1
|
Khan I, Sunita S, Hussein NR, Omer HK, Elhissi A, Houacine C, Khan W, Yousaf S, Rathore HA. Development and Characterization of Novel Combinations and Compositions of Nanostructured Lipid Carrier Formulations Loaded with Trans-Resveratrol for Pulmonary Drug Delivery. Pharmaceutics 2024; 16:1589. [PMID: 39771567 PMCID: PMC11677727 DOI: 10.3390/pharmaceutics16121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers. METHODS Novel TRES-NLC formulations (F1-F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 w/w), with a surfactant (Tween 80) in two different concentrations (0.5 and 1.5%), and a co-surfactant, soya phosphatidylcholine (SPC S-75; 50 mg). RESULTS Amongst the analyzed 24 TR-NLC formulations, F8, F14, and F22 were selected based on their physicochemical stability when freshly prepared and following storage (4 weeks 25 °C), as well as in terms of particle size (<145 nm), polydispersity index (PDI; <0.21) and entrapment efficiency (>96%). Furthermore, F14 showed greater stability at 4 and 25 °C for six months and exhibited enhanced aerosolization performance, demonstrating the greater deposition of TRES in the later stages of the next-generation impactor (NGI) when using an air-jet nebulizer than when using an ultrasonic nebulizer. The F14 formulation exhibited greater stability and release in acetate buffer (pH 5.4), with a cumulative release of 95%. CONCLUSIONS Overall, formulation F14 in combination with an air-jet nebulizer was identified as a superior combination, demonstrating higher emitted dose (ED; 80%), fine particle dose (FPD; 1150 µg), fine particle fraction (FPF; 24%), and respirable fraction (RF; 94%). These findings are promising in the optimization and development of NLC formulations, highlighting their versatility and targeting the pulmonary system via nebulization.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (S.S.); (S.Y.)
| | - Sunita Sunita
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (S.S.); (S.Y.)
| | - Nozad R. Hussein
- College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq; (N.R.H.); (H.K.O.)
| | - Huner K. Omer
- College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq; (N.R.H.); (H.K.O.)
| | - Abdelbary Elhissi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, Doha 2713, Qatar;
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Wasiq Khan
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (S.S.); (S.Y.)
| | - Hassaan A. Rathore
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health Sector, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
2
|
Byun AS, Vitetta L, Chan HK, Kwok PCL. Respiratory Delivery of Lacticaseibacillus rhamnosus GG by Vibrating-Mesh and Jet Nebulisation. Pharmaceutics 2024; 16:1326. [PMID: 39458655 PMCID: PMC11510752 DOI: 10.3390/pharmaceutics16101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The use of probiotic bacteria to improve lung health has been gaining interest. Although the oral delivery of probiotics and their effects are well documented, there is currently limited knowledge on the respiratory delivery of probiotics. OBJECTIVES This study aimed to investigate whether nebulisation is suitable for delivering Lacticaseibacillus rhamnosus GG (LGG) into the lungs for the potential treatment of bacterial pulmonary infections. METHODS It compared the dose output and aerosol performance of a vibrating-mesh nebuliser (VMN) and a jet nebuliser (JN) in nebulising LGG suspended in de Man Rogosa Sharpe (MRS) broth, phosphate-buffered saline (PBS), or normal saline (0.9% w/v sodium chloride in water). RESULTS The VMN consistently produced a higher output than the JN for all liquid media, indicating that VMN was more efficient. The fine-particle fractions of both nebulisers were comparable for a given medium. The highest fine-particle fraction was achieved with LGG suspended in MRS broth for both nebulisers (20.5 ± 2.8% for VMN; 18.7 ± 3.4% for JN). This suggests that the aerosol performance of nebulised probiotics may depend on the medium in which the probiotic bacteria were suspended. CONCLUSIONS Therefore, this study demonstrated that the nebulisation efficiency of LGG depended on the nebuliser type and liquid medium of the probiotic suspension.
Collapse
Affiliation(s)
| | | | | | - Philip Chi Lip Kwok
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia; (A.S.B.); (L.V.); (H.-K.C.)
| |
Collapse
|
3
|
Creppy JR, Delache B, Lemaitre J, Horvat B, Vecellio L, Ducancel F. Administration of airborne pathogens in non-human primates. Inhal Toxicol 2024; 36:475-500. [PMID: 39388247 DOI: 10.1080/08958378.2024.2412685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system. MATERIALS AND METHODS The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies. RESULTS We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs. CONCLUSION The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.
Collapse
Affiliation(s)
- Justina R Creppy
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Benoit Delache
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université de Lyon, Lyon, France
| | - Laurent Vecellio
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Frédéric Ducancel
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Yu CY, Cong YJ, Wei JX, Guo BL, Liu CY, Liao YH. Pulmonary delivery of icariin-phospholipid complex prolongs lung retention and improves therapeutic efficacy in mice with acute lung injury/ARDS. Colloids Surf B Biointerfaces 2024; 241:113989. [PMID: 38838444 DOI: 10.1016/j.colsurfb.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Icariin has been shown the promising therapeutic potential to treat inflammatory airway diseases, yet its poor lung distribution and retention restrict the clinical applications. To this end, this work aimed to prepare an icariin-phospholipid complex (IPC) formulation for sustained nebulization delivery that enabled excellent inhalability, improved lung exposure and prolonged duration of action. Icariin was found to react with soybean phospholipid to form supramolecular IPC, which was able to self-assemble into nanoparticle suspension. The suspension was stable during steam sterilization and nebulization processes, and its aerosols generated by a commercial nebulizer exhibited excellent aerodynamic properties and delivery efficiency. In vitro studies showed that the formation of complex sustained drug release, enhanced lung affinity and slowed lung clearance. The drug distribution in lung epithelial lining fluid (ELF) also demonstrated in vivo sustained release after intratracheal administration to mice. In addition, compared to free icariin, IPC improved the drug exposure to lung tissues and immune cells in the ELF by 4.61-fold and 39.5-fold, respectively. This resulted in improved and prolonged local anti-inflammatory effects up to 24 h in mice with lipopolysaccharide (LPS)-induced acute lung injury. Moreover, IPC improved survival rate of mice with acute respiratory distress syndrome (ARDS). Overall, the present phospholipid complex represented a promising formulation of icariin for the treatment of acute lung injury/ARDS by nebulization delivery.
Collapse
Affiliation(s)
- Chen-Yang Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yi-Jun Cong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jia-Xing Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Bao-Lin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Chun-Yu Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yong-Hong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
5
|
Seidl LL, Moog R, Graeser KA. Antisense oligonucleotides and their technical suitability to nebulization. Int J Pharm 2024; 661:124390. [PMID: 38936443 DOI: 10.1016/j.ijpharm.2024.124390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
In vivo studies investigating the inhalative efficacy of biotherapeutics, such as nucleic acids, usually do not perform an aerosolization step, rather the solution is directly administered into the lungs e.g. intratracheally. In addition, there is currently very little information on the behavior of nucleic acid solutions when subjected to the physical stress of the nebulization process. In this study, the aim was to assess the technical suitability of Locked Nucleic Acids (LNAs), as a model antisense oligonucleotide, towards nebulization using two commercially available nebulizers. A jet nebulizer (Pari LC Plus) and a vibrating mesh nebulizer (Aerogen Solo) were employed and solutions of five different LNAs investigated in terms of their physical and chemical stability to nebulization and the quality of the generated aerosols. The aerosol properties of the Aerogen Solo were mainly influenced by the viscosity of the solutions with the output rate and the droplet size decreasing with increasing viscosity. The Pari LC Plus was less susceptible to viscosity and overall the droplet size was smaller. The LNAs tolerated both nebulization processes and the integrity of the molecules was shown. Chemical stability of the molecules from the Aerogen Solo was confirmed, whereas aerosol generation with the Pari LC Plus jet nebulizer led to a slight increase of phosphodiester groups in a fully phosphorothiolated backbone of the LNAs. Overall, it could be shown that nebulization of different LNAs is possible and inhalation can therefore be considered a potential route of administration.
Collapse
Affiliation(s)
- Leonardo L Seidl
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland; Technical University of Munich, TUM School of Natural Sciences, Boltzmannstr. 10, 85748 Garching, Germany
| | - Regina Moog
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Kirsten A Graeser
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
6
|
Fink JB, Stapleton KW. Nebulizers. J Aerosol Med Pulm Drug Deliv 2024; 37:140-156. [PMID: 38683652 DOI: 10.1089/jamp.2024.29110.jbf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Nebulizers generate aerosols from liquid-based solutions and suspensions. Nebulizers are particularly well suited to delivering larger doses of medication than is practical with inhalers and are used with a broad range of liquid formulations. When the same drug is available in liquid or inhaler form, nebulizers are applicable for use with patients who will not or cannot reliably use a pressurized metered-dosed inhaler (pMDI) or dry powder inhaler (DPI) due to poor lung function, hand-breath coordination, cognitive abilities (e.g., infants, elderly) or device preference. In a nebulizer, liquid medication is placed in a reservoir and fed to an aerosol generator to produce the droplets. A series of tubes and channels direct the aerosol to the patient via an interface such as mouthpiece, mask, tent, nasal prongs or artificial airway. All nebulizers contain these basic parts, although the technology and design used can vary widely and can result in significant difference in ergonomics, directions for use, and performance. While many types of nebulizers have been described, the three categories of modern clinical nebulizers include: (1) pneumatic jet nebulizers (JN); (2) ultrasonic nebulizers (USN); and (3) vibrating mesh nebulizers (VMN). Nebulizers are also described in terms of their reservoir size. Small volume nebulizers (SVNs), most commonly used for medical aerosol therapy, can hold 5 to 20 mL of medication and may be jet, ultrasonic, or mesh nebulizers. Large volume nebulizers, typically jet or ultrasonic nebulizers, hold up to 200 mL and may be used for either bland aerosol therapy or continuous drug administration.
Collapse
|
7
|
Singhal S, Gurjar M, Sahoo JN, Saran S, Dua R, Sahoo AK, Sharma A, Agarwal S, Sharma A, Ghosh PS, Rao PB, Kothari N, Joshi K, Deokar K, Mukherjee S, Sharma P, Sreedevi BPS, Sivaramakrishnan P, Singh U, Sundaram D, Agrawal A, Katoch CDS. Aerosol drug therapy in critically ill patients (Aero-in-ICU study): A multicentre prospective observational cohort study. Lung India 2024; 41:200-208. [PMID: 38687231 PMCID: PMC11093142 DOI: 10.4103/lungindia.lungindia_580_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND In recent years, a significant understanding of delivering optimal aerosol therapy and the availability of various drugs and devices have led to an increase in its use in clinical practice. There are only a few studies available regarding their use in critically ill patients from a few parts of the world. We aimed to study the practice pattern of aerosol therapy in critically ill patients from Indian intensive care units (ICUs). METHODS After ethical approval, this multi-centric prospective observational study was performed over a study period of four weeks. Newly admitted adult patients considered who had an artificial airway and/or ventilation (including non-invasive). Patients were followed up for the next 14 days or until ICU discharge/death (whichever came first) for details of each aerosol therapy, including ongoing respiratory support, drug type, and aerosol-generating device. RESULTS From the nine participating centers across India, 218 patients were enrolled. Of 218 enrolled patients, 72.48% received 4884 aerosols with 30.91 ± 27.15 (95%CI: 26.6-35.1) aerosols per patient over 1108 patient days. Approximately 62.7% during IMV, 30.2% during NIV, 2.3% in spontaneously breathing patients with an artificial airway during weaning, and 4.7% were given without an artificial airway after weaning or decannulation. In 59%, a single drug was used, and bronchodilators were the most frequent. The jet nebulizer was the most common, followed by the ultrasonic and vibrating mesh aerosol generator. The ventilator setting was changed in only 6.6% of the aerosol sessions with IMV and none with NIV. CONCLUSION Aerosol therapy is frequently used with a wide variation in practices; bronchodilators are the most commonly used drugs, and jet nebulizers are the most widely used.
Collapse
Affiliation(s)
- Sanjay Singhal
- Pulmonary Medicine, All India Institute of Medical Science, Rajkot, Gujarat, India
| | - Mohan Gurjar
- Critical Care Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Jyoti Narayan Sahoo
- Department of Critical Care Medicine, Apollo Hospital, Bhubaneswar, Odisha, India
| | - Sai Saran
- Critical Care Medicine, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Ruchi Dua
- Pulmonary Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Alok Kumar Sahoo
- Anaesthesiology and Critical Care, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | - Ankur Sharma
- Trauma and Emergency (Anaesthesia and Critical Care), AIIMS Jodhpur, Rajasthan, India
| | - Sonika Agarwal
- Critical Care Medicine, HIMS, SRHU, Dehradun, Uttarakhand, India
| | | | | | | | - Nikhil Kothari
- Anaesthesia and Critical Care, AIIMS Jodhpur, Rajasthan, India
| | - Krupal Joshi
- Community and Family Medicine, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Kunal Deokar
- Pulmonary Medicine, All India Institute of Medical Science, Rajkot, Gujarat, India
| | | | - Prakhar Sharma
- Pulmonary Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Billa PS Sreedevi
- Critical Care Medicine, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | | | - Umadri Singh
- Critical Care Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Dhivya Sundaram
- Anaesthesia and Critical Care, AIIMS Jodhpur, Rajasthan, India
| | - Avinash Agrawal
- Critical Care Medicine, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
8
|
Zheng M, Zhu W, Gao F, Zhuo Y, Zheng M, Wu G, Feng C. Novel inhalation therapy in pulmonary fibrosis: principles, applications and prospects. J Nanobiotechnology 2024; 22:136. [PMID: 38553716 PMCID: PMC10981316 DOI: 10.1186/s12951-024-02407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Pulmonary fibrosis (PF) threatens millions of people worldwide with its irreversible progression. Although the underlying pathogenesis of PF is not fully understood, there is evidence to suggest that the disease can be blocked at various stages. Inhalation therapy has been applied for lung diseases such as asthma and chronic obstructive pulmonary disease, and its application for treating PF is currently under consideration. New techniques in inhalation therapy, such as the application of microparticles and nanoparticles, traditional Chinese medicine monomers, gene therapy, inhibitors, or agonists of signaling pathways, extracellular vesicle interventions, and other specific drugs, are effective in treating PF. However, the safety and effectiveness of these therapeutic techniques are influenced by the properties of inhaled particles, biological and pathological barriers, and the type of inhalation device used. This review provides a comprehensive overview of the pharmacological, pharmaceutical, technical, preclinical, and clinical experimental aspects of novel inhalation therapy for treating PF and focus on therapeutic methods that significantly improve existing technologies or expand the range of drugs that can be administered via inhalation. Although inhalation therapy for PF has some limitations, the advantages are significant, and further research and innovation about new inhalation techniques and drugs are encouraged.
Collapse
Affiliation(s)
- Meiling Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Peking University People's Hospital, Beijing, 100032, China
| | - Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, 215500, China
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yu Zhuo
- Department of Medical Oncology Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100010, China
| | - Mo Zheng
- Department of Medical Oncology Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100010, China
| | - Guanghao Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Cuiling Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China.
- Peking University People's Hospital, Beijing, 100032, China.
| |
Collapse
|
9
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
10
|
Sosnowski TR. Towards More Precise Targeting of Inhaled Aerosols to Different Areas of the Respiratory System. Pharmaceutics 2024; 16:97. [PMID: 38258107 PMCID: PMC10818612 DOI: 10.3390/pharmaceutics16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Pharmaceutical aerosols play a key role in the treatment of lung disorders, but also systemic diseases, due to their ability to target specific areas of the respiratory system (RS). This article focuses on identifying and clarifying the influence of various factors involved in the generation of aerosol micro- and nanoparticles on their regional distribution and deposition in the RS. Attention is given to the importance of process parameters during the aerosolization of liquids or powders and the role of aerosol flow dynamics in the RS. The interaction of deposited particles with the fluid environment of the lung is also pointed out as an important step in the mass transfer of the drug to the RS surface. The analysis presented highlights the technical aspects of preparing the precursors to ensure that the properties of the aerosol are suitable for a given therapeutic target. Through an analysis of existing technical limitations, selected strategies aimed at enhancing the effectiveness of targeted aerosol delivery to the RS have been identified and presented. These strategies also include the use of smart inhaling devices and systems with built-in AI algorithms.
Collapse
Affiliation(s)
- Tomasz R Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
11
|
Verma S, Sharma PK, Malviya R, Das S. Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects. Curr Pharm Biotechnol 2024; 25:1939-1951. [PMID: 38251702 DOI: 10.2174/0113892010275613231120031855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 01/23/2024]
Abstract
Aerogels are the 3D network of organic, inorganic, composite, layered, or hybrid-type materials that are used to increase the solubility of Class 1 (low solubility and high permeability) and Class 4 (poor solubility and low permeability) molecules. This approach improves systemic drug absorption due to the alveoli's broad surface area, thin epithelial layer, and high vascularization. Local therapies are more effective and have fewer side effects than systemic distribution because inhalation treatment targets the specific location and raises drug concentration in the lungs. The present manuscript aims to explore various aspects of aerogel formulations for pulmonary targeted delivery of active pharmaceutical agents. The manuscript also discusses the safety, efficacy, and regulatory aspects of aerogel formulations. According to projections, the global respiratory drug market is growing 4-6% annually, with short-term development potential. The proliferation of literature on pulmonary medicine delivery, especially in recent years, shows increased interest. Aerogels come in various technologies and compositions, but any aerogel used in a biological system must be constructed of a material that is biocompatible and, ideally, biodegradable. Aerogels are made via "supercritical processing". After many liquid phase iterations using organic solvents, supercritical extraction, and drying are performed. Moreover, the sol-gel polymerization process makes inorganic aerogels from TMOS or TEOS, the less hazardous silane. The resulting aerogels were shown to be mostly loaded with pharmaceutically active chemicals, such as furosemide-sodium, penbutolol-hemisulfate, and methylprednisolone. For biotechnology, pharmaceutical sciences, biosensors, and diagnostics, these aerogels have mostly been researched. Although aerogels are made of many different materials and methods, any aerogel utilized in a biological system needs to be made of a substance that is both biocompatible and, preferably, biodegradable. In conclusion, aerogel-based pulmonary drug delivery systems can be used in biomedicine and non-biomedicine applications for improved sustainability, mechanical properties, biodegradability, and biocompatibility. This covers scaffolds, aerogels, and nanoparticles. Furthermore, biopolymers have been described, including cellulose nanocrystals (CNC) and MXenes. A safety regulatory database is necessary to offer direction on the commercialization potential of aerogelbased formulations. After that, enormous efforts are discovered to be performed to synthesize an effective aerogel, particularly to shorten the drying period, which ultimately modifies the efficacy. As a result, there is an urgent need to enhance the performance going forward.
Collapse
Affiliation(s)
- Shristy Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Sanjita Das
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Cabrera M, Le Pennec D, Le Guellec S, Pardessus J, Ehrmann S, MacLoughlin R, Heuzé-Vourc'h N, Vecellio L. Influence of mesh nebulizer characteristics on aerosol delivery in non-human primates. Eur J Pharm Sci 2023; 191:106606. [PMID: 37832856 DOI: 10.1016/j.ejps.2023.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Non-Human Primates (NHPs) are particularly relevant for preclinical studies during the development of inhaled biologics. However, aerosol inhalation in NHPs is difficult to evaluate due to a low lung deposition fraction and high variability. The objective of this study was to evaluate the influence of mesh nebulizer parameters to improve lung deposition in macaques. We developed a humidified heated and ventilated anatomical 3D printed macaque model of the upper respiratory tract to reduce experiments with animals. The model was compared to in vivo deposition using 2D planar scintigraphy imaging in NHPs and demonstrated good predictivity. Next, the anatomical model was used to evaluate the position of the nebulizer on the mask, the aerosol particle size and the aerosol flow rate on the lung deposition. We showed that placing the mesh-nebulizer in the upper part of the mask and in proximal position to the NHP improved lung delivery prediction. The lower the aerosol size and the lower the aerosol flow rate, the better the predicted aerosol deposition. In particular, for 4.3 ± 0.1 µm in terms of volume mean diameter, we obtained 5.6 % ± 0.2 % % vs 19.2 % ± 2.5 % deposition in the lung model for an aerosol flow rate of 0.4 mL/min vs 0.03 mL/min and achieved 16 % of the nebulizer charge deposited in the lungs of macaques. Despite the improvement of lung deposition efficiency in macaques, its variability remained high (6-21 %).
Collapse
Affiliation(s)
- Maria Cabrera
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - Déborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - Sandrine Le Guellec
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; DTF-Aerodrug, Tours, France
| | - Jeoffrey Pardessus
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - Stephan Ehrmann
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; CHRU de Tours, Médecine Intensive Réanimation, 2 boulevard Tonnellé, Tours, France
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, Galway, Ireland
| | - Nathalie Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - Laurent Vecellio
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France.
| |
Collapse
|
13
|
Bianchera A, Vilardo V, Giaccari R, Michielon A, Bazzoli G, Buttini F, Aiello M, Chetta A, Bruno S, Bettini R. Nebulizers effectiveness on pulmonary delivery of alpha-1 antitrypsin. Drug Deliv Transl Res 2023; 13:2653-2663. [PMID: 37097606 PMCID: PMC10468431 DOI: 10.1007/s13346-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
The nebulization of alpha-1 antitrypsin (AAT) for its administration to the lung could be an interesting alternative to parenteral infusion for patients suffering from AAT genetic deficiency (AATD). In the case of protein therapeutics, the effect of the nebulization mode and rate on protein conformation and activity must be carefully considered. In this paper two types of nebulizers, i.e., a jet and a mesh vibrating system, were used to nebulize a commercial preparation of AAT for infusion and compared. The aerosolization performance, in terms of mass distribution, respirable fraction, and drug delivery efficiency, as well as the activity and aggregation state of AAT upon in vitro nebulization were investigated. The two nebulizers demonstrated equivalent aerosolization performances, but the mesh nebulizer provided a higher efficiency in the delivery of the dose. The activity of the protein was acceptably preserved by both nebulizers and no aggregation or changes in its conformation were identified. This suggests that nebulization of AAT represents a suitable administration strategy ready to be translated to the clinical practice for delivering the protein directly to the lungs in AATD patients, either as a support therapy to parenteral administration or for subjects with a precocious diagnosis, to prevent the onset of pulmonary symptoms.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy
| | - Viviana Vilardo
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Roberta Giaccari
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Annalisa Michielon
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Gianluca Bazzoli
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy
| | - Marina Aiello
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma, Italy
| | - Alfredo Chetta
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma, Italy
| | - Stefano Bruno
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/a, Parma, Italy.
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parco Area Delle Scienze Building 33, Parma, Italy.
| |
Collapse
|
14
|
Chang KH, Park BJ, Nam KC. Aerosolization Performance of Immunoglobulin G by Jet and Mesh Nebulizers. AAPS PharmSciTech 2023; 24:125. [PMID: 37225929 DOI: 10.1208/s12249-023-02579-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Recently, many preclinical and clinical studies have been conducted on the delivery of therapeutic antibodies to the lungs using nebulizers, but standard treatment guidelines have not yet been established. Our objective was to compare nebulization performance according to the low temperature and concentration of immunoglobulin G (IgG) solutions in different types of nebulizers, and to evaluate the stability of IgG aerosols and the amount delivered to the lungs. The output rate of the mesh nebulizers decreased according to the low temperature and high concentration of IgG solution, whereas the jet nebulizer was unaffected by the temperature and concentration of IgG. An impedance change of the piezoelectric vibrating element in the mesh nebulizers was observed because of the lower temperature and higher viscosity of IgG solution. This affected the resonance frequency of the piezoelectric element and lowered the output rate of the mesh nebulizers. Aggregation assays using a fluorescent probe revealed aggregates in IgG aerosols from all nebulizers. The delivered dose of IgG to the lungs in mice was highest at 95 ng/mL in the jet nebulizer with the smallest droplet size. Evaluation of the performance of IgG solution delivered to the lungs by three types of nebulizers could provide valuable parameter information for determination on dose of therapeutic antibody by nebulizers.
Collapse
Affiliation(s)
- Kyung Hwa Chang
- Department of Medical Engineering, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea
| | - Bong Joo Park
- Department of Electrical & Biological Physics and Institute of Biomaterials, Kwangwoon University, Seoul, 01897, South Korea
| | - Ki Chang Nam
- Department of Medical Engineering, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, South Korea.
| |
Collapse
|
15
|
Miao H, Huang K, Li Y, Li R, Zhou X, Shi J, Tong Z, Sun Z, Yu A. Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA. Int J Pharm 2023; 640:123050. [PMID: 37201764 DOI: 10.1016/j.ijpharm.2023.123050] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Lipid nanoparticles (LNPs) have demonstrated efficacy and safety for mRNA vaccine administration by intramuscular injection; however, the pulmonary delivery of mRNA encapsulated LNPs remains challenging. The atomization process of LNPs will cause shear stress due to dispersed air, air jets, ultrasonication, vibrating mesh etc., leading to the agglomeration or leakage of LNPs, which can be detrimental to transcellular transport and endosomal escape. In this study, the LNP formulation, atomization methods and buffer system were optimized to maintain the LNP stability and mRNA efficiency during the atomization process. Firstly, a suitable LNP formulation for atomization was optimized based on the in vitro results, and the optimized LNP formulation was AX4, DSPC, cholesterol and DMG-PEG2K at a 35/16/46.5/2.5 (%) molar ratio. Subsequently, different atomization methods were compared to find the most suitable method to deliver mRNA-LNP solution. Soft mist inhaler (SMI) was found to be the best for pulmonary delivery of mRNA encapsulated LNPs. The physico-chemical properties such as size and entrapment efficiency (EE) of the LNPs were further improved by adjusting the buffer system with trehalose. Lastly, the in vivo fluorescence imaging of mice demonstrated that SMI with proper LNPs design and buffer system hold promise for inhaled mRNA-LNP therapies.
Collapse
Affiliation(s)
- Hao Miao
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Ke Huang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Yingwen Li
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou, 215000, China
| | - Renjie Li
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Xudong Zhou
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Jingyu Shi
- School of Energy and Environment, Southeast University, Nanjing, 210000, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215000 China
| | - Zhenbo Tong
- School of Energy and Environment, Southeast University, Nanjing, 210000, China; Southeast University-Monash University Joint Research Institute, Suzhou, 215000 China
| | - Zhenhua Sun
- Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou, 215000, China.
| | - Aibing Yu
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Southeast University-Monash University Joint Research Institute, Suzhou, 215000 China
| |
Collapse
|
16
|
Gholizadeh H, Cheng S, Kourmatzis A, Traini D, Young P, Sheikh Z, Ong HX. In vitro interactions of aerosol formulations with human nasal epithelium using real-time monitoring of drug transport in a nasal mucosa-on-a-chip. Biosens Bioelectron 2023; 223:115010. [PMID: 36586150 DOI: 10.1016/j.bios.2022.115010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The current organ-on-chip platforms used for studying respiratory drug delivery are limited to the administration of drug solutions and suspensions, lacking the in vivo aerosol drug administration and aerosol interaction with the respiratory tract barrier. Moreover, they mostly rely on conventional assays that require sample collection and 'off the chip' analyses, which can be labor-intensive and costly. In this study, a human nasal epithelial mucosa (NEM)-on-a-chip is developed that enables the deposition of aerosolized nasal formulations while emulating realistic shear stresses (0.23 and 0.78 Pa), exerted to the inferior and middle turbinate of the human nasal cavity. Under these different dynamic conditions in the donor channel of the NEM-on-a-chip, the deposited dose of aerosols and particle size distributions varied. In addition, the increase in the shear stress to 0.78 Pa adversely affected the cells' viability, reflected by a 36.9 ± 5.4% reduction in the transepithelial electrical resistance. The epithelial transport profiles of aerosolized ibuprofen formulations under 0.23 Pa shear stress were successfully monitored in real-time by an electrochemical sensor embedded in the acceptor channel, where the NEM-on-a-chip was able to monitor the effect of permeation enhancer in the test formulation on the rate of drug transport. The novel NEM-on-a-chip can potentially be a promising physiologically relevant tool for reliable nasal aerosol testing in vitro.
Collapse
Affiliation(s)
- Hanieh Gholizadeh
- School of Engineering, Macquarie University, Sydney, Australia; Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, Australia; Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, Sydney, Australia
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, Australia
| | - Daniela Traini
- Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, Australia; Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Paul Young
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia; Department of Marketing, Business School, Macquarie University, Sydney, Australia
| | - Zara Sheikh
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia; School of Pharmacy, Brac University, Dhaka, 1212, Bangladesh
| | - Hui Xin Ong
- Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, Australia; Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.
| |
Collapse
|
17
|
Pertegal V, Lacasa E, Cañizares P, Rodrigo MA, Sáez C. Understanding the influence of the bioaerosol source on the distribution of airborne bacteria in hospital indoor air. ENVIRONMENTAL RESEARCH 2023; 216:114458. [PMID: 36181895 DOI: 10.1016/j.envres.2022.114458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The composition and concentration of airborne microorganisms in hospital indoor air has been reported to contain airborne bacteria and fungi concentrations ranged 101-103 CFU/m3 in inpatients facilities which mostly exceed recommendations from the World Health Organization (WHO). In this work, a deeper knowledge of the performance of airborne microorganisms would allow improving the designs of the air-conditioning installations to restrict hospital-acquired infections (HAIs). A solution containing Escherichia coli (E. coli) as a model of airborne bacteria was nebulized using the Collison nebulizer to simulate bioaerosols in various hospital areas such as patients' rooms or bathrooms. Results showed that the bioaerosol source had a significant influence on the airborne bacteria concentrations since 4.00 102, 6.84 103 and 1.39 104 CFU mL-1 were monitored during the aerosolization for 10 min of urine, saliva and urban wastewater, respectively. These results may be explained considering the quite narrow distribution profile of drop sizes around 1.10-1.29 μm obtained for urban wastewater, with much vaster distribution profiles during the aerosolization of urine or saliva. The airborne bacteria concentration may increase up to 107 CFU mL-1 for longer sampling times and higher aerosolization pressures, causing several cell damages. The cell membrane damage index (ID) can vary from 0 to 1, depending on the genomic DNA releases from bacteria. In fact, the ID of E. coli was more than two times higher (0.33 vs. 0.72) when increasing the pressure of air flow was applied from 1 to 2 bar. Finally, the ventilation air flow also affected the distribution of bioaerosols due to its direct relationship with the relative humidity of indoor air. Specifically, the airborne bacteria concentration diminished almost below 3-logs by applying more than 10 L min-1 during the aerosolization of urine due to their inactivation by an increase in their osmotic pressure.
Collapse
Affiliation(s)
- Víctor Pertegal
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario S/n, 02071, Albacete, Spain
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario S/n, 02071, Albacete, Spain.
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario S/n, 13005, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario S/n, 13005, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario S/n, 13005, Ciudad Real, Spain.
| |
Collapse
|
18
|
Katiyar SK, Gaur SN, Solanki RN, Sarangdhar N, Suri JC, Kumar R, Khilnani GC, Chaudhary D, Singla R, Koul PA, Mahashur AA, Ghoshal AG, Behera D, Christopher DJ, Talwar D, Ganguly D, Paramesh H, Gupta KB, Kumar T M, Motiani PD, Shankar PS, Chawla R, Guleria R, Jindal SK, Luhadia SK, Arora VK, Vijayan VK, Faye A, Jindal A, Murar AK, Jaiswal A, M A, Janmeja AK, Prajapat B, Ravindran C, Bhattacharyya D, D'Souza G, Sehgal IS, Samaria JK, Sarma J, Singh L, Sen MK, Bainara MK, Gupta M, Awad NT, Mishra N, Shah NN, Jain N, Mohapatra PR, Mrigpuri P, Tiwari P, Narasimhan R, Kumar RV, Prasad R, Swarnakar R, Chawla RK, Kumar R, Chakrabarti S, Katiyar S, Mittal S, Spalgais S, Saha S, Kant S, Singh VK, Hadda V, Kumar V, Singh V, Chopra V, B V. Indian Guidelines on Nebulization Therapy. Indian J Tuberc 2022; 69 Suppl 1:S1-S191. [PMID: 36372542 DOI: 10.1016/j.ijtb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Inhalational therapy, today, happens to be the mainstay of treatment in obstructive airway diseases (OADs), such as asthma, chronic obstructive pulmonary disease (COPD), and is also in the present, used in a variety of other pulmonary and even non-pulmonary disorders. Hand-held inhalation devices may often be difficult to use, particularly for children, elderly, debilitated or distressed patients. Nebulization therapy emerges as a good option in these cases besides being useful in the home care, emergency room and critical care settings. With so many advancements taking place in nebulizer technology; availability of a plethora of drug formulations for its use, and the widening scope of this therapy; medical practitioners, respiratory therapists, and other health care personnel face the challenge of choosing appropriate inhalation devices and drug formulations, besides their rational application and use in different clinical situations. Adequate maintenance of nebulizer equipment including their disinfection and storage are the other relevant issues requiring guidance. Injudicious and improper use of nebulizers and their poor maintenance can sometimes lead to serious health hazards, nosocomial infections, transmission of infection, and other adverse outcomes. Thus, it is imperative to have a proper national guideline on nebulization practices to bridge the knowledge gaps amongst various health care personnel involved in this practice. It will also serve as an educational and scientific resource for healthcare professionals, as well as promote future research by identifying neglected and ignored areas in this field. Such comprehensive guidelines on this subject have not been available in the country and the only available proper international guidelines were released in 1997 which have not been updated for a noticeably long period of over two decades, though many changes and advancements have taken place in this technology in the recent past. Much of nebulization practices in the present may not be evidence-based and even some of these, the way they are currently used, may be ineffective or even harmful. Recognizing the knowledge deficit and paucity of guidelines on the usage of nebulizers in various settings such as inpatient, out-patient, emergency room, critical care, and domiciliary use in India in a wide variety of indications to standardize nebulization practices and to address many other related issues; National College of Chest Physicians (India), commissioned a National task force consisting of eminent experts in the field of Pulmonary Medicine from different backgrounds and different parts of the country to review the available evidence from the medical literature on the scientific principles and clinical practices of nebulization therapy and to formulate evidence-based guidelines on it. The guideline is based on all possible literature that could be explored with the best available evidence and incorporating expert opinions. To support the guideline with high-quality evidence, a systematic search of the electronic databases was performed to identify the relevant studies, position papers, consensus reports, and recommendations published. Rating of the level of the quality of evidence and the strength of recommendation was done using the GRADE system. Six topics were identified, each given to one group of experts comprising of advisors, chairpersons, convenor and members, and such six groups (A-F) were formed and the consensus recommendations of each group was included as a section in the guidelines (Sections I to VI). The topics included were: A. Introduction, basic principles and technical aspects of nebulization, types of equipment, their choice, use, and maintenance B. Nebulization therapy in obstructive airway diseases C. Nebulization therapy in the intensive care unit D. Use of various drugs (other than bronchodilators and inhaled corticosteroids) by nebulized route and miscellaneous uses of nebulization therapy E. Domiciliary/Home/Maintenance nebulization therapy; public & health care workers education, and F. Nebulization therapy in COVID-19 pandemic and in patients of other contagious viral respiratory infections (included later considering the crisis created due to COVID-19 pandemic). Various issues in different sections have been discussed in the form of questions, followed by point-wise evidence statements based on the existing knowledge, and recommendations have been formulated.
Collapse
Affiliation(s)
- S K Katiyar
- Department of Tuberculosis & Respiratory Diseases, G.S.V.M. Medical College & C.S.J.M. University, Kanpur, Uttar Pradesh, India.
| | - S N Gaur
- Vallabhbhai Patel Chest Institute, University of Delhi, Respiratory Medicine, School of Medical Sciences and Research, Sharda University, Greater NOIDA, Uttar Pradesh, India
| | - R N Solanki
- Department of Tuberculosis & Chest Diseases, B. J. Medical College, Ahmedabad, Gujarat, India
| | - Nikhil Sarangdhar
- Department of Pulmonary Medicine, D. Y. Patil School of Medicine, Navi Mumbai, Maharashtra, India
| | - J C Suri
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Raj Kumar
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, National Centre of Allergy, Asthma & Immunology; University of Delhi, Delhi, India
| | - G C Khilnani
- PSRI Institute of Pulmonary, Critical Care, & Sleep Medicine, PSRI Hospital, Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Dhruva Chaudhary
- Department of Pulmonary & Critical Care Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Rupak Singla
- Department of Tuberculosis & Respiratory Diseases, National Institute of Tuberculosis & Respiratory Diseases (formerly L.R.S. Institute), Delhi, India
| | - Parvaiz A Koul
- Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Ashok A Mahashur
- Department of Respiratory Medicine, P. D. Hinduja Hospital, Mumbai, Maharashtra, India
| | - A G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - D Behera
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - D J Christopher
- Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepak Talwar
- Metro Centre for Respiratory Diseases, Noida, Uttar Pradesh, India
| | | | - H Paramesh
- Paediatric Pulmonologist & Environmentalist, Lakeside Hospital & Education Trust, Bengaluru, Karnataka, India
| | - K B Gupta
- Department of Tuberculosis & Respiratory Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak, Haryana, India
| | - Mohan Kumar T
- Department of Pulmonary, Critical Care & Sleep Medicine, One Care Medical Centre, Coimbatore, Tamil Nadu, India
| | - P D Motiani
- Department of Pulmonary Diseases, Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| | - P S Shankar
- SCEO, KBN Hospital, Kalaburagi, Karnataka, India
| | - Rajesh Chawla
- Respiratory and Critical Care Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine & Sleep Disorders, AIIMS, New Delhi, India
| | - S K Jindal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S K Luhadia
- Department of Tuberculosis and Respiratory Medicine, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - V K Arora
- Indian Journal of Tuberculosis, Santosh University, NCR Delhi, National Institute of TB & Respiratory Diseases Delhi, India; JIPMER, Puducherry, India
| | - V K Vijayan
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, University of Delhi, Delhi, India
| | - Abhishek Faye
- Centre for Lung and Sleep Disorders, Nagpur, Maharashtra, India
| | | | - Amit K Murar
- Respiratory Medicine, Cronus Multi-Specialty Hospital, New Delhi, India
| | - Anand Jaiswal
- Respiratory & Sleep Medicine, Medanta Medicity, Gurugram, Haryana, India
| | - Arunachalam M
- All India Institute of Medical Sciences, New Delhi, India
| | - A K Janmeja
- Department of Respiratory Medicine, Government Medical College, Chandigarh, India
| | - Brijesh Prajapat
- Pulmonary and Critical Care Medicine, Yashoda Hospital and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - C Ravindran
- Department of TB & Chest, Government Medical College, Kozhikode, Kerala, India
| | - Debajyoti Bhattacharyya
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, Army Hospital (Research & Referral), New Delhi, India
| | | | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - J K Samaria
- Centre for Research and Treatment of Allergy, Asthma & Bronchitis, Department of Chest Diseases, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Jogesh Sarma
- Department of Pulmonary Medicine, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Lalit Singh
- Department of Respiratory Medicine, SRMS Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | - M K Sen
- Department of Respiratory Medicine, ESIC Medical College, NIT Faridabad, Haryana, India; Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mahendra K Bainara
- Department of Pulmonary Medicine, R.N.T. Medical College, Udaipur, Rajasthan, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi PostGraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nilkanth T Awad
- Department of Pulmonary Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Narayan Mishra
- Department of Pulmonary Medicine, M.K.C.G. Medical College, Berhampur, Orissa, India
| | - Naveed N Shah
- Department of Pulmonary Medicine, Chest Diseases Hospital, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Neetu Jain
- Department of Pulmonary, Critical Care & Sleep Medicine, PSRI, New Delhi, India
| | - Prasanta R Mohapatra
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pawan Tiwari
- School of Excellence in Pulmonary Medicine, NSCB Medical College, Jabalpur, Madhya Pradesh, India
| | - R Narasimhan
- Department of EBUS and Bronchial Thermoplasty Services at Apollo Hospitals, Chennai, Tamil Nadu, India
| | - R Vijai Kumar
- Department of Pulmonary Medicine, MediCiti Medical College, Hyderabad, Telangana, India
| | - Rajendra Prasad
- Vallabhbhai Patel Chest Institute, University of Delhi and U.P. Rural Institute of Medical Sciences & Research, Safai, Uttar Pradesh, India
| | - Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital & Research Institute, Nagpur, Maharashtra, India
| | - Rakesh K Chawla
- Department of, Respiratory Medicine, Critical Care, Sleep & Interventional Pulmonology, Saroj Super Speciality Hospital, Jaipur Golden Hospital, Rajiv Gandhi Cancer Hospital, Delhi, India
| | - Rohit Kumar
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - S Chakrabarti
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | | | - Saurabh Mittal
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Surya Kant
- Department of Respiratory (Pulmonary) Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - V K Singh
- Centre for Visceral Mechanisms, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Vijay Hadda
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Kumar
- All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Virendra Singh
- Mahavir Jaipuria Rajasthan Hospital, Jaipur, Rajasthan, India
| | - Vishal Chopra
- Department of Chest & Tuberculosis, Government Medical College, Patiala, Punjab, India
| | - Visweswaran B
- Interventional Pulmonology, Yashoda Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
19
|
Matuszak M, Ochowiak M, Włodarczak S, Krupińska A, Doligalski M. State-of-the-Art Review of The Application and Development of Various Methods of Aerosol Therapy. Int J Pharm 2021; 614:121432. [PMID: 34971755 DOI: 10.1016/j.ijpharm.2021.121432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Aerosol therapy is a rapidly developing field of science. Due to a number of advantages, the administration of drugs to the body with the use of aerosol therapy is becoming more and more popular. Spraying drugs into the patient's lungs has a significant advantage over other methods of administering drugs to the body, including injection and oral methods. In order to conduct proper and effective aerosol therapy, it is necessary to become familiar with the basic principles and applications of aerosol therapy under various conditions. The effectiveness of inhalation depends on many factors, but most of all on: the physicochemical properties of the sprayed system, the design of the medical inhaler and its correct application, the dynamics of inhalation (i.e. the frequency of breathing and the volume of inhaled air). It is worth emphasizing that respiratory system diseases are one of the most frequently occurring and fastest growing diseases in the world. Accordingly, in recent years, a significant increase in the number of new spraying devices and pharmaceutical drugs for spraying has appeared on the market. It should also be remembered that the process of spraying a liquid is a complicated and complex process, and its efficiency is very often characterized by the use of micro- and macro parameters (including average droplet diameters or the spectrum of droplet diameter distribution). In order to determine the effectiveness of the atomization process and in the delivery of drugs to the patient's respiratory tract, the analysis of the size of the generated aerosol droplets is most often performed. Based on the proposed literature review, it has been shown that many papers dealt with the issues related to aerosol therapy, the selection of an appropriate spraying device, the possibility of modifying the spraying devices in order to increase the effectiveness of inhalation, and the possibility of occurrence of certain discrepancies resulting from the use of various measurement methods to determine the characteristics of the generated aerosol. The literature review presented in the paper was prepared in order to better understand the spraying process. Moreover, it can be helpful in choosing the right medical inhaler for a given liquid with specific rheological properties. The experimental data contained in this study are of great cognitive importance and may be of interest to entities involved in pharmaceutical product engineering (in particular in the case of the production of drugs containing liquids with complex rheological properties).
Collapse
Affiliation(s)
- M Matuszak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland.
| | - M Ochowiak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - S Włodarczak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - A Krupińska
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - M Doligalski
- Faculty of Computer, Electrical and Control Engineering, University of Zielona Góra, 4a Szafrana Street, 65-516 Zielona Góra, Poland
| |
Collapse
|
20
|
Zarogoulidis P, Kosmidis C, Kougkas N, Lallas A, Petridis D, Hohenforst-Schmidt W, Huang H, Freitag L, Sardeli C. Modification of Apremilast from Pills to Aerosol a Future Concept. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11590. [PMID: 34770103 PMCID: PMC8582726 DOI: 10.3390/ijerph182111590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Inhaled drugs have been available in the market for several years and for several diseases. Drugs for chronic obstructive pulmonary disease, cystic fibrosis, and diabetes have been used for several years. In the field of drug modification, these drugs range from tablets to aerosol. METHODS Milling as used to break down the tablets to powder and nebulisers are used to produce aerosol droplets. A mastersizer was used to measure the mass median aerodynamic diameter of the aerosol droplets. RESULTS Apremilast produced mmad diameters (2.43 μm) without any statistical difference between the different jet-nebulizers. The residual cup B contributed to greater mmad diameters as the 95% interval of mean values, based on those the ANOVA mean square clearly indicated, followed by cups C and F. The previous interval plot is much better clarified when the interaction means between drug and residual cap are plotted. The residual cups B, C and F produce mmad between (2.0-3.2). CONCLUSION In the current research study we demonstrated our methodology to create apremilast powder and produce apremilast aerosol droplets with different nebulisers and residual cups.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department, General Clinic, Euromedica Private Hospital, 546 45 Thessaloniki, Greece
- 3rd Surgery Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 546 21 Thessaloniki, Greece;
| | - Christoforos Kosmidis
- 3rd Surgery Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 546 21 Thessaloniki, Greece;
| | - Nikolaos Kougkas
- Rheumatology Department, IPPOKRATEIO University General Hospital, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Aimilios Lallas
- 1st Dermatology Department, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece;
| | - Dimitris Petridis
- Department of Food Science and Technology, International Hellenic University, 507 01 Thessaloniki, Greece;
| | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology, Pulmonology, Intensive Care, Nephrology, Hof Clinics, University of Erlangen, 91054 Hof, Germany;
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Naval Medical University (Changhai Hospital, Second Military Medical University), Shanghai 200433, China;
| | - Lutz Freitag
- Department of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Chrisanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 546 45 Thessaloniki, Greece;
| |
Collapse
|
21
|
Evaluation of Aerosol Drug Delivery Options during Adult Mechanical Ventilation in the COVID-19 Era. Pharmaceutics 2021; 13:pharmaceutics13101574. [PMID: 34683867 PMCID: PMC8539467 DOI: 10.3390/pharmaceutics13101574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Drug delivery devices used for aerosol therapy during mechanical ventilation to ease the symptoms of respiratory diseases provide beneficial treatment but can also pose challenges. Reflecting the significant changes in global guidance around aerosol usage and lung-protective ventilation strategies, seen in response to the COVID-19 pandemic, for the first time, we describe the drug delivery performance of commonly used devices under these conditions. Here, vibrating mesh nebuliser (VMN), jet nebuliser (JN) and pressurised metered-dose inhaler (pMDI) performance was assessed during simulated adult mechanical ventilation. Both standard test breathing patterns and those representatives of low tidal volume (LTV) ventilation with concurrent active and passive humidification were investigated. Drug delivery using a VMN was significantly greater than that with a JN and pMDI for both standard and LTV ventilation. Humidification type did not affect the delivered dose across all device types for standard ventilation. Significant variability in the pMDI dosing was evident, depending on the timing of actuation and the adapter type used. pMDI actuation synchronised with inspiration resulted in a higher delivered drug dose. The type of adapter used for pMDI actuation influenced drug delivery, with the highest dose observed using the CombiHaler.
Collapse
|
22
|
Evaluation of Aerosol Therapy during the Escalation of Care in a Model of Adult Cystic Fibrosis. Antibiotics (Basel) 2021; 10:antibiotics10050472. [PMID: 33919035 PMCID: PMC8142975 DOI: 10.3390/antibiotics10050472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Lung disease is the main cause of morbidity and mortality in cystic fibrosis (CF). CF patients inhale antibiotics regularly as treatment against persistent bacterial infections. The goal of this study was to investigate the effect of clinical intervention on aerosol therapy during the escalation of care using a bench model of adult CF. Droplet size analysis of selected antibiotics was completed in tandem with the delivered aerosol dose (% of total dose) assessments in simulations of various interventions providing oxygen supplementation or ventilatory support. Results highlight the variability of aerosolised dose delivery. In the homecare setting, the vibrating mesh nebuliser (VMN) delivered significantly more than the jet nebuliser (JN) (16.15 ± 0.86% versus 6.51 ± 2.15%). In the hospital setting, using VMN only, significant variability was seen across clinical interventions. In the emergency department, VMN plus mouthpiece (no supplemental oxygen) was seen to deliver (29.02 ± 1.41%) versus low flow nasal therapy (10 L per minute (LPM) oxygen) (1.81 ± 0.47%) and high flow nasal therapy (50 LPM oxygen) (3.36 ± 0.34%). In the ward/intensive care unit, non-invasive ventilation recorded 19.02 ± 0.28%, versus 22.64 ± 1.88% of the dose delivered during invasive mechanical ventilation. These results will have application in the design of intervention-appropriate aerosol therapy strategies and will be of use to researchers developing new therapeutics for application in cystic fibrosis and beyond.
Collapse
|
23
|
Lin HL, Fink JB, Ge H. Aerosol delivery via invasive ventilation: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:588. [PMID: 33987286 DOI: 10.21037/atm-20-5665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In comparison with spontaneously breathing non-intubated subjects, intubated, mechanically ventilated patients encounter various challenges, barriers, and opportunities in receiving medical aerosols. Since the introduction of mechanical ventilation as a part of modern critical care medicine during the middle of the last century, aerosolized drug delivery by jet nebulizers has become a common practice. However, early evidence suggested that aerosol generators differed in their efficacies, and the introduction of newer aerosol technology (metered dose inhalers, ultrasonic nebulizer, vibrating mesh nebulizers, and soft moist inhaler) into the ventilator circuit opened up the possibility of optimizing inhaled aerosol delivery during mechanical ventilation that could meet or exceed the delivery of the same aerosols in spontaneously breathing patients. This narrative review will catalogue the primary variables associated with this process and provide evidence to guide optimal aerosol delivery and dosing during mechanical ventilation. While gaps exist in relation to the appropriate aerosol drug dose, discrepancies in practice, and cost-effectiveness of the administered aerosol drugs, we also present areas for future research and practice. Clinical practice should expand to incorporate these techniques to improve the consistency of drug delivery and provide safer and more effective care for patients.
Collapse
Affiliation(s)
- Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi.,Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi
| | - James B Fink
- Division of Respiratory Care, Rush University Medical Center, Chicago, IL, USA.,Aerogen Pharma Corp., San Mateo, California, USA
| | - Huiqing Ge
- Department of Respiratory Care, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Athamneh T, Amin A, Benke E, Ambrus R, Gurikov P, Smirnova I, Leopold CS. Pulmonary drug delivery with aerogels: engineering of alginate and alginate-hyaluronic acid microspheres. Pharm Dev Technol 2021; 26:509-521. [PMID: 33593203 DOI: 10.1080/10837450.2021.1888979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, the aerogel technology was used to prepare pulmonary drug carriers consisting of alginate and alginate-hyaluronic acid by an emulsion gelation technique and supercritical CO2 drying. During the preparation process, the emulsification rate and inner phase viscosity were varied to control the diameter of aerogel microspheres. Results showed that the aerogel microspheres were highly porous (porosity > 98%) with low densities in the range between 0.0087 and 0.0634 g/cm3 as well as high surface areas between 354 and 759 m2/g. The obtained microspheres showed aerodynamic diameter below 5 µm making them suitable for pulmonary drug delivery. An in vitro drug release study with the model drug sodium naproxen was conducted and a non-Fickian drug release mechanism was observed, with no significant difference between the release profiles of alginate and alginate-hyaluronic acid microspheres. During the emulsion gelation step, the feasibility of using the capillary number to estimate the largest stable droplet size in the emulsions was also studied and it was found that using this number, the droplet size in the emulsions may well be predicted.
Collapse
Affiliation(s)
- Tamara Athamneh
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany.,Institute of Pharmacy, Division of Pharmaceutical Technology, University of Hamburg, Hamburg, Germany
| | - Adil Amin
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
| | - Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg, Germany
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
| | - Claudia S Leopold
- Institute of Pharmacy, Division of Pharmaceutical Technology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
25
|
Carranza Valencia A, Hirt R, Kampner D, Hiebl A, Tichy A, Rüthemann P, Pagitz M. Comparison of pulmonary deposition of nebulized 99m technetium-diethylenetriamine-pentaacetic acid through 3 inhalation devices in healthy dogs. J Vet Intern Med 2021; 35:1080-1087. [PMID: 33624851 PMCID: PMC7995371 DOI: 10.1111/jvim.16064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/29/2022] Open
Abstract
Background Inhalation treatment frequently is used in dogs and cats with chronic respiratory disease. Little is known however about the performance of delivery devices and the distribution of aerosolized drugs in the lower airways. Objective To assess the performance of 3 delivery devices and the impact of variable durations of inhalation on the pulmonary and extrapulmonary deposition of nebulized 99mtechnetium‐diethylenetriamine‐pentaacetic acid (99mTc‐DTPA). Animals Ten university‐owned healthy Beagle dogs. Methods Prospective crossover study. Dogs inhaled the radiopharmaceutical for 5 minutes either through the Aerodawg spacer with a custom‐made nose‐muzzle mask, the Aerochamber spacer with the same mask, or the Aerodawg spacer with its original nose mask. In addition, dogs inhaled for 1 and 3 minutes through the second device. Images were obtained by 2‐dimensional planar scintigraphy. Radiopharmaceutical uptake was calculated as an absolute value and as a fraction of the registered dose in the whole body. Results Mean (±SD) lung deposition for the 3 devices was 9.2% (±5.0), 11.4% (±4.9), and 9.3% (±4.6), respectively. Differences were not statistically significant. Uptake in pulmonary and extrapulmonary tissues was significantly lower after 1‐minute nebulization, but the mean pulmonary/extrapulmonary deposition ratio (0.38 ± 0.27) was significantly higher than after 5‐minute nebulization (0.16 ± 0.1; P = .03). No significant differences were detected after 3‐ and 5‐minute nebulization. Conclusion and Clinical Importance The performance of a pediatric spacer with a custom‐made mask is comparable to that of a veterinary device. One‐minute nebulization provides lower pulmonary uptake but achieves a better pulmonary/extrapulmonary deposition ratio than does 5‐minute nebulization.
Collapse
Affiliation(s)
- Alejandra Carranza Valencia
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Hirt
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Doris Kampner
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Andreas Hiebl
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Peter Rüthemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Maximilian Pagitz
- Department for Companion Animals and Horses, Clinic for Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
26
|
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169:100-117. [PMID: 33309815 PMCID: PMC7833882 DOI: 10.1016/j.addr.2020.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/08/2023]
Abstract
To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.
Collapse
Affiliation(s)
- Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alice Ma
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Inhalon Biopharma, Durham, NC 27709, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Repurposing of Plasminogen: An Orphan Medicinal Product Suitable for SARS-CoV-2 Inhalable Therapeutics. Pharmaceuticals (Basel) 2020; 13:ph13120425. [PMID: 33260813 PMCID: PMC7761183 DOI: 10.3390/ph13120425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The SARS-CoV-2 infection is associated with pulmonary coagulopathy, which determines the deposition of fibrin in the air spaces and lung parenchyma. The resulting lung lesions compromise patient pulmonary function and increase mortality, or end in permanent lung damage for those who have recovered from the COVID-19 disease. Therefore, local pulmonary fibrinolysis can be efficacious in degrading pre-existing fibrin clots and reducing the conversion of lung lesions into lasting scars. Plasminogen is considered a key player in fibrinolysis processes, and in view of a bench-to-bedside translation, we focused on the aerosolization of an orphan medicinal product (OMP) for ligneous conjunctivitis: human plasminogen (PLG-OMP) eye drops. As such, the sterile and preservative-free solution guarantees the pharmaceutical quality of GMP production and meets the Ph. Eur. requirements of liquid preparations for nebulization. PLG-OMP aerosolization was evaluated both from technological and stability viewpoints, after being submitted to either jet or ultrasonic nebulization. Jet nebulization resulted in a more efficient delivery of an aerosol suitable for pulmonary deposition. The biochemical investigation highlighted substantial protein integrity maintenance with the percentage of native plasminogen band > 90%, in accordance with the quality specifications of PLG-OMP. In a coherent way, the specific activity of plasminogen is maintained within the range 4.8–5.6 IU/mg (PLG-OMP pre-nebulization: 5.0 IU/mg). This is the first study that focuses on the technological and biochemical aspects of aerosolized plasminogen, which could affect both treatment efficacy and clinical dosage delivery. Increasing evidence for the need of local fibrinolytic therapy could merge with the availability of PLG-OMP as an easy handling solution, readily aerosolizable for a fast translation into an extended clinical efficacy assessment in COVID-19 patients.
Collapse
|
28
|
Can bacteriophage endolysins be nebulised for inhalation delivery against Streptococcus pneumoniae? Int J Pharm 2020; 591:119982. [PMID: 33068693 DOI: 10.1016/j.ijpharm.2020.119982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 11/21/2022]
Abstract
Endolysins are bacteriophage-derived protein molecules highly effective for bacterial killing. Cpl-1 and ClyJ-3 are native and chimeric endolysins, respectively, having antimicrobial activity against Streptococcus pneumoniae which causes lung infections. We conducted the first feasibility study on nebulisation of Cpl-1 and ClyJ-3, with a focus on the antimicrobial activity, structural changes of the proteins and aerosol performance. Bacterial colony counts, live cell imaging and Fourier-transform infrared(FTIR) spectroscopy were used to evaluate the proteins before and after jet or vibrating mesh nebulisation. These nebulised aerosols were inhalable with a volume median size of 3.8-4.2 µm (span 1.1-2.3) measured by laser diffraction. How-ever, neb-u-li-sa-tion caused al-most com-plete loss in bioac-tiv-ity of ClyJ-3, which were corroborated with the live cell imaging observation and protein structural damage with a large intensity reduction in the amide absorption bands between 1300 and 1700 cm-1. In contrast, the bactericidal activity of Cpl-1 showed no significant difference (p ≥ 0.05) before and after mesh nebulisation with 4.9 and 4.6-log10 bacterial count reduction, respectively. However, jet nebulisation reduced the bioactivity of Cpl-1 and the effect was time-dependent showing 1.7, 1.0-log10 bacterial count reduction at 7 and 14 min with complete loss of antimicrobial activity at 21 min after nebulisation, respectively. The results were consistent with time-dependent changes in live cell images and FTIR amide band changes at 1655, 1640, 1632 and 1548 cm-1. In conclusion, it is feasible to nebulise endolysins for inhalation delivery but it depends on both the protein and the nebuliser, with the mesh nebuliser being the preferred choice.
Collapse
|
29
|
Khan I, Yousaf S, Najlah M, Ahmed W, Elhissi A. Proliposome powder or tablets for generating inhalable liposomes using a medical nebulizer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00495-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Purpose
The aim of this study was to develop and compare proliposome powder and proliposome tablet formulations for drug delivery from a Pari-LC Sprint nebulizer.
Methods
Proliposome powders were prepared by the slurry method and sorbitol or mannitol carbohydrate carrier were used in a 1:10 and 1:15 w/w lipid phase to carrier ratio. Beclometasone dipropionate (BDP; 2 mol%) was incorporated in the lipid phase. Proliposome powders were compressed into tablets, and liposomes were generated from proliposome powders or tablets within the nebulizer reservoir for subsequent aerosolization.
Results
Comparatively, shorter sputtering times were reported for the tablet formulations (≈ < 2.7±0.45 min), indicating uniform aerosolization. Post-nebulization, liposomes size was larger in the nebulizer reservoir in the range of 7.79±0.48 µm–9.73±1.53 µm for both powder and tablet formulations as compared to freshly prepared liposomes (5.38±0.73 µm–5.85±0.86 µm), suggesting liposome aggregation/fusion in the nebulizer’s reservoir. All formulations exhibited more than 80% mass output regardless of formulation type, but greater BDP proportions (circa 50%) were delivered to the Two-stage Impinger when tablet formulations were used. Moreover, the nebulized droplet median size and size distribution were lower for all tablet formulations in comparison to the powder formulations. Proliposome tablet and powdered formulations demonstrated the ability to generate vesicles that sustained the release of BDP.
Conclusion
Overall, this study showed that proliposome tablets could be disintegrated within a Pari-LC Sprint nebulizer to generate inhalable aerosol, with high drug output and hence can be manufactured on large scale to overcome the storage problems associated with powder formulations.
Collapse
|
30
|
Mérai L, Deák Á, Sebők D, Kukovecz Á, Dékány I, Janovák L. A Stimulus-Responsive Polymer Composite Surface with Magnetic Field-Governed Wetting and Photocatalytic Properties. Polymers (Basel) 2020; 12:polym12091890. [PMID: 32839403 PMCID: PMC7564196 DOI: 10.3390/polym12091890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
With the increasing demand for liquid manipulation and microfluidic techniques, surfaces with real-time tunable wetting properties are becoming the focus of materials science researches. In this study, we present a simple preparation method for a 0.5-4 µm carbonyl iron (carbonyl Fe) loaded polydimethylsiloxane (PDMS)-based magnetic composite coating with magnetic field-tailored wetting properties. Moreover, the embedded 6.3-16.7 wt.% Ag-TiO2 plasmonic photocatalyst (d~50 nm) content provides additional visible light photoreactivity to the external stimuli-responsive composite grass surfaces, while the efficiency of this photocatalytic behavior also turned out to be dependent on the external magnetic field. The inclusion of the photocatalyst introduced hierarchical surface roughness to the micro-grass, resulting in the broadening of the achievable contact and sliding angle ranges. The photocatalyst-infused coatings are also capable of catching and releasing water droplets, which alongside their multifunctional (photocatalytic activity and tunable wetting characteristics) nature makes surfaces of this kind the novel sophisticated tools of liquid manipulation.
Collapse
Affiliation(s)
- László Mérai
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (L.M.); (Á.D.); (I.D.)
| | - Ágota Deák
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (L.M.); (Á.D.); (I.D.)
| | - Dániel Sebők
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (D.S.); (Á.K.)
| | - Ákos Kukovecz
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (D.S.); (Á.K.)
| | - Imre Dékány
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (L.M.); (Á.D.); (I.D.)
| | - László Janovák
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (L.M.); (Á.D.); (I.D.)
- Correspondence: ; Tel.: +36-62-544-210
| |
Collapse
|
31
|
Chang KH, Moon SH, Yoo SK, Park BJ, Nam KC. Aerosol Delivery of Dornase Alfa Generated by Jet and Mesh Nebulizers. Pharmaceutics 2020; 12:pharmaceutics12080721. [PMID: 32751886 PMCID: PMC7463544 DOI: 10.3390/pharmaceutics12080721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/23/2022] Open
Abstract
Recent reports on mesh nebulizers suggest the possibility of stable nebulization of various therapeutic protein drugs. In this study, the in vitro performance and drug stability of jet and mesh nebulizers were examined for dornase alfa and compared with respect to their lung delivery efficiency in BALB/c mice. We compared four nebulizers: two jet nebulizers (PARI BOY SX with red and blue nozzles), a static mesh nebulizer (NE-U150), and a vibrating mesh nebulizer (NE-SM1). The enzymatic activity of dornase alfa was assessed using a kinetic fluorometric DNase activity assay. Both jet nebulizers had large residual volumes between 24% and 27%, while the volume of the NE-SM1 nebulizer was less than 2%. Evaluation of dornase alfa aerosols produced by the four nebulizers showed no overall loss of enzymatic activity or protein content and no increase in aggregation or degradation. The amount of dornase alfa delivered to the lungs was highest for the PARI BOY SX-red jet nebulizer. This result confirmed that aerosol droplet size is an important factor in determining the efficiency of dornase alfa delivery to the lungs. Further clinical studies and analysis are required before any conclusions can be drawn regarding the clinical safety and efficacy of these nebulizers.
Collapse
Affiliation(s)
- Kyung Hwa Chang
- Department of Medical Engineering, Dongguk University College of Medicine, Goyang-si, Gyeonggi-do 10326, Korea; (K.H.C.); (S.-H.M.)
| | - Sang-Hyub Moon
- Department of Medical Engineering, Dongguk University College of Medicine, Goyang-si, Gyeonggi-do 10326, Korea; (K.H.C.); (S.-H.M.)
| | - Sun Kook Yoo
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Bong Joo Park
- Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Institute of Biomaterials, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (B.J.P.); (K.C.N.); Tel.: +82-2-940-8629 (B.J.P.); +82-31-961-5802 (K.C.N.)
| | - Ki Chang Nam
- Department of Medical Engineering, Dongguk University College of Medicine, Goyang-si, Gyeonggi-do 10326, Korea; (K.H.C.); (S.-H.M.)
- Correspondence: (B.J.P.); (K.C.N.); Tel.: +82-2-940-8629 (B.J.P.); +82-31-961-5802 (K.C.N.)
| |
Collapse
|
32
|
Xia T, Yang M, Marabella I, Lee EM, Olson B, Zarling D, Torremorell M, Clack HL. Inactivation of airborne porcine reproductive and respiratory syndrome virus (PRRSv) by a packed bed dielectric barrier discharge non-thermal plasma. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122266. [PMID: 32126420 DOI: 10.1016/j.jhazmat.2020.122266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 05/16/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSv) is one of the most significant airborne viruses impacting the pork industry in the US. Non-thermal plasmas (NTPs) are electrical discharges comprised of reactive radicals and excited species that inactivate viruses and bacteria. Our previous experiments using a packed bed NTP reactor demonstrated effective inactivation of bacteriophage MS2 as a function of applied voltage and power. The present study examined the effectiveness of the same reactor in inactivating aerosolized PRRSv. A PRRSv solution containing ∼105 TCID50/ml of PRRSv VR2332 strain was aerosolized at 3 ml/min by an air-jet nebulizer and introduced into 5 or 12 cfm air flow followed by NTP exposure in the reactor. Twin impingers upstream and downstream of the reactor collected samples of the virus-laden air flow for subsequent TCID50 assay and qPCR analyses. An optical particle sizer measured upstream and downstream aerosol size distributions, giving estimates of aerosol filtration by the reactor. The results showed that PRRSv was inactivated to a similar degree as MS2 at the same conditions, with the maximum 1.3-log inactivation of PRRSv achieved at 20 kV and 12 cfm air flow rate. The results demonstrate the potential of properly optimized NTPs in controlling PRRSv transmission.
Collapse
Affiliation(s)
- T Xia
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - M Yang
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - I Marabella
- Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - E M Lee
- Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - B Olson
- Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - D Zarling
- Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - M Torremorell
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - H L Clack
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Bodier-Montagutelli E, Respaud R, Perret G, Baptista L, Duquenne P, Heuzé-Vourc'h N, Vecellio L. Protein stability during nebulization: Mind the collection step! Eur J Pharm Biopharm 2020; 152:23-34. [DOI: 10.1016/j.ejpb.2020.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/19/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
|
34
|
Khan I, Lau K, Bnyan R, Houacine C, Roberts M, Isreb A, Elhissi A, Yousaf S. A Facile and Novel Approach to Manufacture Paclitaxel-Loaded Proliposome Tablet Formulations of Micro or Nano Vesicles for Nebulization. Pharm Res 2020; 37:116. [PMID: 32488363 PMCID: PMC7266847 DOI: 10.1007/s11095-020-02840-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/13/2020] [Indexed: 01/25/2023]
Abstract
Purpose The aim of this study was to develop novel paclitaxel-loaded proliposome tablet formulations for pulmonary drug delivery. Method Proliposome powder formulations (i.e. F1 – F27) were prepared employing Lactose monohydrate (LMH), Microcrystalline cellulose (MCC) or Starch as a carbohydrate carriers and Soya phosphatidylcholine (SPC), Hydrogenated soya phosphatidylcholine (HSPC) or Dimyristoly phosphatidylcholine (DMPC) as a phospholipid. Proliposome powder formulations were prepared in 1:5, 1:15 or 1:25 w/w lipid phase to carrier ratio (lipid phase; comprising of phospholipid and cholesterol in 1:1 M ratio) and Paclitaxel (PTX) was used as model anticancer drug. Results Based on flowability studies, out of 27 formulations; F3, F6, and F9 formulations were selected as they exhibited an excellent angle of repose (AOR) (17.24 ± 0.43, 16.41 ± 0.52 and 15.16 ± 0.72°), comparatively lower size of vesicles (i.e. 5.35 ± 0.76, 6.27 ± 0.59 and 5.43 ± 0.68 μm) and good compressibility index (14.81 ± 0.36, 15.01 ± 0.35 and 14.56 ± 0.14) via Carr’s index. The selected formulations were reduced into Nano (N) vesicles via probe sonication, followed by spray drying (SD) to get a dry powder of these formulations as F3SDN, F6SDN and F9SDN, and gave high yield (>53%) and exhibited poor to very poor compressibility index values via Carr’s Index. Post tablet manufacturing, F3 tablets formulation showed uniform weight uniformity (129.40 ± 3.85 mg), good crushing strength (14.08 ± 1.95 N), precise tablet thickness (2.33 ± 0.51 mm) and a short disintegration time of 14.35 ± 0.56 min, passing all quality control tests in accordance with British Pharmacopeia (BP). Upon nebulization of F3 tablets formulation, Ultrasonic nebulizer showed better nebulization time (8.75 ± 0.86 min) and high output rate (421.06 ± 7.19 mg/min) when compared to Vibrating mesh nebulizer. PTX-loaded F3 tablet formulations were identified as toxic (60% cell viability) to cancer MRC-5 SV2 cell lines while safe to normal MRC-5 cell lines. Conclusion Overall, in this study LMH was identified as a superior carbohydrate carrier for proliposome tablet manufacturing in a 1:25 w/w lipid to carrier ratio for in-vitro nebulization via Ultrasonic nebulizer. Electronic supplementary material The online version of this article (10.1007/s11095-020-02840-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Katie Lau
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ruba Bnyan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Matthew Roberts
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Abdullah Isreb
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sakib Yousaf
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
35
|
Yoshida H, Usui A, Abe Y, Goda Y, Izutsu KI. Relationship Between Geometric and Aerodynamic Particle Size Distributions in the Formulation of Solution and Suspension Metered-Dose Inhalers. AAPS PharmSciTech 2020; 21:158. [PMID: 32458106 DOI: 10.1208/s12249-020-01675-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/04/2020] [Indexed: 11/30/2022] Open
Abstract
The relationship between the geometric particle size distribution (GPSD) and the aerodynamic particle size distribution (APSD) of commercial solution and suspension metered-dose inhaler (MDI) formulations was assessed to clarify the use of GPSD to estimate the APSD. The size distribution of particles discharged from four suspension and four solution MDIs was measured using the Inas®100 light-scattering spectrometer and a Next Generation Impactor. The conversion factor was calculated by measuring the GPSD and APSD of MDIs. The morphology and physical properties of MDIs were studied using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Six of the eight MDIs showed similar conversion factor profiles, irrespective of their composition and formulation types. Applying the conversion factor obtained from one of the six MDIs resulted in a particle size distribution comparable to each APSD except for some formulations. The two other solution MDIs, which contained citric acid, had much higher and variable conversion factors. SEM images and DSC scans of the solids obtained by nebulization of the solutions containing beclomethasone and/or citric acid showed the formation of a paste-like amorphous solid. These results indicated that APSD of solution and suspension MDIs that form rigid particles may be estimated by using the conversion factor and GPSD. Contrarily, the estimation is more difficult in formulations that tend to lose the particle structure during the measurement.
Collapse
|
36
|
Paclitaxel-loaded micro or nano transfersome formulation into novel tablets for pulmonary drug delivery via nebulization. Int J Pharm 2020; 575:118919. [DOI: 10.1016/j.ijpharm.2019.118919] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 01/16/2023]
|
37
|
Sardeli C, Zarogoulidis P, Kosmidis C, Amaniti A, Katsaounis A, Giannakidis D, Koulouris C, Hohenforst-Schmidt W, Huang H, Bai C, Michalopoulos N, Tsakiridis K, Romanidis K, Oikonomou P, Mponiou K, Vagionas A, Goganau AM, Kesisoglou I, Sapalidis K. Inhaled chemotherapy adverse effects: mechanisms and protection methods. Lung Cancer Manag 2020; 8:LMT19. [PMID: 31983927 PMCID: PMC6978726 DOI: 10.2217/lmt-2019-0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lung cancer is still diagnosed at a late stage due to a lack of symptoms. Although there are novel therapies, many patients are still treated with chemotherapy. In an effort to reduce adverse effects associated with chemotherapy, inhaled administration of platinum analogs has been investigated. Inhaled administration is used as a local route in order to reduce the systemic adverse effects; however, this treatment modality has its own adverse effects. In this mini review, we present drugs that were administered as nebulized droplets or dry powder aerosols for non-small-cell lung cancer. We present the adverse effects and methods to overcome them.
Collapse
Affiliation(s)
- Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Third Department of Surgery, 'AHEPA' University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, 'AHEPA' University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Aikaterini Amaniti
- Anesthesiology Department, 'AHEPA' University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Athanasios Katsaounis
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Giannakidis
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charilaos Koulouris
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology/Pulmonology/Intensive Care/Nephrology, 'Hof' Clinics, University of Erlangen, Hof, Germany
| | - Haidong Huang
- The Diagnostic & Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Chong Bai
- The Diagnostic & Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Nikolaos Michalopoulos
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kosmas Tsakiridis
- Thoracic Surgery Department, 'Interbalkan' European Medical Center, Thessaloniki, Greece
| | - Konstantinos Romanidis
- Second Department of Surgery, University Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panagoula Oikonomou
- Second Department of Surgery, University Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantina Mponiou
- Radiotherapy Department, 'Theageneio' Anti-Cancer Hospital, Thessaloniki, Greece
| | | | - Alexandru Marian Goganau
- General Surgery Clinic 1, University of Medicine and Pharmacy of Craiova, Craiova County Emergency Hospital, Craiova, Romania
| | - Isaak Kesisoglou
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Sapalidis
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
38
|
Liu CY, Ko HK, Fink JB, Wan GH, Huang CC, Chen YC, Lin HL. Size Distribution of Colistin Delivery by Different Type Nebulizers and Concentrations During Mechanical Ventilation. Pharmaceutics 2019; 11:pharmaceutics11090459. [PMID: 31491870 PMCID: PMC6781281 DOI: 10.3390/pharmaceutics11090459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 02/02/2023] Open
Abstract
Although aerosol delivery through mechanical ventilators has been used to administer various medications, little is known of administration with colistin. This in vitro evaluation aimed to evaluate size distribution of colistin delivery by different types of nebulizers and concentrations during mechanical ventilation. Colistin methanesulfonate (colistin) for injection was dissolved in 6 mL of distilled water to produce a low concentration (L; 156 mg) and a high concentration (H; 312 mg). A dose volume of 6 mL was placed in a vibrating mesh nebulizer (VMN) and a jet nebulizer (JN). The inhaled mass (mean ± SD) of the VMN-L (53.80 ± 14.79 mg) was greater than both the JN-L (19.82 ± 3.34 mg, P = 0.001) and JN-H (31.72 ± 4.48 mg, P = 0.017). The nebulization time of the VMN-L (42.35 ± 2.30 min) was two times longer than the JN-L (21.12 ± 0.8 min) or JN-H (21.65 ± 0.42 min; P < 0.001). The mass median aerodynamic distal to the endotracheal tube was within a similar range at 2.03 to 2.26 μm (P = 0.434), independent of neb or formulation concentration. In conclusion, the VMN-L yields greater inhaled mass than the JN with either concentration. Therefore, a standard nominal dose of colistin results in a higher delivered dose during mechanical ventilation with a VMN compared with a JN and may be considered the preferred device. If JN must be used, multiple doses of low concentration colistin may compensate for poor delivery performance.
Collapse
Affiliation(s)
- Ching-Yi Liu
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Respiratory therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Hsin-Kuo Ko
- Division of Respiratory therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| | | | - Gwo-Hwa Wan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi 61301, Taiwan.
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital-Linko, Taoyuan 33301, Taiwan.
| | - Chung-Chi Huang
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Thoracic Medicine, Chang Gung Memorial Hospital-Linko, Taoyuan 33301, Taiwan.
| | - Yu-Chun Chen
- Division of Respiratory therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Hui-Ling Lin
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi 61301, Taiwan.
- Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan.
| |
Collapse
|
39
|
Luyt CE, Hékimian G, Bréchot N, Chastre J. Aerosol Therapy for Pneumonia in the Intensive Care Unit. Clin Chest Med 2019; 39:823-836. [PMID: 30390752 DOI: 10.1016/j.ccm.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antibiotic aerosolization in patients with ventilator-associated pneumonia (VAP) allows very high concentrations of antimicrobial agents in the respiratory secretions, far more than those achievable using the intravenous route. However, data in critically ill patients with pneumonia are limited. Administration of aerosolized antibiotics might increase the likelihood of clinical resolution, but no significant improvements in important outcomes have been consistently documented. Thus, aerosolized antibiotics should be restricted to the treatment of extensively resistant gram-negative pneumonia. In these cases, the use of a vibrating-mesh nebulizer seems to be more efficient, but specific settings and conditions are required to improve lung delivery.
Collapse
Affiliation(s)
- Charles-Edouard Luyt
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France
| | - Guillaume Hékimian
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France
| | - Nicolas Bréchot
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France
| | - Jean Chastre
- Service de Réanimation Médicale, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France; Sorbonne Universités, UPMC Université Paris 06, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France.
| |
Collapse
|
40
|
Kosmidis C, Sapalidis K, Zarogoulidis P, Sardeli C, Koulouris C, Giannakidis D, Pavlidis E, Katsaounis A, Michalopoulos N, Mantalobas S, Koimtzis G, Alexandrou V, Tsiouda T, Amaniti A, Kesisoglou I. Inhaled Cisplatin for NSCLC: Facts and Results. Int J Mol Sci 2019; 20:ijms20082005. [PMID: 31022839 PMCID: PMC6514814 DOI: 10.3390/ijms20082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
Although we have new diagnostic tools for non-small cell lung cancer, diagnosis is still made in advanced stages of the disease. However, novel treatments are being introduced in the market and new ones are being developed. Targeted therapies and immunotherapy have brought about a bloom in the treatment of non-small cell lung cancer. Still we have to find ways to administer drugs in a more efficient and safe method. In the current review, we will focus on the administration of inhaled cisplatin based on published data.
Collapse
Affiliation(s)
- Christoforos Kosmidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Konstantinos Sapalidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Paul Zarogoulidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece.
| | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece.
| | - Charilaos Koulouris
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Dimitrios Giannakidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Efstathios Pavlidis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Athanasios Katsaounis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Nikolaos Michalopoulos
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Stylianos Mantalobas
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Georgios Koimtzis
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Vyron Alexandrou
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Theodora Tsiouda
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Aikaterini Amaniti
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| | - Issak Kesisoglou
- 3rd Department of Surgery, "AHEPA" University Hospital, Aristotle University of Thessaloniki, Medical School, 57001 Thessaloniki, Greece.
| |
Collapse
|
41
|
Karrasch S, Radtke T, Simon M, Kronseder A, Dressel H, Jörres RA, Ochmann U. Acute effects of hypertonic saline inhalation on nitric oxide pulmonary diffusing capacity in healthy adults. Respir Physiol Neurobiol 2018; 258:40-46. [PMID: 30261306 DOI: 10.1016/j.resp.2018.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 11/26/2022]
Abstract
We investigated acute effects of inhalation of hypertonic saline solution (HSS) and oxygen (O2, control exposure) on pulmonary diffusing capacity for nitric oxide (DLNO) and carbon monoxide (DLCO). In a randomized crossover study, 20 healthy, non-smoking subjects were allocated to short-term inhalation of HSS or O2. Spirometry [(forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC)] and combined single-breath DLNO-DLCO measurements were performed before and immediately after inhalation of either HSS or O2. Percent changes were presented as median values (interquartile range). After HSS inhalation, DLNO, FEV1 and FVC were decreased by -3.0% (-7.3, 0.5), -3.1% (-4.2, -1.6) and -1.2% (-3.3, 0.6), respectively (all P < 0.05), without significant effect on DLCO. No changes in spirometry and diffusing capacity were observed following O2 inhalation. Acute inhalation of HSS causes a slight decrease in membrane conductance, probably as a result of fluid imbalance at the alveolar surface and interstitial fluid accumulation, both of which could impair gas exchange.
Collapse
Affiliation(s)
- S Karrasch
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich, Ludwig-Maximilians-Universität, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Neuherberg, Germany
| | - T Radtke
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland; Division of Occupational and Environmental Medicine, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
| | - M Simon
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - A Kronseder
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - H Dressel
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich, Ludwig-Maximilians-Universität, Munich, Germany; Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland; Division of Occupational and Environmental Medicine, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - R A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich, Ludwig-Maximilians-Universität, Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Neuherberg, Germany
| | - U Ochmann
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
42
|
Desu HR, Thoma LA, Wood GC. Nebulization of Cyclic Arginine-Glycine-(D)-Aspartic Acid-Peptide Grafted and Drug Encapsulated Liposomes for Inhibition of Acute Lung Injury. Pharm Res 2018. [PMID: 29536186 DOI: 10.1007/s11095-018-2366-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Acute lung injury (ALI) is a fatal syndrome in critically ill patients. It is characterized by lung edema and inflammation. Numerous pro-inflammatory mediators are released into alveoli. Among them, interleukin-1beta (IL-1β) causes an increase in solute permeability across the alveolar-capillary barrier leading to edema. It activates key effector cells (alveolar epithelial and endothelial cells) releasing inflammatory chemokines and cytokines. The purpose of the study was to demonstrate that nebulized liposomes inhibit ALI in vivo. METHODS In vivo ALI model was simulated through intra-tracheal instillation of IL-1β solution (100 μg/mL in PBS, pH 7.2, 200 μL) in male Sprague-Dawley rats. Various formulations were tested in ALI induced rats. These formulations include plain liposomes (PL), methylprednisolone sodium succinate solution (MPS solution), cRGD-peptide grafted liposomes (LcRGD) and methylprednisolone sodium succinate encapsulated and cRGD-peptide grafted liposomes (MPS-LcRGD). Formulations were nebulized in vivo in rats using micro-pump nebulizer. RESULTS Liposome formulations exhibited higher levels of drug concentration in lungs. The physicochemical parameters demonstrated that the liposome formulations were stable. On the basis of aerodynamic droplet-size, nebulized formulations were estimated to deposit in different regions of respiratory tract, especially alveolar region, Among the formulations, MPS-LcRGD caused significant reduction of edema, neutrophil infiltration and inflammation biochemical marker levels. CONCLUSION From the results, it can be inferred that nebulization of targeted liposomes had facilitated spatial and temporal modulation of drug delivery resulting in alleviation of ALI.
Collapse
Affiliation(s)
- Hari R Desu
- Intera Healthcare, IKP Knowledge Park, Genome Valley, Shameerpet, Hyderabad, TS, 500101, India.
| | - Laura A Thoma
- Plough Center for Sterile Drug Delivery Systems, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - George C Wood
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
43
|
Rossi I, Sonvico F, McConville JT, Rossi F, Fröhlich E, Zellnitz S, Rossi A, Del Favero E, Bettini R, Buttini F. Nebulized coenzyme Q 10 nanosuspensions: A versatile approach for pulmonary antioxidant therapy. Eur J Pharm Sci 2018; 113:159-170. [DOI: 10.1016/j.ejps.2017.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
|
44
|
Ochowiak M, Matuszak M, Włodarczak S. The analysis of pneumatic atomization of Newtonian and non-Newtonian fluids for different medical nebulizers. Drug Dev Ind Pharm 2017; 43:1999-2010. [PMID: 28737431 DOI: 10.1080/03639045.2017.1358274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The article contains results of the experimental studies on atomization process of inhaled drugs and aqueous solutions of glycerol with aqueous solutions of glycerol polyacrylamide (Rokrysol WF1) in pneumatic nebulizers. In experiments, the different concentration of aqueous solutions of glycerol polyacrylamide have been tested. In addition, the effect of nebulizer design on atomization process has been determined. The one of the main elements of medical pneumatic nebulizer is nebulizer cup. SIGNIFICANCE The experiment with this scope is new and is very important from the point of view of aerosol therapy. METHODS The results have been obtained by the use of the digital microphotography technique. In order to determine a physicochemical properties of tested liquids, a rheological measurements and measurements of the surface tension were carried out. RESULTS The differences between characteristics of aerosol for the liquids have been observed. The analysis of the droplets size distributions shows that the different diameters of droplets for Newtonian and non-Newtonian fluids have been formed during atomization in pneumatic nebulizers equipped with different nebulizer cups. The effect of the mouthpiece location on the droplets diameters has been shown. CONCLUSIONS Precise design of nebulizer and nebulizer cups, and also physicochemical properties of atomized liquids are of high importance in order to the effectiveness of drug delivery to patient's respiratory tracts.
Collapse
Affiliation(s)
- Marek Ochowiak
- a Faculty of Chemical Technology, Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Magdalena Matuszak
- a Faculty of Chemical Technology, Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Sylwia Włodarczak
- a Faculty of Chemical Technology, Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| |
Collapse
|
45
|
Estimation of critical supersaturation solubility ratio for predicting diameters of dry particles prepared by air-jet atomization of solutions. J Colloid Interface Sci 2017; 500:172-181. [PMID: 28410542 DOI: 10.1016/j.jcis.2017.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 11/22/2022]
Abstract
Air-jet atomization of solution into droplets followed by controlled drying is increasingly being used for producing nanoparticles for drug delivery applications. Nanoparticle size is an important parameter that influences the stability, bioavailability and efficacy of the drug. In air-jet atomization technique, dry particle diameters are generally predicted by using solute diffusion models involving the key concept of critical supersaturation solubility ratio (Sc) that dictates the point of crust formation within the droplet. As no reliable method exists to determine this quantity, the present study proposes an aerosol based method to determine Sc for a given solute-solvent system and process conditions. The feasibility has been demonstrated by conducting experiments for stearic acid in ethanol and chloroform as well as for anti-tubercular drug isoniazid in ethanol. Sc values were estimated by combining the experimentally observed particle and droplet diameters with simulations from a solute diffusion model. Important findings of the study were: (i) the measured droplet diameters systematically decreased with increasing precursor concentration (ii) estimated Sc values were 9.3±0.7, 13.3±2.4 and 18±0.8 for stearic acid in chloroform, stearic acid and isoniazid in ethanol respectively (iii) experimental results pointed at the correct interfacial tension pre-factor to be used in theoretical estimates of Sc and (iv) results showed a consistent evidence for the existence of induction time delay between the attainment of theoretical Sc and crust formation. The proposed approach has been validated by testing its predictive power for a challenge concentration against experimental data. The study not only advances spray-drying technique by establishing an aerosol based approach to determine Sc, but also throws considerable light on the interfacial processes responsible for solid-phase formation in a rapidly supersaturating system. Until satisfactory theoretical formulae for predicting CSS are developed, the present approach appears to offer the best option for engineering nanoparticle size through solute diffusion models.
Collapse
|
46
|
Rello J, Rouby JJ, Sole-Lleonart C, Chastre J, Blot S, Luyt CE, Riera J, Vos MC, Monsel A, Dhanani J, Roberts JA. Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients. Clin Microbiol Infect 2017; 23:640-646. [PMID: 28347790 DOI: 10.1016/j.cmi.2017.03.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 11/30/2022]
Abstract
Nebulized antibiotics have an established role in patients with cystic fibrosis or bronchiectasis. Their potential benefit to treat respiratory infections in mechanically ventilated patients is receiving increasing interest. In this consensus statement of the European Society of Clinical Microbiology and Infectious Diseases, the body of evidence of the therapeutic utility of aerosolized antibiotics in mechanically ventilated patients was reviewed and resulted in the following recommendations: Vibrating-mesh nebulizers should be preferred to jet or ultrasonic nebulizers. To decrease turbulence and limit circuit and tracheobronchial deposition, we recommend: (a) the use of specifically designed respiratory circuits avoiding sharp angles and characterized by smooth inner surfaces, (b) the use of specific ventilator settings during nebulization including use of a volume controlled mode using constant inspiratory flow, tidal volume 8 mL/kg, respiratory frequency 12 to 15 bpm, inspiratory:expiratory ratio 50%, inspiratory pause 20% and positive end-expiratory pressure 5 to 10 cm H2O and (c) the administration of a short-acting sedative agent if coordination between the patient and the ventilator is not obtained, to avoid patient's flow triggering and episodes of peak decelerating inspiratory flow. A filter should be inserted on the expiratory limb to protect the ventilator flow device and changed between each nebulization to avoid expiratory flow obstruction. A heat and moisture exchanger and/or conventional heated humidifier should be stopped during the nebulization period to avoid a massive loss of aerosolized particles through trapping and condensation. If these technical requirements are not followed, there is a high risk of treatment failure and adverse events in mechanically ventilated patients receiving nebulized antibiotics for pneumonia.
Collapse
Affiliation(s)
- J Rello
- European Study Group for Infections in Critically Ill Patients (ESGCIP), Barcelona, Spain.
| | - J J Rouby
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière hospital, Assistance Publique Hôpitaux de Paris, University Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | | | - J Chastre
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | - S Blot
- Department of Internal Medicine, Faculty of Medicine & Health Science, Ghent University, European Study Group for Infections in Critically Ill Patients (ESGCIP), Ghent, Belgium
| | - C E Luyt
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | - J Riera
- Critical Care Department, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Vall d'Hebron Institut of Research, Barcelona, Spain
| | - M C Vos
- Department of Medical Microbiology and Infectious Diseases, European Study Group of Nosocomial Infections (ESGNI), Rotterdam, The Netherlands
| | - A Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière hospital, Assistance Publique Hôpitaux de Paris, University Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | - J Dhanani
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia
| | - J A Roberts
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia
| |
Collapse
|
47
|
Wan M, Sun D, Wang S, Wu J, Yang Y, Wang K, He Q, Wang G, Bai J. Influence of concentration on distribution properties of stretched-DNA in the MEC studied with fluorescence imaging and drop shape analyzing. Colloids Surf B Biointerfaces 2017; 151:11-18. [PMID: 27939693 DOI: 10.1016/j.colsurfb.2016.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/19/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022]
Abstract
Stretching and manipulating DNA efficiently is significant for exploring the properties and applications of single DNA molecules. Here, the influence of concentrations of buffer and DNA on properties of stretched DNA molecules in the molecular evaporation combing (MEC) is investigated systematically with the single molecule fluorescence imaging microscopy and the high-precision drop shape analyzing technology. The stretched degree and uniformity of combed DNA molecules decrease as the buffer concentration are increased from 7 to 20mM. When the buffer concentration changes from 12 to 15mM, the stretched DNA molecules are apt to form a ringlike pattern. During the MEC process, there exist two kinds of evaporation modes, i.e., the constant contact angle mode and the constant contact radius mode. The former only takes effect in the lower concentration of buffer and DNA, enabling the uniform stretching. While the latter plays the leading role in the higher concentration, promoting the formation of the ringlike pattern of DNA molecules.
Collapse
Affiliation(s)
- Mengjiao Wan
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China; School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| | - Dan Sun
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China
| | - Shuang Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianguo Wu
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yuanyuan Yang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kaige Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Qingli He
- School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| | - Guiren Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China; Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Jintao Bai
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China; School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
48
|
|
49
|
Khosrawipour V, Diaz-Carballo D, Acikelli AH, Khosrawipour T, Falkenstein TA, Wu D, Zieren J, Giger-Pabst U. Cytotoxic effect of different treatment parameters in pressurized intraperitoneal aerosol chemotherapy (PIPAC) on the in vitro proliferation of human colonic cancer cells. World J Surg Oncol 2017; 15:43. [PMID: 28183319 PMCID: PMC5301439 DOI: 10.1186/s12957-017-1109-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/28/2017] [Indexed: 12/04/2022] Open
Abstract
Background Pressurized intraperitoneal aerosol chemotherapy (PIPAC) has been recently reported as a new approach for intraperitoneal chemotherapy (IPC). By means of a patented micropump, the liquid chemotherapy is delivered into the peritoneal cavity as an aerosol which is supposed to achieve “gas-like” distribution. However, recent data report that the fraction of the submicron aerosol (gas-like) is less than 3 vol% of the total amount of aerosolized chemotherapy. Until today, possible modifications of treatment parameters during PIPAC with the aim of improving therapeutic outcomes have not been studied yet. This study aims to establish an in vitro PIPAC model to explore the cytotoxic effect of the submicron aerosol fraction and to investigate the impact of different application parameters on the cytotoxic effect of PIPAC on human colonic cancer cells. Methods An in vitro model using HCT8 colon adenocarcinoma wild-type cells (HCT8WT) and multi-chemotherapy refractory subline (HCT8RT) was established. Different experimental parameters such as pressure, drug dosage, time exposure, and system temperature were monitored in order to search for the conditions with a higher impact on cell toxicity. Cell proliferation was determined by means of colorimetric MTT assay 48 h following PIPAC exposures. Results Standard operational parameters applied for PIPAC therapy depicted a cytotoxic effect of the submicron aerosol fraction generated by the PIPAC micropump. We also observed that increasing pressure significantly enhanced tumor cell toxicity in both wild-type and chemotherapy-resistant cells. A maximum of cytotoxicity was observed at 15 mmHg. Pressure >15 mmHg did not show additional cytotoxic effect on cells. Increased oxaliplatin dosage resulted in progressively higher cell toxicity as expected. However, in resistant cells, a significant effect was only found at higher drug concentrations. Neither an extension of exposure time nor an increase in temperature of the aerosolized chemotherapy solution added an improvement in cytotoxicity. Conclusions In this in vitro PIPAC model, the gas-like PIPAC aerosol fraction showed a cytotoxic effect which was enhanced by higher intra-abdominal pressure with a maximum at 15 mmHg. Similar findings were observed for drug dose escalation. A phase I dose escalation study is currently performed at our institution. However, increasing the intra-abdominal pressure might be a first and simple way to enhance the cytotoxic effect of PIPAC therapy which needs further clinical investigations. Electronic supplementary material The online version of this article (doi:10.1186/s12957-017-1109-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veria Khosrawipour
- Department of General Surgery and Therapy Center for Peritonealcarcinomatosis, St. Mary's Hospital Herne, Ruhr University of Bochum, Hölkeskampring 40, 44625, Herne, Germany.,Basic Research Laboratory Department of Surgery, St. Mary's Hospital Herne, Ruhr University of Bochum, Herne, Germany
| | - David Diaz-Carballo
- Department of Hematology and Medical Oncology, St. Mary's Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Ali-Haydar Acikelli
- Department of Hematology and Medical Oncology, St. Mary's Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Tanja Khosrawipour
- Department of General Surgery and Therapy Center for Peritonealcarcinomatosis, St. Mary's Hospital Herne, Ruhr University of Bochum, Hölkeskampring 40, 44625, Herne, Germany. .,Basic Research Laboratory Department of Surgery, St. Mary's Hospital Herne, Ruhr University of Bochum, Herne, Germany.
| | - Thomas Albert Falkenstein
- Basic Research Laboratory Department of Surgery, St. Mary's Hospital Herne, Ruhr University of Bochum, Herne, Germany
| | - Dan Wu
- Department of General Surgery and Therapy Center for Peritonealcarcinomatosis, St. Mary's Hospital Herne, Ruhr University of Bochum, Hölkeskampring 40, 44625, Herne, Germany.,Basic Research Laboratory Department of Surgery, St. Mary's Hospital Herne, Ruhr University of Bochum, Herne, Germany
| | - Jürgen Zieren
- Department of General Surgery and Therapy Center for Peritonealcarcinomatosis, St. Mary's Hospital Herne, Ruhr University of Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Urs Giger-Pabst
- Department of General Surgery and Therapy Center for Peritonealcarcinomatosis, St. Mary's Hospital Herne, Ruhr University of Bochum, Hölkeskampring 40, 44625, Herne, Germany.,Basic Research Laboratory Department of Surgery, St. Mary's Hospital Herne, Ruhr University of Bochum, Herne, Germany
| |
Collapse
|
50
|
Tahara K, Hashimoto W, Takeuchi H. Inhalation Properties and Stability of Nebulized Naked siRNA Solution for Pulmonary Therapy. Chem Pharm Bull (Tokyo) 2016; 64:63-7. [PMID: 26726746 DOI: 10.1248/cpb.c15-00615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of naked unmodified small interfering RNA (N-siRNA) without vector has previously been investigated as a pulmonary therapy. However, little is known regarding stabilities and aerodynamic particle sizes of N-siRNA-containing droplets; nebulizers have not yet been optimized for N-siRNA solutions. Thus, in this study, we investigated the feasibility of inhaled N-siRNA solutions for pulmonary therapy using nebulization. Various nebulizers and N-siRNA concentrations were assessed in terms of siRNA integrity after nebulization, and inhalation properties including aerodynamic particle size were examined. In comparison with ultrasonic-, air-jet-, and vibrating-mesh nebulizers, N-siRNA integrity was not affected by nebulization. Thus, in further experiments, performances of N-siRNA aerosols with different nebulizers and N-siRNA concentrations were evaluated and screened using an aerodynamic particle sizer (APS) which employed the time-of-flight principle or a cascade impactor. Mean mass aerodynamic diameters of N-siRNA-containing droplets from vibrating-mesh nebulizers tended to decrease with increasing N-siRNA concentrations, reflecting the influence of N-siRNA solutions on surface tension, as indicated by contact angles. These data indicate the utility of APS instruments for investigating the nebulized characteristics of expensive drugs including siRNAs and may facilitate the development of N-siRNA inhalation formulations.
Collapse
|