1
|
Choi H. Power Amplifier Design for Ultrasound Applications. MICROMACHINES 2023; 14:1342. [PMID: 37512653 PMCID: PMC10383379 DOI: 10.3390/mi14071342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
A design analysis of the power amplifiers developed for ultrasound applications was conducted because ultrasound applications require different types of power amplifiers, which are one of the most critical electronic components in ultrasound systems. To generate acoustic signals using transducers, which are among the most important mechanical devices in ultrasound systems, an appropriate output voltage, current, or power signal must be produced by a power amplifier. Therefore, an appropriate design analysis of the power amplifier must be conducted to obtain the optimal performance from a transducer. In addition, because of new ultrasound research trends, such as ultrasound systems with other imaging modalities and wireless ultrasound systems, the selection of an appropriate power amplifier could improve the performance of an ultrasound system with other imaging and therapy modalities. This paper describes the design parameters of a power amplifier, including the gain, bandwidth, harmonic distortion, and efficiency. Each power amplifier has specific applications and limitations. Therefore, this review will assist design engineers and ultrasound researchers who need to develop or use power amplifiers in ultrasound applications.
Collapse
Affiliation(s)
- Hojong Choi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Amaya C, Luo S, Baigorri J, Baucells R, Smith ER, Xu XX. Exposure to low intensity ultrasound removes paclitaxel cytotoxicity in breast and ovarian cancer cells. BMC Cancer 2021; 21:981. [PMID: 34470602 PMCID: PMC8408969 DOI: 10.1186/s12885-021-08722-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paclitaxel (Taxol) is a microtubule-stabilizing drug used to treat several solid tumors, including ovarian, breast, non-small cell lung, and pancreatic cancers. The current treatment of ovarian cancer is chemotherapy using paclitaxel in combination with carboplatin as a frontline agent, and paclitaxel is also used in salvage treatment as a second line drug with a dose intensive regimen following recurrence. More recently, a dose dense approach for paclitaxel has been used to treat metastatic breast cancer with success. Paclitaxel binds to beta tubulin with high affinity and stabilizes microtubule bundles. As a consequence of targeting microtubules, paclitaxel kills cancer cells through inhibition of mitosis, causing mitotic catastrophes, and by additional, not yet well defined non-mitotic mechanism(s). RESULTS In exploring methods to modulate activity of paclitaxel in causing cancer cell death, we unexpectedly found that a brief exposure of paclitaxel-treated cells in culture to low intensity ultrasound waves prevented the paclitaxel-induced cytotoxicity and death of the cancer cells. The treatment with ultrasound shock waves was found to transiently disrupt the microtubule cytoskeleton and to eliminate paclitaxel-induced rigid microtubule bundles. When cellular microtubules were labelled with a fluorescent paclitaxel analog, exposure to ultrasound waves led to the disassembly of the labeled microtubules and localization of the signals to perinuclear compartments, which were determined to be lysosomes. CONCLUSIONS We suggest that ultrasound disrupts the paclitaxel-induced rigid microtubule cytoskeleton, generating paclitaxel bound fragments that undergo degradation. A new microtubule network forms from tubulins that are not bound by paclitaxel. Hence, ultrasound shock waves are able to abolish paclitaxel impact on microtubules. Thus, our results demonstrate that a brief exposure to low intensity ultrasound can reduce and/or eliminate cytotoxicity associated with paclitaxel treatment of cancer cells in cultures.
Collapse
Affiliation(s)
- Celina Amaya
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877], 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Shihua Luo
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877], 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Julio Baigorri
- HHMI High School Scholars Program, Department of Undergraduate Research and Community Outreach, University of Miami, Miami, FL, 33146, USA
| | - Rogelio Baucells
- HHMI High School Scholars Program, Department of Undergraduate Research and Community Outreach, University of Miami, Miami, FL, 33146, USA
| | - Elizabeth R Smith
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xiang-Xi Xu
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877], 1550 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Graybill PM, Davalos RV. Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies. Cancers (Basel) 2020; 12:E1132. [PMID: 32366043 PMCID: PMC7281591 DOI: 10.3390/cancers12051132] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Pulsed electric fields (PEFs) have become clinically important through the success of Irreversible Electroporation (IRE), Electrochemotherapy (ECT), and nanosecond PEFs (nsPEFs) for the treatment of tumors. PEFs increase the permeability of cell membranes, a phenomenon known as electroporation. In addition to well-known membrane effects, PEFs can cause profound cytoskeletal disruption. In this review, we summarize the current understanding of cytoskeletal disruption after PEFs. Compiling available studies, we describe PEF-induced cytoskeletal disruption and possible mechanisms of disruption. Additionally, we consider how cytoskeletal alterations contribute to cell-cell and cell-substrate disruption. We conclude with a discussion of cytoskeletal disruption-induced anti-vascular effects of PEFs and consider how a better understanding of cytoskeletal disruption after PEFs may lead to more effective therapies.
Collapse
Affiliation(s)
- Philip M. Graybill
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech–Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Mai B, Wang X, Liu Q, Zhang K, Wang P. The Application of DVDMS as a Sensitizing Agent for Sono-/Photo-Therapy. Front Pharmacol 2020; 11:19. [PMID: 32116698 PMCID: PMC7020569 DOI: 10.3389/fphar.2020.00019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Both photodynamic therapy (PDT) and sonodynamic therapy (SDT) are fast growing activated therapies by using light or ultrasound to initiate catalytic reaction of sensitizing agents, showing great potentials in clinics because of high safety and noninvasiveness. Sensitizers are critical components in PDT and SDT. Sinoporphyrin sodium (DVDMS) is an effective constituent derived from Photofrin that has been approved by FDA. This review is based on previous articles that explore the applications of DVDMS mediated photodynamic/sonodynamic cancer therapy and antimicrobial chemotherapy. Researchers utilize different cell lines, distinct treatment protocols to explore the enhanced therapeutic response of neoplastic lesion. Moreover, by designing a series of nanoparticles for loading DVDMS to improve the cellular uptake and antitumor efficacy of PDT/SDT, which integrates diagnostics into therapeutics for precision medical applications. During the sono-/photo-activated process, the balance between oxidation and antioxidation, numerous signal transduction and cell death pathways are also involved. In addition, DVDMS mediated photodynamic antimicrobial chemotherapy (PACT) can effectively suppress bacteria and multidrug resistant bacteria proliferation, promote the healing of wounds in burn infection. In brief, these efficient preclinical studies indicate a good promise for DVDMS application in the activated sono-/photo-therapy.
Collapse
Affiliation(s)
- Bingjie Mai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
5
|
A Macro Lens-Based Optical System Design for Phototherapeutic Instrumentation. SENSORS 2019; 19:s19245427. [PMID: 31835391 PMCID: PMC6960533 DOI: 10.3390/s19245427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Light emitting diode (LED) and ultrasound have been powerful treatment stimuli for tumor cell growth due to non-radiation effects. This research is the first preliminary study of tumor cell suppression using a macro-lens-supported 460-nm LED combined with high-frequency ultrasound. The cell density, when exposed to the LED combined with ultrasound, was gradually reduced after 30 min of induction for up to three consecutive days when 48-W DC, 20-cycle, and 50 Vp-p sinusoidal pulses were applied to the LEDs through a designed macro lens and to the ultrasound transducer, respectively. Using a developed macro lens, the non-directional light beam emitted from the LED could be localized to a certain spot, likewise with ultrasound, to avoid additional undesirable thermal effects on the small sized tumor cells. In the experimental results, compared to LED-only induction (14.49 ± 2.73%) and ultrasound-only induction (13.27 ± 2.33%), LED combined with ultrasound induction exhibited the lowest cell density (6.25 ± 1.25%). Therefore, our measurement data demonstrated that a macro-lens-supported 460-nm LED combined with an ultrasound transducer could possibly suppress early stage tumor cells effectively.
Collapse
|
6
|
Huang L, Lin H, Chen Q, Yu L, Bai D. MPPa-PDT suppresses breast tumor migration/invasion by inhibiting Akt-NF-κB-dependent MMP-9 expression via ROS. BMC Cancer 2019; 19:1159. [PMID: 31783821 PMCID: PMC6884812 DOI: 10.1186/s12885-019-6374-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer is one of the most commonly diagnosed cancers in women, with high morbidity and mortality. Tumor metastasis is implicated in most breast cancer deaths; thus, inhibiting metastasis may provide a therapeutic direction for breast cancer. In the present study, pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT) was used to inhibit metastasis in MCF-7 breast cancer cells. Methods Uptake of MPPa was detected by fluorescence microscopy. Cell viability was evaluated by the Cell Counting Kit-8 (CCK-8). ROS generation was detected by 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA). The migration of cells was assessed by wound healing assay, and invasion ability was assessed by Matrigel invasion assay. Levels of MMP2 and MMP9 were measured by PCR. Akt, phospho-Akt (Ser473), phospho-NF-κB p65 (Ser536) and NF-κB p65 were measured by western blotting. The F-actin cytoskeleton was observed by immunofluorescence. Lung tissue was visualized by hematoxylin and eosin staining. Results Following MPPa-PDT, migration and invasion were decreased in the MCF-7 cells. MPPa-PDT downregulated the expression of MMP2 and MMP9, which are responsible for the initiation of metastasis. MPPa-PDT reduced the phosphorylation of Akt and NF-κB. MPPa-PDT also reduced the expression of F-actin in cytoskeleton in MCF-7 cells. These effects were blocked by the reactive oxygen species scavenger NAC or the Akt activator SC79, while the PI3K inhibitor LY294002 or the Akt inhibitor triciribine enhanced these effects. Moreover, MPPa-PDT inhibited tumor metastasis and destroyed F-actin in vivo. Conclusion Taken together, these results demonstrate that MPPa-PDT inhibits the metastasis of MCF-7 cells both in vitro and in vivo and may be involved in the Akt/NF-κB-dependent MMP-9 signaling pathway. Thus, MPPa-PDT may be a promising treatment to inhibit metastasis.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haidan Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
7
|
IVONE MARIANTONIETTA, LAMBERTI LUCIANO, PAPPALETTERE CARMINE, CARATOZZOLO MARIANOFRANCESCO, TULLO APOLLONIA. EXPERIMENTAL COMPARISON OF MCF7 AND MCF10A RESPONSE TO LOW INTENSITY ULTRASOUND. J MECH MED BIOL 2019. [DOI: 10.1142/s021951941950057x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The low-intensity ultrasound effects on MCF7 (human breast adenocarcinoma) and MCF10A (healthy breast cells) have been investigated at different sonication protocol to probe the effectiveness and the selectivity of the ultrasound (US) treatment and to understand the implications between cell mortality, biomechanical interactions and cell elastic modulus. Experiments performed at fixed and variable frequency demonstrated the effectiveness of some protocols in killing carcinogenic cells and the healthy cells insensitivity. Variation of elastic properties of MCF7 cells exposed to US under varying sonication conditions was examined. Sonication was carried out at fixed frequency (as it is usually done in therapy protocols), between 400[Formula: see text]kHz and 620[Formula: see text]kHz, following two protocols: (i) at fixed power output; (ii) at fixed voltage of the US generator. Evolution of cell stiffness during the US treatment was monitored via atomic force spectroscopy (AFS). It was found that cell mortality has a similar trend of variation with respect to sonication frequency regardless of the way specimens are exposed to US. Mechanical properties do not show a uniform trend with respect to frequency, but variations of Young’s modulus are more marked near the very low (400–480) kHz or very high frequencies (580–620) kHz. The observed variations may be related to mechanical interactions occurring in the cell culture, suggesting a primacy of the environment on other factors.
Collapse
Affiliation(s)
- MARIANTONIETTA IVONE
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
| | - LUCIANO LAMBERTI
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
| | - CARMINE PAPPALETTERE
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, Bari, Italy
| | | | - APOLLONIA TULLO
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnology of Bari, Bari, Italy
| |
Collapse
|
8
|
Udroiu I, Coluzzi E, Bedini A, Giliberti C, Palomba R, Sgura A. In vitro effects of 1-MHz ultrasound on the mitotic spindle. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:568-575. [PMID: 30942920 DOI: 10.1002/em.22287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The effects of ultrasound on the cytoskeleton, comprising microtubules, had been studied decades ago. Nonetheless, very little attention has been paid to the effects of ultrasound on the mitotic spindle, which is also formed by microtubules. In this study, we treated human fibroblasts and human cancer cells (HeLa and MCF-7) with 1-MHz ultrasound at low intensities (70, 140, and 300 mW/cm2 ). In all cell lines, 5 min after the end of sonication, we found an intensity-dependent increase of mitotic abnormalities (including multipolar spindles). Two hours after sonication, these abnormalities were present, but at much lower frequencies. Twenty-four hours after sonication, mitotic abnormalities were at the same level of untreated samples, suggesting a transient effect due to ultrasound. Beside abnormalities of the mitotic spindle, we also observed an increase of metaphases with nonaligned chromosomes. The mitotic index of fibroblasts and HeLa cells, two hours after sonication, showed an intensity-dependent decrease; this was not observed in MCF-7 cells. In agreement with this last result, ultrasound-induced growth inhibition (which was also intensity-dependent) was more marked in fibroblasts and HeLa cells compared to MCF-7 cells. This work indicates that therapeutic ultrasound, even at intensities below the cavitation threshold, can affect genome integrity, showing the need to increase the knowledge of the potential risks of ultrasound to human health. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy
| | - Elisa Coluzzi
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy
| | - Angelico Bedini
- Inail, Istituto Nazionale Assicurazione Infortuni sul Lavoro, Rome, Italy
| | - Claudia Giliberti
- Inail, Istituto Nazionale Assicurazione Infortuni sul Lavoro, Rome, Italy
| | - Raffaele Palomba
- Inail, Istituto Nazionale Assicurazione Infortuni sul Lavoro, Rome, Italy
| | | |
Collapse
|
9
|
Suppression Technique of HeLa Cell Proliferation Using Ultrasonic Power Amplifiers Integrated with a Series-Diode Linearizer. SENSORS 2018; 18:s18124248. [PMID: 30513959 PMCID: PMC6308487 DOI: 10.3390/s18124248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022]
Abstract
A series-diode linearizer scheme is developed, which can possibly generate higher voltage signals. To verify our proposed concept, ultrasonic power amplifiers with and without the linearizer were tested for HeLa cells proliferation in vitro. In general, ultrasonic stimulus initiates the process of cavitation which can cause cell lysis and disruption of cell attachment. The cavitation can also induce formation of free radicals so that a rigid membrane of malignant cancer cells have increased sensitivity to ultrasonic stimulus. The cell density of the control group increased up to almost 100% on Day 3. However, cell densities of the experimental group when using an isolated ultrasonic power amplifier, and ultrasonic power amplifiers integrated with the linearizer at 1 V and 5 V DC (direct current) bias could be suppressed more than that when using an ultrasonic power amplifier (90.7 ± 1.2%, 75.8 ± 3.5%, and 68.1 ± 1.1%, respectively). Additionally, the proliferation suppressing ratios of each experimental group confirmed that the cell density decrements of the experimental groups exhibited statistical significance compared to the control group (ultrasonic power amplifier = 8.87%, ultrasonic power amplifier with 1 V biased linearizer = 23.87%, and ultrasonic power amplifier with 5 V biased linearizer = 31.56%).
Collapse
|
10
|
Skachkov I, Luan Y, van Tiel ST, van der Steen AFW, de Jong N, Bernsen MR, Kooiman K. SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures. PLoS One 2018; 13:e0204354. [PMID: 30235336 PMCID: PMC6147550 DOI: 10.1371/journal.pone.0204354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
In vivo cell tracking of therapeutic, tumor, and endothelial cells is an emerging field and a promising technique for imaging cardiovascular disease and cancer development. Site-specific labeling of endothelial cells with the MRI contrast agent superparamagnetic iron oxide (SPIO) in the absence of toxic agents is challenging. Therefore, the aim of this in vitro study was to find optimal parameters for efficient and safe SPIO-labeling of endothelial cells using ultrasound-activated CD31-targeted microbubbles for future MRI tracking. Ultrasound at a frequency of 1 MHz (10,000 cycles, repetition rate of 20 Hz) was used for varying applied peak negative pressures (10–160 kPa, i.e. low mechanical index (MI) of 0.01–0.16), treatment durations (0–30 s), time of SPIO addition (-5 min– 15 min with respect to the start of the ultrasound), and incubation time after SPIO addition (5 min– 3 h). Iron specific Prussian Blue staining in combination with calcein-AM based cell viability assays were applied to define the most efficient and safe conditions for SPIO-labeling. Optimal SPIO labeling was observed when the ultrasound parameters were 40 kPa peak negative pressure (MI 0.04), applied for 30 s just before SPIO addition (0 min). Compared to the control, this resulted in an approximate 12 times increase of SPIO uptake in endothelial cells in vitro with 85% cell viability. Therefore, ultrasound-activated targeted ultrasound contrast agents show great potential for effective and safe labeling of endothelial cells with SPIO.
Collapse
Affiliation(s)
- Ilya Skachkov
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Ying Luan
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Sandra T. van Tiel
- Department of Radiology & Nucleair Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Antonius F. W. van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Monique R. Bernsen
- Department of Radiology & Nucleair Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
11
|
Udroiu I, Marinaccio J, Bedini A, Giliberti C, Palomba R, Sgura A. Genomic damage induced by 1-MHz ultrasound in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:60-68. [PMID: 28833460 DOI: 10.1002/em.22124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/16/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Genotoxic effects of therapeutic ultrasound are poorly documented, when compared with the wide use of this physical agent. The aim of this work was to investigate the clastogenic and aneugenic potential of 1 MHz ultrasound, employing intensities (200 and 300 mW/cm2 ) above the cavitational threshold, but in the range of those normally used in therapeutics. Both normal fibroblasts (AG01522) and tumoral cells (MCF-7) were sonicated. While no effects on viability were noted, significant increases of CREST-negative micronuclei (indicative of clastogenesis) and CREST-positive micronuclei (indicative of aneuploidy) were detected. Clastogenesis was confirmed by increases of γ-H2AX foci, while increases of spindle anomalies confirmed the induction of aneuploidy. Our results confirm previous works that showed ultrasound-induced DNA breakage. Moreover, our experiments show that the known effect of ultrasound-induced damage to microtubules is also able to damage the mitotic spindle and induce aneuploidy. On the overall, this work highlights the importance to further investigate the potential risks related to therapeutics US. Environ. Mol. Mutagen. 59:60-68, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Universita Roma Tre, Rome, Italy
| | | | - Angelico Bedini
- Inail, Istituto Nazionale Assicurazione Infortuni sul Lavoro, Rome, Italy
| | - Claudia Giliberti
- Inail, Istituto Nazionale Assicurazione Infortuni sul Lavoro, Rome, Italy
| | - Raffaele Palomba
- Inail, Istituto Nazionale Assicurazione Infortuni sul Lavoro, Rome, Italy
| | | |
Collapse
|
12
|
Liao WH, Hsiao MY, Lo CW, Yang HS, Sun MK, Lin FH, Chang Y, Chen WS. Intracellular triggered release of DNA-quaternary ammonium polyplex by ultrasound. ULTRASONICS SONOCHEMISTRY 2017; 36:70-77. [PMID: 28069241 DOI: 10.1016/j.ultsonch.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
2-Methacryloyloxy ethyl trimethyl ammonium chloride (TMA) is a potent polymeric plasma DNA (pDNA) carrier. The present study shows that TMA/pDNA polyplexes could be internalized into cells efficiently, but could not mediate gene transfection on its own. The transfection process of TMA/pDNA polyplexes is turned on only when ultrasound (US) was applied 4-8h after incubating TMA/pDNA polyplexes with target cells (with a gene expression 1000 times that of the immediate US group). US is a widely used physical method for gene delivery; its transfection efficiency can be significantly enhanced when combined with cationic polymer vectors. Traditionally, US is given simultaneously with genetic materials, carriers and microbubbles to exert maximal efficacy. The unique on-off phenomenon of TMA/pDNA polyplexes, controlled by US exposure, was found to relate to the endosomal escape effect of US since the polyplexes colocalized well with the lysosome marker if no US was given or was given at inappropriate times. The proposed delivery system using US and TMA carriers has potential in many pharmaceutical applications requiring precise temporal and spatial release control.
Collapse
Affiliation(s)
- Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Yen Hsiao
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Wen Lo
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-Shan Yang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chong-Li, Taiwan
| | - Ming-Kuan Sun
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chong-Li, Taiwan.
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.
| |
Collapse
|
13
|
Carr L, Bardet SM, Burke RC, Arnaud-Cormos D, Leveque P, O'Connor RP. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells. Sci Rep 2017; 7:41267. [PMID: 28117459 PMCID: PMC5259788 DOI: 10.1038/srep41267] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022] Open
Abstract
High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (U87-MG) treated with 100, 10 ns, 44 kV/cm pulses at a frequency of 10 Hz showed a breakdown of their interphase microtubule network that was accompanied by a reduction in the number of growing microtubules. This effect is temporally linked to loss of mitochondrial membrane potential and independent of cellular swelling and calcium influx, two factors that disrupt microtubule growth dynamics. Super-resolution microscopy revealed microtubule buckling and breaking as a result of nsPEF application, suggesting that nsPEF may act directly on microtubules.
Collapse
Affiliation(s)
- Lynn Carr
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Sylvia M Bardet
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Ryan C Burke
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Delia Arnaud-Cormos
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Philippe Leveque
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| | - Rodney P O'Connor
- XLIM Research Institute, UMR CNRS No 7252, University of Limoges, Faculty of Science and Techniques, 123 Avenue Albert Thomas, 87060 Limoges, France
| |
Collapse
|
14
|
Characterization of Dynamic Behaviour of MCF7 and MCF10A Cells in Ultrasonic Field Using Modal and Harmonic Analyses. PLoS One 2015; 10:e0134999. [PMID: 26241649 PMCID: PMC4524665 DOI: 10.1371/journal.pone.0134999] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/15/2015] [Indexed: 12/25/2022] Open
Abstract
Treatment options specifically targeting tumour cells are urgently needed in order to reduce the side effects accompanied by chemo- or radiotherapy. Differences in subcellular structure between tumour and normal cells determine their specific elasticity. These structural differences can be utilised by low-frequency ultrasound in order to specifically induce cytotoxicity of tumour cells. For further evaluation, we combined in silico FEM (finite element method) analyses and in vitro assays to bolster the significance of low-frequency ultrasound for tumour treatment. FEM simulations were able to calculate the first resonance frequency of MCF7 breast tumour cells at 21 kHz in contrast to 34 kHz for the MCF10A normal breast cells, which was due to the higher elasticity and larger size of MCF7 cells. For experimental validation of the in silico-determined resonance frequencies, equipment for ultrasonic irradiation with distinct frequencies was constructed. Differences for both cell lines in their response to low-frequent ultrasonic treatment were corroborated in 2D and in 3D cell culture assays. Treatment with ~ 24.5 kHz induced the death of MCF7 cells and MDA-MB-231 metastases cells possessing a similar elasticity; frequencies of > 29 kHz resulted in cytotoxicity of MCF10A. Fractionated treatments by ultrasonic irradiation of suspension myeloid HL60 cells resulted in a significant decrease of viable cells, mostly significant after threefold irradiation in intervals of 3 h. Most importantly in regard to a clinical application, combined ultrasonic treatment and chemotherapy with paclitaxel showed a significantly increased killing of MCF7 cells compared to both monotherapies. In summary, we were able to determine for the first time for different tumour cell lines a specific frequency of low-intensity ultrasound for induction of cell ablation. The cytotoxic effect of ultrasonic irradiation could be increased by either fractionated treatment or in combination with chemotherapy. Thus, our results will open new perspectives in tumour treatment.
Collapse
|
15
|
Wang X, Hu J, Wang P, Zhang S, Liu Y, Xiong W, Liu Q. Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, sinoporphyrin sodium. Theranostics 2015; 5:772-86. [PMID: 25897341 PMCID: PMC4402500 DOI: 10.7150/thno.10853] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 03/06/2015] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is an emerging theranostic modality for various cancers and diseases. Photosensitizers are critical components for PDT. Sinoporphyrin sodium, referred to as DVDMS, is a newly identified photosensitizer that was isolated from Photofrin. Here, we evaluated the effects of DVDMS-mediated PDT (DVDMS-PDT) on tumor cell proliferation and metastasis in the highly metastatic 4T1 cell line and a mouse xenograft model. DVDMS-PDT elicited a potent phototoxic effect in vitro, which was abolished using the reactive oxygen species (ROS) scavenger N-acetylcysteine. In addition, DVDMS-PDT effectively inhibited the migration of 4T1 cells in scratch wound-healing and transwell assays. Using an in vivo mouse model, DVDMS-PDT greatly prolonged the survival time of tumor-bearing mice and inhibited tumor growth and lung metastasis, consistent with in vitro findings. PDT with DVDMS had a greater anti-tumor efficacy than clinically used Photofrin. Moreover, preliminary toxicological results indicate that DVDMS is relatively safe. These results suggest that DVDMS is a promising sensitizer that warrants further development for use in cancer treatment with PDT or other sensitizing agent-based therapies.
Collapse
Affiliation(s)
- Xiaobing Wang
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Jianmin Hu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Pan Wang
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Shaoliang Zhang
- 2. Qinglong High-Tech Co., Ltd, Yichun, Jiangxi, People's Republic of China
| | - Yichen Liu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Wenli Xiong
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| | - Quanhong Liu
- 1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
16
|
Furusawa Y, Hassan MA, Zhao QL, Ogawa R, Tabuchi Y, Kondo T. Effects of therapeutic ultrasound on the nucleus and genomic DNA. ULTRASONICS SONOCHEMISTRY 2014; 21:2061-8. [PMID: 24657073 DOI: 10.1016/j.ultsonch.2014.02.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 05/19/2023]
Abstract
In recent years, data have been accumulating on the ability of ultrasound to affect at a distance inside the cell. Previous conceptions about therapeutic ultrasound were mainly based on compromising membrane permeability and triggering some biochemical reactions. However, it was shown that ultrasound can access deep to the nuclear territory resulting in enhanced macromolecular localization as well as alterations in gene and protein expression. Recently, we have reported on the occurrence of DNA double-strand breaks in different human cell lines exposed to ultrasound in vitro with some insight into the subsequent DNA damage response and repair pathways. The impact of these observed effects again sways between extremes. It could be advantageous if employed in gene therapy, wound and bone fracture-accelerated healing to promote cellular proliferation, or in cancer eradication if the DNA lesions would culminate in cell death. However, it could be a worrying sign if they were penultimate to further cellular adaptations to stresses and thus shaking the safety of ultrasound application in diagnosis and therapy. In this review, an overview of the rationale of therapeutic ultrasound and the salient knowledge on ultrasound-induced effects on the nucleus and genomic DNA will be presented. The implications of the findings will be discussed hopefully to provide guidance to future ultrasound research.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Mariame A Hassan
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Al-Aini str., Cairo 11562, Egypt.
| | - Qing-Li Zhao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Ryohei Ogawa
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
17
|
Duvshani-Eshet M, Haber T, Machluf M. Insight concerning the mechanism of therapeutic ultrasound facilitating gene delivery: increasing cell membrane permeability or interfering with intracellular pathways? Hum Gene Ther 2014; 25:156-64. [PMID: 24251908 PMCID: PMC3922141 DOI: 10.1089/hum.2013.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 11/15/2013] [Indexed: 11/12/2022] Open
Abstract
Nonviral gene delivery methods encounter major barriers in plasmid DNA (pDNA) trafficking toward the nucleus. The present study aims to understand the role and contribution of therapeutic ultrasound (TUS), if any, in pDNA trafficking in primary cells such as fibroblasts and cell lines (e.g., baby hamster kidney [BHK]) during the transfection process. Using compounds that alter the endocytic pathways and the cytoskeletal network, we show that after TUS application, pDNA trafficking in the cytoplasm is not mediated by endocytosis or by the cytoskeletal network. Transfection studies and confocal analyses showed that the actin fibers impeded TUS-mediated transfection in BHK cells, but not in fibroblasts. Flow cytometric analyses indicated that pDNA uptake by cells occurs primarily when the pDNA is added before and not after TUS application. Taken together, these results suggest that TUS by itself operates as a mechanical force driving the pDNA through the cell membrane, traversing the cytoplasmic network and into the nucleus.
Collapse
Affiliation(s)
- Maayan Duvshani-Eshet
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology , Haifa 32000, Israel
| | | | | |
Collapse
|
18
|
Sazgarnia A, Shanei A, Taheri AR, Meibodi NT, Eshghi H, Attaran N, Shanei MM. Therapeutic effects of acoustic cavitation in the presence of gold nanoparticles on a colon tumor model. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2013; 32:475-483. [PMID: 23443188 DOI: 10.7863/jum.2013.32.3.475] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVES Acoustic cavitation can be fatal to cells and is used to destroy cancerous tumors. The particles in a liquid decrease the ultrasonic intensity threshold needed for onset of cavitation. Bubble generation from intense pulsed light-irradiated gold nanoparticles was investigated as a means of providing nucleation sites for acoustic cavitation in cancer tissues. METHODS This study was conducted on colon carcinoma tumors in BALB/c mice. The tumor-bearing mice were randomly divided into 7 groups (each containing 15 mice): (1) control, (2) gold nanoparticles, (3) intense pulsed light irradiation, (4) intense pulsed light + gold nanoparticles, (5) ultrasound alone, (6) ultrasound + gold nanoparticles, and (7) intense pulsed light + ultrasound + gold nanoparticles. In the respective groups, gold nanoparticles were injected into tumors. Intense pulsed light and ultrasound irradiation were performed on the tumors 24 hours after injection. Antitumor effects were estimated by evaluation of the relative tumor volume, doubling time, and 5-folding time for tumors after treatment. The cumulative survival fraction of the mice and percentage of the lost tissue volume (treated) were also assessed in different groups. RESULTS A significant difference in the average relative tumor volumes 15 days after treatment was found between the intense pulsed light + ultrasound + gold nanoparticle group and the other groups (P < .05). The longest doubling and 5-folding times were observed in the intense pulsed light + ultrasound + gold nanoparticles and ultrasound + gold nanoparticle groups. CONCLUSIONS Acoustic cavitation in the presence of gold nanoparticles and intense pulsed light has been introduced as a new way for improving therapeutic effects on tumors by reducing the relative tumor volume and increasing the cumulative survival fraction.
Collapse
Affiliation(s)
- Ameneh Sazgarnia
- Research Center and Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | |
Collapse
|
19
|
Ultrasound-induced new cellular mechanism involved in drug resistance. PLoS One 2012; 7:e48291. [PMID: 23284614 PMCID: PMC3526611 DOI: 10.1371/journal.pone.0048291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/26/2012] [Indexed: 11/19/2022] Open
Abstract
The acoustic effects in a biological milieu offer several scenarios for the reversal of multidrug resistance. In this study, we have observed higher sensitivity of doxorubicin-resistant uterine sarcoma MES-SA/DX5 cells to ultrasound exposure compared to its parent counterpart MES-SA cells; however, the results showed that the acoustic irradiation was genotoxic and could promote neotic division in exposed cells that was more pronounced in the resistant variant. The neotic progeny, imaged microscopically 24 hr post sonication, could contribute in modulating the final cell survival when an apoptotic dose of doxorubicin was combined with ultrasound applied either simultaneously or sequentially in dual-treatment protocols. Depending on the time and order of application of ultrasound and doxorubicin in combination treatments, there was either desensitization of the parent cells or sensitization of the resistant cells to doxorubicin action.
Collapse
|
20
|
Hassan MA, Ahmed IS, Campbell P, Kondo T. Enhanced gene transfection using calcium phosphate co-precipitates and low-intensity pulsed ultrasound. Eur J Pharm Sci 2012; 47:768-73. [DOI: 10.1016/j.ejps.2012.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 01/15/2023]
|
21
|
Wang ZQ, Li JS, Wang J, Kong YM, Zou MM, Li Y, Li K, Wang BX. Sonocatalytic damage of solute bovine serum albumin by disperse ZnO/porcine dens composite under ultrasonic irradiation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2012. [DOI: 10.1134/s0036024412130213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Bernard V, Mornstein V, Škorpíková J, Jaroš J. Ultrasound and cisplatin combined treatment of human melanoma cells A375--the study of sonodynamic therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1205-1211. [PMID: 22502893 DOI: 10.1016/j.ultrasmedbio.2012.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/31/2012] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Sonodynamic therapy, an effect of low-power ultrasound field and the anticancer drug cisplatin, was studied in vitro on human melanoma cells A375. The viability of cells has been studied by standard 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide viability assay according to different modes of treatment: application of cisplatin alone, exposure of ultrasound field alone, exposure to ultrasound followed by cisplatin and application of cisplatin followed by exposure to ultrasound. Ultrasound was used at a therapeutic intensity of 1 W∙cm(-2) for 10 min. Concentration of cisplatin in the cell suspension was always 2.3 μM. The results show that sonodynamic therapy is one of the possibilities of how to intensify standard cytostatic therapy. This conclusion is supported by reducing the viability of studied cells, especially 72 h after the treatment. The time sequence of application of ultrasonic field and cytostatics appears to be a significant factor affecting the changes in cell viability. Maximum suppression of viability has been found when applying the experimental design involving application of cisplatin followed by exposure to ultrasound; the final value of viability of combined affected cells was more than 10% lower than for cisplatin treatment alone.
Collapse
Affiliation(s)
- Vladan Bernard
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
23
|
Kučera O, Havelka D. Mechano-electrical vibrations of microtubules--link to subcellular morphology. Biosystems 2012; 109:346-55. [PMID: 22575306 DOI: 10.1016/j.biosystems.2012.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/23/2012] [Indexed: 01/19/2023]
Abstract
Spontaneous mechanical oscillations were predicted and experimentally proven on almost every level of cellular structure. Besides morphogenetic potential of oscillatory mechanical force, oscillations may drive vibrations of electrically polar structures or these structures themselves may oscillate on their own natural frequencies. Vibrations of electric charge will generate oscillating electric field, role of which in morphogenesis is discussed in this paper. This idea is demonstrated in silico on the conformation of two growing microtubules.
Collapse
Affiliation(s)
- Ondřej Kučera
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 182 51 Prague, Czechia.
| | | |
Collapse
|
24
|
Louw T, Whitney S, Subramanian A, Viljoen H. Forced wave motion with internal and boundary damping. JOURNAL OF APPLIED PHYSICS 2012; 111:14702-147028. [PMID: 22271934 PMCID: PMC3262849 DOI: 10.1063/1.3674316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 12/07/2011] [Indexed: 05/31/2023]
Abstract
A d'Alembert-based solution of forced wave motion with internal and boundary damping is presented with the specific intention of investigating the transient response. The dynamic boundary condition is a convenient method to model the absorption and reflection effects of an interface without considering coupled PDE's. Problems with boundary condition of the form [Formula: see text] are not self-adjoint which greatly complicates solution by spectral analysis. However, exact solutions are found with d'Alembert's method. Solutions are also derived for a time-harmonically forced problem with internal damping and are used to investigate the effect of ultrasound in a bioreactor, particularly the amount of energy delivered to cultured cells. The concise form of the solution simplifies the analysis of acoustic field problems.
Collapse
|
25
|
Samarbakhsh A, Tuszynski JA. Vibrational dynamics of bio- and nano-filaments in viscous solution subjected to ultrasound: implications for microtubules. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:937-46. [DOI: 10.1007/s00249-011-0709-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/20/2011] [Accepted: 04/28/2011] [Indexed: 11/28/2022]
|
26
|
Jin X, Guo Y, Wang J, Wang Z, Gao J, Kang P, Li Y, Zhang X. The preparation of TiO2/hydroxylapatite (TiO2/HA) composite and sonocatalytic damage to bovine serum albumin (BSA) under ultrasonic irradiation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcata.2011.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Bernard V, Skorpíková J, Mornstein V, Slaninová I. Biological effects of combined ultrasound and cisplatin treatment on ovarian carcinoma cells. ULTRASONICS 2010; 50:357-362. [PMID: 19740505 DOI: 10.1016/j.ultras.2009.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/29/2009] [Accepted: 08/06/2009] [Indexed: 05/28/2023]
Abstract
The effects of low-power ultrasound, the anti-cancer drug cisplatin, and their combined application were studied in two lines of human ovarian carcinoma cells, A2780 and A2780cis. Four modes of treatment were used: exposure to ultrasonic field, application of cisplatin, exposure to ultrasound followed by cisplatin, and presence of cisplatin followed by exposure to application ultrasound. Ultrasound was used at intensities of 0.5 W/cm(2) and 1.0 W/cm(2) for 10 min, cisplatin was applied at concentrations of 1 microM and 6 microM per cell suspension treated in A2780 and cisplatin-resistant A2780cis cells, respectively. The results of each experimental treatment were assessed by the resultant cell viability related to the viability of control cells, using a standard MTT test. It was shown that a combined effect of ultrasound and cisplatin was more effective than that of ultrasound or cisplatin alone. It also appeared that the order of application played a role, with the cisplatin-ultrasound treatment lowering cell viability more than the ultrasound-cisplatin treatment. It can be assumed that the exposure of cells to a low-power ultrasonic field has an immediate effect on the structure of cell surfaces and, consequently, on entry of cisplatin into the cell. The study also included observations on changes in the cell cycle associated with the treatments used in both cell lines and their evaluation by flow cytometry.
Collapse
Affiliation(s)
- Vladan Bernard
- Masaryk University, Faculty of Medicine, Department of Biophysics, Brno, Czech Republic.
| | | | | | | |
Collapse
|
28
|
Raz D, Zaretsky U, Einav S, Elad D. Cellular Alterations in Cultured Endothelial Cells Exposed to Therapeutic Ultrasound Irradiation. ACTA ACUST UNITED AC 2009; 12:201-13. [PMID: 16162443 DOI: 10.1080/10623320500227317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Restoration of blood supply to tissue with impaired perfusion depends on spontaneous or mediated angiogenesis, which among other mechanisms includes stimulation, migration, and proliferation of endothelial cells (ECs). Therapeutic ultrasound (US) irradiation is known as an inducer of cellular modifications and is used to accelerate wound healing. An in vitro setup was developed in order to allow for a comprehensive investigation of cellular alterations induced in cultured ECs after exposure to different modes of therapeutic US irradiation. Viability assays revealed a higher rate of proliferation in the sonicated groups, although cell death was not observed. Visualization of actin stress fibers demonstrated partial disassembly of the fibers immediately after US sonication, with a maximum after about 2 h. However, 24 h following sonication the fibers regain normal appearance. A similar behavior was observed with the microtubules and focal adhesion complexes. Utilizing a wound healing assay revealed that migration rate of ECs is enhanced by US irradiation. These findings hint that therapeutic US sonication of ECs results in temporarily cellular alterations, which may induce tissue remodeling via stimulation of EC proliferation and migration.
Collapse
Affiliation(s)
- Dalit Raz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
29
|
Fang HY, Tsai KC, Cheng WH, Shieh MJ, Lou PJ, Lin WL, Chen WS. The effects of power on–off durations of pulsed ultrasound on the destruction of cancer cells. Int J Hyperthermia 2009; 23:371-80. [PMID: 17558736 DOI: 10.1080/02656730701342409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Low-intensity ultrasound irradiation is a potential method for suppressing cancer cell proliferation, inducing apoptosis and delivering specific cytotoxic genes or drugs into tumors topographically in future cancer therapies. However, ultrasound attenuates rapidly in tissue and produces heat. Pulsed ultrasound is frequently used to minimize pain and possible thermal damage to the surrounding normal tissue during therapy, since it results in smaller temperature increases. This study compared three pulsed-ultrasound strategies for destroying cancer cells, measuring their induced temperature increases to determine the optimal pulsing parameters. MATERIALS AND METHODS We performed three types of experiment, involving ultrasound with (1) a fixed duty cycle of 50% with variable on- and off-times, (2) a fixed off-time with variable on-times, and (3) a fixed on-time with variable off-times. RESULTS The results show that for different types of cultured cells (HeLa, HT-29, Ca9-22 and fibroblast) exposed to ultrasound of the same frequency (1 MHz) and energy, long pulses combined with off-times that are 5-10 times longer (on-/-off-times pairs of 5/25, 25/250, or 250/2500 ms/ms) cause significant cell destruction whilst avoiding temperature increases of more than 1.5 degrees C. Furthermore, the correlation between the temperature increase and the percentage of surviving cells is low. CONCLUSIONS Pulsed ultrasound with a long on-time and an even longer off-time exerts a high cytotoxic effect but a smaller temperature increase compared with non-pulsed ultrasound. This indicates that the cytotoxic effects observed in the current study were not purely due to the thermal effects of the ultrasound.
Collapse
Affiliation(s)
- H Y Fang
- Division of Medical Engineering Research, National Health Research Institute, Miaoli, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Or M, Kimmel E. Modeling linear vibration of cell nucleus in low intensity ultrasound field. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1015-1025. [PMID: 19376638 DOI: 10.1016/j.ultrasmedbio.2008.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/27/2008] [Accepted: 11/14/2008] [Indexed: 05/27/2023]
Abstract
Therapeutic ultrasound of low to medium intensity is known to induce alterations in structure and functioning of cells and tissues, both in vivo and in vitro. Such effects, including excitation or inhibition of action potentials, enhanced angiogenesis rate, increased membrane permeability and changes in molecular expression, cannot be attributed in many cases to rising temperatures or the presence of gas bubbles. This study attempts to find a possible alternative explanation for the cases where neither thermal effects nor cavitation mechanisms count. We focus our attention on the complex and dense structure of cell cytoplasm, looking for periodic separating forces and relative motion between intracellular elements, such as the nucleus, and the structure in which they are embedded. It is hypothesized that relative oscillatory displacements between intracellular elements of different densities might appear in cells in response to low intensity therapeutic ultrasound (LITUS). Those displacements might induce alterations in cell structure and functioning. A linear model is constructed and solved for a spherical object, representing a typical organelle such as the nucleus, within a homogenous viscoelastic medium that vibrates uniformly. The structure in which the object is embedded is described by four different rheologic models, including viscous fluid, elastic solid, and Voigt and Maxwell viscoelastic constructs. It is found that cyclic intracellular displacements comparable with and even larger than the mean thermal fluctuations may be obtained due to LITUS irradiation in conditions where the relative motion of organelles is dominated by elastic response, or where the effective viscosity of the cytoplasm is low. Resonance frequency at which intracellular vibration of maximal amplitude is obtained is found to lie within the low LITUS frequency range, i.e., tens to hundreds of kHz. Local intracellular strain on the order of 0.5% is found for 1 microm organelle in 10 microm cell under typical LITUS settings. It is suggested that fatigue-like, cumulative effect underlie the transfer of the intracellular strain into biologic alterations.
Collapse
Affiliation(s)
- Meir Or
- Biomedical Engineering Department, Technion, Haifa, Israel.
| | | |
Collapse
|
31
|
Hauser J, Hauser M, Muhr G, Esenwein S. Ultrasound-induced modifications of cytoskeletal components in osteoblast-like SAOS-2 cells. J Orthop Res 2009; 27:286-94. [PMID: 18752276 DOI: 10.1002/jor.20741] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In clinical and experimental studies an acceleration of fracture healing and increased callus formation induced by low-intensity pulsed ultrasound (LIPUS) has been demonstrated. The exact molecular mechanisms of ultrasound treatment are still unclear. In this study ultrasound transmitted cytoskeletal and growth rate changes of SAOS-2 cells were examined. Osteoblast-like cell lines (SAOS-2) were treated using low-intensity pulsed ultrasound. Cytoskeletal changes were analyzed using rhodamine phalloidine for f-actin staining and indirect immunofluorescence techniques with different monoclonal antibodies against several tubulin modifications. To examine changes of cell number after ultrasound treatment cell counts were done. Significant changes in cytoskeleton structure were detected compared to controls, including an enhancement of stress fiber formation combined with a loss of cell migration after ultrasound application. We further observed that sonication altered the proportion of the more stable microtubules to the more labile microtubule subclass. The labile tyrosinated microtubules appeared highly enhanced, whereas the amount of the more stable acetylated microtubules was remarkably diminished. All these observations were quantified by fluorometric measurements. The centrosomal gamma-tubulin was frequently scattered throughout the cell's cytoplasm, giving rise to additional polyglu-positive microtubular asters, which induced multipolar spindles, leading either to aneuploid mini-or giant cells. Moreover, a significant increase of cell number was noticed in the sonicated group. These experiments demonstrate that ultrasound treatment increases cell number and leads to significant changes of the cytoskeletal structure and composition in vitro.
Collapse
Affiliation(s)
- Joerg Hauser
- Department of Surgery, BG-Kliniken Bergmannsheil, Ruhr-University-Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum Germany.
| | | | | | | |
Collapse
|
32
|
Paliwal S, Mitragotri S. Therapeutic opportunities in biological responses of ultrasound. ULTRASONICS 2008; 48:271-278. [PMID: 18406440 DOI: 10.1016/j.ultras.2008.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 02/05/2008] [Accepted: 02/28/2008] [Indexed: 05/26/2023]
Abstract
The therapeutic benefits of several existing ultrasound-based therapies such as facilitated drug delivery, tumor ablation and thrombolysis derive largely from physical or mechanical effects. In contrast, ultrasound can also trigger various time-dependent biochemical responses in the exposed biological milieu. Several biological responses to ultrasound exposure have been previously described in the literature but only a handful of these provide therapeutic opportunities. These include the use of ultrasound for healing of soft tissues and bones, the use of ultrasound for inducing non-necrotic tumor atrophy as well as for potentiation of chemotherapeutic drugs, activation of the immune system, angiogenesis and suppression of phagocytosis. A review of these therapeutic opportunities is presented with particular emphasis on their mechanisms. Overall, this review presents the increasing importance of ultrasound's role as a biological sensitizer enabling novel therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Paliwal
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
33
|
Hundt W, Yuh EL, Steinbach S, Bednarski MD, Guccione S. Comparison of continuous vs. pulsed focused ultrasound in treated muscle tissue as evaluated by magnetic resonance imaging, histological analysis, and microarray analysis. Eur Radiol 2008; 18:993-1004. [PMID: 18205005 DOI: 10.1007/s00330-007-0848-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Revised: 10/30/2007] [Accepted: 12/21/2007] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to investigate the effect of different application modes of high intensity focused ultrasound (HIFU) to muscle tissue. HIFU was applied to muscle tissue of the flank in C3H/Km mice. Two dose regimes were investigated, a continuous HIFU and a short-pulsed HIFU mode. Three hours after HIFU treatment pre- and post-contrast T1-weighted, T2-weighted images and a diffusion-weighted STEAM sequence were obtained. After MR imaging, the animals were euthanized and the treated, and the non-treated tissue was taken out for histology and functional genomic analysis. T2 images showed increased signal intensity and post-contrast T1 showed a decreased contrast uptake in the central parts throughout the tissue of both HIFU modes. A significantly higher diffusion coefficient was found in the muscle tissue treated with continuous wave focused ultrasound. Gene expression analysis revealed profound changes of 54 genes. For most of the analyzed genes higher expression was found after treatment with the short-pulse mode. The highest up-regulated genes encoded for the MHC class III (FC approximately 84), HSP 70 (FC approximately 75) and FBJ osteosarcoma related oncogene (FC approximately 21). Immunohistology and the immunoblot analysis confirmed the presence of HSP70 protein in both applied HIFU modes. The use of HIFU treatment on muscle tissue results in dramatic changes in gene expression; however, the same genes are up-regulated after the application of continuous or pulsed HIFU, indicating that the tissue reaction is independent of the type of tissue damage.
Collapse
Affiliation(s)
- Walter Hundt
- Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5488, USA.
| | | | | | | | | |
Collapse
|
34
|
Lienau J, Duda GN, Schell H. Does in vitro low-intensity pulsed ultrasound stimulate endochondral ossification? / Stimuliert niedrig intensiver, gepulster Ultraschall die enchondrale Ossifikation in vitro? ACTA ACUST UNITED AC 2008; 53:300-5. [DOI: 10.1515/bmt.2008.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Yu T, Huang X, Hu K, Bai J, Wang Z. Mechanisms of reversal of adriamycin resistance in human ovarian carcinoma cell line by ultrasound. Int J Gynecol Cancer 2004; 14:76-81. [PMID: 14764032 DOI: 10.1111/j.1048-891x.2004.014039.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to investigate the reversal of adriamycin resistance in human ovarian cancer cells by ultrasound exposure from perspectives of apoptosis and mdr1 gene. Apoptosis was determined by flow cytometry and mdr1 level by reverse transcription-polymerase chain reaction (RT-PCR). Apoptosis indexes were improved in groups in which ultrasound exposures were applied. RT-PCR did not support that insonation-decreased mdr1 level. These findings suggested that the ultrasound-enhanced therapeutic efficacy was not mediated via modulating gene expression, and ultrasound maybe lowered thresholds for apoptosis and oncosis in chemoresistant ovarian cancer cells.
Collapse
Affiliation(s)
- T Yu
- Institute of Ultrasound Engineering in Medicine, Chongqing Medical University, Chongqing, P.R. China.
| | | | | | | | | |
Collapse
|
36
|
Yu T, Wang Z, Mason TJ. A review of research into the uses of low level ultrasound in cancer therapy. ULTRASONICS SONOCHEMISTRY 2004; 11:95-103. [PMID: 15030786 DOI: 10.1016/s1350-4177(03)00157-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2003] [Accepted: 06/09/2003] [Indexed: 05/24/2023]
Abstract
The use of low power ultrasound in therapeutic medicine is a developing field and this review will concentrate on the applications of this technology in cancer therapy. The effects of low power ultrasound have been evaluated in terms of the biological changes induced in the structure and function of tissue. The main fields of study have been in sonodynamic therapy, improving chemotherapy, gene therapy and apoptosis therapy. The range of ultrasonic power levels that can be effectively employed in therapy appears to be narrow and this may have hindered past research in the applications in cancer treatment.
Collapse
Affiliation(s)
- Tinghe Yu
- Institute of Ultrasound Engineering in Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | | | | |
Collapse
|
37
|
Nyborg WL. Biological effects of ultrasound: development of safety guidelines. Part I: personal histories. ULTRASOUND IN MEDICINE & BIOLOGY 2000; 26:911-964. [PMID: 10996695 DOI: 10.1016/s0301-5629(00)00243-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
After the end of World War II, advances in ultrasound (US) technology brought improved possibilities for medical applications. The first major efforts in this direction were in the use of US to treat diseases. Medical studies were accompanied by experiments with laboratory animals and other model systems to investigate basic biological questions and to obtain better understanding of mechanisms. Also, improvements were made in methods for measuring and controlling acoustical quantities such as power, intensity and pressure. When diagnostic US became widely used, the scope of biological and physical studies was expanded to include conditions for addressing relevant safety matters. In this historical review, a major part of the story is told by 21 investigators who took part in it. Each was invited to prepare a brief personal account of his/her area(s) of research, emphasizing the "early days," but including later work, showing how late and early work are related, if possible, and including anecdotal material about mentors, colleagues, etc.
Collapse
Affiliation(s)
- W L Nyborg
- Physics Department, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|