1
|
The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Sci Rep 2019; 9:17033. [PMID: 31745224 PMCID: PMC6864077 DOI: 10.1038/s41598-019-53370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
The chromobox homolog 2 (CBX2) was found to be important for human testis development, but its role in the human ovary remains elusive. We conducted a genome-wide analysis based on DNA adenine methyltransferase identification (DamID) and RNA sequencing strategies to investigate CBX2 in the human granulosa cells. Functional analysis revealed that CBX2 was upstream of genes contributing to ovarian function like folliculogenesis and steroidogenesis (i.e. ESR1, NRG1, AKR1C1, PTGER2, BMP15, BMP2, FSHR and NTRK1/2). We identified CBX2 regulated genes associated with polycystic ovary syndrome (PCOS) such as TGFβ, MAP3K15 and DKK1, as well as genes implicated in premature ovarian failure (POF) (i.e. POF1B, BMP15 and HOXA13) and the pituitary deficiency (i.e. LHX4 and KISS1). Our study provided an excellent opportunity to identify genes surrounding CBX2 in the ovary and might contribute to the understanding of ovarian physiopathology causing infertility in women.
Collapse
|
2
|
Abstract
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, 94720, Berkeley, CA, USA.
| |
Collapse
|
3
|
Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol Ther 2017; 173:19-33. [PMID: 28132904 DOI: 10.1016/j.pharmthera.2017.01.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular binding-proteins (BP), including CRBP1, CRBP2, CRABP1, CRABP2, and FABP5, shepherd the poorly aqueous soluble retinoids during uptake, metabolism and function. Holo-BP promote efficient use of retinol, a scarce but essential nutrient throughout evolution, by sheltering it and its major metabolite all-trans-retinoic acid from adventitious interactions with the cellular milieu, and by imposing specificity of delivery to enzymes, nuclear receptors and other partners. Apo-BP reflect cellular retinoid status and modify activities of retinoid metabolon enzymes, or exert non-canonical actions. High ligand binding affinities and the nature of ligand sequestration necessitate external factors to prompt retinoid release from holo-BP. One or more of cross-linking, kinetics, and colocalization have identified these factors as RDH, RALDH, CYP26, LRAT, RAR and PPARβ/δ. Michaelis-Menten and other kinetic approaches verify that BP channel retinoids to select enzymes and receptors by protein-protein interactions. Function of the BP and enzymes that constitute the retinoid metabolon depends in part on retinoid exchanges unique to specific pairings. The complexity of these exchanges configure retinol metabolism to meet the diverse functions of all-trans-retinoic acid and its ability to foster contrary outcomes in different cell types, such as inducing apoptosis, differentiation or proliferation. Altered BP expression affects retinoid function, for example, by impairing pancreas development resulting in abnormal glucose and energy metabolism, promoting predisposition to breast cancer, and fostering more severe outcomes in prostate cancer, ovarian adenocarcinoma, and glioblastoma. Yet, the extent of BP interactions with retinoid metabolon enzymes and their impact on retinoid physiology remains incompletely understood.
Collapse
Affiliation(s)
- Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
4
|
Shimozono S, Iimura T, Kitaguchi T, Higashijima SI, Miyawaki A. Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 2013; 496:363-6. [PMID: 23563268 DOI: 10.1038/nature12037] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
|
5
|
Wilson LJ, Myat A, Sharma A, Maden M, Wingate RJT. Retinoic acid is a potential dorsalising signal in the late embryonic chick hindbrain. BMC DEVELOPMENTAL BIOLOGY 2007; 7:138. [PMID: 18093305 PMCID: PMC2266733 DOI: 10.1186/1471-213x-7-138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/19/2007] [Indexed: 01/12/2023]
Abstract
Background Human retinoic acid teratogenesis results in malformations of dorsally derived hindbrain structures such as the cerebellum, noradrenergic hindbrain neurons and the precerebellar system. These structures originate from the rhombic lip and adjacent dorsal precursor pools that border the fourth ventricle roofplate. While retinoic acid synthesis is known to occur in the meninges that blanket the hindbrain, the particular sensitivity of only dorsal structures to disruptions in retinoid signalling is puzzling. We therefore looked for evidence within the neural tube for more spatiotemporally specific signalling pathways using an in situ hybridisation screen of known retinoic acid pathway transcripts. Results We find that there are highly restricted domains of retinoic acid synthesis and breakdown within specific hindbrain nuclei as well as the ventricular layer and roofplate. Intriguingly, transcripts of cellular retinoic acid binding protein 1 are always found at the interface between dividing and post-mitotic cells. By contrast to earlier stages of development, domains of synthesis and breakdown in post-mitotic neurons are co-localised. At the rhombic lip, expression of the mRNA for retinoic acid synthesising and catabolising enzymes is spatially highly organised with respect to the Cath1-positive precursors of migratory precerebellar neurons. Conclusion The late developing hindbrain shows patterns of retinoic acid synthesis and use that are distinct from the well characterised phase of rostrocaudal patterning. Selected post-mitotic populations, such as the locus coeruleus, appear to both make and break down retinoic acid suggesting that a requirement for an autocrine, or at least a highly localised paracrine signalling network, might explain its acute sensitivity to retinoic acid disruption. At the rhombic lip, retinoic acid is likely to act as a dorsalising factor in parallel with other roofplate signalling pathways. While its precise role is unclear, retinoic acid is potentially well placed to regulate temporally determined cell fate decisions within the rhombic lip precursor pool.
Collapse
Affiliation(s)
- Leigh J Wilson
- MRC Centre for Developmental Neurobiology, King's College London, 4th floor New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
6
|
Levadoux-Martin M, Li Y, Blackburn A, Chabanon H, Hesketh JE. Perinuclear localisation of cellular retinoic acid binding protein I mRNA. Biochem Biophys Res Commun 2006; 340:326-31. [PMID: 16376305 DOI: 10.1016/j.bbrc.2005.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/02/2005] [Indexed: 11/23/2022]
Abstract
Retinoids are important metabolic and developmental regulators that act through nuclear receptors. The cellular retinoic acid binding protein CRABPI has been suggested to play a role in trafficking of retinoic acid but its exact functions and subcellular localisation remain unclear. Here we show that in CHO cells both exogenous CRABPI transcripts and tagged CRABPI protein have a perinuclear distribution that depends upon the 3'UTR of the mRNA. The CRABPI 3'UTR conferred perinuclear localisation on globin reporter transcripts. Deletion analysis indicated that the first 123nt of CRABPI 3'UTR are necessary for localisation of both CRABPI mRNA and protein. We propose that CRABPI mRNA is localised by a signal within its 3'UTR and that this partly determines the distribution of CRABPI protein.
Collapse
Affiliation(s)
- M Levadoux-Martin
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle-upon-Tyne, UK
| | | | | | | | | |
Collapse
|
7
|
Jeong JK, Velho TAF, Mello CV. Cloning and expression analysis of retinoic acid receptors in the zebra finch brain. J Comp Neurol 2005; 489:23-41. [PMID: 15977168 DOI: 10.1002/cne.20605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vitamin A derivative retinoic acid is produced postembryonically in discrete portions of the songbird brain, including some of the nuclei involved in song production and song learning, and its synthesis is required for the normal maturation of song behavior. To identify the brain targets for retinoic acid action, we cloned the zebra finch homologs of the alpha, beta, and gamma classes of retinoic acid receptors (RARs). In situ hybridization analysis revealed that the mRNAs for all three RARs are expressed at different levels in several brain areas, with a broader distribution than the mRNA for retinaldehyde-specific aldehyde dehydrogenase (zRalDH), a retinoic acid-synthesizing enzyme. Detectable RAR expression was found in all nuclei of the song control system, with the most marked expression occurring within the striatal song nucleus area X. These observations are consistent with a persistent action of retinoic acid in the postembryonic and adult songbird brain and provide further evidence for an involvement of retinoic acid signaling in the control of learned vocal behavior in a songbird species. They also suggest that the striatum is a major target of retinoic acid in songbirds.
Collapse
Affiliation(s)
- Jin K Jeong
- Neurological Sciences Institute, Oregon Health and Science University, West Campus, Beaverton, Oregon 97221, USA
| | | | | |
Collapse
|
8
|
Liu RZ, Sharma MK, Sun Q, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. Retention of the duplicated cellular retinoic acid-binding protein 1 genes (crabp1a and crabp1b) in the zebrafish genome by subfunctionalization of tissue-specific expression. FEBS J 2005; 272:3561-71. [PMID: 16008556 DOI: 10.1111/j.1742-4658.2005.04775.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cellular retinoic acid-binding protein type I (CRABPI) is encoded by a single gene in mammals. We have characterized two crabp1 genes in zebrafish, designated crabp1a and crabp1b. These two crabp1 genes share the same gene structure as the mammalian CRABP1 genes and encode proteins that show the highest amino acid sequence identity to mammalian CRABPIs. The zebrafish crabp1a and crabp1b were assigned to linkage groups 25 and 7, respectively. Both linkage groups show conserved syntenies to a segment of the human chromosome 15 harboring the CRABP1 locus. Phylogenetic analysis suggests that the zebrafish crabp1a and crabp1b are orthologs of the mammalian CRABP1 genes that likely arose from a teleost fish lineage-specific genome duplication. Embryonic whole mount in situ hybridization detected zebrafish crabp1b transcripts in the posterior hindbrain and spinal cord from early stages of embryogenesis. crabp1a mRNA was detected in the forebrain and midbrain at later developmental stages. In adult zebrafish, crabp1a mRNA was localized to the optic tectum, whereas crabp1b mRNA was detected in several tissues by RT-PCR but not by tissue section in situ hybridization. The differential and complementary expression patterns of the zebrafish crabp1a and crabp1b genes imply that subfunctionalization may be the mechanism for the retention of both crabp1 duplicated genes in the zebrafish genome.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Chen AC, Yu K, Lane MA, Gudas LJ. Homozygous deletion of the CRABPI gene in AB1 embryonic stem cells results in increased CRABPII gene expression and decreased intracellular retinoic acid concentration. Arch Biochem Biophys 2003; 411:159-73. [PMID: 12623064 DOI: 10.1016/s0003-9861(02)00732-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cellular retinoic acid (RA) binding proteins I and II (CRABPI and CRABPII), intracellular proteins which bind retinoic acid with high affinity, are involved in the actions of RA, though their exact roles are not fully understood. We have generated several genetically engineered AB1 cell lines in which both alleles of the CRABPI gene have been deleted by homologous recombination. We have used these CRABPI knockout cell lines to examine the consequences of functional loss of CRABPI on RA-induced gene expression and RA metabolism in the murine embryonic stem cell line, AB1, which undergoes differentiation in response to RA. Complete lack of CRABPI results in decreased intracellular [3H]RA concentrations under conditions in which external concentrations of [3H]RA are low (1-10nM) and in an altered distribution of [3H] polar metabolites of [3H]RA in the cell and in the medium. Fewer [3H] polar metabolites are retained within the CRABPI(-/-) cells compared to the wild-type cells. These data suggest that CRABPI functions to regulate the intracellular concentrations of retinoic acid and to maintain high levels of oxidized retinoic acid metabolites such as 4-oxoretinoic acid within cells.
Collapse
Affiliation(s)
- Anne C Chen
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Since the late 1980s, there has been an explosion of information on the molecular mechanisms and functions of vitamin A. This review focuses on the essential role of vitamin A in female reproduction and embryonic development and the metabolism of vitamin A (retinol) that results in these functions. Evidence strongly supports that in situ-generated all-trans retinoic acid (atRA) is the functional form of vitamin A in female reproduction and embryonic development. This is supported by the ability to reverse most reproductive and developmental blocks found in vitamin A deficiency with atRA, the block in embryonic development that occurs in retinaldehyde dehydrogenase type 2 null mutant mice, and the essential roles of the retinoic acid receptors, at least in embryogenesis. Early studies of embryos from marginally vitamin A-deficient (VAD) pregnant rats revealed a collection of defects called the vitamin A-deficiency syndrome. The manipulation of all-trans retinoic acid (atRA) levels in the diet of VAD female rats undergoing a reproduction cycle has proved to be an important new tool in deciphering the points of atRA function in early embryos and has provided a means to generate large numbers of embryos at later stages of development with the vitamin A-deficiency syndrome. The essentiality of the retinoid receptors in mediating the activity of atRA is exemplified by the many compound null mutant embryos that now recapitulate both the original vitamin A-deficiency syndrome and exhibit a host of new defects, many of which can also be observed in the VAD-atRA-supported rat embryo model and in retinaldehyde dehydrogenase type 2 (RALDH2) mutant mice. A major task for the future is to elucidate the atRA-dependent pathways that are normally operational in vitamin A-sufficient animals and that are perturbed in deficiency, thus leading to the characteristic VAD phenotypes described above.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
11
|
Hesketh JE, Villette S. Intracellular trafficking of micronutrients: from gene regulation to nutrient requirements. Proc Nutr Soc 2002; 61:405-14. [PMID: 12691169 DOI: 10.1079/pns2002176] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The intracellular distribution of micronutrients, as well as their uptake, is important for cell function. In some cases the distribution of micronutrients or their related proteins is determined by gene expression mechanisms. The 3' untranslated region (3'UTR) of metallothionein-1 mRNA determines localisation of the mRNA, and in turn intracellular trafficking of the protein product. Using transfected cells we have evidence for the trafficking of metallothionein-1 into the nucleus and for its involvement in protection from oxidative stress and DNA damage. When nutritional supply of Se is limited, selenoprotein expression is altered, but not all selenoproteins are affected equally; the available Se is prioritised for synthesis of particular selenoproteins. The prioritisation involves differences in mRNA translation and stability due to 3'UTR sequences. Potentially, genetic variation in these regulatory mechanisms may affect nutrient requirements. Genetic polymorphisms in the 3'UTR from two selenoprotein genes have been observed; one polymorphism affects selenoprotein synthesis. These examples illustrate how molecular approaches can contribute at several levels to an increased understanding of nutrient metabolism and requirements. First, they provide the tools to investigate regulatory features in genes and their products. Second, understanding these processes can provide model systems to investigate nutrient metabolism at the cellular level. Third, once key features have been identified, the availability of human genome sequence information and single nucleotide polymorphism databases present possibilities to define the extent of genetic variation in genes of nutritional relevance. Ultimately, the functionality of any variations can be defined and subgroups of the population with subtly different nutrient requirements identified.
Collapse
Affiliation(s)
- John E Hesketh
- Department of Biological and Nutritional Sciences, University of Newcastle, Newcastle-upon-Tyne NE1 7RU, UK.
| | | |
Collapse
|
12
|
Parenti R, Wassef M, Cicirata F. Expression of CRABP I mRNA in fastigial cells of the developing cerebellum. Eur J Neurosci 2002; 15:211-5. [PMID: 11860520 DOI: 10.1046/j.0953-816x.2001.01853.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the cellular retinoic acid binding protein type I (CRABP I) was examined in the early phase of cerebellar development in the mouse. The CRABP I was expressed from embryonic day (E) 10.5 to E15.5 in the cerebellar plate. The expression was diffused at E10.5-E11.5 and thereafter localized in a small rostrodorsal area of the cerebellar territory of both sides. By using in situ hybridization and both immunohistochemistry and carbocyanine tracing procedures, we identified the fastigial cells as the population that expresses CRABP I in the cerebellum. The results suggest that these cells play a critical role in the early development of the cerebellum.
Collapse
Affiliation(s)
- Rosalba Parenti
- Department of Physiological Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | |
Collapse
|
13
|
Johansson S, Dencker L, Dantzer V. Immunohistochemical localization of retinoid binding proteins at the materno-fetal interface of the porcine epitheliochorial placenta. Biol Reprod 2001; 64:60-8. [PMID: 11133659 DOI: 10.1095/biolreprod64.1.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Retinol and retinoic acid that are potent modulators of gene expression are vital for development and growth of the conceptus. Apart from being transported across the placenta, retinol and retinoic acid may also be active in the placenta per se. Three proteins involved in 1) serum transport of retinol (retinol binding protein [RBP]), 2) cellular transport and metabolism of retinol (cellular RBP [CRBP] I), and 3) retinoic acid (cellular retinoic acid binding protein [CRABP] I), respectively, have been located by immunohistochemistry during gestation in the porcine placenta. This is a diffuse epitheliochorial placenta composed of areolar-gland subunits, where transport of larger molecules takes place, and interareolar regions, where gas-exchange and trophoblast absorption of hemotroph occur. Immunoreactive-RBP (ir-RBP) as well as CRBP I (ir-CRBP) was detected in uterine glands and in areolar trophoblasts, suggesting that RBP-retinol is secreted by the glands and absorbed by the trophoblasts. Both proteins were present also at the interareolar regions, with ir-CRBP in both the uterine epithelium and the apposing trophoblasts, but ir-RBP only in the former. The localization of ir-CRABP was, in contrast, strictly limited to interareolar trophoblasts. Together these findings suggest that 1) the areolar gland subunits are important for transport of retinol and retinol-RBP, and 2) retinoid binding proteins are involved in the development and growth of the porcine placenta.
Collapse
Affiliation(s)
- S Johansson
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
14
|
Abstract
We report that immunohistochemical staining for cellular retinoic acid-binding protein (CRABP) was restricted to the cytoplasm of cortical cells in bovine adrenal. In contrast, staining for the similar protein, cellular retinol-binding protein (CRBP), was found throughout these cells. After transfections of CRABP and CRBP into cultured cells, immunofluorescence analyses again revealed cytoplasmic restriction only for CRABP, with a pronounced punctate appearance. Use of organelle-specific fluorochromes indicated that CRABP immunofluorescence overlaid exactly with the pattern of the mitochondrial-specific fluorochrome. Confirmation of this association came with subcellular fractionation of the adrenal cortex. CRABP, but not CRBP, co-sedimented with the mitochondria, a novel finding for a member of this superfamily of cellular lipid-binding proteins.
Collapse
Affiliation(s)
- S J Ruff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
15
|
Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)31967-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
McCaffery P, Dräger UC. Regulation of retinoic acid signaling in the embryonic nervous system: a master differentiation factor. Cytokine Growth Factor Rev 2000; 11:233-49. [PMID: 10817966 DOI: 10.1016/s1359-6101(00)00002-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes some of the properties of retinoic acid (RA) in its functions as a locally synthesized differentiation factor for the developing nervous system. The emphasis is on the characterization of the metabolic enzymes that synthesize and inactivate RA, and which determine local RA concentrations. These enzymes create regions of autocrine and paracrine RA signaling in the embryo. One mechanism by which RA can act as a differentiation agent is through the induction of growth factors and their receptors. Induction of growth factor receptors in neural progenitor cells can lead to growth factor dependency, and the consequent developmental fate of the cell will depend on the local availability of growth factors. Because RA activates the early events of cell differentiation, which then induce context-specific differentiation programs, RA may be called a master differentiation factor.
Collapse
Affiliation(s)
- P McCaffery
- E. Kennedy Shriver Center, Waltham, MA 02452, USA.
| | | |
Collapse
|
17
|
Wei LN, Chang L, HU X. Studies of the type I cellular retinoic acid-binding protein mutants and their biological activities. Mol Cell Biochem 1999; 200:69-76. [PMID: 10569185 DOI: 10.1023/a:1006906415388] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have mutated the type I cellular retinoic acid binding protein (CRABP-I), individually at the Arg131 (into Ala) and the Tyr133 (into Phe) residues which have been predicted to make direct contact with retinoic acid (RA) based upon previous structural studies. The RA-binding affinities of these mutants are examined and their biological effects on RA induction of reporter genes are determined. The R131A mutation drastically affects its ligand-binding property, but the Y133F mutation has little effect. By using an RA-inducible reporter, it is found that the wild type CRABP-I exerts biphasic effects on RA induction of the reporter. The early (at 12 h) effect is to enhance RA induction, whereas the delayed (at 24 h) effect is to suppress RA induction. In consistence with their RA binding property, the R131A mutant loses both its early and delayed biological activities, whereas the Y133F mutant remains as effective as the wild type. It is concluded that CRABP-I over-expression exerts biphasic effects on RA-mediated gene expression, and that Arg131, but not Tyr133, is essential for a high RA-binding affinity of this protein as well as its biological activity.
Collapse
Affiliation(s)
- L N Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
18
|
Gustafson AL, Eriksson U, Dencker L. CRBP I and CRABP I localisation during olfactory nerve development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:121-6. [PMID: 10209249 DOI: 10.1016/s0165-3806(99)00014-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Retinoic acid appears to play a role during the formation of the olfactory system. Immunohistochemistry was used to localise the cellular retinoid binding-proteins for retinol (CRBP I) and retinoic acid (CRABP I) in the embryonic and adult olfactory system. Our results indicate that RA produced by the CRBP I-expressing 'glia-like' cells may act as a neurotrophic factor for the CRABP I-expressing immature olfactory axons.
Collapse
Affiliation(s)
- A L Gustafson
- Department of Pharmaceutical Bioscience, Division of Toxicology, Uppsala Biomedical Centre, Uppsala University, Box 594, 751 24, Uppsala, Sweden.
| | | | | |
Collapse
|
19
|
Zetterström RH, Lindqvist E, Mata de Urquiza A, Tomac A, Eriksson U, Perlmann T, Olson L. Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur J Neurosci 1999; 11:407-16. [PMID: 10051741 DOI: 10.1046/j.1460-9568.1999.00444.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Retinoic acid (RA), a retinoid metabolite, acts as a gene regulator via ligand-activated transcription factors, known as retinoic acid receptors (RARs) and retinoid X receptors (RXRs), both existing in three different subtypes, alpha, beta and gamma. In the intracellular regulation of retinoids, four binding proteins have been implicated: cellular retinol binding protein (CRBP) types I and II and cellular retinoic acid binding protein (CRABP) types I and II. We have used in situ hybridization to localize mRNA species encoding CRBP- and CRABP I and II as well as all the different nuclear receptors in the developing and adult rat and mouse central nervous system (CNS), an assay to investigate the possible presence of RA, and immunohistochemistry to also analyse CRBP I- and CRABP immunoreactivity (IR). RXRbeta is found in most areas while RARalpha and -beta and RXRalpha and -gamma show much more restricted patterns of expression. RARalpha is found in cortex and hippocampus and RARbeta and RXRgamma are both highly expressed in the dopamine-innervated areas caudate/putamen, nucleus accumbens and olfactory tubercle. RARgamma could not be detected in any part of the CNS. Using an in vitro reporter assay, we found high levels of RA in the developing striatum. The caudate/putamen of the developing brain showed strong CRBP I-IR in a compartmentalized manner, while at the same time containing many evenly distributed CRABP I-IR neurons. The CRBP I- and CRABP I-IR patterns were closely paralleled by the presence of the corresponding transcripts. The specific expression pattern of retinoid-binding proteins and nuclear retinoid receptors as well as the presence of RA in striatum suggests that retinoids are important in many brain structures and emphasizes a role for retinoids in gene regulatory events in postnatal and adult striatum.
Collapse
Affiliation(s)
- R H Zetterström
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
20
|
Regulatory signals in messenger RNA: determinants of nutrient–gene interaction and metabolic compartmentation. Br J Nutr 1998. [DOI: 10.1017/s0007114598001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nutrition has marked influences on gene expression and an understanding of the interaction between nutrients and gene expression is important in order to provide a basis for determining the nutritional requirements on an individual basis. The effects of nutrition can be exerted at many stages between transcription of the genetic sequence and production of a functional protein. This review focuses on the role of post-transcriptional control, particularly mRNA stability, translation and localization, in the interactions of nutrients with gene expression. The effects of both macronutrients and micronutrients on regulation of gene expression by post-transcriptional mechanisms are presented and the post-transcriptional regulation of specific genes of nutritional relevance (glucose transporters, transferrin, selenoenzymes, metallothionein, lipoproteins) is described in detail. The function of the regulatory signals in the untranslated regions of the mRNA is highlighted in relation to control of mRNA stability, translation and localization and the importance of these mRNA regions to regulation by nutrients is illustrated by reference to specific examples. The localization of mRNA by signals in the untranslated regions and its function in the spatial organization of protein synthesis is described; the potential of such mechanisms to play a key part in nutrient channelling and metabolic compartmentation is discussed. It is concluded that nutrients can influence gene expression through control of the regulatory signals in these untranslated regions and that the post-transcriptional regulation of gene expression by these mechanisms may influence nutritional requirements. It is emphasized that in studies of nutritional control of gene expression it is important not to focus only on regulation through gene promoters but also to consider the possibility of post-transcriptional control.
Collapse
|
21
|
Gaub MP, Lutz Y, Ghyselinck NB, Scheuer I, Pfister V, Chambon P, Rochette-Egly C. Nuclear detection of cellular retinoic acid binding proteins I and II with new antibodies. J Histochem Cytochem 1998; 46:1103-11. [PMID: 9742066 DOI: 10.1177/002215549804601002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Apart from the retinoic acid nuclear receptor family, there are two low molecular weight (15 kD) cellular retinoic acid binding proteins, named CRABPI and II. Mouse monoclonal and rabbit polyclonal antibodies were raised against these proteins by using as antigens either synthetic peptides corresponding to amino acid sequences unique to CRABPI or CRABPII, or purified CRABP proteins expressed in E. coli. Antibodies specific for mouse and/or human CRABPI and CRABPII were obtained and characterized by immunocytochemistry and immunoblotting. They allowed the detection not only of CRABPI but also of CRABPII in both nuclear and cytosolic extracts from transfected COS-1 cells, mouse embryos, and various cell lines.
Collapse
Affiliation(s)
- M P Gaub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Mansfield SG, Cammer S, Alexander SC, Muehleisen DP, Gray RS, Tropsha A, Bollenbacher WE. Molecular cloning and characterization of an invertebrate cellular retinoic acid binding protein. Proc Natl Acad Sci U S A 1998; 95:6825-30. [PMID: 9618497 PMCID: PMC22650 DOI: 10.1073/pnas.95.12.6825] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1997] [Accepted: 04/09/1998] [Indexed: 02/07/2023] Open
Abstract
We have cloned a cDNA and gene from the tobacco hornworm, Manduca sexta, which is related to the vertebrate cellular retinoic acid binding proteins (CRABPs). CRABPs are members of the superfamily of lipid binding proteins (LBPs) and are thought to mediate the effects of retinoic acid (RA) on morphogenesis, differentiation, and homeostasis. This discovery of a Manduca sexta CRABP (msCRABP) demonstrates the presence of a CRABP in invertebrates. Compared with bovine/murine CRABP I, the deduced amino acid sequence of msCRABP is 71% homologous overall and 88% homologous for the ligand binding pocket. The genomic organization of msCRABP is conserved with other CRABP family members and the larger LBP superfamily. Importantly, the promoter region contains a motif that resembles an RA response element characteristic of the promoter region of most CRABPs analyzed. Three-dimensional molecular modeling based on postulated structural homology with bovine/murine CRABP I shows msCRABP has a ligand binding pocket that can accommodate RA. The existence of an invertebrate CRABP has significant evolutionary implications, suggesting CRABPs appeared during the evolution of the LBP superfamily well before vertebrate/invertebrate divergence, instead of much later in evolution in selected vertebrates.
Collapse
Affiliation(s)
- S G Mansfield
- Intron LLC, 710 West Main Street, Durham, NC 27701-2801, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kleinjan DA, Dekker S, Guy JA, Grosveld FG. Cloning and sequencing of the CRABP-I locus from chicken and pufferfish: analysis of the promoter regions in transgenic mice. Transgenic Res 1998; 7:85-94. [PMID: 9608736 DOI: 10.1023/a:1008864224100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), a derivative of vitamin A, is an important molecule for development and homeostasis of vertebrate organisms. The intracellular retinoic acid binding protein CRABP-I has a high affinity for RA, and is thought to be involved in the mechanism of RA signalling. CRABP-I is well conserved in evolution and shows a specific expression pattern during development, but mice made deficient for the protein by gene targeting appear normal. However, the high degree of homology with CRABP-I from other species indicates that the protein has been subject to strong selective conservation, indicative of an important biological function. In this paper we have compared the conservation in the expression pattern of the mouse, chicken and pufferfish CRABP-I genes to substantiate this argument further. First we cloned and sequenced genes and promoter regions of the CRABP-I genes from chicken and the Japanese pufferfish, Fugu rubripes. Sequence comparison with the mouse gene did not show any large blocks of homology in the promoter regions. Nevertheless, the promoter of the chicken gene directed expression to a subset of the tissues that show expression with the promoter from the mouse gene. The pattern observed with the pufferfish promoter is even more restricted, essentially to rhombomere 4 only, indicating that this region may be functionally the most important for CRABP-I expression in the developing embryo.
Collapse
Affiliation(s)
- D A Kleinjan
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|