ile(33), Ser(34), Asp(37) and Phe(298)), only Ile(33), Ser(34) and Asp(37) were found to be critical for function. While no change in translational efficiency/protein stability of the Ser(34) mutant was observed, both the Ile(33) and Asp(37) mutants showed a decrease in this parameter(s); there was also a decrease in the expression of the latter two mutants in mitochondria. A need for a polar residue at position 34 of the hMTPPT was evident. Our findings with the positively-charged residues (i.e., His(82), His(137), Lys(231) and Lys(291)) predicted in the TMD showed that His(137) and Lys(291) are important for function (via a role in proper delivery of the protein to mitochondria). These investigations provide important information about the structure-function relationship of the hMTPPT.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Medical Research, VA Medical Center, Long Beach, CA 90822, United States; Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, United States
| | - Veedamali S Subramanian
- Department of Medical Research, VA Medical Center, Long Beach, CA 90822, United States; Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, United States
| | - Rubina Kapadia
- Department of Medical Research, VA Medical Center, Long Beach, CA 90822, United States; Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, United States
| | - Hamid M Said
- Department of Medical Research, VA Medical Center, Long Beach, CA 90822, United States; Departments of Medicine and Physiology/Biophysics, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
47
|
Porta M, Toppila I, Sandholm N, Hosseini SM, Forsblom C, Hietala K, Borio L, Harjutsalo V, Klein BE, Klein R, Paterson AD, Groop PH. Variation in SLC19A3 and Protection From Microvascular Damage in Type 1 Diabetes. Diabetes 2016; 65:1022-30. [PMID: 26718501 PMCID: PMC4806664 DOI: 10.2337/db15-1247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
Abstract
The risk of long-term diabetes complications is not fully explained by diabetes duration or long-term glycemic exposure, suggesting the involvement of genetic factors. Because thiamine regulates intracellular glucose metabolism and corrects for multiple damaging effects of high glucose, we hypothesized that variants in specific thiamine transporters are associated with risk of severe retinopathy and/or severe nephropathy because they modify an individual's ability to achieve sufficiently high intracellular thiamine levels. We tested 134 single nucleotide polymorphisms (SNPs) in two thiamine transporters (SLC19A2/3) and their transcription factors (SP1/2) for an association with severe retinopathy or nephropathy or their combination in the FinnDiane cohort. Subsequently, the results were examined for replication in the DCCT/EDIC and Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) cohorts. We found two SNPs in strong linkage disequilibrium in the SLC19A3 locus associated with a reduced rate of severe retinopathy and the combined phenotype of severe retinopathy and end-stage renal disease. The association for the combined phenotype reached genome-wide significance in a meta-analysis that included the WESDR cohort. These findings suggest that genetic variations in SLC19A3 play an important role in the pathogenesis of severe diabetic retinopathy and nephropathy and may explain why some individuals with type 1 diabetes are less prone than others to develop microvascular complications.
Collapse
Affiliation(s)
- Massimo Porta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Iiro Toppila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - S Mohsen Hosseini
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kustaa Hietala
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Department of Ophthalmology, Helsinki University Central Hospital, Helsinki, Finland
| | - Lorenzo Borio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland National Institute for Health and Welfare, Helsinki, Finland
| | - Barbara E Klein
- Department Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI
| | - Ronald Klein
- Department Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI
| | - Andrew D Paterson
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Canada
| | | | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
48
|
Ortigoza-Escobar JD, Molero-Luis M, Arias A, Oyarzabal A, Darín N, Serrano M, Garcia-Cazorla A, Tondo M, Hernández M, Garcia-Villoria J, Casado M, Gort L, Mayr JA, Rodríguez-Pombo P, Ribes A, Artuch R, Pérez-Dueñas B. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome. Brain 2015; 139:31-8. [PMID: 26657515 DOI: 10.1093/brain/awv342] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 10/02/2015] [Indexed: 11/13/2022] Open
Abstract
Thiamine transporter-2 deficiency is caused by mutations in the SLC19A3 gene. As opposed to other causes of Leigh syndrome, early administration of thiamine and biotin has a dramatic and immediate clinical effect. New biochemical markers are needed to aid in early diagnosis and timely therapeutic intervention. Thiamine derivatives were analysed by high performance liquid chromatography in 106 whole blood and 38 cerebrospinal fluid samples from paediatric controls, 16 cerebrospinal fluid samples from patients with Leigh syndrome, six of whom harboured mutations in the SLC19A3 gene, and 49 patients with other neurological disorders. Free-thiamine was remarkably reduced in the cerebrospinal fluid of five SLC19A3 patients before treatment. In contrast, free-thiamine was slightly decreased in 15.2% of patients with other neurological conditions, and above the reference range in one SLC19A3 patient on thiamine supplementation. We also observed a severe deficiency of free-thiamine and low levels of thiamine diphosphate in fibroblasts from SLC19A3 patients. Surprisingly, pyruvate dehydrogenase activity and mitochondrial substrate oxidation rates were within the control range. Thiamine derivatives normalized after the addition of thiamine to the culture medium. In conclusion, we found a profound deficiency of free-thiamine in the CSF and fibroblasts of patients with thiamine transporter-2 deficiency. Thiamine supplementation led to clinical improvement in patients early treated and restored thiamine values in fibroblasts and cerebrospinal fluid.
Collapse
Affiliation(s)
| | - Marta Molero-Luis
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Angela Arias
- 3 Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Alfonso Oyarzabal
- 5 Department of Molecular Biology, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, IDIPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Niklas Darín
- 6 Department of Paediatrics, Sahlgrenska Academy, Gothenburg University, Gothenburg Sweden
| | - Mercedes Serrano
- 1 Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Angels Garcia-Cazorla
- 1 Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Mireia Tondo
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - María Hernández
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Judit Garcia-Villoria
- 3 Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Mercedes Casado
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Laura Gort
- 3 Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Johannes A Mayr
- 7 Department of Paediatrics, Paracelsus Medical University Salzburg, Salzburg 5020, Austria
| | - Pilar Rodríguez-Pombo
- 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain 5 Department of Molecular Biology, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, IDIPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonia Ribes
- 3 Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Rafael Artuch
- 2 Department of Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Belén Pérez-Dueñas
- 1 Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain 4 Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| |
Collapse
|
49
|
Liang X, Chien HC, Yee SW, Giacomini MM, Chen EC, Piao M, Hao J, Twelves J, Lepist EI, Ray AS, Giacomini KM. Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3). Mol Pharm 2015; 12:4301-10. [PMID: 26528626 DOI: 10.1021/acs.molpharmaceut.5b00501] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The biguanide metformin is widely used as first-line therapy for the treatment of type 2 diabetes. Predominately a cation at physiological pH's, metformin is transported by membrane transporters, which play major roles in its absorption and disposition. Recently, our laboratory demonstrated that organic cation transporter 1, OCT1, the major hepatic uptake transporter for metformin, was also the primary hepatic uptake transporter for thiamine, vitamin B1. In this study, we tested the reverse, i.e., that metformin is a substrate of thiamine transporters (THTR-1, SLC19A2, and THTR-2, SLC19A3). Our study demonstrated that human THTR-2 (hTHTR-2), SLC19A3, which is highly expressed in the small intestine, but not hTHTR-1, transports metformin (Km = 1.15 ± 0.2 mM) and other cationic compounds (MPP(+) and famotidine). The uptake mechanism for hTHTR-2 was pH and electrochemical gradient sensitive. Furthermore, metformin as well as other drugs including phenformin, chloroquine, verapamil, famotidine, and amprolium inhibited hTHTR-2 mediated uptake of both thiamine and metformin. Species differences in the substrate specificity of THTR-2 between human and mouse orthologues were observed. Taken together, our data suggest that hTHTR-2 may play a role in the intestinal absorption and tissue distribution of metformin and other organic cations and that the transporter may be a target for drug-drug and drug-nutrient interactions.
Collapse
Affiliation(s)
- Xiaomin Liang
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| | - Marilyn M Giacomini
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Eugene C Chen
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| | - Meiling Piao
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States.,Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University , Beijing 100084, China
| | - Jia Hao
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Jolyn Twelves
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Eve-Irene Lepist
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Adrian S Ray
- Department of Drug Metabolism, Gilead Sciences, Inc. , Foster City, California 94404, United States
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, California 94158, United States
| |
Collapse
|
50
|
Kunisawa J, Sugiura Y, Wake T, Nagatake T, Suzuki H, Nagasawa R, Shikata S, Honda K, Hashimoto E, Suzuki Y, Setou M, Suematsu M, Kiyono H. Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B 1. Cell Rep 2015; 13:122-131. [DOI: 10.1016/j.celrep.2015.08.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/22/2015] [Accepted: 08/21/2015] [Indexed: 01/08/2023] Open
|