1
|
Iterative Role of Notch Signaling in Spinal Motor Neuron Diversification. Cell Rep 2016; 16:907-916. [PMID: 27425621 DOI: 10.1016/j.celrep.2016.06.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/05/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
The motor neuron progenitor domain in the ventral spinal cord gives rise to multiple subtypes of motor neurons and glial cells. Here, we examine whether progenitors found in this domain are multipotent and which signals contribute to their cell-type-specific differentiation. Using an in vitro neural differentiation model, we demonstrate that motor neuron progenitor differentiation is iteratively controlled by Notch signaling. First, Notch controls the timing of motor neuron genesis by repressing Neurogenin 2 (Ngn2) and maintaining Olig2-positive progenitors in a proliferative state. Second, in an Ngn2-independent manner, Notch contributes to the specification of median versus hypaxial motor column identity and lateral versus medial divisional identity of limb-innervating motor neurons. Thus, motor neuron progenitors are multipotent, and their diversification is controlled by Notch signaling that iteratively increases cellular diversity arising from a single neural progenitor domain.
Collapse
|
2
|
Zhang Y, Chai J, Qiu Y, Zhang M, Zhang L, Yu J. Notch signaling in the differentiation of MEE cells from the developing mouse palate. Acta Biochim Biophys Sin (Shanghai) 2014; 46:338-41. [PMID: 24492535 DOI: 10.1093/abbs/gmt156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yanping Zhang
- Key Laboratory of Eugenic technology, Shandong Planned Parenthood Institute of Science and Technology, Jinan 250002, China
| | | | | | | | | | | |
Collapse
|
3
|
Li F, Zhou M. Conditional expression of the dominant-negative TGF-β receptor type II elicits lingual epithelial hyperplasia in transgenic mice. Dev Dyn 2013; 242:444-55. [PMID: 23362225 DOI: 10.1002/dvdy.23933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/05/2013] [Accepted: 01/14/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The transforming growth factor-β (TGF-β) signaling pathway is generally believed to be a potent inhibitor of proliferation. However, many epithelia lacking the essential Tgfbr2 gene still maintain normal tissue homeostasis. Here, transgenic mice expressing rtTA from the human keratin 14 (K14) promoter were used to generate an inducible dominant-negative TGF-β receptor type II (Tgfbr2) mutant model, which allowed us to distinguish between the primary and secondary effects of TGF-β signaling disruption by Doxycycline treatment in K14+ epithelial stem cells. RESULTS We showed that in mice lacking TGF-β signaling in K14+ cells, invasive carcinomas developed on the ventral surface of the tip of the tongue, while filiform papillae on the dorsal surface showed different pathological changes from the tip to the posterior of the tongue. In addition, acetylation levels of histone H4 and histone H3 rapidly increased, while pMAPK activity was enhanced and Jagged2 inactivated in lingual epithelia after disruption of TGF-β signaling. CONCLUSIONS Our results contribute to the understanding of TGF-β signaling in regulating homeostasis and carcinogenesis in lingual epithelia.
Collapse
Affiliation(s)
- Feng Li
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, People's Republic of China.
| | | |
Collapse
|
4
|
Ramos C, Rocha S, Gaspar C, Henrique D. Two Notch ligands, Dll1 and Jag1, are differently restricted in their range of action to control neurogenesis in the mammalian spinal cord. PLoS One 2010; 5:e15515. [PMID: 21124801 PMCID: PMC2991363 DOI: 10.1371/journal.pone.0015515] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/10/2010] [Indexed: 02/07/2023] Open
Abstract
Background Notch signalling regulates neuronal differentiation in the vertebrate nervous system. In addition to a widespread function in maintaining neural progenitors, Notch signalling has also been involved in specific neuronal fate decisions. These functions are likely mediated by distinct Notch ligands, which show restricted expression patterns in the developing nervous system. Two ligands, in particular, are expressed in non-overlapping complementary domains of the embryonic spinal cord, with Jag1 being restricted to the V1 and dI6 progenitor domains, while Dll1 is expressed in the remaining domains. However, the specific contribution of different ligands to regulate neurogenesis in vertebrate embryos is still poorly understood. Methodology/Principal Findings In this work, we investigated the role of Jag1 and Dll1 during spinal cord neurogenesis, using conditional knockout mice where the two genes are deleted in the neuroepithelium, singly or in combination. Our analysis showed that Jag1 deletion leads to a modest increase in V1 interneurons, while dI6 neurogenesis was unaltered. This mild Jag1 phenotype contrasts with the strong neurogenic phenotype detected in Dll1 mutants and led us to hypothesize that neighbouring Dll1-expressing cells signal to V1 and dI6 progenitors and restore neurogenesis in the absence of Jag1. Analysis of double Dll1;Jag1 mutant embryos revealed a stronger increase in V1-derived interneurons and overproduction of dI6 interneurons. In the presence of a functional Dll1 allele, V1 neurogenesis is restored to the levels detected in single Jag1 mutants, while dI6 neurogenesis returns to normal, thereby confirming that Dll1-mediated signalling compensates for Jag1 deletion in V1 and dI6 domains. Conclusions/Significance Our results reveal that Dll1 and Jag1 are functionally equivalent in controlling the rate of neurogenesis within their expression domains. However, Jag1 can only activate Notch signalling within the V1 and dI6 domains, whereas Dll1 can signal to neural progenitors both inside and outside its domains of expression.
Collapse
Affiliation(s)
- Catarina Ramos
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Lisboa, Portugal
| | - Susana Rocha
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Lisboa, Portugal
| | - Claudia Gaspar
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Lisboa, Portugal
| | - Domingos Henrique
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
5
|
Mitsiadis TA, Graf D, Luder H, Gridley T, Bluteau G. BMPs and FGFs target Notch signalling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development 2010; 137:3025-35. [PMID: 20685737 DOI: 10.1242/dev.049528] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Notch signalling pathway is an evolutionarily conserved intercellular signalling mechanism that is essential for cell fate specification and proper embryonic development. We have analysed the expression, regulation and function of the jagged 2 (Jag2) gene, which encodes a ligand for the Notch family of receptors, in developing mouse teeth. Jag2 is expressed in epithelial cells that give rise to the enamel-producing ameloblasts from the earliest stages of tooth development. Tissue recombination experiments showed that its expression in epithelium is regulated by mesenchyme-derived signals. In dental explants cultured in vitro, the local application of fibroblast growth factors upregulated Jag2 expression, whereas bone morphogenetic proteins provoked the opposite effect. Mice homozygous for a deletion in the Notch-interaction domain of Jag2 presented a variety of severe dental abnormalities. In molars, the crown morphology was misshapen, with additional cusps being formed. This was due to alterations in the enamel knot, an epithelial signalling structure involved in molar crown morphogenesis, in which Bmp4 expression and apoptosis were altered. In incisors, cytodifferentiation and enamel matrix deposition were inhibited. The expression of Tbx1 in ameloblast progenitors, which is a hallmark for ameloblast differentiation and enamel formation, was dramatically reduced in Jag2(-/-) teeth. Together, these results demonstrate that Notch signalling mediated by Jag2 is indispensable for normal tooth development.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
6
|
Notch signaling influences neuroprotective and proliferative properties of mature Müller glia. J Neurosci 2010; 30:3101-12. [PMID: 20181607 DOI: 10.1523/jneurosci.4919-09.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Notch signaling is known to play important roles during retinal development. Recently, Notch signaling has been shown to be active in proliferating Müller glia in acutely damaged chick retina (Hayes et al., 2007). However, the roles of Notch in mature, undamaged retina remain unknown. Thus, the purpose of this study was to determine the role of the Notch-signaling pathway in the postnatal retina. Here we show that components of the Notch-signaling pathway are expressed in most Müller glia at low levels in undamaged retina. The expression of Notch-related genes varies during early postnatal development and across regions, with higher expression in peripheral versus central retina. Blockade of Notch activity with a small molecule inhibitor before damage was protective to retinal interneurons (amacrine and bipolar cells) and projection neurons (ganglion cells). In the absence of damage, Notch is upregulated in retinas treated with insulin and FGF2; the combination of these factors is known to stimulate the proliferation and dedifferentiation of Müller glia (Fischer et al., 2002b). Inhibition of Notch signaling during FGF2 treatment reduces levels of the downstream effectors of the MAPK-signaling pathway-p38 MAPK and pCREB in Müller glia. Further, inhibition of Notch activity potently inhibits FGF2-induced proliferation of Müller glia. Together, our data indicate that Notch signaling is downstream of, and is required for, FGF2/MAPK signaling to drive the proliferation of Müller glia. In addition, our data suggest that low levels of Notch signaling in Müller glia diminish the neuroprotective activities of these glial cells.
Collapse
|
7
|
Nelson BR, Hartman BH, Ray CA, Hayashi T, Bermingham-McDonogh O, Reh TA. Acheate-scute like 1 (Ascl1) is required for normal delta-like (Dll) gene expression and notch signaling during retinal development. Dev Dyn 2009; 238:2163-78. [PMID: 19191219 DOI: 10.1002/dvdy.21848] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Delta gene expression in Drosophila is regulated by proneural basic helix-loop-helix (bHLH) transcription factors, such as acheate-scute. In vertebrates, multiple Delta-like and proneural bHLH genes are expressed during neurogenesis, especially in the retina. We recently uncovered a relationship between Acheate-scute like 1 (Ascl1), Delta-like genes, and Notch in chick retinal progenitors. Here, we report that mammalian retinal progenitors are also the primary source of Delta-like genes, likely signaling through Notch among themselves, while differentiating neurons expressed Jagged2. Ascl1 is coexpressed in Delta-like and Notch active progenitors, and required for normal Delta-like gene expression and Notch signaling. We also reveal a role for Ascl1 in the regulation of Hes6, a proneurogenic factor that inhibits Notch signaling to promote neural rather than glial differentiation. Thus, these results suggest a molecular mechanism whereby attenuated Notch levels coupled with reduced proneurogenic activity in progenitors leads to increased gliogenesis and decreased neurogenesis in the Ascl1-deficient retina.
Collapse
Affiliation(s)
- Branden R Nelson
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Tzchori I, Day TF, Carolan PJ, Zhao Y, Wassif CA, Li L, Lewandoski M, Gorivodsky M, Love PE, Porter FD, Westphal H, Yang Y. LIM homeobox transcription factors integrate signaling events that control three-dimensional limb patterning and growth. Development 2009; 136:1375-85. [PMID: 19304889 DOI: 10.1242/dev.026476] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate limb development is controlled by three signaling centers that regulate limb patterning and growth along the proximodistal (PD), anteroposterior (AP) and dorsoventral (DV) limb axes. Coordination of limb development along these three axes is achieved by interactions and feedback loops involving the secreted signaling molecules that mediate the activities of these signaling centers. However, it is unknown how these signaling interactions are processed in the responding cells. We have found that distinct LIM homeodomain transcription factors, encoded by the LIM homeobox (LIM-HD) genes Lhx2, Lhx9 and Lmx1b integrate the signaling events that link limb patterning and outgrowth along all three axes. Simultaneous loss of Lhx2 and Lhx9 function resulted in patterning and growth defects along the AP and the PD limb axes. Similar, but more severe, phenotypes were observed when the activities of all three factors, Lmx1b, Lhx2 and Lhx9, were significantly reduced by removing their obligatory co-factor Ldb1. This reveals that the dorsal limb-specific factor Lmx1b can partially compensate for the function of Lhx2 and Lhx9 in regulating AP and PD limb patterning and outgrowth. We further showed that Lhx2 and Lhx9 can fully substitute for each other, and that Lmx1b is partially redundant, in controlling the production of output signals in mesenchymal cells in response to Fgf8 and Shh signaling. Our results indicate that several distinct LIM-HD transcription factors in conjunction with their Ldb1 co-factor serve as common central integrators of distinct signaling interactions and feedback loops to coordinate limb patterning and outgrowth along the PD, AP and DV axes after limb bud formation.
Collapse
Affiliation(s)
- Itai Tzchori
- Section on Mammalian Molecular Genetics, Laboratory of Mammalian Genes and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rocha SF, Lopes SS, Gossler A, Henrique D. Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev Biol 2009; 328:54-65. [PMID: 19389377 DOI: 10.1016/j.ydbio.2009.01.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/26/2008] [Accepted: 01/05/2009] [Indexed: 12/11/2022]
Abstract
Signalling mediated by Notch receptors is known to have multiple functions during vertebrate neural development, regulating processes like progenitor differentiation and cell type diversification. Various Notch ligands are expressed in the developing nervous system and their activities might contribute to this multiplicity of functions. Here, we show that two Delta-like genes, Dll1 and Dll4, are sequentially expressed in differentiating neurons of the embryonic mouse retina and spinal cord's pV2 domain, with Dll1 starting to be expressed before Dll4. Analysis of Dll1 mutants reveals this gene is necessary and sufficient to maintain a pool of progenitors in the embryonic neuroepithelium. Accordingly, in the spinal cord domains where Dll1 is the only expressed Notch ligand, its inactivation leads to an increased rate of neurogenesis and premature differentiation of neural progenitors. In contrast, in the pV2 domain and retina where Dll1 is co-expressed with Dll4, progenitors are not exhausted and cell diversity is maintained. Together, our results support a model where Dll1 and Dll4 are part of a unique genetic circuitry that regulates subsequent steps of neurogenesis in the retina and pV2 domain: while Dll1 serves to prevent the untimely differentiation of neural progenitors, Dll4 might function to generate diversity within the population of differentiating neurons.
Collapse
Affiliation(s)
- Susana Ferreira Rocha
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
10
|
Nelson BR, Reh TA. Relationship between Delta-like and proneural bHLH genes during chick retinal development. Dev Dyn 2008; 237:1565-80. [PMID: 18435466 DOI: 10.1002/dvdy.21550] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Notch signaling in the retina maintains a pool of progenitor cells throughout retinogenesis. However, two Notch-ligands from the Delta-like gene family, Dll1 and Dll4, are present in the developing retina. To understand their relationship, we characterized Dll1 and Dll4 expression with respect to proliferating progenitor cells and newborn neurons in the chick retina. Dll4 matched the pattern of neural differentiation. By contrast, Dll1 was primarily expressed in progenitor cells. We compared Dll1 and Dll4 kinetic profiles with that of the transiently up-regulated cascade of proneural basic helix-loop-helix (bHLH) genes after synchronized progenitor cell differentiation, which suggested a potential role for Ascl1 in the regulation of Delta-like genes. Gain-of-function assays demonstrate that Ascl1 does influence Delta-like gene expression and Notch signaling activity. These data suggest that multiple sources of Notch signaling from newborn neurons and progenitors themselves coordinate retinal histogenesis.
Collapse
Affiliation(s)
- Branden R Nelson
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
11
|
Gordon-Thomson C, Botto SA, Cam GR, Moore GPM. Notch pathway gene expression and wool follicle cell fates. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ea07315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Notch family of genes has been implicated in specifying cell fates during hair follicle morphogenesis. We examined Notch gene expression during wool follicle formation, as an understanding of genes that influence cell distributions in the developing follicle is a prerequisite for devising molecular strategies to manipulate fibre characters and follicle density. We identified transcripts for the Notch1 receptor and one of its ligands, Jagged1, in fetal sheep skin by reverse transcriptase polymerase chain reaction. The sheep-specific cDNA sequences were used as templates to produce probes to investigate the expression patterns of Notch1 and Jagged1 in developing ovine fetal skin by in situ hybridisation. Notch1 and Jagged1 were detected in the epidermis and in a subpopulation of mesenchymal cells before follicle initiation. At day 70 during follicle initiation, transcripts were also detected in cells at the tip of the epidermal plug and in dermal condensates. By day 86, Notch1 and Jagged1 were detected in the distal cells of the epidermal downgrowths and epidermis and Notch1 was no longer detected in the mesenchyme and dermal condensates. After day 96, transcripts were absent from the epidermis, but localised to differentiating outer root sheath (ORS) cells. The distributions of transcripts implicate a Notch1–Jagged1 signal pathway in the fates of prospective ORS cells. The transient appearance of Notch1 in cells at the epidermal–mesenchymal junction during early follicle morphogenesis suggests that the receptor may be responsible for the specification of a cell subpopulation committed to a prepapilla fate at initiation.
Collapse
|
12
|
Simon YC, Chabre C, Lautrou A, Berdal A. [Known gene interactions as implicated in craniofacial development]. Orthod Fr 2007; 78:25-37. [PMID: 17571530 DOI: 10.1051/orthodfr:2007003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many genes intervening in development, morphogenesis and craniofacial growth have been identified, primarily by the use of mice mutants. We can distinguish two families: the signalling factors and the transcription factors. The latter interact with DNA to activate or to inhibit the expression of other genes. Some of the transcription factors are called homeogenes because they interact with DNA by a sequence of amino acids known as homeobox that has been carefully conserved throughout the course of evolution. Those factors interact, and signalling cascades have been described. Current research projects seek to discern the exact role of each of these genes in craniofacial growth and to develop a better understanding of the interactions between them.
Collapse
Affiliation(s)
- Yohann c Simon
- Faculté de chirurgie dentaire, Université Paris V, 1 rue Maurice Arnoux, 92120 Montrouge, France.
| | | | | | | |
Collapse
|
13
|
Souilhol C, Cormier S, Monet M, Vandormael-Pournin S, Joutel A, Babinet C, Cohen-Tannoudji M. Nas transgenic mouse line allows visualization of Notch pathway activity in vivo. Genesis 2006; 44:277-86. [PMID: 16708386 PMCID: PMC2734965 DOI: 10.1002/dvg.20208] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Notch signaling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular, the precise mapping of its sites of activity, remain unclear. To address this issue, we generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jkappa binding sites. Here we show that this transgenic line, which we termed NAS (for Notch Activity Sensor), displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jkappa-deficient background, indicating that it indeed requires Notch/RBP-Jkappa signaling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signaling pathway.
Collapse
Affiliation(s)
- Céline Souilhol
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Sarah Cormier
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Marie Monet
- Genetique des Maladies Vasculaires
INSERM : U740Université Denis Diderot - Paris VIIFac de Medecine Lariboisiere-St Louis PARIS VII 10, Avenue de Verdun 75010 PARIS ,FR
| | - Sandrine Vandormael-Pournin
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Anne Joutel
- Genetique des Maladies Vasculaires
INSERM : U740Université Denis Diderot - Paris VIIFac de Medecine Lariboisiere-St Louis PARIS VII 10, Avenue de Verdun 75010 PARIS ,FR
| | - Charles Babinet
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Michel Cohen-Tannoudji
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
- * Correspondence should be adressed to: Michel Cohen-Tannoudji
| |
Collapse
|
14
|
Pääkkönen V, Ohlmeier S, Bergmann U, Larmas M, Salo T, Tjäderhane L. Analysis of gene and protein expression in healthy and carious tooth pulp with cDNA microarray and two-dimensional gel electrophoresis. Eur J Oral Sci 2005; 113:369-79. [PMID: 16202023 DOI: 10.1111/j.1600-0722.2005.00237.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complementary DNA (cDNA) microarray and two-dimensional (2-D) gel electrophoresis, combined with mass spectrometry, enable simultaneous analysis of expression patterns of thousands of genes, but their use in pulp biology has been limited. Here we compared gene and protein expression of pulp tissues from sound and carious human teeth using cDNA microarray and 2-D gel electrophoresis to evaluate their usefulness in pulp biology research and to identify the genes with changes in carious teeth. The cDNA microarray revealed several differentially expressed genes and genes with a high expression in both tissues. These genes have various functions, e.g. effects on vascular and nerve structures, inflammation, and cell differentiation. Variability between cDNA hybridizations indicates that the overall gene expression pattern may vary significantly between individual teeth. The 2-D gel electrophoresis revealed no change between healthy and diseased tissue. The identification of 96 proteins in the pulp tissue revealed none of the gene products with corresponding high/different mRNA expression in cDNA microarray. Interestingly, we detected also a hypothetical protein (putative nucleoside diphosphate kinase), and present therefore the first evidence for the existence of this protein. Even though the methods reveal potentially important gene expression, they may currently have only limited value in in vivo pulp biology research.
Collapse
|
15
|
Stella MC, Trusolino L, Pennacchietti S, Comoglio PM. Negative feedback regulation of Met-dependent invasive growth by Notch. Mol Cell Biol 2005; 25:3982-96. [PMID: 15870272 PMCID: PMC1087707 DOI: 10.1128/mcb.25.10.3982-3996.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hepatocyte growth factor (HGF) receptor encoded by the Met oncogene controls a genetic program-known as "invasive growth"-responsible for several developmental processes and involved in cancer invasion and metastasis. This program functions through several regulatory gene products, as yet largely unknown, both upstream and downstream of Met. Here we show that activation of the Notch receptor results in transcriptional down-regulation of Met, suppression of HGF-dependent Ras signaling, and impairment of HGF-dependent cellular responses. In turn, Met activation leads to transcriptional induction of the Notch ligand Delta and the Notch effector HES-1, indicating that Met is able to self-tune its own protein levels and the ensuing biochemical and biological outputs through stimulation of the Notch pathway. By using branching morphogenesis of the tracheal system in Drosophila as a readout of invasive growth, we also show that exogenous expression of a constitutively active form of human Met induces enhanced sprouting of the tracheal tree, a phenotype that is further increased in embryos lacking Notch function. These results unravel an in-built mechanism of negative feedback regulation in which Met activation leads to transcriptional induction of Notch function, which in turn limits HGF activity through repression of the Met oncogene.
Collapse
Affiliation(s)
- M Cristina Stella
- Institute for Cancer Research and Treatment, University of Turin School of Medicine, Division of Molecular Oncology, IV Floor, Str. Prov. 142, Km. 3,95, 10060 Candiolo, Torino, Italy.
| | | | | | | |
Collapse
|
16
|
Mitsiadis TA, Regaudiat L, Gridley T. Role of the Notch signalling pathway in tooth morphogenesis. Arch Oral Biol 2005; 50:137-40. [PMID: 15721140 DOI: 10.1016/j.archoralbio.2004.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Notch receptors are involved in cell fate decisions through the process of lateral inhibition or inductive signalling. Jagged2 belongs to the family of transmembrane proteins that serve as the ligands for Notch receptors. We have analysed the expression of the Jagged2 gene in developing mouse teeth. Jagged2 expression is restricted in inner enamel epithelial cells that give rise to the ameloblasts. We have also examined the role of Jagged2 in tooth development using mutant mice that lack the domain of the Jagged2 protein required for interaction with the Notch receptors (DSL domain). Homozygous mutant mice die after birth, exhibit abnormal tooth morphology and fusions between the palatal and mandibular shelves. These results demonstrate that Notch signalling plays an essential role in tooth development.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Department of Craniofacial Development, Facial Genetics Laboratory, GKT Dental Institute, Kings College London, Floors 27-28 Guy's Tower, Guy's Hospital, London SE1 9RT, UK.
| | | | | |
Collapse
|
17
|
Alappat SR, Zhang Z, Suzuki K, Zhang X, Liu H, Jiang R, Yamada G, Chen Y. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice. Dev Biol 2005; 277:102-13. [PMID: 15572143 DOI: 10.1016/j.ydbio.2004.09.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 08/12/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
Mammalian palatogenesis depends on interactions between the stomodium-derived epithelium and the cranial neural crest-derived ectomesenchyme. Fibroblast growth factor 10 (FGF10) is a mesenchymal signaling factor that guides the morphogenesis of multiple organs through tissue-tissue interactions. This is consistent with widespread agenesis and dysgenesis of organs observed in Fgf10-/- mice. In this study, we report the presence of a wide-open cleft secondary palate in Fgf10 homozygous null mutant mice. Fgf10 transcripts were detected in the palatal mesenchyme from E11.5 to E13.5 during normal palatogenesis and were enriched in the anterior and middle portions of the palatal shelves. In Fgf10-/- embryos, histological analyses revealed aberrant adhesion of the palatal shelves with the tongue in the anterior and fusion with the mandible in the middle and posterior beginning at E13.5, which could prevent normal elevation of the palatal shelves leading to a cleft palate. TUNEL and BrdU assays demonstrated significant levels of apoptosis in the medial edge epithelium (MEE) but unaltered cell proliferation in mutant palatal shelves. At the molecular level, we show that Fgf10 is epistatic to Jagged2 and Tgfbeta3 in the developing palate. Notably, the expression of Jagged2 is downregulated throughout the palate epithelium in Fgf10 mutants while Tgfbeta3 is misexpressed in the palatal epithelium at the oral side. Our results demonstrate that mesenchymally expressed Fgf10 is necessary for the survival of MEE cells and for the normal expression of Jagged2 and Tgfbeta3 in the palatal epithelium during mammalian palatogenesis.
Collapse
Affiliation(s)
- Sylvia R Alappat
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The Notch signaling pathway has become recognized as a vitally important pathway in regulating proliferative/differentiative decisions and cell fate. To explore the involvement of the Notch pathway in adult gut, we investigated the expression of Notch receptors and their ligands by Northern blotting and in situ hybridization. Notch receptors and ligands were expressed in both proliferative and post-mitotic cells throughout adult rat gut, variously in epithelial, immune, and endothelial cells. Expression of Notch1, Jagged1, and Jagged2 frequently overlapped, whereas Notch2 expression was restricted to specific crypt cells, the lamina propria of the large intestine, and Peyer's patch lymphocytes. We propose that the expression of multiple Notch receptors and ligands in a range of different intestinal cell types indicates that this signaling pathway underpins many of the processes involved in the maintenance and function of the adult gut.
Collapse
Affiliation(s)
- Guy R Sander
- Child Health Research Institute, Womens and Childrens Hospital, Adelaide, South Australia.
| | | |
Collapse
|
19
|
Noseda M, McLean G, Niessen K, Chang L, Pollet I, Montpetit R, Shahidi R, Dorovini-Zis K, Li L, Beckstead B, Durand RE, Hoodless PA, Karsan A. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res 2004; 94:910-7. [PMID: 14988227 DOI: 10.1161/01.res.0000124300.76171.c9] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Various studies have identified a critical role for Notch signaling in cardiovascular development. In this and other systems, Notch receptors and ligands are expressed in regions that undergo epithelial-to-mesenchymal transformation. However, there is no direct evidence that Notch activation can induce mesenchymal transdifferentiation. In this study we show that Notch activation in endothelial cells results in morphological, phenotypic, and functional changes consistent with mesenchymal transformation. These changes include downregulation of endothelial markers (vascular endothelial [VE]-cadherin, Tie1, Tie2, platelet-endothelial cell adhesion molecule-1, and endothelial NO synthase), upregulation of mesenchymal markers (alpha-smooth muscle actin, fibronectin, and platelet-derived growth factor receptors), and migration toward platelet-derived growth factor-BB. Notch-induced endothelial-to-mesenchymal transformation does not seem to require external regulation and is restricted to cells expressing activated Notch. Jagged1 stimulation of endothelial cells induces a similar mesenchymal transformation, and Jagged1, Notch1, and Notch4 are expressed in the ventricular outflow tract during stages of endocardial cushion formation. This is the first evidence that Jagged1-Notch interactions induce endothelial-to-mesenchymal transformation, and our findings suggest that Notch signaling may be required for proper endocardial cushion differentiation and/or vascular smooth muscle cell development.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Animals
- Antigens, CD
- Becaplermin
- Cadherins/metabolism
- Calcium-Binding Proteins
- Cell Differentiation
- Cell Line
- Endocardium/cytology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Fetal Heart/metabolism
- Fetal Heart/ultrastructure
- Gene Expression Regulation, Developmental
- Heart Septum/embryology
- Humans
- Intercellular Signaling Peptides and Proteins
- Jagged-1 Protein
- Membrane Proteins
- Mesoderm/cytology
- Mice
- Muscle, Smooth, Vascular/cytology
- Phenotype
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Protein Biosynthesis
- Proteins/genetics
- Proteins/physiology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-sis
- Receptor, Notch1
- Receptor, Notch4
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Notch
- Recombinant Fusion Proteins/physiology
- Serrate-Jagged Proteins
- Sheep
- Signal Transduction/physiology
- Transcription Factors
- Transduction, Genetic
Collapse
Affiliation(s)
- Michela Noseda
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Norgaard GA, Jensen JN, Jensen J. FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol 2004; 264:323-38. [PMID: 14651921 DOI: 10.1016/j.ydbio.2003.08.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FGF10 plays an important role in the morphogenesis of several tissues by control of mesenchymal-to-epithelial signaling. In the pancreas, mesenchymal FGF10 is required to maintain the Pdx1-expressing epithelial progenitor cell population, and in the absence of FGF10 signaling, these cells fail to proliferate. Ectopic expression of FGF10 in the pancreatic epithelium caused increased proliferation of pancreatic progenitor cells and abrogation of pancreatic cell differentiation of all cell types. A hyperplastic pancreas consisting of undifferentiated cells expressing Pdx1, Nkx6.1, and cell adhesion markers normally characterizing early pancreatic progenitor cells resulted. Differentiation was attenuated even as proliferation of the pancreatic cells slowed during late gestation, suggesting that the trophic effect of FGF10 was independent of its effects upon cell differentiation. The FGF10-positive pancreatic cells expressed Notch1 and Notch2, the Notch-ligand genes Jagged1 and Jagged2, as well as the Notch target gene Hes1. This activation of Notch is distinct from the previously recognized mechanism of lateral inhibition. These data suggest that FGF10 signaling serves to integrate cell growth and terminal differentiation at the level of Notch activation, revealing a novel second role of this key signaling system during pancreatic development.
Collapse
Affiliation(s)
- Gitte Anker Norgaard
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
21
|
Abstract
Using an antibody directed against gamma-secretase-generated antigen unique to activated Notch1, we mapped Notch1 activation strictly to suprabasal cells in epidermis, nail matrix, and other skin appendages during normal development. The consequences of Notch1 activation in keratinizing nail cells were investigated in a transgenic mouse model. Ectopic activation of Notch1 in postmitotic cells within the nail keratogenous zone resulted in longer nails. BrdU labeling revealed an increased number of mitotic cells in transgenic nails. The matrix and keratogenous zone expanded distally due to the increase in cell numbers. The mitosis-promoting effects by a gene product expressed exclusively in postmitotic cells indicates a long-range effect of transgenic Notch1 on regulation of nail homeostasis. We demonstrate that activation of Notch1 in the keratogenous zone resulted in ectopic activation of Wnt signaling, the first such evidence in vertebrates. However, we detected little or no beta-catenin activation in proliferating matrix cells, indicating that Wnt is at most an indirect mediator of Notch-induced proliferation. These data support the existence of a novel, cell-nonautonomous role for Notch in maintaining homeostasis of stratified squamous epithelia by indirectly promoting mitosis in basally located cells.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
22
|
Chiaramonte R, Calzavara E, Balordi F, Sabbadini M, Capello D, Gaidano G, Serra A, Comi P, Sherbet GV. Differential regulation of Notch signal transduction in leukaemia and lymphoma cells in culture. J Cell Biochem 2003; 88:569-77. [PMID: 12532332 DOI: 10.1002/jcb.10383] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transduction of Notch signal plays an intricate role in cell differentiation and pathogenesis of haematological malignancies as well as in certain congenital conditions. We found no genomic changes in either gene in 34 leukaemic samples and 25 leukaemia and lymphoma cell lines. The functionality of Notch signalling was tested using HES1 gene activation. We show that Notch signalling is differentially regulated in T-acute lymphoblastic leukaemia (ALL) and B-lymphoma cells. The Notch pathway is intact in a majority of B-lymphoma cell lines, but EBNA2, which mimics notch function, can occasionally activate the pathway. In contrast, the Notch pathway is constitutively active in T-ALL. This is the first demonstration of a distinction between B-lymphomas and T-cell leukaemias in the functioning of the Notch-signalling pathway. This might be related to their pathogenesis.
Collapse
Affiliation(s)
- Raffaella Chiaramonte
- Department of Biomedical Sciences and Technologies, University of Milano, LITA-via Fratelli Cervi 93-20090 Segrate (MI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mitsiadis TA, Roméas A, Lendahl U, Sharpe PT, Farges JC. Notch2 protein distribution in human teeth under normal and pathological conditions. Exp Cell Res 2003; 282:101-9. [PMID: 12531696 DOI: 10.1016/s0014-4827(02)00012-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Notch signaling is essential for the appropriate differentiation of many cell types during development and, furthermore, is implicated in a variety of human diseases. Previous studies have shown that although the Notch1, -2, and -3 receptors are expressed in developing and injured rodent teeth, Notch2 expression was predominant after a lesion. To pursue the role of the Notch pathway in tooth development and disease, we have analyzed the expression of the Notch2 protein in embryonic and adult wounded human teeth. During the earlier stages of tooth development, the Notch2 protein was expressed in the epithelium, but was absent from proliferating cells of the inner enamel epithelium. At more advanced stages, Notch2 was expressed in the enamel-producing ameloblasts, while it was absent in mesenchyme-derived odontoblasts that synthesize the dentin matrix. Although Notch2 was not expressed in the pulp of adult intact teeth, it was reexpressed during dentin repair processes in odontoblasts and subodontoblastic cells. Transforming growth factor beta-1, which stimulates odontoblast differentiation and hard tissue formation after dental injury, downregulated Notch2 expression in cultured human dental slices, in vitro. These observations are consistent with the notion that Notch signaling is an important element in dental physiological and pathogenic conditions.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR 5665 CNRS/ENS Lyon, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, France.
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Wei-Qiang Gao
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California 94080, USA
| |
Collapse
|
25
|
Fontemaggi G, Kela I, Amariglio N, Rechavi G, Krishnamurthy J, Strano S, Sacchi A, Givol D, Blandino G. Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J Biol Chem 2002; 277:43359-68. [PMID: 12213815 DOI: 10.1074/jbc.m205573200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The newly discovered p53 family member, p73, has a striking homology to p53 in both sequence and modular structure. Ectopic expression of p73 promotes transcription of p53 target genes and recapitulates the most characterized p53 biological effects such as growth arrest, apoptosis, and differentiation. Unlike p53-deficient mice that develop normally but are subject to spontaneous tumor formation, p73-deficient mice exhibit severe defects in the development of central nervous system and suffer from inflammation but are not prone to tumor development. These phenotypes suggest different biological activities mediated by p53 and p73 that might reflect activation of specific sets of target genes. Here, we have analyzed the gene expression profile of H1299 cells after p73alpha or p53 activation using oligonucleotide microarrays capable of detecting approximately 11,000 mRNA species. Our results indicate that p73alpha and p53 activate both common and distinct groups of genes. We found 141 and 320 genes whose expression is modulated by p73alpha and p53, respectively. p73alpha up-regulates 85 genes, whereas p53 induces 153 genes, of which 27 are in common with p73alpha. Functional classification of these genes reveals that they are involved in many aspects of cell function ranging from cell cycle and apoptosis to DNA repair. Furthermore, we report that some of the up-regulated genes are directly activated by p73alpha or p53.
Collapse
Affiliation(s)
- Giulia Fontemaggi
- Department of Experimental Oncology, Regina Elena Cancer Institute, Rome 00158, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kadokawa Y, Marunouchi T. Chimeric analysis ofNotch2 function: A role for Notch2 in the development of the roof plate of the mouse brain. Dev Dyn 2002; 225:126-34. [PMID: 12242712 DOI: 10.1002/dvdy.10140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Notch proteins are transmembrane receptors involved in cell-fate determination throughout development. Targeted disruption of either the Notch1 or Notch2 gene in mice results in embryonic lethality around embryonic day (E) 10.5 with widespread cell death. Although Notch1-deficient mice show disorganized somitogenesis, Notch2 mutants did not show definitive abnormalities in any tissue expressing high levels of the Notch2 gene, including the central nervous system. To study Notch2 function in development beyond the embryonic lethal stage, we performed chimeric analysis between Notch2 mutant and wild-type mouse embryos. Chimeric embryos developed normally and homozygous Notch2 mutant-specific cell death was not observed. Although chimeric embryos showed normal mosaicism until E9.5 in all tissues studied to date, Notch2 homozygous mutant cells failed to contribute to formation of the roof plate of the diencephalon and mesencephalon at later developmental stages, when Notch2 is normally expressed at high levels at there. Furthermore, Notch2 heterozygous mutant cells were also excluded from the roof plate of the chimera, however, Notch2 heterozygous mutant mice developed normally. We also showed that Wnt-1 and Mash1 expression patterns at the roof plate were disorganized in Notch2 homozygous mutant embryos. These results indicate that Notch2 plays an important role in development of the roof plate of the diencephalon and mesencephalon, and suggest that cellular rearrangement is involved in this process.
Collapse
Affiliation(s)
- Yuzo Kadokawa
- Division of Cell Biology, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | | |
Collapse
|
27
|
Mina M. Regulation of mandibular growth and morphogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:276-300. [PMID: 11603502 DOI: 10.1177/10454411010120040101] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of the vertebrate face is a dynamic process that starts with the formation of facial processes/prominences. Facial processes are small buds made up of mesenchymal masses enclosed by an epithelial layer that surround the primitive mouth. The 2 maxillary processes, the 2 lateral nasal processes, and the frontonasal processes form the upper jaw. The lower jaw is formed by the 2 mandibular processes. Although the question of the embryonic origin of facial structures has received considerable attention, the mechanisms that control differential growth of the facial processes and patterning of skeletal tissues within these structures have been difficult to study and still are not well-understood. This has been partially due to the lack of readily identifiable morphologically discrete regions in the developing face that regulate patterning of the face. Nonetheless, in recent years there has been significant progress in the understanding of the signaling network controlling the patterning and development of the face (for review, see Richman et al., 1991; Francis-West et al., 1998). This review focuses on current understanding of the processes and signaling molecules that are involved in the formation of the mandibular arch.
Collapse
Affiliation(s)
- M Mina
- Department of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030, USA.
| |
Collapse
|
28
|
Dirami G, Ravindranath N, Achi MV, Dym M. Expression of Notch pathway components in spermatogonia and Sertoli cells of neonatal mice. JOURNAL OF ANDROLOGY 2001; 22:944-52. [PMID: 11700858 DOI: 10.1002/j.1939-4640.2001.tb03434.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Members of the Notch gene family have been shown to play an important role in the control of cell fate in many developmental systems. We hypothesized that the fate of the male germ line stem cells may also be mediated through the Notch signaling pathway. We therefore sought to determine whether the components of the Notch pathway are expressed in the mouse testis. Western blot analysis revealed the expression of three Notch receptors (Notch 1, Notch 2, and Notch 3), Notch ligands (Jagged 1, Jagged 2, and Delta 1), and presenilin 1 (PS1) in neonatal mouse testis. We then examined their cellular localization by immunohistochemical analysis of cocultures of spermatogonia and Sertoli cells. The 3 Notch receptors were found to be expressed in spermatogonia. Sertoli cells expressed only Notch 2 receptor. Among the Notch ligands, Delta 1 and Jagged 1 were localized exclusively in spermatogonia and Sertoli cells, respectively. PS1 was apparent in both spermatogonia and Sertoli cells. The presence of Notch receptors and Notch ligands in spermatogonia and Sertoli cells indicates that these cells are capable of responding to and eliciting Notch signaling during the process of spermatogenesis. Key words: Cell fate, delta, jagged, presenilin, spermatogenesis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Culture Techniques/methods
- Cells, Cultured
- Gene Expression Regulation, Developmental
- Male
- Membrane Proteins/analysis
- Membrane Proteins/genetics
- Mice
- Mice, Inbred BALB C
- Presenilin-1
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins/genetics
- Receptor, Notch1
- Receptor, Notch2
- Receptor, Notch4
- Receptors, Cell Surface/genetics
- Receptors, Notch
- Sertoli Cells/cytology
- Sertoli Cells/physiology
- Spermatogenesis/genetics
- Testis/physiology
- Transcription Factors
Collapse
Affiliation(s)
- G Dirami
- Department of Cell Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
29
|
Shimizu K, Chiba S, Saito T, Kumano K, Takahashi T, Hirai H. Manic fringe and lunatic fringe modify different sites of the Notch2 extracellular region, resulting in different signaling modulation. J Biol Chem 2001; 276:25753-8. [PMID: 11346656 DOI: 10.1074/jbc.m103473200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three mammalian fringe proteins are implicated in controlling Notch activation by Delta/Serrate/Lag2 ligands during tissue boundary formation. It was proved recently that they are glycosyltransferases that initiate elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats in the extracellular domain of Notch molecules. Here we demonstrate the existence of functional diversity among the mammalian fringe proteins. Although both manic fringe (mFng) and lunatic fringe (lFng) decreased the binding of Jagged1 to Notch2 and not that of Delta1, the decrease by mFng was greater in degree than that by lFng. We also found that both fringe proteins reduced Jagged1-triggered Notch2 signaling, whereas neither affected Delta1-triggered Notch2 signaling. However, the decrease in Jagged1-triggered Notch2 signaling by mFng was again greater than that by lFng. Furthermore, we observed that each fringe protein acted on a different site of the extracellular region of Notch2. Taking these findings together, we propose that the difference in modulatory function of multiple fringe proteins may result from the distinct amino acid sequence specificity targeted by these glycosyltransferases.
Collapse
Affiliation(s)
- K Shimizu
- Department of Hematology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Nomaguchi K, Suzu S, Yamada M, Hayasawa H, Motoyoshi K. Expression of Jagged1 gene in macrophages and its regulation by hematopoietic growth factors. Exp Hematol 2001; 29:850-5. [PMID: 11438207 DOI: 10.1016/s0301-472x(01)00657-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Serrate/Jagged and Delta are cell surface ligands for Notch receptors that may influence hematopoietic cell fate decisions and are known to be expressed in bone marrow stromal cells. In a series of screenings of cDNAs constructed by a cDNA library subtraction technique, we identified Jagged1, one of the Notch ligands, as a gene up-regulated by macrophage colony-stimulating factor (M-CSF) in bone marrow macrophages. Therefore, we compared stromal cells and macrophages for expression of Notch ligands including Jagged1 and analyzed the regulation of their expression by cytokines. MATERIALS AND METHODS Murine bone marrow macrophages were prepared by culturing femoral bone marrow cells with M-CSF. Primary bone marrow fibroblastic stromal cells were prepared by a culture system that we recently developed. The expression of Notch ligands was analyzed by either Northern blot analysis or reverse transcriptase polymerase chain reaction. RESULTS The bone marrow macrophages expressed Jagged1 but not Jagged2 and Delta1 at a level that was detectable by Northern blot analysis. Expression of the Jagged1 gene was markedly up-regulated by growth factors for the cells, i.e., M-CSF, granulocyte-macrophage colony-stimulating factor, and interleukin-3. Expression of Jagged2 and Delta1 seldom was affected by the stimuli. The primary bone marrow fibroblastic stromal cells, and murine stromal cell lines, such as PA6 and ST2, also expressed Jagged1 transcript, at levels comparable to the steady-state level in macrophages. However, expression of the Jagged1 gene was little affected when these cells were stimulated with fibroblastic growth factor and platelet-derived growth factor. CONCLUSIONS We demonstrated that bone marrow macrophages as well as stromal cells constitutively produced Jagged1 and that the expression was markedly up-regulated by hematopoietic growth factors, M-CSF, granulocyte-macrophage colony-stimulating factor, and interleukin-3. The results highlight the involvement of macrophages and these growth factors in hematopoietic cell fate decisions via the production of Jagged1.
Collapse
Affiliation(s)
- K Nomaguchi
- Biochemical Research Laboratory, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | | | | | | | | |
Collapse
|
31
|
Cereseto A, Tsai S. Jagged2 induces cell cycling in confluent fibroblasts susceptible to density-dependent inhibition of cell division. J Cell Physiol 2000; 185:425-31. [PMID: 11056013 DOI: 10.1002/1097-4652(200012)185:3<425::aid-jcp13>3.0.co;2-u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Jagged2 is a member of the DSL (Delta-Serrate-Lag-2) -ligand family of transmembrane proteins that signal through the Notch receptors. In many cases of human acute lymphoblastic T-cell leukemias, chromosomal translocations fuse a part of the Notch-1 gene to the T-cell receptor-beta locus (Ellison et al., 1991, Cell 66:649-661). The truncated Notch-1 allele encodes an aberrant protein that lacks most of the extracellular domain and is constitutively activated (Pear et al., 1996, J Exp Med 183:2283-2291). A similarly truncated version of Notch-1 was capable of transforming primary baby rat kidney cells in cooperation with the E1A oncogene of adenovirus (Capobianco et al., 1997, Mol Cell Bio 17:6265-6273). The transformed cells grew to a high population density in culture and were tumorigenic in vivo. It was unclear what roles Notch signaling played in neoplastic transformation. In this report, we demonstrate that sustained activation of the Jagged2/Notch signal transduction pathway induced continuous cell cycling in confluent rabbit-skin fibroblasts sensitive to density-dependent inhibition of cell division. The ability to overcome density-dependent inhibition of cell division correlated with elevated cyclin-dependent kinase-2 (CDK2) activity and a lower level of induction of the CDK inhibitor p27 in the target cells. Similar cell-cycle effect was seen when a truncated mouse Notch-1 construct with constitutive activity was expressed. Taken together, our findings indicate that sustained activation of the Jagged2/Notch signal transduction pathway can overcome density-dependent inhibition of cell division and therefore may contribute to neoplastic transformation.
Collapse
Affiliation(s)
- A Cereseto
- Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
32
|
Shimizu K, Chiba S, Saito T, Kumano K, Hirai H. Physical interaction of Delta1, Jagged1, and Jagged2 with Notch1 and Notch3 receptors. Biochem Biophys Res Commun 2000; 276:385-9. [PMID: 11006133 DOI: 10.1006/bbrc.2000.3469] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Delta/Serrate/LAG-2 (DSL) domain-containing proteins, Delta1, Jagged1, and Jagged2, are considered to be ligands for Notch receptors. However, the physical interaction between the three DSL proteins and respective Notch receptors remained largely unknown. In this study, we investigated this issue through the targeting of Notch1 and Notch3 in two experimental systems using fusion proteins comprising their extracellular portions. Cell-binding assays showed that soluble forms of Notch1 and Notch3 proteins physically bound to the three DSL proteins on the cell surface. In solid-phase binding assays using immobilized soluble Notch1 and Notch3 proteins, it was revealed that each DSL protein directly bound to the soluble Notch proteins with different affinities. All interactions between the DSL proteins and soluble Notch proteins were dependent on Ca(2+). Taken together, these results suggest that Delta1, Jagged1, and Jagged2 are ligands for Notch1 and Notch3 receptors.
Collapse
Affiliation(s)
- K Shimizu
- Department of Hematology, Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
33
|
Jones EA, Clement-Jones M, Wilson DI. JAGGED1 expression in human embryos: correlation with the Alagille syndrome phenotype. J Med Genet 2000; 37:658-62. [PMID: 10978356 PMCID: PMC1734694 DOI: 10.1136/jmg.37.9.658] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alagille syndrome (AGS, MIM 118450) is an autosomal dominant disorder with a variable phenotype characterised by hepatic, eye, cardiac, and skeletal malformations and a characteristic facial appearance. Mutations within the gene JAGGED1 (JAG1), which encodes a ligand for NOTCH receptor(s), has been shown to cause Alagille syndrome. Interactions of NOTCH receptors and their ligands influence cell fate decisions in several developmental pathways. We report the tissue expression of JAG1 in human embryos. We have performed tissue in situ hybridisation on human embryos aged 32-52 days using (35)S labelled riboprobes for JAG1. JAG1 is expressed in the distal cardiac outflow tract and pulmonary artery, major arteries, portal vein, optic vesicle, otocyst, branchial arches, metanephros, pancreas, mesocardium, around the major bronchial branches, and in the neural tube. We conclude that JAG1 is expressed in the structures affected in Alagille syndrome, such as the pulmonary artery, anterior chamber of the eye, and face.
Collapse
Affiliation(s)
- E A Jones
- Institute of Human Genetics, School of Biochemistry and Genetics, Ground Floor, Ridley Building, University of Newcastle upon Tyne, Claremont Place, Newcastle upon Tyne NE1 7RU, UK.
| | | | | |
Collapse
|
34
|
Shimizu K, Chiba S, Hosoya N, Kumano K, Saito T, Kurokawa M, Kanda Y, Hamada Y, Hirai H. Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol Cell Biol 2000; 20:6913-22. [PMID: 10958687 PMCID: PMC88767 DOI: 10.1128/mcb.20.18.6913-6922.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Delta1, Jagged1, and Jagged2, commonly designated Delta/Serrate/LAG-2 (DSL) proteins, are known to be ligands for Notch1. However, it has been less understood whether they are ligands for Notch receptors other than Notch1. Meanwhile, ligand-induced cleavage and nuclear translocation of the Notch protein are considered to be fundamental for Notch signaling, yet direct observation of the behavior of the Notch molecule after ligand binding, including cleavage and nuclear translocation, has been lacking. In this report, we investigated these issues for Notch2. All of the three DSL proteins bound to endogenous Notch2 on the surface of BaF3 cells, although characteristics of Jagged2 for binding to Notch2 apparently differed from that of Delta1 and Jagged1. After binding, the three DSL proteins induced cleavage of the membrane-spanning subunit of Notch2 (Notch2(TM)), which occurred within 15 min. In a simultaneous time course, the cleaved fragment of Notch2(TM) was translocated into the nucleus. Interestingly, the cleaved Notch2 fragment was hyperphosphorylated also in a time-dependent manner. Finally, binding of DSL proteins to Notch2 also activated the transcription of reporter genes driven by the RBP-Jkappa-responsive promoter. Together, these data indicate that all of these DSL proteins function as ligands for Notch2. Moreover, the findings of rapid cleavage, nuclear translocation, and phosphorylation of Notch2 after ligand binding facilitate the understanding of the Notch signaling.
Collapse
Affiliation(s)
- K Shimizu
- Departments of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Notch proteins are plasma membrane-spanning receptors that mediate important cell fate decisions such as differentiation, proliferation, and apoptosis. The mechanism of Notch signaling remains poorly understood. However, it is clear that the Notch signaling pathway mediates its effects through intercellular contact between neighboring cells. The prevailing model for Notch signaling suggests that ligand, presented on a neighboring cell, triggers proteolytic processing of Notch. Following proteolysis, it is thought that the intracellular portion of Notch (N(ic)) translocates to the nucleus, where it is involved in regulating gene expression. There is considerable debate concerning where in the cell Notch functions and what proteins serve as effectors of the Notch signal. Several Notch genes have clearly been shown to be proto-oncogenes in mammalian cells. Activation of Notch proto-oncogenes has been associated with tumorigenesis in several human and other mammalian cancers. Transforming alleles of Notch direct the expression of truncated proteins that primarily consist of N(ic) and are not tethered to the plasma membrane. However, the mechanism by which Notch oncoproteins (generically termed here as N(ic)) induce neoplastic transformation is not known. Previously we demonstrated that N1(ic) and N2(ic) could transform E1A immortalized baby rat kidney cells (RKE) in vitro. We now report direct evidence that N1(ic) must accumulate in the nucleus to induce transformation of RKE cells. In addition, we define the minimal domain of N1(ic) required to induce transformation and present evidence that transformation of RKE cells by N1(ic) is likely to be through a CBF1-independent pathway.
Collapse
Affiliation(s)
- S Jeffries
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
36
|
Abstract
Mammalian dentition consists of teeth that develop as discrete organs. From anterior to posterior, the dentition is divided into regions of incisor, canine, premolar and molar tooth types. Particularly teeth in the molar region are very diverse in shape. The development of individual teeth involves epithelial-mesenchymal interactions that are mediated by signals shared with other organs. Parts of the molecular details of signaling networks have been established, particularly in the signal families BMP, FGF, Hh and Wnt, mostly by the analysis of gene expression and signaling responses in knockout mice with arrested tooth development. Recent evidence suggests that largely the same signaling cascade is used reiteratively throughout tooth development. The successional determination of tooth region, tooth type, tooth crown base and individual cusps involves signals that regulate tissue growth and differentiation. Tooth type appears to be determined by epithelial signals and to involve differential activation of homeobox genes in the mesenchyme. This differential signaling could have allowed the evolutionary divergence of tooth shapes among the four tooth types. The advancing tooth morphogenesis is punctuated by transient signaling centers in the epithelium corresponding to the initiation of tooth buds, tooth crowns and individual cusps. The latter two signaling centers, the primary enamel knot and the secondary enamel knot, have been well characterized and are thought to direct the differential growth and subsequent folding of the dental epithelium. Several members of the FGF signal family have been implicated in the control of cell proliferation around the non-dividing enamel knots. Spatiotemporal induction of the secondary enamel knots determines the cusp patterns of individual teeth and is likely to involve repeated activation and inhibition of signaling as suggested for patterning of other epithelial organs.
Collapse
Affiliation(s)
- J Jernvall
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, P.O. Box 56, 00014, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
37
|
Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD. Control of endodermal endocrine development by Hes-1. Nat Genet 2000; 24:36-44. [PMID: 10615124 DOI: 10.1038/71657] [Citation(s) in RCA: 848] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Development of endocrine cells in the endoderm involves Atonal and Achaete/Scute-related basic helix-loop-helix (bHLH) proteins. These proteins also serve as neuronal determination and differentiation factors, and are antagonized by the Notch pathway partly acting through Hairy and Enhancer-of-split (HES)-type proteins. Here we show that mice deficient in Hes1 (encoding Hes-1) display severe pancreatic hypoplasia caused by depletion of pancreatic epithelial precursors due to accelerated differentiation of post-mitotic endocrine cells expressing glucagon. Moreover, upregulation of several bHLH components is associated with precocious and excessive differentiation of multiple endocrine cell types in the developing stomach and gut, showing that Hes-1 operates as a general negative regulator of endodermal endocrine differentiation.
Collapse
Affiliation(s)
- J Jensen
- Department of Developmental Biology, Hagedorn Research Institute, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gray GE, Mann RS, Mitsiadis E, Henrique D, Carcangiu ML, Banks A, Leiman J, Ward D, Ish-Horowitz D, Artavanis-Tsakonas S. Human ligands of the Notch receptor. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:785-94. [PMID: 10079256 PMCID: PMC1866435 DOI: 10.1016/s0002-9440(10)65325-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During development, the Notch signaling pathway is essential for the appropriate differentiation of many cell types in organisms across the phylogenetic scale, including humans. Notch signaling is also implicated in human diseases, including a leukemia and two hereditary syndromes known as Alagille and CADASIL. To generate tools for pursuing the role of the Notch pathway in human disease and development, we have cloned and analyzed the expression of three human homologues of the Notch ligands Delta and Serrate, human Jagged1 (HJ1), human Jagged2 (HJ2), and human Delta1 (H-Delta-1), and determined their chromosomal localizations. We have also raised antibodies to HJ1, and used these antibodies in conjunction with in situ hybridization to examine the expression of these ligands in normal and cancerous cervical tissue. We find that, as reported previously for Notch, the ligands are up-regulated in certain neoplastic tissues. This observation is consistent with the notion that Notch signaling is an important element in these pathogenic conditions, raising the possibility that modulation of Notch activity could be used to influence the fate of the cells and offering a conceivable therapeutic avenue.
Collapse
Affiliation(s)
- G E Gray
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jarriault S, Le Bail O, Hirsinger E, Pourquié O, Logeat F, Strong CF, Brou C, Seidah NG, Isra l A. Delta-1 activation of notch-1 signaling results in HES-1 transactivation. Mol Cell Biol 1998; 18:7423-31. [PMID: 9819428 PMCID: PMC109323 DOI: 10.1128/mcb.18.12.7423] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Notch receptor is involved in many cell fate determination events in vertebrates and invertebrates. It has been shown in Drosophila melanogaster that Delta-dependent Notch signaling activates the transcription factor Suppressor of Hairless, leading to an increased expression of the Enhancer of Split genes. Genetic evidence has also implicated the kuzbanian gene, which encodes a disintegrin metalloprotease, in the Notch signaling pathway. By using a two-cell coculture assay, we show here that vertebrate Dl-1 activates the Notch-1 cascade. Consistent with previous data obtained with active forms of Notch-1 a HES-1-derived promoter construct is transactivated in cells expressing Notch-1 in response to Dl-1 stimulation. Impairing the proteolytic maturation of the full-length receptor leads to a decrease in HES-1 transactivation, further supporting the hypothesis that only mature processed Notch is expressed at the cell surface and activated by its ligand. Furthermore, we observed that Dl-1-induced HES-1 transactivation was dependent both on Kuzbanian and RBP-J activities, consistent with the involvement of these two proteins in Notch signaling in Drosophila. We also observed that exposure of Notch-1-expressing cells to Dl-1 results in an increased level of endogenous HES-1 mRNA. Finally, coculture of Dl-1-expressing cells with myogenic C2 cells suppresses differentiation of C2 cells into myotubes, as previously demonstrated for Jagged-1 and Jagged-2, and also leads to an increased level of endogenous HES-1 mRNA. Thus, Dl-1 behaves as a functional ligand for Notch-1 and has the same ability to suppress cell differentiation as the Jagged proteins do.
Collapse
Affiliation(s)
- S Jarriault
- Unité de Biologie Moléculaire de l'Expression Génique, URA 1773 CNRS, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The Notch signalling pathway is an important mediator of cell fate selection whose involvement in epidermal appendage formation is now becoming recognised. Hair follicle development and hair formation involve the co-ordinated differentiation of several different cell types in which Notch appears to have a role. We report intricate expression patterns for the Notch-1 receptor and three ligands, Delta-1, Jagged-1 and Jagged-2 in the hair follicle. Notch-1 is expressed in ectodermal-derived cells of the follicle, in the inner cells of the embryonic placode and the follicle bulb, and in the suprabasal cells of the mature outer root sheath. Delta-1 is only expressed during embryonic follicle development and is exclusive to the mesenchymal cells of the pre-papilla located beneath the follicle placode. Expression of Jagged-1 or Jagged-2 overlaps Notch-1 expression at all stages. In mature follicles, Jagged-1 and Jagged-2 are expressed in complementary patterns in the follicle bulb and outer root sheath, Jagged-1 in suprabasal cells and Jagged-2 predominantly in basal cells. In the follicle bulb, Jagged-2 is localised to the inner (basal) bulb cells next to the dermal papilla which do not express Notch-1, whereas Jagged-1 expression in the upper follicle bulb overlaps Notch-1 expression and correlates with bulb cell differentiation into hair shaft cortical and cuticle keratinocytes.
Collapse
Affiliation(s)
- B C Powell
- Department of Animal Science, University of Adelaide, Waite Campus, Glen Osmond, 5064, Australia.
| | | | | | | |
Collapse
|
41
|
Abstract
The development of the vertebrate face is a dynamic multi-step process which starts with the formation of neural crest cells in the developing brain and their subsequent migration to form, together with mesodermal cells, the facial primordia. Signalling interactions co-ordinate the outgrowth of the facial primordia from buds of undifferentiated mesenchyme into the intricate series of bones and cartilage structures that, together with muscle and other tissues, form the adult face. Some of the molecules that are thought to be involved have been identified through the use of mouse mutants, data from human craniofacial syndromes and by expression studies of signalling molecules during facial development. However, the way that these molecules control the epithelial-mesenchymal interactions which mediate facial outgrowth and morphogenesis is unclear. The role of neural crest cells in these processes has also not yet been well defined. In this review we discuss the complex interaction of all these processes during face development and describe the candidate signalling molecules and their possible target genes.
Collapse
Affiliation(s)
- P Francis-West
- Department of Craniofacial Development, UMDS, Guy's Tower, Floor 28, London Bridge, London SE1 9RT, UK.
| | | | | | | |
Collapse
|