1
|
FJX1 as a candidate diagnostic and prognostic serum biomarker for colorectal cancer. Clin Transl Oncol 2022; 24:1964-1974. [PMID: 35650386 DOI: 10.1007/s12094-022-02852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common cancer worldwide. It is essential to identify non-invasive diagnostic and prognostic biomarkers of CRC. The aim of the present study was to screen candidate biomarkers in diagnosis and prognosis of CRC based on a novel strategy. MATERIALS AND METHODS The expression level of gene higher in cancer than in adjacent non-cancer tissue was defined as "positive", and the top 10% genes with "positive rate" were filtered out as candidate diagnostic biomarkers in four Gene Expression Omnibus (GEO) datasets. Then, the prognostic value of candidate biomarkers was estimated Cox regression analysis. Moreover, the concentration of biomarker in serum was detected in CRC patients. RESULTS Eighteen candidate biomarkers were identified with efficient diagnostic value in CRC. As a prognostic biomarker, FJX1 (four-jointed box kinase 1) showed a good performance in predicting overall survivals in CRC patients. In serum levels, FJX1 showed high sensitivity and specificity in distinguishing CRC patients from controls, and the concentration of serum FJX1 was associated with distant metastasis in CRC. In addition, serum FJX1 was significantly decreased after surgery in CRC patients. Compared with traditional CRC biomarkers CEA and CA 19-9, FJX1 still showed good efficiency in diagnosis and prognosis. Moreover, inhibition of FJX1 expression by siRNA or neutralization of secreted FJX1 by antibody could suppress cell proliferation and migration in vitro. CONCLUSION Our findings provided a novel strategy to identify diagnostic biomarkers based on public datasets, and suggested that FJX1 was a candidate diagnostic and prognostic biomarker in CRC patients.
Collapse
|
2
|
Zhou Z, Zhu Y, Zhang Z, Jiang T, Ling Z, Yang B, Li W. Comparative Analysis of Promoters and Enhancers in the Pituitary Glands of the Bama Xiang and Large White Pigs. Front Genet 2021; 12:697994. [PMID: 34367256 PMCID: PMC8343535 DOI: 10.3389/fgene.2021.697994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
The epigenetic regulation of gene expression is implicated in complex diseases in humans and various phenotypes in other species. There has been little exploration of regulatory elements in the pig. Here, we performed chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to profile histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac) in the pituitary gland of adult Bama Xiang and Large White pigs, which have divergent evolutionary histories and large phenotypic differences. We identified a total of 65,044 non-redundant regulatory regions, including 23,680 H3K4me3 peaks and 61,791 H3K27ac peaks (12,318 proximal and 49,473 distal), augmenting the catalog of pituitary regulatory elements in pigs. We found 793 H3K4me3 and 3,602 H3K27ac peaks that show differential activity between the two breeds, overlapping with genes involved in the Notch signaling pathway, response to growth hormone (GH), thyroid hormone signaling pathway, and immune system, and enriched for binding motifs of transcription factors (TFs), including JunB, ATF3, FRA1, and BATF. We further identified 2,025 non-redundant super enhancers from H3K27ac ChIP-seq data, among which 302 were shared in all samples of cover genes enriched for biological processes related to pituitary function. This study generated a valuable dataset of H3K4me3 and H3K27ac regions in porcine pituitary glands and revealed H3K4me3 and H3K27ac peaks with differential activity between Bama Xiang and Large White pigs.
Collapse
Affiliation(s)
- Zhimin Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yaling Zhu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.,Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ziqi Ling
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wanbo Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| |
Collapse
|
3
|
Dang W, Zhu Z. MicroRNA-1249 targets four-jointed box kinase 1 and reduces cell proliferation, migration and invasion of colon adenocarcinoma. J Gene Med 2020; 22:e3183. [PMID: 32159255 DOI: 10.1002/jgm.3183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND MiR-1249 was demonstrated to be dysregulated and related to prognosis in cancers. It has been reported to be significantly down-regulated in colon adenocarcinoma (COAD). The present study aimed to explore the clinical value and biological roles of miR-1249 in the progression of COAD. METHODS miRWalk was applied to predict potential targets of miR-1249. We investigated the expression patterns of miR-1249 and its potential target Four-Jointed Box Kinase 1 (FJX1) in COAD samples from The Cancer Genome Atlas (TCGA) or ONCOMINE database. Kaplan-Meier with a log-rank test was used to reveal the relationship between overall survival (OS) and miR-1249/FJX1. The predictive ability of miR-1249/FJX1 was investigated using univariate and multivariate Cox regression models. CCK-8 and Transwell assays were performed to determine whether miR-1249 was connected with cell viability, migration and invasion. A luciferase reporter assay was applied to verify the association of miR-1249 and FJX1 as its predicted target gene. RESULTS We predicted and confirmed FJX1 to be a target gene of miR-1249. MiR-1249 was down-regulated in COAD samples and cell lines. Univariate and multivariate analysis showed that the expression of FJX1 could be regarded as independent predictor for COAD. Moreover, miR-1249 and FJX1 were respectively the indicators of favorable and poor OS. MiR-1249 over-expression repressed cell growth, migration and invasion. Overexpression of FJX1 in cells treated with miR-1249 mimic abolished the inhibitory effect of miR-1249 on cell growth, migration and invasion. CONCLUSIONS miR-1249 exerts a suppressive effect on cell proliferation, migration and invasion in COAD, which is possibly achieved via modulating FJX1.
Collapse
Affiliation(s)
- Wen Dang
- General Surgery, The Fifth People's Hospital of Jinan, Jinan, Shandong, China
| | - Zhen Zhu
- Department of Gastrointestinal Surgery, Jining First People's Hosptial, Jining, Shandong, China
| |
Collapse
|
4
|
Chang HJ, Yoo JY, Kim TH, Fazleabas AT, Young SL, Lessey BA, Jeong JW. Overexpression of Four Joint Box-1 Protein (FJX1) in Eutopic Endometrium From Women With Endometriosis. Reprod Sci 2017; 25:207-213. [PMID: 28673206 DOI: 10.1177/1933719117716780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The four jointed box 1 (FJX1) is a regulator of angiogenesis, and the levels of FJX1 are increased in several types of cancer. Angiogenesis plays a critical role in endometrial growth as well as in several gynecologic disorders including endometriosis. However, the function of FJX1 has not been studied in endometriosis. Therefore, we examined the levels of FJX1 in eutopic endometrium from women with or without endometriosis. The levels of FJX1 protein did not change in endometrial cells during the menstrual cycle in endometrium from women without endometriosis. However, its levels were significantly higher in the secretory phase of the eutopic endometrium from women with endometriosis when compared to women without endometriosis. Hypoxia-inducible factor-1α (HIF1α) is known as a key mediator of endometriosis by regulating genes essential to estrogen production, angiogenesis, proliferation, inflammation, and extracellular invasion. It has been reported that FJX1 induces an increase in HIF1α through posttranslational stabilization. The results of our Western blot analysis reveal a significant positive correlation between FJX1 and HIF1α proteins in endometrium of women with and without endometriosis. This overexpression of FJX1 was confirmed by sequential analysis of the eutopic endometrium during endometriosis progression, using an induced model of endometriosis in the baboon. Therefore, our results suggest that high levels of FJX1 proteins may play an important role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Hye Jin Chang
- 1 Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA.,2 Health Promotion Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jung-Yoon Yoo
- 1 Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Tae Hoon Kim
- 1 Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Asgerally T Fazleabas
- 1 Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Steven L Young
- 3 Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- 4 Obstetrics and Gynecology, Greenville Health System, Greenville, SC, USA
| | - Jae-Wook Jeong
- 1 Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
5
|
Keira Y, Wada M, Ishikawa HO. Regulation of Drosophila Development by the Golgi Kinase Four-Jointed. Curr Top Dev Biol 2017; 123:143-179. [DOI: 10.1016/bs.ctdb.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Sreelatha A, Kinch LN, Tagliabracci VS. The secretory pathway kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1687-93. [PMID: 25862977 DOI: 10.1016/j.bbapap.2015.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is a nearly universal post-translation modification involved in a plethora of cellular events. Even though phosphorylation of extracellular proteins had been observed, the identity of the kinases that phosphorylate secreted proteins remained a mystery until only recently. Advances in genome sequencing and genetic studies have paved the way for the discovery of a new class of kinases that localize within the endoplasmic reticulum, Golgi apparatus and the extracellular space. These novel kinases phosphorylate proteins and proteoglycans in the secretory pathway and appear to regulate various extracellular processes. Mutations in these kinases cause human disease, thus underscoring the biological importance of phosphorylation within the secretory pathway. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Anju Sreelatha
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa N Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Sadeqzadeh E, de Bock CE, O'Donnell MR, Timofeeva A, Burns GF, Thorne RF. FAT1 cadherin is multiply phosphorylated on its ectodomain but phosphorylation is not catalysed by the four-jointed homologue. FEBS Lett 2014; 588:3511-7. [PMID: 25150169 DOI: 10.1016/j.febslet.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/11/2014] [Indexed: 01/15/2023]
Abstract
The interaction between the Drosophila cadherins fat and dachsous is regulated by phosphorylation of their respective ectodomains, a process catalysed by the atypical kinase four-jointed. Given that many signalling functions are conserved between Drosophila and vertebrate Fat cadherins, we sought to determine whether ectodomain phosphorylation is conserved in FAT1 cadherin, and also whether FJX1, the vertebrate orthologue of four-jointed, was involved in such phosphorylation events. Potential Fj consensus phosphorylation motifs were identified in FAT1 and biochemical experiments revealed the presence of phosphoserine and phosphothreonine residues in its extracellular domain. However, silencing FJX1 did not influence the levels of FAT1 ectodomain phosphorylation, indicating that other mechanisms are likely responsible.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Charles E de Bock
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Maureen R O'Donnell
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anna Timofeeva
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gordon F Burns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Rick F Thorne
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; School of Environmental & Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| |
Collapse
|
8
|
Kashevarova AA, Nazarenko LP, Skryabin NA, Salyukova OA, Chechetkina NN, Tolmacheva EN, Sazhenova EA, Magini P, Graziano C, Romeo G, Kučinskas V, Lebedev IN. Array CGH analysis of a cohort of Russian patients with intellectual disability. Gene 2014; 536:145-50. [PMID: 24291026 DOI: 10.1016/j.gene.2013.11.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022]
Abstract
The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions.
Collapse
Key Words
- ABLIM3
- ACAD10
- ADHD
- AFAP1L1
- AGA
- ASTN1
- Array comparative genomic hybridization (array CGH)
- CASP3
- CGH
- CHERISH
- CNS
- CNTN6
- CNV
- Copy number variation (CNV)
- DDX10
- DEAD (Asp-Glu-Ala-Asp) box polypeptide 10
- DECIPHER
- EEG
- EU
- European Union
- FJX1
- GLRA3
- HAND2
- HFE
- ID
- IFN
- IL17B
- ING2
- IQ
- IRF1
- IRF2
- Intellectual disability
- LDLRAD3
- METTL4
- MMP14
- MMSs
- MRI
- NDC80
- NDC80 kinetochore complex component
- NEIL3
- NO
- OMIM
- PCR
- PL CNS
- PON1
- PON2
- PON3
- SBF
- SCGN
- SCRG1
- SET domain binding factor
- SLC1A2
- SLC5A7
- SLC7A7
- SMCHD1
- SUFU
- SWAP switching B-cell complex 70kDa subunit
- SWAP70
- Ski-related novel protein N
- SnoN
- TGFβ
- TNR
- TRIM44
- WAGR
- Wilms tumor, aniridia, genitourinary anomalies and mental retardation syndrome
- actin binding LIM protein family, member 3
- actin filament associated protein 1-like 1
- acyl-CoA dehydrogenase family, member 10
- aspartylglucosaminidase
- astrotactin 1
- attention-deficit hyperactivity disorder
- caspase 3, apoptosis-related cysteine peptidase
- central nervous system
- comparative genomic hybridization
- contactin 6
- copy number variation
- database of chromosomal imbalance and phenotype in humans using ensembl resources
- electroencephalogram
- four jointed box 1 (Drosophila)
- glycine receptor, alpha 3
- grant of European Community's Seventh Framework Programme
- heart and neural crest derivatives expressed 2
- hemochromatosis
- inhibitor of growth family, member 2
- intellectual disability
- intelligence quotient
- interferon
- interferon regulatory factor 1
- interferon regulatory factor 2
- interleukin 17B
- low density lipoprotein receptor class A domain containing 3
- magnetic resonance imaging
- matrix metallopeptidase 14 (membrane-inserted)
- methyltransferase like 4
- microdeletion/microduplication syndromes
- nei endonuclease VIII-like 3 (E. coli)
- nitrogen oxide
- online mendelian inheritance in man
- paraoxonase 1
- paraoxonase 2
- paraoxonase 3
- perinatal lesion of central nervous system
- polymerase chain reaction
- qPCR
- quantitative PCR
- secretagogin, EF-hand calcium binding protein
- solute carrier family 1 (glial high affinity glutamate transporter), member 2
- solute carrier family 5 (sodium/choline cotransporter), member 7
- solute carrier family 7 (amino acid transporter light chain, y+L system), member 7
- stimulator of chondrogenesis 1
- structural maintenance of chromosomes flexible hinge domain containing 1
- suppressor of fused homolog (Drosophila)
- tenascin R
- transforming growth factor beta
- tripartite motif containing 44
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Vaidutis Kučinskas
- Vilnius University, Department of Human and Medical Genetics, Vilnius, Lithuania
| | | |
Collapse
|
9
|
Al-Greene NT, Means AL, Lu P, Jiang A, Schmidt CR, Chakravarthy AB, Merchant NB, Washington MK, Zhang B, Shyr Y, Deane NG, Beauchamp RD. Four jointed box 1 promotes angiogenesis and is associated with poor patient survival in colorectal carcinoma. PLoS One 2013; 8:e69660. [PMID: 23922772 PMCID: PMC3726759 DOI: 10.1371/journal.pone.0069660] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/11/2013] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis, the recruitment and re-configuration of pre-existing vasculature, is essential for tumor growth and metastasis. Increased tumor vascularization often correlates with poor patient outcomes in a broad spectrum of carcinomas. We identified four jointed box 1 (FJX1) as a candidate regulator of tumor angiogenesis in colorectal cancer. FJX1 mRNA and protein are upregulated in human colorectal tumor epithelium as compared with normal epithelium and colorectal adenomas, and high expression of FJX1 is associated with poor patient prognosis. FJX1 mRNA expression in colorectal cancer tissues is significantly correlated with changes in known angiogenesis genes. Augmented expression of FJX1 in colon cancer cells promotes growth of xenografts in athymic mice and is associated with increased tumor cell proliferation and vascularization. Furthermore, FJX1 null mice develop significantly fewer colonic polyps than wild-type littermates after combined dextran sodium sulfate (DSS) and azoxymethane (AOM) treatment. In vitro, conditioned media from FJX1 expressing cells promoted endothelial cell capillary tube formation in a HIF1-α dependent manner. Taken together our results support the conclusion that FJX1 is a novel regulator of tumor progression, due in part, to its effect on tumor vascularization.
Collapse
Affiliation(s)
- Nicole T. Al-Greene
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Anna L. Means
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Aixiang Jiang
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carl R. Schmidt
- Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States of America
| | - A. Bapsi Chakravarthy
- Department of Radiation Oncology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Nipun B. Merchant
- Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - M. Kay Washington
- Department of Pathology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Bing Zhang
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Natasha G. Deane
- Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - R. Daniel Beauchamp
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
10
|
Tagliabracci VS, Pinna LA, Dixon JE. Secreted protein kinases. Trends Biochem Sci 2012; 38:121-30. [PMID: 23276407 DOI: 10.1016/j.tibs.2012.11.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/25/2012] [Accepted: 11/29/2012] [Indexed: 11/28/2022]
Abstract
Protein kinases constitute one of the largest gene families and control many aspects of cellular life. In retrospect, the first indication for their existence was reported 130 years ago when the secreted protein, casein, was shown to contain phosphate. Despite its identification as the first phosphoprotein, the responsible kinase has remained obscure. This conundrum was solved with the discovery of a novel family of atypical protein kinases that are secreted and appear to phosphorylate numerous extracellular proteins, including casein. Fam20C, the archetypical member, phosphorylates secreted proteins within Ser-x-Glu/pSer motifs. This discovery has solved a 130-year-old mystery and has shed light on several human disorders of biomineralization.
Collapse
|
11
|
Abstract
The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
Collapse
Affiliation(s)
- Georg Halder
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA., Program in Genes and Development, MD Anderson Cancer Center, Houston, TX 77030, USA., Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA., Authors for correspondence (; )
| | - Randy L. Johnson
- Department of Biochemistry and Molecular Biology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA., Program in Genes and Development, MD Anderson Cancer Center, Houston, TX 77030, USA., Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA., Authors for correspondence (; )
| |
Collapse
|
12
|
Microarray analysis of ox-LDL (oxidized low-density lipoprotein)-regulated genes in human coronary artery smooth muscle cells. CELL BIOLOGY INTERNATIONAL REPORTS 2010; 17:e00007. [PMID: 23119143 PMCID: PMC3475437 DOI: 10.1042/cbr20100006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/27/2010] [Indexed: 01/03/2023]
Abstract
Recent studies suggest that circulating LDL (low-density lipoproteins) play a central role in the pathogenesis of atherosclerosis, and the oxidized form (ox-LDL) is highly atherogenic. Deposits of ox-LDL have been found in atherosclerotic plaques, and ox-LDL has been shown to promote monocyte recruitment, foam cell formation and the transition of quiescent and contractile vascular SMCs (smooth muscle cells) to the migratory and proliferative phenotype. SMC phenotype transition and hyperplasia are the pivotal events in the pathogenesis of atherosclerosis. To comprehend the complex molecular mechanisms involved in ox-LDL-mediated SMC phenotype transition, we have compared the differential gene expression profiles of cultured quiescent human coronary artery SMCs with cells induced with ox-LDL for 3 and 21 h using Affymetrix HG-133UA cDNA microarray chips. Assignment of the regulated genes into functional groups indicated that several genes involved in metabolism, membrane transport, cell-cell interactions, signal transduction, transcription, translation, cell migration, proliferation and apoptosis were differentially expressed. Our data suggests that the interaction of ox-LDL with its cognate receptors on SMCs modulates the induction of several growth factors and cytokines, which activate a variety of intracellular signalling mechanisms (including PI3K, MAPK, Jak/STAT, sphingosine, Rho kinase pathways) that contribute to SMC transition from the quiescent and contractile phenotype to the proliferative and migratory phenotype. Our study has also identified several genes (including CDC27, cyclin A1, cyclin G2, glypican 1, MINOR, p15 and apolipoprotein) not previously implicated in ox-LDL-induced SMC phenotype transition and substantially extends the list of potential candidate genes involved in atherogenesis.
Collapse
|
13
|
Reddy BVVG, Rauskolb C, Irvine KD. Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 2010; 137:2397-408. [PMID: 20570939 DOI: 10.1242/dev.050013] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Drosophila optic lobe develops from neuroepithelial cells, which function as symmetrically dividing neural progenitors. We describe here a role for the Fat-Hippo pathway in controlling the growth and differentiation of Drosophila optic neuroepithelia. Mutation of tumor suppressor genes within the pathway, or expression of activated Yorkie, promotes overgrowth of neuroepithelial cells and delays or blocks their differentiation; mutation of yorkie inhibits growth and accelerates differentiation. Neuroblasts and other neural cells, by contrast, appear unaffected by Yorkie activation. Neuroepithelial cells undergo a cell cycle arrest before converting to neuroblasts; this cell cycle arrest is regulated by Fat-Hippo signaling. Combinations of cell cycle regulators, including E2f1 and CyclinD, delay neuroepithelial differentiation, and Fat-Hippo signaling delays differentiation in part through E2f1. We also characterize roles for Jak-Stat and Notch signaling. Our studies establish that the progression of neuroepithelial cells to neuroblasts is regulated by Notch signaling, and suggest a model in which Fat-Hippo and Jak-Stat signaling influence differentiation by their acceleration of cell cycle progression and consequent impairment of Delta accumulation, thereby modulating Notch signaling. This characterization of Fat-Hippo signaling in neuroepithelial growth and differentiation also provides insights into the potential roles of Yes-associated protein in vertebrate neural development and medullablastoma.
Collapse
Affiliation(s)
- B V V G Reddy
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
14
|
Grusche FA, Richardson HE, Harvey KF. Upstream Regulation of the Hippo Size Control Pathway. Curr Biol 2010; 20:R574-82. [DOI: 10.1016/j.cub.2010.05.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Mouse models for dissecting vertebrate planar cell polarity signaling in the inner ear. Brain Res 2009; 1277:130-40. [PMID: 19232327 DOI: 10.1016/j.brainres.2009.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 02/05/2023]
Abstract
Planar cell polarity (PCP) refers to coordinated polarization of cells in the plane of a cell sheet. In Drosophila, the stereotypical arrangement of the eight photoreceptor cells in each of the ommatidia of the fly compound eye and the uniform orientation of the hairs in all the wing cells are two representative forms of PCP. Using these powerful Drosophila model systems, a set of genes was identified to constitute the invertebrate PCP signaling pathway. In vertebrates, the inner ear sensory organs display distinctive forms of PCP. In particular, the auditory sensory organ in the cochlea, adorned with precisely patterned sensory hair cell arrays and uniformly oriented hair bundles, has served as an excellent model system to complement other vertebrate PCP models and has illustrated a genetic pathway that consists of genes conserved from the Drosophila model as well as genes uniquely required for vertebrate PCP regulation. This review will focus on the mouse models that have made valuable contributions to our current understanding of PCP signaling in the vertebrates.
Collapse
|
16
|
Probst B, Rock R, Gessler M, Vortkamp A, Püschel AW. The rodent Four-jointed ortholog Fjx1 regulates dendrite extension. Dev Biol 2007; 312:461-70. [DOI: 10.1016/j.ydbio.2007.09.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/24/2007] [Accepted: 09/25/2007] [Indexed: 01/26/2023]
|
17
|
Nahreini P, Yan XD, Andreatta CP, Prasad KN, Toribara NW. Identifying altered gene expression in neuroblastoma cells preceding apoptosis. J Cancer Res Clin Oncol 2007; 134:411-9. [PMID: 17786477 DOI: 10.1007/s00432-007-0303-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 08/16/2007] [Indexed: 01/28/2023]
Abstract
PURPOSE Concomitant differentiation and partial inhibition of proteasome trigger cell death in a neuroblastoma cell line (NBP2). Neither induction of differentiation nor partial inhibition of proteasome alone affects the viability of NBP2 cells. We wanted to identify genes whose expression alters under concomitant conditions and may account for cell death. METHODS We used gel electrophoresis to analyze total genomic DNA for the detection of DNA fragmentation. Affymetrix Murine Genome U74A version 2 microarray was used to screen for approximately 6,000 functionally characterized genes and approximately 6,000 expressed sequence tags (ESTs). Real time PCR (RT-PCR) was performed to provide an accurate assessment of changes in gene expression. RESULTS Concomitant differentiation and partial inhibition of proteasome trigger apoptosis, characterized by genomic DNA fragmentation in NBP2 cells. We found that the expression of 41 genes changed 2.5-fold or more primarily under concomitant conditions midway through apoptosis. Based on real time PCR, the expression of galectin-3, glycosylated 96, a leucine zipper protein (LRG-21), and endothelial cell activated protein C receptor (EPCR) increased between 50-500-fold, whereas the expression of Polo serine/threonine kinase, N-myc, and Histone H2A.1 decreased ranging from 8 to 37 fold. Altered expression of galectin-3, EPCR, and LRG-21 was detected as early as 2-8 h post simultaneous conditions. CONCLUSION We identified new genes that might be involved in apoptotic events in neuroblastoma cells.
Collapse
Affiliation(s)
- Piruz Nahreini
- Department of Gastroenterology and Hepatology, School of Medicine, University of Colorado Health Sciences Center (UCHSC), Denver Health Medical Center (DHMC), Unit 7, Room 208, 777 Bannock St., Box-4000, Denver, CO 80204, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
In multicellular organisms, cells are polarized in the plane of the epithelial sheet, revealed in some cell types by oriented hairs or cilia. Many of the underlying genes have been identified in Drosophila melanogaster and are conserved in vertebrates. Here we dissect the logic of planar cell polarity (PCP). We review studies of genetic mosaics in adult flies - marked cells of different genotypes help us to understand how polarizing information is generated and how it passes from one cell to another. We argue that the prevailing opinion that planar polarity depends on a single genetic pathway is wrong and conclude that there are (at least) two independently acting processes. This conclusion has major consequences for the PCP field.
Collapse
Affiliation(s)
- Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
19
|
Yamaguchi K, Parish J, Akita K, Francis-West P. Developmental expression of the chick four-jointed homologue. Dev Dyn 2007; 235:3085-91. [PMID: 16958101 DOI: 10.1002/dvdy.20946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Four-jointed is a type II transmembrane protein that is thought to be cleaved to give rise to a secreted protein. In Drosophila, four-jointed controls outgrowth, vein patterning, and bristle polarity in the developing limb together with the polarity of the ommatidia in the developing eye. In Drosophila and mice, Fj is regulated by notch signaling. Here, we have determined the expression of the chick four-jointed (fjx) homologue during embryonic development. We show that fjx is expressed in the limb bud; facial primordia; the proliferating zone of the lens, feather buds, the neural tube; and neural crest derivatives such as the dorsal root ganglia. Analysis of the fjx expression in the developing limb bud showed that initially fjx is expressed throughout the limb bud, but as the limb develops, highest levels of fjx transcripts are found distally. However, by stage 27, fjx expression is predominantly found in the central core of the limb bud. Finally, fjx expression becomes confined to the developing tendons, ligaments, articular cartilage, and arteries but not the veins. Comparison with scleraxis (scx), a marker of tendons and ligaments, revealed that they are coexpressed in the majority of tendons but that fjx is expressed after scx, when the tendons have begun to differentiate. These data suggest that fjx has two roles during limb development: the first controlling outgrowth and the second tissue differentiation.
Collapse
Affiliation(s)
- Kumiko Yamaguchi
- Department of Craniofacial Development, King's College London, Guy's Tower, London Bridge, London, United Kingdom
| | | | | | | |
Collapse
|
20
|
Rock R, Schrauth S, Gessler M. Expression of mouse dchs1, fjx1, and fat-j suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev Dyn 2006; 234:747-55. [PMID: 16059920 DOI: 10.1002/dvdy.20515] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dachsous (ds), fat (ft), and four-jointed (fj) genes have been identified in Drosophila as part of a signaling pathway that regulates planar cell polarity (PCP). A homologous PCP signaling pathway has also been identified in vertebrates, but nothing is known thus far about the conservation of Ds/Ft/Fj signaling. Here we analyzed and compared for the first time the expression patterns of all ds, ft and fj homologs in the mouse. During embryogenesis, expression analysis was performed by RNA in situ hybridization and in adult organs by real time PCR. As in Drosophila, we detected a complementary expression of fjx1 and dchs1 in organs like kidney, lung, and intestine. The ubiquitous expression of ft in several tissues in Drosophila appears to be split into an epithelial expression of fat1/fat3 and a mesenchymal expression of fat-j. These data are compatible with a conservation and sub-functionalization of the Drosophila Ds, Fj, and Fat signaling in higher vertebrates.
Collapse
Affiliation(s)
- Rebecca Rock
- University of Wuerzburg, Theodor-Boveri-Institute (Biocenter), Physiological Chemistry I, Am Hubland, Wuerzburg, Germany
| | | | | |
Collapse
|
21
|
Abstract
Epithelial cells are patterned not only along their apical-basolateral axis, but also along the plane of the epithelial sheet; the latter event is regulated by the planar cell polarity (PCP) pathway. PCP regulates diverse outputs, such as the distal placement of a hair in all cells of the Drosophila wing, and convergent extension movements during gastrulation in the vertebrate embryo. This primer describes the molecular mechanisms that initiate and establish PCP, as well as biochemical pathways that translate PCP signaling to cell type-specific patterning events. The primer concludes with a discussion of current topics in the field with two PCP researchers, Matt Kelley, Ph.D., and Helen McNeill, Ph.D.
Collapse
Affiliation(s)
- Julie C Kiefer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
22
|
Rock R, Heinrich AC, Schumacher N, Gessler M. Fjx1: A notch-inducible secreted ligand with specific binding sites in developing mouse embryos and adult brain. Dev Dyn 2005; 234:602-12. [PMID: 16145673 DOI: 10.1002/dvdy.20553] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mouse fjx1 gene was identified as a homologue to the Drosophila gene four-jointed (fj). Fj encodes a transmembrane type II glycoprotein that is partially secreted. The gene was found to be a downstream target of the Notch signaling pathway in leg segmentation and planar cell polarity processes during eye development of Drosophila. Here, we show that fjx1 is not only conserved in vertebrates, but we also identified the murine fjx1 gene as a direct target of Notch signaling. In addition to the previously described expression of fjx1 in mouse brain, we show here that fjx1 is expressed in the peripheral nervous system, epithelial cells of multiple organs, and during limb development. The protein is processed and secreted as a presumptive ligand. Through the use of an fjx1-AP fusion protein, we could visualize fjx1 binding sites at complementary locations, supporting the notion that fjx1 may function as a novel signaling molecule.
Collapse
Affiliation(s)
- Rebecca Rock
- University of Wuerzburg, Theodor-Boveri-Institute (Biocenter), Physiological Chemistry I, Am Hubland, Wuerzburg, Germany
| | | | | | | |
Collapse
|
23
|
Abstract
Cell-cell adhesion is fundamental to multicellular architecture. Several classes of adhesion molecule are used to achieve this, and cadherins represent a major family of such molecules. The cadherin family has multiple subfamilies. Members of the Fat cadherin subfamily, which is conserved across species, have an extraordinarily large extracellular region, comprising 34 repeated domains, making them the largest cadherin molecules. Classic Fat, identified in Drosophila, is known to regulate cell proliferation and planar cell polarity. Recent studies of one of its mammalian homologs, Fat1, have revealed novel functions of this molecule. Fat1 binds to Ena/VASP proteins and regulates actin dynamics at both cell-cell contacts and leading edges. These observations suggest that Fat1 is an important regulator of actin dynamics and controls cell-cell interactions through this activity.
Collapse
Affiliation(s)
- Takuji Tanoue
- RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | |
Collapse
|
24
|
Strutt H, Mundy J, Hofstra K, Strutt D. Cleavage and secretion is not required for Four-jointed function in Drosophila patterning. Development 2004; 131:881-90. [PMID: 14757640 DOI: 10.1242/dev.00996] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four-jointed (fj) is required for proximodistal growth and planar polarity in Drosophila tissues. It encodes a predicted type II transmembrane protein with putative signal peptidase sites in its transmembrane domain, and its C terminus is secreted. Fj has therefore been proposed to act as a secreted signalling molecule. We show that Fj protein has a graded distribution in eye and wing imaginal discs, and is largely localised to the Golgi in vivo and in transfected cells. Forms of Fj that are constitutively secreted or anchored in the Golgi were assayed for function in vivo. We find that cleavage and secretion of Fj is not necessary for activity, and that Golgi-anchored Fj has increased activity over wild type. fj has similar phenotypes to those caused by mutations in the cadherin-encoding genes fat (ft) and dachsous (ds). We show that fj interacts genetically with ft and ds in planar polarity and proximodistal patterning. We propose that Fj may act in the Golgi to regulate the activity of Ft and Ds.
Collapse
Affiliation(s)
- Helen Strutt
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
25
|
Abstract
A key aspect of animal development is the appropriate polarisation of different cell types in the right place at the right time. Such polarisation is often precisely coordinated relative to the axes of a tissue or organ, but the mechanisms underlying this coordination are still poorly understood. Nevertheless, genetic analysis of animal development has revealed some of the pathways involved. For example, a non-canonical Frizzled signalling pathway has been found to coordinate cell polarity throughout the insect cuticle, and recent work has implicated an analogous pathway in coordinated polarisation of cells during vertebrate development. This review discusses recent findings regarding non-canonical Frizzled signalling and cell polarisation.
Collapse
Affiliation(s)
- David Strutt
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
26
|
An Q, Pacyna-Gengelbach M, Schlüns K, Deutschmann N, Guo S, Gao Y, Zhang J, Cheng S, Petersen I. Identification of differentially expressed genes in immortalized human bronchial epithelial cell line as a model for in vitro study of lung carcinogenesis. Int J Cancer 2003; 103:194-204. [PMID: 12455033 DOI: 10.1002/ijc.10807] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Suppression subtractive hybridization (SSH) was applied to identify differentially expressed genes in the SV40LT immortalized human bronchial epithelial cell line Y-BE, with normal human bronchial epithelial cells (HBEC) as a control. Two cDNA libraries of up- and downregulated genes were generated, comprising 218 known genes and 131 unknown genes in total. The expression of 22 clones from the 2 libraries was investigated by Northern blot analysis, and 86.4% (19/22) of them showed differential expression between Y-BE cells and HBEC. Although the Y-BE cells are nontumorigenic in nude mice, Comparative genomic hybridization (CGH) detected some DNA imbalances in Y-BE cells that were similar to lung cancer cells. Our data demonstrate that the studied cell line Y-BE and SSH is a reliable approach for identifying new genes that are associated with immortalization and early tumor development that may help to understand the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Qian An
- Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
BACKGROUND Planar polarity refers to the asymmetry of a cell within the plane of the epithelium; for example, cells may form hairs that point in a posterior direction, or cilia may beat in one way. This property implies that cells have information about their orientation; we wish to understand the nature of this information. Relevant also is the body plan of insects, which, in the ectoderm and somatic mesoderm, consists of a chain of alternating anterior and posterior compartments - basic units of development with independent cell lineage and subject to independent genetic control. RESULTS Using the abdomen of adult Drosophila, we have taken genes required for normal polarity and either removed the gene or constitutively expressed it in small clones of cells and observed the effects on polarity. Hitherto, all such studies of polarity genes have not found any difference of behavior between the different compartments. We report here that the three genes, four-jointed, dachsous, and fat, cause opposite effects in anterior and posterior compartments. For example, in anterior compartments, clones ectopically expressing four-jointed reverse the polarity of cells in front of the clone, while, in posterior compartments, they reverse behind the clone. These three genes have been reported by others to be functionally linked. CONCLUSIONS This discovery impacts on models of how cells read polarity. At the heart of one class of models is the hypothesis that cell polarity is determined by the vector of a morphogen gradient. Here, we present evidence that cell polarity in the abdomen depends on at least two protein gradients (Fj and Ds), each of which is reflected at compartment borders. Consequently, these gradients have opposing slopes in the two compartments. Because all polarized structures made by abdominal cells point posteriorly, we surmise that cells in each compartment are programmed to interpret these protein gradients with opposite signs, pointing up the gradient in one compartment and down the gradient in the other.
Collapse
Affiliation(s)
- José Casal
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
28
|
Du Y, Campbell JL, Nalbant D, Youn H, Bass ACH, Cobos E, Tsai S, Keller JR, Williams SC. Mapping gene expression patterns during myeloid differentiation using the EML hematopoietic progenitor cell line. Exp Hematol 2002; 30:649-58. [PMID: 12135661 DOI: 10.1016/s0301-472x(02)00817-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The detailed examination of the molecular events that control the early stages of myeloid differentiation has been hampered by the relative scarcity of hematopoietic stem cells and the lack of suitable cell line models. In this study, we examined the expression of several myeloid and nonmyeloid genes in the murine EML hematopoietic stem cell line. METHODS Expression patterns for 19 different genes were examined by Northern blotting and RT-PCR in RNA samples from EML, a variety of other immortalized cell lines, and purified murine hematopoietic stem cells. Representational difference analysis (RDA) was performed to identify differentially expressed genes in EML. RESULTS Expression patterns of genes encoding transcription factors (four members of the C/EBP family, GATA-1, GATA-2, PU.1, CBFbeta, SCL, and c-myb) in EML were examined and were consistent with the proposed functions of these proteins in hematopoietic differentiation. Expression levels of three markers of terminal myeloid differentiation (neutrophil elastase, proteinase 3, and Mac-1) were highest in EML cells at the later stages of differentiation. In a search for genes that were differentially expressed in EML cells during myeloid differentiation, six cDNAs were isolated. These included three known genes (lysozyme, histidine decarboxylase, and tryptophan hydroxylase) and three novel genes. CONCLUSION Expression patterns of known genes in differentiating EML cells accurately reflected their expected expression patterns based on previous studies. The identification of three novel genes, two of which encode proteins that may act as regulators of hematopoietic differentiation, suggests that EML is a useful model system for the molecular analysis of hematopoietic differentiation.
Collapse
Affiliation(s)
- Yang Du
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Buckles GR, Rauskolb C, Villano JL, Katz FN. four-jointed interacts with dachs, abelson and enabled and feeds back onto the Notch pathway to affect growth and segmentation in the Drosophila leg. Development 2001; 128:3533-42. [PMID: 11566858 DOI: 10.1242/dev.128.18.3533] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular basis of segmentation and regional growth during morphogenesis of Drosophila legs is poorly understood. We show that four-jointed is not only required for these processes, but also can direct ectopic growth and joint initiation when its normal pattern of expression is disturbed. These effects are non-autonomous, consistent with our demonstration of both transmembrane and secreted forms of the protein in vivo. The similarities between four-jointed and Notch phenotypes led us to further investigate the relationships between these pathways. Surprisingly, we find that although four-jointed expression is regulated downstream of Notch activation, four-jointed can induce expression of the Notch ligands, Serrate and Delta, and may thereby participate in a feedback loop with the Notch signaling pathway. We also show that four-jointed interacts with abelson, enabled and dachs, which leads us to suggest that one target of four-jointed signaling is the actin cytoskeleton. Thus, four-jointed may bridge the gap between the signals that direct morphogenesis and those that carry it out.
Collapse
Affiliation(s)
- G R Buckles
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
30
|
Christiansen JH, Coles EG, Robinson V, Pasini A, Wilkinson DG. Screening from a subtracted embryonic chick hindbrain cDNA library: identification of genes expressed during hindbrain, midbrain and cranial neural crest development. Mech Dev 2001; 102:119-33. [PMID: 11287186 DOI: 10.1016/s0925-4773(01)00294-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The vertebrate hindbrain is segmented into a series of transient structures called rhombomeres. Despite knowing several factors that are responsible for the segmentation and maintenance of the rhombomeres, there are still large gaps in understanding the genetic pathways that govern their development. To find previously unknown genes that are expressed within the embryonic hindbrain, a subtracted chick hindbrain cDNA library has been made and 445 randomly picked clones from this library have been analysed using whole mount in situ hybridisation. Thirty-six of these clones (8%) display restricted expression patterns within the hindbrain, midbrain or cranial neural crest and of these, twenty-two are novel and eleven encode peptides that correspond to or are highly related to proteins with previously uncharacterised roles during early neural development. The large proportion of genes with restricted expression patterns and previously unknown functions in the embryonic brain identified during this screen provides insights into the different types of molecules that have spatially regulated expression patterns in cranial neural tissue.
Collapse
Affiliation(s)
- J H Christiansen
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK
| | | | | | | | | |
Collapse
|
31
|
Gawin B, Niederführ A, Schumacher N, Hummerich H, Little PF, Gessler M. A 7.5 Mb sequence-ready PAC contig and gene expression map of human chromosome 11p13-p14.1. Genome Res 1999; 9:1074-86. [PMID: 10568747 PMCID: PMC310838 DOI: 10.1101/gr.9.11.1074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The region p13 of the short arm of human chromosome 11 has been studied intensely during the search for genes involved in the etiology of the Wilms' tumor, aniridia, genitourinary abnormalities, mental retardation (WAGR) syndrome, and related conditions. The gene map for this region is far from being complete, however, strengthening the need for additional gene identification efforts. We describe the extension of an existing contig map with P1-derived artificial chromosomes (PACs) to cover 7.5 Mb of 11p13-14.1. The extended sequence-ready contig was established by end probe walking and fingerprinting and consists of 201 PAC clones. Utilizing bins defined by overlapping PACs, we generated a detailed gene map containing 20 genes as well as 22 anonymous ESTs which have been identified by searching the RH databases. RH maps and our established gene map show global correlation, but the limits of resolution of the current RH panels are evident at this scale. Initial expression studies on the novel genes have been performed by Northern blot analyses. To extend these expression profiles, corresponding mouse cDNA clones were identified by database search and employed for Northern blot analyses and RNA in situ hybridizations to mouse embryo sections. Genomic sequencing of clones along a minimal tiling path through the contig is currently under way and will facilitate these expression studies by in silico gene identification approaches.
Collapse
Affiliation(s)
- B Gawin
- Physiologische Chemie I, Biozentrum der Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|