1
|
Paula AT, Ribeiro KVG, Cardoso KF, Bastos DSS, Santos EC, Novaes RD, Cardoso SA, Oliveira LL. Protective immunity triggered by ectonucleoside triphosphate diphosphohydrolase-based biopharmaceuticals attenuates cardiac parasitism and prevents mortality in Trypanosoma cruzi infection. Bioorg Med Chem 2022; 72:116966. [PMID: 35998390 DOI: 10.1016/j.bmc.2022.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
Chagas disease is a potentially fatal infection in 21 endemic Latin America countries for which the effectiveness of reference antiparasitic chemotherapy is limited. Thus, we developed three biopharmaceuticals and evaluated the effectiveness of different immunization strategies (recombinant protein NTPDase-1 [rNTPDase-1], DNA plasmid encoding Trypanosoma cruzi NTPDase-1 [TcNTPDase-1] and DNA-NTPDase-1 prime/rNTPDase-1 boost [Prime-boost]) based on the surface ecto-nucleoside triphosphate diphosphohydrolase (ecto-NTPDase) enzyme of T. cruzi in animals challenged with a virulent strain (Y) of this parasite. BALB/c mice were immunized three times at 30 days intervals, challenged with T. cruzi 15 days after the last immunization, and euthanized 30 days after T. cruzi challenge. Our results showed limited polarization of specific anti-ecto-NTPDase immunoglobulins in mice receiving both immunization protocols. Conversely, the Prime-boost strategy stimulated the Th1 protective phenotype, upregulating TNF-α and downregulating IL-10 production while increasing the activation/distribution of CD3+/CD8+, CD4+/CD44hi and CD8+/CD44hi/CD62L cells in immunized and infected mice. Furthermore, IL-6 and IL10 levels were reduced, while the distribution of CD4+/CD44hi and CD3+/CD8+ cells was increased from rNTPDase-1 and DNA-NTPDase1-based immunization strategies. Animals receiving DNA-NTPDase1 and Prime-boost protocols before T. cruzi challenged exhibited an enhanced immunological response associated with IL-17 upregulation and remarkable downregulation of heart parasitism (T. cruzi DNA) and mortality. These findings indicated that NTPDase-1 with Prime-boost strategy induced a protective and sustained Th17 response, enhancing host resistance against T. cruzi. Thus, ecto-NTPDase is a potentially relevant and applicable in the development of biopharmaceuticals with greater immunoprophylactic potential for Chagas disease.
Collapse
Affiliation(s)
| | | | | | | | - Eliziária Cardoso Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Silvia Almeida Cardoso
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | |
Collapse
|
2
|
Oliveira SSC, Elias CGR, Dias FA, Lopes AH, d’Avila-Levy CM, Santos ALS, Branquinha MH. The Enhanced Expression of Cruzipain-Like Molecules in the Phytoflagellate Phytomonas serpens Recovered From the Invertebrate and Plant Hosts. Front Cell Infect Microbiol 2022; 11:819133. [PMID: 35096661 PMCID: PMC8793489 DOI: 10.3389/fcimb.2021.819133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
Phytomonas serpens is a protozoan parasite that alternates its life cycle between two hosts: an invertebrate vector and the tomato fruit. This phytoflagellate is able to synthesize proteins displaying similarity to the cysteine peptidase named cruzipain, an important virulence factor from Trypanosoma cruzi, the etiologic agent of Chagas disease. Herein, the growth of P. serpens in complex medium (BHI) supplemented with natural tomato extract (NTE) resulted in the increased expression of cysteine peptidases, as verified by the hydrolysis of the fluorogenic substrate Z-Phe-Arg-AMC and by gelatin-SDS-PAGE. Phytoflagellates showed no changes in morphology, morphometry and viability, but the proliferation was slightly reduced when cultivated in the presence of NTE. The enhanced proteolytic activity was accompanied by a significant increase in the expression of cruzipain-like molecules, as verified by flow cytometry using anti-cruzipain antibodies. In parallel, parasites incubated under chemically defined conditions (PBS supplemented with glucose) and added of different concentration of NTE revealed an augmentation in the production of cruzipain-like molecules in a typically dose-dependent way. Similarly, P. serpens recovered from the infection of mature tomatoes showed an increase in the expression of molecules homologous to cruzipain; however, cells showed a smaller size compared to parasites grown in BHI medium. Furthermore, phytoflagellates incubated with dissected salivary glands from Oncopeltus fasciatus or recovered from the hemolymph of infected insects also showed a strong enhance in the expression of cruzipain-like molecules that is more relevant in the hemolymph. Collectively, our results showed that cysteine peptidases displaying similarities to cruzipain are more expressed during the life cycle of the phytoflagellate P. serpens both in the invertebrate and plant hosts.
Collapse
Affiliation(s)
- Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Camila G. R. Elias
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Felipe A. Dias
- Laboratório de Bioquímica de Microrganismos, Instituto de Microbiologia Paulo de Góes (IMPG), Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Angela H. Lopes
- Laboratório de Bioquímica de Microrganismos, Instituto de Microbiologia Paulo de Góes (IMPG), Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia M. d’Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Rodrigues da Cunha GM, Azevedo MA, Nogueira DS, Clímaco MDC, Valencia Ayala E, Jimenez Chunga JA, La Valle RJY, da Cunha Galvão LM, Chiari E, Brito CRN, Soares RP, Nogueira PM, Fujiwara RT, Gazzinelli R, Hincapie R, Chaves CS, Oliveira FMS, Finn MG, Marques AF. α-Gal immunization positively impacts Trypanosoma cruzi colonization of heart tissue in a mouse model. PLoS Negl Trop Dis 2021; 15:e0009613. [PMID: 34314435 PMCID: PMC8345864 DOI: 10.1371/journal.pntd.0009613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/06/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is considered endemic in more than 20 countries but lacks both an approved vaccine and limited treatment for its chronic stage. Chronic infection is most harmful to human health because of long-term parasitic infection of the heart. Here we show that immunization with a virus-like particle vaccine displaying a high density of the immunogenic α-Gal trisaccharide (Qβ-αGal) induced several beneficial effects concerning acute and chronic T. cruzi infection in α1,3-galactosyltransferase knockout mice. Approximately 60% of these animals were protected from initial infection with high parasite loads. Vaccinated animals also produced high anti-αGal IgG antibody titers, improved IFN-γ and IL-12 cytokine production, and controlled parasitemia in the acute phase at 8 days post-infection (dpi) for the Y strain and 22 dpi for the Colombian strain. In the chronic stage of infection (36 and 190 dpi, respectively), all of the vaccinated group survived, showing significantly decreased heart inflammation and clearance of amastigote nests from the heart tissue.
Collapse
Affiliation(s)
| | - Maíra Araújo Azevedo
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Brazil
| | | | | | - Juan Atilio Jimenez Chunga
- Universidad Nacional Mayor de San Marcos, Faculdad de Ciencias Biologicas, Escuela Profesional de Microbiología y Parasitología—Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Lima, Peru
| | - Raul Jesus Ynocente La Valle
- Universidad Nacional Mayor de San Marcos, Faculdad de Ciencias Biologicas, Escuela Profesional de Microbiología y Parasitología—Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Lima, Peru
| | | | - Egler Chiari
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Brazil
| | - Carlos Ramon Nascimento Brito
- Universidade Federal do Rio Grande do Norte—Centro de Ciências da Saúde—Departamento de Análises Clínicas e Toxicológicas, Natal, Brazil
| | | | | | | | - Ricardo Gazzinelli
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Brazil
- Instituto René Rachou/FIOCRUZ–MG, Belo Horizonte, Brazil
| | - Robert Hincapie
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Carlos-Sanhueza Chaves
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | |
Collapse
|
4
|
Rios LE, Vázquez-Chagoyán JC, Pacheco AO, Zago MP, Garg NJ. Immunity and vaccine development efforts against Trypanosoma cruzi. Acta Trop 2019; 200:105168. [PMID: 31513763 PMCID: PMC7409534 DOI: 10.1016/j.actatropica.2019.105168] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
Trypanosoma cruzi (T. cruzi) is the causative agent for Chagas disease (CD). There is a critical lack of methods for prevention of infection or treatment of acute infection and chronic disease. Studies in experimental models have suggested that the protective immunity against T. cruzi infection requires the elicitation of Th1 cytokines, lytic antibodies and the concerted activities of macrophages, T helper cells, and cytotoxic T lymphocytes (CTLs). In this review, we summarize the research efforts in vaccine development to date and the challenges faced in achieving an efficient prophylactic or therapeutic vaccine against human CD.
Collapse
Affiliation(s)
- Lizette E Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
| | - Antonio Ortega Pacheco
- Departamento de Salud Animal y Medicina Preventiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
5
|
dos Santos Júnior ADCM, Ricart CAO, Pontes AH, Fontes W, de Souza AR, Castro MS, de Sousa MV, de Lima BD. Proteome analysis of Phytomonas serpens, a phytoparasite of medical interest. PLoS One 2018; 13:e0204818. [PMID: 30303999 PMCID: PMC6179244 DOI: 10.1371/journal.pone.0204818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/15/2018] [Indexed: 02/04/2023] Open
Abstract
The protozoan Phytomonas serpens (class Kinetoplastea) is an important phytoparasite that has gained medical importance due to its similarities to Trypanosoma cruzi, the etiological agent of Chagas disease. The present work describes the first proteome analysis of P. serpens. The parasite was separated into cytosolic and high density organelle fractions, which, together with total cell extract, were subjected to LC-MS/MS analyses. Protein identification was conducted using a comprehensive database composed of genome sequences of other related kinetoplastids. A total of 1,540 protein groups were identified among the three sample fractions. Sequences from Phytomonas sp. in the database allowed the highest number of identifications, with T. cruzi and T. brucei the human pathogens providing the greatest contribution to the identifications. Based on the proteomics data obtained, we proposed a central metabolic map of P. serpens, which includes all enzymes of the citric acid cycle. Data also revealed a new range of proteins possibly responsible for immunological cross-reactivity between P. serpens and T. cruzi.
Collapse
Affiliation(s)
- Agenor de Castro Moreira dos Santos Júnior
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Arthur Henriques Pontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Agnelo Rodrigues de Souza
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Mariana Souza Castro
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Marcelo Valle de Sousa
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Beatriz Dolabela de Lima
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
6
|
Kesper N, Teixeira MMG, Lindoso JAL, Barbieri CL, Umezawa ES. Leptomonas seymouri and Crithidia fasciculata exoantigens can discriminate human cases of visceral leishmaniasis from American tegumentary leishmaniasis ones. Rev Inst Med Trop Sao Paulo 2017; 59:e1. [PMID: 28380110 PMCID: PMC5441150 DOI: 10.1590/s1678-9946201759001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022] Open
Abstract
Exoantigens (exo) from Leptomonas seymouri and Crithidia fasciculata were used in an enzyme linked immunosorbent assay (ELISA), showing 100% reactivity with sera from visceral leishmaniasis (VL) cases, and no reactivity with American tegumentary leishmaniasis (ATL) ones. Our results have indicated that these exoantigens can be applied in the discrimination of VL and ATL cases.
Collapse
Affiliation(s)
- Norival Kesper
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, Brazil
| | - Marta Maria G Teixeira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, Brazil
| | - José Angelo L Lindoso
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, Brazil.,Instituto Emilio Ribas de São Paulo, São Paulo, Brazil
| | - Clara Lúcia Barbieri
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, Brazil
| | - Eufrosina Setsu Umezawa
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, Brazil.,Universidade de São Paulo, Faculdade de Medicina, Departamento de Medicina Preventiva, São Paulo, Brazil
| |
Collapse
|
7
|
Oliveira SSCD, Gonçalves DDS, Garcia-Gomes ADS, Gonçalves IC, Seabra SH, Menna-Barreto RF, Lopes AHDCS, D'Avila-Levy CM, Santos ALSD, Branquinha MH. Susceptibility of Phytomonas serpens to calpain inhibitors in vitro: interference on the proliferation, ultrastructure, cysteine peptidase expression and interaction with the invertebrate host. Mem Inst Oswaldo Cruz 2016; 112:31-43. [PMID: 27925020 PMCID: PMC5224352 DOI: 10.1590/0074-02760160270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022] Open
Abstract
A pleiotropic response to the calpain inhibitor MDL28170 was detected in the tomato
parasite Phytomonas serpens. Ultrastructural studies revealed that
MDL28170 caused mitochondrial swelling, shortening of flagellum and disruption of
trans Golgi network. This effect was correlated to the inhibition in processing of
cruzipain-like molecules, which presented an increase in expression paralleled by
decreased proteolytic activity. Concomitantly, a calcium-dependent cysteine peptidase
was detected in the parasite extract, the activity of which was repressed by
pre-incubation of parasites with MDL28170. Flow cytometry and Western blotting
analyses revealed the differential expression of calpain-like proteins (CALPs) in
response to the pre-incubation of parasites with the MDL28170, and confocal
fluorescence microscopy confirmed their surface location. The interaction of
promastigotes with explanted salivary glands of the insect Oncopeltus
fasciatus was reduced when parasites were pre-treated with MDL28170,
which was correlated to reduced levels of surface cruzipain-like and gp63-like
molecules. Treatment of parasites with anti-Drosophila melanogaster
(Dm) calpain antibody also decreased the adhesion process. Additionally, parasites
recovered from the interaction process presented higher levels of surface
cruzipain-like and gp63-like molecules, with similar levels of CALPs cross-reactive
to anti-Dm-calpain antibody. The results confirm the importance of exploring the use
of calpain inhibitors in studying parasites’ physiology.
Collapse
Affiliation(s)
- Simone Santiago Carvalho de Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Rio de Janeiro, RJ, Brasil
| | - Diego de Souza Gonçalves
- Universidade Federal do Rio de Janeiro, Instituto de Química, Programa de Pós-Graduação em Bioquímica, Rio de Janeiro, RJ, Brasil
| | - Aline Dos Santos Garcia-Gomes
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil.,Instituto Federal de Educação, Ciência e Tecnologia, Laboratório de Microbiologia, Rio de Janeiro, RJ, Brasil
| | - Inês Correa Gonçalves
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Laboratório de Bioquímica de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Sergio Henrique Seabra
- Centro Universitário Estadual da Zona Oeste, Laboratório de Tecnologia em Cultura de Células, Rio de Janeiro, RJ, Brasil
| | | | - Angela Hampshire de Carvalho Santos Lopes
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Laboratório de Bioquímica de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Claudia Masini D'Avila-Levy
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - André Luis Souza Dos Santos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Rio de Janeiro, RJ, Brasil.,Universidade Federal do Rio de Janeiro, Instituto de Química, Programa de Pós-Graduação em Bioquímica, Rio de Janeiro, RJ, Brasil
| | - Marta Helena Branquinha
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
8
|
Nascentes GAN, Hernández CG, Rabelo RADS, Coelho RF, Morais FRD, Marques T, Batista LR, Meira WSF, Oliveira CJFD, Lages Silva E, Ramírez LE. The Driving of Immune Response by Th1 Adjuvants in Immunization of Mice with Trypanosoma cruzi marinkellei Elicits a Controversial Infection Control. Vector Borne Zoonotic Dis 2016; 16:317-25. [PMID: 26959861 DOI: 10.1089/vbz.2015.1874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In previous studies, we have demonstrated that inoculation with a Trypanosoma cruzi marinkellei (avirulent RM1 strain) was able to reduce parasitemia in mice challenged with T. cruzi, although it was not able to prevent histopathological lesions. Th1 response stimulation by immunization is necessary for T. cruzi infection control, but the resistance is also dependent on immunoregulatory mechanisms, which can be induced by adjuvants. Thus, we evaluated whether inoculation of T. cruzi marinkellei associated with administration of different adjuvants would be capable of inducing different patterns of immune response to maximize the immune response against T. cruzi (virulent Romildo strain) infection. Two hundred eighty nonisogenic mice were divided into 14 groups according to the immunization scheme and the subsequent challenge with virulent Romildo T. cruzi strain. Nonimmunized groups and animals inoculated without adjuvants were also included. Immune protection was not observed with Th2 adjuvants (incomplete Freund's adjuvant [IFA] and Alum) due to high parasitemia. Th1/Th2-polarizing adjuvants also did not induce immune protection because inulin was unable to maintain survival, and immune-stimulating complexes induced intense inflammatory processes. Animals sensitized with RM1 strain without adjuvants were able to reduce parasitemia, increase survival, and protect against severe histological lesions, followed by adequate cytokine stimulation. Finally, our results demonstrate that the early and balanced IFN-γ production becomes critical to promote protection and that Th1 adjuvant elicited a controversial infection control due to increased histopathological damage. Therefore, the host's immunomodulation remains one of the most important challenges in the research for effective protection against T. cruzi infection. Similarly, the identification of protective antigens in the RM1 strain of T. cruzi marinkellei may contribute to further studies on vaccine development against human Chagas disease.
Collapse
Affiliation(s)
- Gabriel Antonio Nogueira Nascentes
- 1 Microbiology and Immunology Discipline, Federal Institute of Education , Science and Technology at Triângulo Mineiro (IFTM), Uberaba, Brazil
| | - César Gómez Hernández
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Rosiley Aparecida de Souza Rabelo
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Raquel Fernandes Coelho
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Fabiana Rossetto de Morais
- 3 School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo (USP) , Ribeirão Preto, Brazil
| | - Tatiane Marques
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Lara Rocha Batista
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Wendell Sérgio Ferreira Meira
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Carlo José Freire de Oliveira
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Eliane Lages Silva
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| | - Luis Eduardo Ramírez
- 2 Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM) , Uberaba, Brazil
| |
Collapse
|
9
|
Experimental Vaccines against Chagas Disease: A Journey through History. J Immunol Res 2015; 2015:489758. [PMID: 26090490 PMCID: PMC4452192 DOI: 10.1155/2015/489758] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
Chagas disease, or American trypanosomiasis, which is caused by the protozoan parasite Trypanosoma cruzi, is primarily a vector disease endemic in 21 Latin American countries, including Mexico. Although many vector control programs have been implemented, T. cruzi has not been eradicated. The development of an anti-T. cruzi vaccine for prophylactic and therapeutic purposes may significantly contribute to the transmission control of Chagas disease. Immune protection against experimental infection with T. cruzi has been studied since the second decade of the last century, and many types of immunogens have been used subsequently, such as killed or attenuated parasites and new DNA vaccines. This primary prevention strategy appears feasible, effective, safe, and inexpensive, although problems remain. The objective of this review is to summarize the research efforts about the development of vaccines against Chagas disease worldwide. A thorough literature review was conducted by searching PubMed with the terms “Chagas disease” and “American trypanosomiasis” together with “vaccines” or “immunization”. In addition, reports and journals not cited in PubMed were identified. Publications in English, Spanish, and Portuguese were reviewed.
Collapse
|
10
|
Ferreira LR, Kesper N, Teixeira MM, Laurenti MD, Barbieri C, Lindoso JA, Umezawa ES. New insights about cross-reactive epitopes of six trypanosomatid genera revealed that Crithidia and Leptomonas have antigenic similarity to L. (L.) chagasi. Acta Trop 2014; 131:41-6. [PMID: 24275757 DOI: 10.1016/j.actatropica.2013.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/29/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
We investigated whether ELISA using crude antigens from insect and plant trypanosomatids, which are non-pathogenic and easily cultivated in large scale, has the same positivity data as Leishmania (Leishmania) chagasi, the etiological agent of human visceral leishmaniasis (VL) or canine leishmaniasis (CanL), or as Trypanosoma cruzi, the etiological agent of Chagas disease (CD). The antigens from Crithidia fasciculata, Crithidia luciliae, and Leptomonas seymouri showed 100% cross-reactivity with VL and CanL samples, with no statistically titers differences from L. (L.) chagasi, however, 34% (17/50) of VL samples revealed higher titers using the insect trypanosomatids than the homologous antigen. On the other hand, antigens from Strigomonas culicis, Angomonas deanei, and Phytomonas serpens showed low cross-reactivity with VL and CanL samples. The sera from patients with American tegumentary leishmaniasis showed low levels of cross-reactivity with all trypanosomatids investigated, even with L. (L) chagasi, without titers dissimilarity among them. These parasites were also worthless as antigen source for detection of CD cases, which required homologous antigens to reach 100% positivity. This study showed, by ELISA, that crude extract of Crithidia and Leptomonas have epitopes similar to L. (L.) chagasi, which supports the idea of using them as antigens source for the serodiagnosis of visceral leishmaniasis.
Collapse
|
11
|
Oral exposure to Phytomonas serpens attenuates thrombocytopenia and leukopenia during acute infection with Trypanosoma cruzi. PLoS One 2013; 8:e68299. [PMID: 23844182 PMCID: PMC3699546 DOI: 10.1371/journal.pone.0068299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 06/03/2013] [Indexed: 11/02/2022] Open
Abstract
Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease.
Collapse
|
12
|
Elias CGR, Chagas MG, Souza-Gonçalves AL, Pascarelli BMO, d'Avila-Levy CM, Branquinha MH, Santos ALS. Differential expression of cruzipain- and gp63-like molecules in the phytoflagellate trypanosomatid Phytomonas serpens induced by exogenous proteins. Exp Parasitol 2011; 130:13-21. [PMID: 22033075 DOI: 10.1016/j.exppara.2011.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022]
Abstract
Phytomonas serpens synthesizes metallo- and cysteine-proteases that are related to gp63 and cruzipain, respectively, two virulence factors produced by pathogenic trypanosomatids. Here, we described the cellular distribution of gp63- and cruzipain-like molecules in P. serpens through immunocytochemistry and confocal fluorescence microscopy. Both proteases were detected in distinct cellular compartments, presenting co-localization in membrane domains and intracellular regions. Subsequently, we showed that exogenous proteins modulated the production of both protease classes, but in different ways. Regarding the metalloprotease, only fetal bovine serum (FBS) influenced the gp63 expression, reducing its surface exposition (≈30%). Conversely, the cruzipain-like molecule was differentially modulated according to the proteins: human and bovine albumins reduced its expression around 50% and 35%, respectively; mucin and FBS did not alter its production, while IgG and hemoglobin drastically enhanced its surface exposition around 7- and 11-fold, respectively. Additionally, hemoglobin induced an augmentation in the cell-associated cruzipain-like activity in a dose-dependent manner. A twofold increase of the secreted cruzipain-like protein was detected after parasite incubation with 1% hemoglobin compared to the parasites incubated in PBS-glucose. The results showed the ability of P. serpens in modulating the expression and the activity of proteolytic enzymes after exposition to exogenous proteins, with emphasis in its cruzipain-like molecules.
Collapse
Affiliation(s)
- Camila G R Elias
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Bloco E-subsolo, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, 373 Cidade Universitária, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Pereira FM, Dias FA, Elias CG, d’Avila-Levy CM, Silva CS, Santos-Mallet JR, Branquinha MH, Santos AL. Leishmanolysin-like Molecules in Herpetomonas samuelpessoai Mediate Hydrolysis of Protein Substrates and Interaction with Insect. Protist 2010; 161:589-602. [DOI: 10.1016/j.protis.2010.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/22/2009] [Indexed: 10/19/2022]
|
14
|
Elias CGR, Aor AC, Valle RS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Cysteine peptidases from Phytomonas serpens: biochemical and immunological approaches. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 57:247-56. [PMID: 19780820 DOI: 10.1111/j.1574-695x.2009.00604.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phytomonas serpens, a phytoflagellate trypanosomatid, shares common antigens with Trypanosoma cruzi. In the present work, we compared the hydrolytic capability of cysteine peptidases in both trypanosomatids. Trypanosoma cruzi epimastigotes presented a 10-fold higher efficiency in hydrolyzing the cysteine peptidase substrate Z-Phe-Arg-AMC than P. serpens promastigotes. Moreover, two weak cysteine-type gelatinolytic activities were detected in P. serpens, while a strong 50-kDa cysteine peptidase was observed in T. cruzi. Cysteine peptidase activities were detected at twofold higher levels in the cytoplasmic fraction when compared with the membrane-rich or the content released from P. serpens. The cysteine peptidase secreted by P. serpens cleaved several proteinaceous substrates. Corroborating these findings, the cellular distribution of the cruzipain-like molecules in P. serpens was attested through immunocytochemistry analysis. Gold particles were observed in all cellular compartments, including the cytoplasm, plasma membrane, flagellum, flagellar membrane and flagellar pocket. Interestingly, some gold particles were visualized free in the flagellar pocket, suggesting the release of the cruzipain-like molecule. The antigenic properties of the cruzipain-like molecules of P. serpens were also analyzed. Interestingly, sera from chagasic patients recognized both cellular and extracellular antigens of P. serpens, including the cruzipain-like molecule. These results point to the use of P. serpens antigens, especially the cruzipain-like cysteine-peptidases, as an alternative vaccination approach to T. cruzi infection.
Collapse
Affiliation(s)
- Camila G R Elias
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Differential influence of gp63-like molecules in three distinct Leptomonas species on the adhesion to insect cells. Parasitol Res 2008; 104:347-53. [PMID: 18830631 DOI: 10.1007/s00436-008-1202-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
Parasites belonging to the Leptomonas genus have been used as model organisms for studying biochemical, cellular, and genetic processes unique to members of the Trypanosomatidae family. In the present study, the cell-associated and extracellular peptidases of three Leptomonas species, Leptomonas collosoma, Leptomonas samueli, and Leptomonas wallacei, were assayed and characterized by gelatin-sodium dodecyl sulfate polyacrylamide gel electrophoresis. All parasites released metallopeptidases, whereas no cell-associated proteolytic activity could be detected in the cellular extracts from L. collosoma. Western blotting probed with a polyclonal antibody raised against gp63 from Leishmania amazonensis revealed two major reactive polypeptides of apparent molecular masses of 63 and 52 kDa, with different intensities in cellular extracts and released proteins from the studied trypanosomatids. Flow cytometry and fluorescence microscopy analyses showed that the gp63-like molecules have a surface location. This is the first report on the presence of gp63-like molecules in L. collosoma, L. samueli, and L. wallacei. The pretreatment of L. samueli and L. wallacei with anti-gp63 antibody significantly diminished their association index to Aedes albopictus cell line (C6/36), suggesting a potential involvement of the gp63-like molecules in the interaction process of these insect trypanosomatids with the vector.
Collapse
|
16
|
Elias CGR, Pereira FM, Dias FA, Silva TLA, Lopes AHCS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Cysteine peptidases in the tomato trypanosomatid Phytomonas serpens: influence of growth conditions, similarities with cruzipain and secretion to the extracellular environment. Exp Parasitol 2008; 120:343-52. [PMID: 18793639 DOI: 10.1016/j.exppara.2008.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/13/2008] [Accepted: 08/22/2008] [Indexed: 11/26/2022]
Abstract
We have characterized the cysteine peptidase production by Phytomonas serpens, a tomato trypanosomatid. The parasites were cultivated in four distinct media, since growth conditions could modulate the synthesis of bioactive molecules. The proteolytic profile has not changed qualitatively regardless the media, showing two peptidases of 38 and 40kDa; however, few quantitative changes were observed including a drastic reduction (around 70%) on the 40 and 38kDa peptidase activities when parasites were grown in yeast extract and liver infusion trypticase medium, respectively, in comparison with parasites cultured in Warren medium. The time-span of growth did not significantly alter the protein and peptidase expression. The proteolytic activities were blocked by classical cysteine peptidase inhibitors (E-64, leupeptin, and cystatin), being more active at pH 5.0 and showing complete dependence to reducing agents (dithiothreitol and l-cysteine) for full activity. The cysteine peptidases were able to hydrolyze several proteinaceous substrates, including salivary gland proteins from Oncopeltus fasciatus, suggesting broad substrate utilization. By means of agglutination, fluorescence microscopy, flow cytometry and Western blotting analyses we showed that both cysteine peptidases produced by P. serpens share common epitopes with cruzipain, the major cysteine peptidase of Trypanosoma cruzi. Moreover, our data suggest that the 40kDa cysteine peptidase was located at the P. serpens cell surface, attached to membrane domains via a glycosylphosphatidylinositol anchor. The 40kDa peptidase was also detected in the cell-free culture supernatant, in an active form, which suggests secretion of this peptidase to the extracellular environment.
Collapse
Affiliation(s)
- Camila G R Elias
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, IMPPG, CCS, Bloco I-subsolo, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nascentes GAN, Meira WSF, Lages-Silva E, Ramírez LE. Absence of experimental cross-protection induced by a Trypanosoma cruzi-like strain isolated from bats. Rev Soc Bras Med Trop 2008; 41:152-7. [DOI: 10.1590/s0037-86822008000200004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 03/28/2008] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the possibility of inoculation and reinoculation with a trypanosomatid isolated from bats that is morphologically, biologically and molecularly similar to Trypanosoma cruzi, to protect against infection by virulent strains. Non-isogenic mice were divided into 24 groups that received from zero to three inoculations of Trypanosoma cruzi-like strain RM1, in the presence or absence of Freund's adjuvant, and were challenged with the VIC or JG strains of Trypanosoma cruzi. Parasitemia and survival were monitored and animals were sacrificed for histopathological analysis. Animals immunized with Trypanosoma cruzi-like strain RM1 presented decreased parasitemia, independently of the number of inoculations or the presence of adjuvant. In spite of this reduction, these animals did not present any protection against histopathological lesions. Severe eosinophilic infiltrate was observed and was correlated with the number of inoculations of Trypanosoma cruzi-like strain RM1. These findings suggest that prior inoculation with this strain did not protect against infection but, rather, aggravated the tissue inflammatory process.
Collapse
|
18
|
Hall CA, Hobby T, Cipollini M. Efficacy and mechanisms of alpha-solasonine-and alpha-solamargine-induced cytolysis on two strains of Trypanosoma cruzi. J Chem Ecol 2007; 32:2405-16. [PMID: 17001530 DOI: 10.1007/s10886-006-9153-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two genetically diverse strains of Trypanosoma cruzi were tested in vitro for susceptibility to the solanum-derived triglycoside alkaloids solasonine and solamargine. Cytolytic assays were performed on epimastigotes (EMs) and bloodstream form trypomastigotes (BSFs) lifecycle stages by using serial dilutions of each alkaloid. Each alkaloid effectively lysed both lifecycle stages, although solasonine routinely required higher concentrations to induce similar results. EMs demonstrated greater resistance to cytolysis than BSFs at equal concentrations of either alkaloid. No significant resistance could be correlated to parasite strain. The reported synergistic cytolytic effects observed upon compounding solasonine and solamargine together were also tested. We failed to identify any cytolytic synergism in cultures of EMs or BSFs. The role of rhamnose-binding proteins (RBPs) in mediating cytolysis was investigated through competitive inhibition experiments. The addition of exogenous L: -rhamnose to the media failed to reduce parasite attrition independent of the parasite lifecycle stage. Based on these results, we suggest the mechanisms involved in cytolysis of T. cruzi by solasonine and solamargine are largely independent of rhamnose receptor-specific interactions. We propose that attrition likely involves less-specific carbohydrate interactions, which lead to the formation and intercalation of sterol complexes into the parasite plasma membrane.
Collapse
|
19
|
Santos ALS, d'Avila-Levy CM, Elias CGR, Vermelho AB, Branquinha MH. Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens. Microbes Infect 2007; 9:915-21. [PMID: 17556002 DOI: 10.1016/j.micinf.2007.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/09/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
The present review provides an overview of recent discoveries concerning the immunological similarities between Phytomonas serpens, a tomato parasite, and human trypanosomatid pathogens, with special emphasis on peptidases. Leishmania spp. and Trypanosoma cruzi express peptidases that are well-known virulence factors, named leishmanolysin and cruzipain. P. serpens synthesizes two distinct classes of proteolytic enzymes, metallo- and cysteine-type peptidases, that share common epitopes with leishmanolysin and cruzipain, respectively. The leishmanolysin-like and cruzipain-like molecules from P. serpens participate in several biological processes including cellular growth and adhesion to the salivary glands of Oncopeltus fasciatus, a phytophagous insect experimental model. Since previous reports demonstrated that immunization of mice with P. serpens induced a partial protective immune response against T. cruzi, this plant trypanosomatid may be a suitable candidate for vaccine studies. Moreover, comparative approaches in the Trypanosomatidae family may be useful to understand kinetoplastid biology, biochemistry and evolution.
Collapse
Affiliation(s)
- André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Bloco I, Universidade Federal do Rio de Janeiro (UFRJ), RJ 21941-590, Brazil.
| | | | | | | | | |
Collapse
|
20
|
Santos ALS, Branquinha MH, D'Avila-Levy CM. The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. AN ACAD BRAS CIENC 2006; 78:687-714. [PMID: 17143406 DOI: 10.1590/s0001-37652006000400006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 02/15/2006] [Indexed: 11/22/2022] Open
Abstract
Plant and insect trypanosomatids constitute the "lower trypanosomatids", which have been used routinely as laboratory models for biochemical and molecular studies because they are easily cultured under axenic conditions, and they contain homologues of virulence factors from the classic human trypanosomatid pathogens. Among the molecular factors that contribute to Leishmania spp. virulence and pathogenesis, the major surface protease, alternatively called MSP, PSP, leishmanolysin, EC 3.4.24.36 and gp63, is the most abundant surface protein of Leishmania promastigotes. A myriad of functions have been described for the gp63 from Leishmania spp. when the metacyclic promastigote is inside the mammalian host. However, less is known about the functions performed by this molecule in the invertebrate vector. Intriguingly, gp63 is predominantly expressed in the insect stage of Leishmania, and in all insect and plant trypanosomatids examined so far. The gp63 homologues found in lower trypanosomatids seem to play essential roles in the nutrition as well as in the interaction with the insect epithelial cells. Since excellent reviews were produced in the last decade regarding the roles played by proteases in the vertebrate hosts, we focused in the recent developments in our understanding of the biochemistry and cell biology of gp63-like proteins in lower trypanosomatids.
Collapse
Affiliation(s)
- André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
21
|
Santos ALS, d'Avila-Levy CM, Dias FA, Ribeiro RO, Pereira FM, Elias CGR, Souto-Padrón T, Lopes AHCS, Alviano CS, Branquinha MH, Soares RMA. Phytomonas serpens: cysteine peptidase inhibitors interfere with growth, ultrastructure and host adhesion. Int J Parasitol 2005; 36:47-56. [PMID: 16310789 DOI: 10.1016/j.ijpara.2005.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/08/2005] [Accepted: 09/09/2005] [Indexed: 11/16/2022]
Abstract
In this study, we report the ultrastructural and growth alterations caused by cysteine peptidase inhibitors on the plant trypanosomatid Phytomonas serpens. We showed that the cysteine peptidase inhibitors at 10 microM were able to arrest cellular growth as well as promote alterations in the cell morphology, including the parasites becoming short and round. Additionally, iodoacetamide induced ultrastructural alterations, such as disintegration of cytoplasmic organelles, swelling of the nucleus and kinetoplast-mitochondrion complex, which culminated in parasite death. Leupeptin and antipain induced the appearance of microvillar extensions and blebs on the cytoplasmic membrane, resembling a shedding process. A 40 kDa cysteine peptidase was detected in hydrophobic and hydrophilic phases of P. serpens cells after Triton X-114 extraction. Additionally, we have shown through immunoblotting that anti-cruzipain polyclonal antibodies recognised two major polypeptides in P. serpens, including a 40 kDa component. Flow cytometry analysis confirmed that this cruzipain-like protein has a location on the cell surface. Ultrastructural immunocytochemical analysis demonstrated the presence of the cruzipain-like protein on the surface and in small membrane fragments released from leupeptin-treated parasites. Furthermore, the involvement of cysteine peptidases of P. serpens in the interaction with explanted salivary glands of the phytophagous insect Oncopeltus fasciatus was also investigated. When P. serpens cells were pre-treated with either cysteine peptidase inhibitors or anti-cruzipain antibody, a significant reduction of the interaction process was observed. Collectively, these results suggest that cysteine peptidases participate in several biological processes in P. serpens including cell growth and interaction with the invertebrate vector.
Collapse
Affiliation(s)
- André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundão, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pinge-Filho P, Peron JPS, de Moura TR, Menolli RA, Graça VK, Estevão D, Tadokoro CE, Jankevicius JV, Rizzo LV. Protective immunity against Trypanosoma cruzi provided by oral immunization with Phytomonas serpens: role of nitric oxide. Immunol Lett 2005; 96:283-90. [PMID: 15585334 DOI: 10.1016/j.imlet.2004.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 09/16/2004] [Accepted: 09/20/2004] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that Phytomonas serpens, a tomato parasite, shares antigens with Trypanosoma cruzi, the protozoa that causes Chagas' disease. These antigens are recognized by human sera and induce protective immunity in Balb/c mice. In the present study, inducible nitric oxide synthase (iNOS) knockout (KO) mice and C57BL/6 mice treated with the nitric oxide inhibitor, aminoguanidine (AG, 50 mg kg(-1)) infected with T. cruzi, were used to demonstrate the role of nitric oxide (NO) to host protection against T. cruzi infection achieved by oral immunization with live P. serpens. A reduction in parasitaemia and an increase in survival were observed in C57BL/6 infected mice and previously immunized with P. serpens, when compared to non-immunized mice. iNOS (KO) mice immunized and C57BL/6 immunized and treated with AG presented parasitaemia and mortality rates comparable to those of infected and non-immunized mice. By itself, immunization with P. serpens did not induce inflammation in the myocardium, but C57BL/6 mice so immunized showed fewer amastigotes nests in the heart following an acute T. cruzi infection than those in non-immunized mice. These results suggest that protective immunity against T. cruzi infection induced by immunization with P. serpens is dependent upon enhanced NO production during the acute phase of T. cruzi infection.
Collapse
Affiliation(s)
- P Pinge-Filho
- Department of Pathological Sciences, State University of Londrina, CEP: 86051-970, Paraná, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Herrera L, D'Andrea PS, Xavier SCC, Mangia RH, Fernandes O, Jansen AM. Trypanosoma cruzi infection in wild mammals of the National Park ‘Serra da Capivara’ and its surroundings (Piauí, Brazil), an area endemic for Chagas disease. Trans R Soc Trop Med Hyg 2005; 99:379-88. [PMID: 15780345 DOI: 10.1016/j.trstmh.2004.07.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 07/05/2004] [Accepted: 07/07/2004] [Indexed: 11/20/2022] Open
Abstract
We studied the prevalence of Trypanosoma cruzi infection among eight species of wild small mammals (n=289) in an area where human cases of infection/disease have occurred. Dogs (n=52) and goats (n=56) were also surveyed. The study was carried out inside a biological reserve, the National Park 'Serra da Capivara' and its surroundings in Piaui State, Brazil. The marsupial Didelphis albiventris and the caviomorph rodent Trichomys apereoides were found to be the most important reservoirs in the study area. Trichomys apereoides was the most abundant species (80%) and D. albiventris the most frequently infected (61%). Both T. cruzi I and T. cruzi II genotypes were isolated from these species. One specimen of Tr. apereoides displayed a mixed T. cruzi I/zymodeme 3 infection. Serum prevalence among dogs suggests that they may be involved in the maintenance of the parasite in the peridomestic environment, in contrast to goats, which are not apparently of any epidemiological importance. The distinct distribution and patterns of infection observed in the study areas suggest that even in the same biome, epidemiological studies or determination of control measures must take into account ecological peculiarities.
Collapse
Affiliation(s)
- L Herrera
- Laboratory of Trypanosomatid Biology, Department of Protozoology, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil 4365, Manguinhos, RJ, Brazil
| | | | | | | | | | | |
Collapse
|