1
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Tan JC, Ko MK, Woo JI, Lu KL, Kelber JA. Aqueous humor TGFβ and fibrillin-1 in Tsk mice reveal clues to POAG pathogenesis. Sci Rep 2024; 14:3517. [PMID: 38347040 PMCID: PMC10861487 DOI: 10.1038/s41598-024-53659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
Aqueous humor (AH) and blood levels of transforming growth factor β (TGFβ) are elevated in idiopathic primary open angle glaucoma (POAG) representing a disease biomarker of unclear status and function. Tsk mice display a POAG phenotype and harbor a mutation of fibrillin-1, an important regulator of TGFβ bioavailability. AH TGFβ2 was higher in Tsk than wild-type (WT) mice (by 34%; p = 0.002; ELISA); similarly, AH TGFβ2 was higher in human POAG than controls (2.7-fold; p = 0.00005). As in POAG, TGFβ1 was elevated in Tsk serum (p = 0.01). Fibrillin-1 was detected in AH from POAG subjects and Tsk mice where both had similar levels relative to controls (p = 0.45). 350 kDa immunoblot bands representing WT full-length fibrillin-1 were present in human and mouse AH. A 418 kDa band representing mutant full-length fibrillin-1 was present only in Tsk mice. Lower molecular weight fibrillin-1 antibody-reactive bands were present in similar patterns in humans and mice. Certain bands (130 and 32 kDa) were elevated only in human POAG and Tsk mice (p ≤ 0.04 relative to controls) indicating discrete isoforms relevant to disease. In addition to sharing a phenotype, Tsk mice and human POAG subjects had common TGFβ and fibrillin-1 features in AH and also blood that are pertinent to understanding glaucoma pathogenesis.
Collapse
Affiliation(s)
- James C Tan
- Sightgene, Inc., 9227 Reseda Blvd, #182, Northridge, CA, 91324-3137, USA.
- Doheny Eye Institute, Pasadena, CA, USA.
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA, USA.
| | | | | | - Kenneth L Lu
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan A Kelber
- Developmental Oncogene Laboratory, California State University Northridge, Northridge, CA, USA
- Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
3
|
Ko MK, Woo JI, Gonzalez JM, Kim G, Sakai L, Peti-Peterdi J, Kelber JA, Hong YK, Tan JC. Fibrillin-1 mutant mouse captures defining features of human primary open glaucoma including anomalous aqueous humor TGF beta-2. Sci Rep 2022; 12:10623. [PMID: 35739142 PMCID: PMC9226129 DOI: 10.1038/s41598-022-14062-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Primary open angle glaucoma (POAG) features an optic neuropathy, elevated aqueous humor (AH) TGFβ2, and major risk factors of central corneal thickness (CCT), increasing age and intraocular pressure (IOP). We examined Tight skin (Tsk) mice to see if mutation of fibrillin-1, a repository for latent TGFβ, is associated with characteristics of human POAG. We measured: CCT by ocular coherence tomography (OCT); IOP; retinal ganglion cell (RGC) and optic nerve axon counts by microscopic techniques; visual electrophysiologic scotopic threshold responses (STR) and pattern electroretinogram (PERG); and AH TGFβ2 levels and activity by ELISA and MINK epithelial cell-based assays respectively. Tsk mice had open anterior chamber angles and compared with age-matched wild type (WT) mice: 23% thinner CCT (p < 0.003); IOP that was higher (p < 0.0001), more asymmetric (p = 0.047), rose with age (p = 0.04) and had a POAG-like frequency distribution. Tsk mice also had RGCs that were fewer (p < 0.04), declined with age (p = 0.0003) and showed increased apoptosis and glial activity; fewer optic nerve axons (p = 0.02); abnormal axons and glia; reduced STR (p < 0.002) and PERG (p < 0.007) visual responses; and higher AH TGFβ2 levels (p = 0.0002) and activity (p = 1E-11) especially with age. Tsk mice showed defining features of POAG, implicating aberrant fibrillin-1 homeostasis as a pathogenic contributor to emergence of a POAG phenotype.
Collapse
Affiliation(s)
| | | | | | | | - Lynn Sakai
- Department of Medical and Molecular Genetics, Oregon Health Sciences University, Portland, OR, USA
| | - Janos Peti-Peterdi
- Departments of Physiology, Biophysics and Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan A Kelber
- Developmental Oncogene Laboratory, California State University Northridge, Northridge, CA, USA
| | - Young-Kwon Hong
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James C Tan
- Doheny Eye Institute, Los Angeles, CA, USA.
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA, USA.
- Sightgene, Inc., 9227 Reseda Blvd, #182, Northridge, CA, 91324-3137, USA.
| |
Collapse
|
4
|
Loreti M, Sacco A. The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. NPJ Regen Med 2022; 7:16. [PMID: 35177651 PMCID: PMC8854427 DOI: 10.1038/s41536-022-00204-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle requires a highly orchestrated coordination between multiple cell types and their microenvironment to exert its function and to maintain its homeostasis and regenerative capacity. Over the past decades, significant advances, including lineage tracing and single-cell RNA sequencing, have contributed to identifying multiple muscle resident cell populations participating in muscle maintenance and repair. Among these populations, muscle stem cells (MuSC), also known as satellite cells, in response to stress or injury, are able to proliferate, fuse, and form new myofibers to repair the damaged tissue. These cells reside adjacent to the myofiber and are surrounded by a specific and complex microenvironment, the stem cell niche. Major components of the niche are extracellular matrix (ECM) proteins, able to instruct MuSC behavior. However, during aging and muscle-associated diseases, muscle progressively loses its regenerative ability, in part due to a dysregulation of ECM components. This review provides an overview of the composition and importance of the MuSC microenvironment. We discuss relevant ECM proteins and how their mutations or dysregulation impact young and aged muscle tissue or contribute to diseases. Recent discoveries have improved our knowledge about the ECM composition of skeletal muscle, which has helped to mimic the architecture of the stem cell niche and improved the regenerative capacity of MuSC. Further understanding about extrinsic signals from the microenvironment controlling MuSC function and innovative technologies are still required to develop new therapies to improve muscle repair.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Zona Pellucida Genes and Proteins: Essential Players in Mammalian Oogenesis and Fertility. Genes (Basel) 2021; 12:genes12081266. [PMID: 34440440 PMCID: PMC8391237 DOI: 10.3390/genes12081266] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
All mammalian oocytes and eggs are surrounded by a relatively thick extracellular matrix (ECM), the zona pellucida (ZP), that plays vital roles during oogenesis, fertilization, and preimplantation development. Unlike ECM surrounding somatic cells, the ZP is composed of only a few glycosylated proteins, ZP1–4, that are unique to oocytes and eggs. ZP1–4 have a large region of polypeptide, the ZP domain (ZPD), consisting of two subdomains, ZP-N and ZP-C, separated by a short linker region, that plays an essential role in polymerization of nascent ZP proteins into crosslinked fibrils. Both subdomains adopt immunoglobulin (Ig)-like folds for their 3-dimensional structure. Mouse and human ZP genes are encoded by single-copy genes located on different chromosomes and are highly expressed in the ovary by growing oocytes during late stages of oogenesis. Genes encoding ZP proteins are conserved among mammals, and their expression is regulated by cis-acting sequences located close to the transcription start-site and by the same/similar trans-acting factors. Nascent ZP proteins are synthesized, packaged into vesicles, secreted into the extracellular space, and assembled into long, crosslinked fibrils that have a structural repeat, a ZP2-ZP3 dimer, and constitute the ZP matrix. Fibrils are oriented differently with respect to the oolemma in the inner and outer layers of the ZP. Sequence elements in the ZPD and the carboxy-terminal propeptide of ZP1–4 regulate secretion and assembly of nascent ZP proteins. The presence of both ZP2 and ZP3 is required to assemble ZP fibrils and ZP1 and ZP4 are used to crosslink the fibrils. Inactivation of mouse ZP genes by gene targeting has a detrimental effect on ZP formation around growing oocytes and female fertility. Gene sequence variations in human ZP genes due to point, missense, or frameshift mutations also have a detrimental effect on ZP formation and female fertility. The latter mutations provide additional support for the role of ZPD subdomains and other regions of ZP polypeptide in polymerization of human ZP proteins into fibrils and matrix.
Collapse
|
6
|
Common variants in LTBP3 gene contributed to the risk of hip osteoarthritis in Han Chinese population. Biosci Rep 2021; 40:224999. [PMID: 32452514 PMCID: PMC7284319 DOI: 10.1042/bsr20192999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease affected by environmental and genetic factors. The LTBP3 gene may be involved in the occurrence and development of OA by regulating TGF-β activity and the TGF-β signaling pathway. A total of 2780 study subjects, including 884 hip OA cases and 1896 controls, were recruited. Nine tag single-nucleotide polymorphisms (SNPs) located within the LTBP3 gene region were selected for genotyping. Genetic association analyses were performed at both the genotypic and allelic levels. GTEx data were extracted to investigate the functional consequence of significant SNPs. SNP rs10896015 was significantly associated with the risk of hip OA at both the genotypic (P=0.0019) and allelic levels (P=0.0009). The A allele of this SNP was significantly associated with a decreased risk of HOA (OR [95%CI] = 0.79 [0.69–0.91]). This SNP was also significantly associated with the clinical severity of hip OA. SNP rs10896015 could affect the gene expression of 11 genes, including LTBP3, in multiple human tissues based on GTEx data. We obtained evidence for a genetic association between the LTBP3 gene and hip OA susceptibility and clinical severity based on Chinese Han populations. Our findings replicated the association signals reported by a recent genome-wide association study and deepen the basic understanding of osteoarthritis pathology.
Collapse
|
7
|
Gabriela Espinosa M, Catalin Staiculescu M, Kim J, Marin E, Wagenseil JE. Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease. J Biomech Eng 2019; 140:2666245. [PMID: 29222533 DOI: 10.1115/1.4038704] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Development of a closed circulatory system requires that large arteries adapt to the mechanical demands of high, pulsatile pressure. Elastin and collagen uniquely address these design criteria in the low and high stress regimes, resulting in a nonlinear mechanical response. Elastin is the core component of elastic fibers, which provide the artery wall with energy storage and recoil. The integrity of the elastic fiber network is affected by component insufficiency or disorganization, leading to an array of vascular pathologies and compromised mechanical behavior. In this review, we discuss how elastic fibers are formed and how they adapt in development and disease. We discuss elastic fiber contributions to arterial mechanical behavior and remodeling. We primarily present data from mouse models with elastic fiber deficiencies, but suggest that alternate small animal models may have unique experimental advantages and the potential to provide new insights. Advanced ultrastructural and biomechanical data are constantly being used to update computational models of arterial mechanics. We discuss the progression from early phenomenological models to microstructurally motivated strain energy functions for both collagen and elastic fiber networks. Although many current models individually account for arterial adaptation, complex geometries, and fluid-solid interactions (FSIs), future models will need to include an even greater number of factors and interactions in the complex system. Among these factors, we identify the need to revisit the role of time dependence and axial growth and remodeling in large artery mechanics, especially in cardiovascular diseases that affect the mechanical integrity of the elastic fibers.
Collapse
Affiliation(s)
| | | | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Eric Marin
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, , St. Louis, MO 63130 e-mail:
| |
Collapse
|
8
|
Kayhan G, Ergun MA, Ergun SG, Kula S, Percin FE. Identification of Three Novel FBN1 Mutations and Their Phenotypic Relationship of Marfan Syndrome. Genet Test Mol Biomarkers 2018; 22:474-480. [PMID: 30048161 DOI: 10.1089/gtmb.2017.0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Marfan syndrome (MS), a connective tissue disorder that affects ocular, skeletal, and cardiovascular systems, is caused by heterozygous pathogenic variants in FBN1. To date, over 1800 different pathogenic variants have been reported. METHODS In the present study, FBN1 sequence analysis was performed in a family and two unrelated patients with MS. RESULTS Three novel pathogenic variants were detected. Two of these variants [c.6610T>C; p.(Cys2204Arg) and c.1956T>G; p.(Cys652Trp)], which affect a cysteine residue, were associated with MS with ectopia lentis, whereas the mutation causing a premature stop codon [c.2506delA; p.(Ser836ValfsX10)] leads to a classical MS of a milder phenotype. CONCLUSION We anticipate that the three novel pathogenic variants identified in this study will provide further support for the clinical relevance of variants in the large FBN1 gene.
Collapse
Affiliation(s)
- Gulsum Kayhan
- 1 Departments of Medical Genetics, Gazi University Faculty of Medicine , Ankara, Turkey
| | - Mehmet Ali Ergun
- 1 Departments of Medical Genetics, Gazi University Faculty of Medicine , Ankara, Turkey
| | - Sezen Guntekin Ergun
- 1 Departments of Medical Genetics, Gazi University Faculty of Medicine , Ankara, Turkey .,2 CanSyL, Graduate School of Informatics, Middle East Technical University , Ankara, Turkey
| | - Serdar Kula
- 3 Departments of Pediatric Cardiology, Gazi University Faculty of Medicine , Ankara, Turkey
| | - Ferda E Percin
- 1 Departments of Medical Genetics, Gazi University Faculty of Medicine , Ankara, Turkey
| |
Collapse
|
9
|
Jacobsen MM, Tokareva OS, Ebrahimi D, Huang W, Ling S, Dinjaski N, Li D, Simon M, Staii C, Buehler MJ, Kaplan DL, Wong JY. Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Protein-Based Block Copolymers. Macromol Biosci 2017; 17:10.1002/mabi.201700095. [PMID: 28665510 PMCID: PMC5600892 DOI: 10.1002/mabi.201700095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/03/2017] [Indexed: 01/13/2023]
Abstract
Accurate prediction and validation of the assembly of bioinspired peptide sequences into fibers with defined mechanical characteristics would aid significantly in designing and creating materials with desired properties. This process may also be utilized to provide insight into how the molecular architecture of many natural protein fibers is assembled. In this work, computational modeling and experimentation are used in tandem to determine how peptide terminal modification affects a fiber-forming core domain. Modeling shows that increased terminal molecular weight and hydrophilicity improve peptide chain alignment under shearing conditions and promote consolidation of semicrystalline domains. Mechanical analysis shows acute improvements to strength and elasticity, but significantly reduced extensibility and overall toughness. These results highlight an important entropic function that terminal domains of fiber-forming peptides exhibit as chain alignment promoters, which ultimately has notable consequences on the mechanical behavior of the final fiber products.
Collapse
Affiliation(s)
- Matthew M Jacobsen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Olena S Tokareva
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Davoud Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Shengjie Ling
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David Li
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Marc Simon
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, MA, 02155, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, MA, 02155, USA
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
10
|
Milewicz DM, Trybus KM, Guo DC, Sweeney HL, Regalado E, Kamm K, Stull JT. Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections. Arterioscler Thromb Vasc Biol 2017; 37:26-34. [PMID: 27879251 PMCID: PMC5222685 DOI: 10.1161/atvbaha.116.303229] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022]
Abstract
The importance of maintaining contractile function in aortic smooth muscle cells (SMCs) is evident by the fact that heterozygous mutations in the major structural proteins or kinases controlling contraction lead to the formation of aneurysms of the ascending thoracic aorta that predispose to life-threatening aortic dissections. Force generation by SMC requires ATP-dependent cyclic interactions between filaments composed of SMC-specific isoforms of α-actin (encoded by ACTA2) and myosin heavy chain (MYH11). ACTA2 and MYH11 mutations are predicted or have been shown to disrupt this cyclic interaction predispose to thoracic aortic disease. Movement of the myosin motor domain is controlled by phosphorylation of the regulatory light chain on the myosin filament, and loss-of-function mutations in the dedicated kinase for this phosphorylation, myosin light chain kinase (MYLK) also predispose to thoracic aortic disease. Finally, a mutation in the cGMP-activated protein kinase (PRKG1) results in constitutive activation of the kinase in the absence of cGMP, thus driving SMC relaxation in part through increased dephosphorylation of the regulatory light chain and predisposes to thoracic aortic disease. Furthermore, SMCs cannot generate force without connections to the extracellular matrix through focal adhesions, and mutations in the major protein in the extracellular matrix, fibrillin-1, linking SMCs to the matrix also cause thoracic aortic disease in individuals with Marfan syndrome. Thus, disruption of the ability of the aortic SMC to generate force through the elastin-contractile units in response to pulsatile blood flow may be a primary driver for thoracic aortic aneurysms and dissections.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Animals
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I/genetics
- Cyclic GMP-Dependent Protein Kinase Type I/metabolism
- Dilatation, Pathologic
- Elastin/metabolism
- Genetic Markers
- Genetic Testing
- Heredity
- Humans
- Mechanotransduction, Cellular
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Myosin-Light-Chain Kinase/genetics
- Myosin-Light-Chain Kinase/metabolism
- Phenotype
- Pulsatile Flow
- Vasoconstriction/genetics
Collapse
Affiliation(s)
- Dianna M Milewicz
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.).
| | - Kathleen M Trybus
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - Dong-Chuan Guo
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - H Lee Sweeney
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - Ellen Regalado
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - Kristine Kamm
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - James T Stull
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| |
Collapse
|
11
|
Wilson NK, Gould RA, Gallo MacFarlane E, Consortium ML. Pathophysiology of aortic aneurysm: insights from human genetics and mouse models. Pharmacogenomics 2016; 17:2071-2080. [PMID: 27922338 DOI: 10.2217/pgs-2016-0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aneurysms are local dilations of an artery that predispose the vessel to sudden rupture. They are often asymptomatic and undiagnosed, resulting in a high mortality rate. The predisposition to develop thoracic aortic aneurysms is often genetically inherited and associated with syndromes affecting connective tissue homeostasis. This review discusses how elucidation of the genetic causes of syndromic forms of thoracic aortic aneurysm has helped identify pathways that contribute to disease progression, including those activated by TGF-β, angiotensin II and Notch ligands. We also discuss how pharmacological manipulation of these signaling pathways has provided further insight into the mechanism of disease and identified compounds with therapeutic potential in these and related disorders.
Collapse
Affiliation(s)
- Nicole K Wilson
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Miller Research Building 532, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
12
|
Langton AK, Sherratt MJ, Griffiths CEM, Watson REB. A new wrinkle on old skin: the role of elastic fibres in skin ageing. Int J Cosmet Sci 2015; 32:330-9. [PMID: 20572890 DOI: 10.1111/j.1468-2494.2010.00574.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cutaneous ageing is the result of two distinct, biological processes which may occur concurrently: (i) the passage of time, termed intrinsic ageing and (ii) environmental influences, termed extrinsic ageing. Intrinsic ageing of the skin is a slow process which causes changes in tissue structure and impairs function in the absence of additional biological, chemical and physical factors. The clinical features of intrinsically aged skin are not usually evident until old age when, although smooth and unblemished, the skin surface appears pale and is characterized by fine wrinkles with occasional exaggerated expression lines. Functionally, intrinsically aged skin is dry and less elastic than more youthful skin. In contrast, extrinsically aged skin is exemplified by deep, coarse wrinkles, mottled hyperpigmentation and a marked loss of elasticity and recoil. The two major environmental influences which induce extrinsic ageing are: (i) chronic exposure to solar ultraviolet (UV) irradiation (termed photoageing) and (ii) smoking. This review discusses the changes associated with the ageing process in the skin, with particular emphasis on the role played by the elastic fibre network in maintaining dermal function. The review concludes with a discussion of a short-term assay for independent assessment of the efficacy of anti-ageing cosmetic products using the elastic fibre component fibrillin-1 as a biomarker of extracellular matrix repair.
Collapse
Affiliation(s)
- A K Langton
- Dermatological Sciences, School of Translational Medicine
| | | | | | | |
Collapse
|
13
|
Cook JR, Carta L, Galatioto J, Ramirez F. Cardiovascular manifestations in Marfan syndrome and related diseases; multiple genes causing similar phenotypes. Clin Genet 2014; 87:11-20. [PMID: 24867163 DOI: 10.1111/cge.12436] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 01/08/2023]
Abstract
Cardiovascular abnormalities are the major cause of morbidity and mortality in Marfan syndrome (MFS) and a few clinically related diseases that share, with MFS, the pathogenic contribution of dysregulated transforming growth factor β (TGFβ) signaling. They include Loeys-Dietz syndrome, Shprintzen-Goldberg syndrome, aneurysm-osteoarthritis syndrome and syndromic thoracic aortic aneurysms. Unlike the causal association of MFS with mutations in an extracellular matrix protein (ECM), the aforementioned conditions are due to defects in components of the TGFβ pathway. While TGFβ antagonism is being considered as a potential new therapy for these heritable syndromes, several points still need to be clarified in relevant animal models before this strategy could be safely applied to patients. Among others, unresolved issues include whether elevated TGFβ signaling is responsible for all MFS manifestations and is the common trigger of disease in MFS and related conditions. The scope of our review is to highlight the clinical and experimental findings that have forged our understanding of the natural history and molecular pathogenesis of cardiovascular manifestations in this group of syndromic conditions.
Collapse
Affiliation(s)
- J R Cook
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | | |
Collapse
|
14
|
Lai KK, Renneberg R, Mak WC. Bioinspired protein microparticles fabrication by peptide mediated disulfide interchange. RSC Adv 2014. [DOI: 10.1039/c4ra00102h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A bioinspired green chemistry approach for the fabrication of pure protein microparticles based on peptide mediated disulfide interchange reactions.
Collapse
Affiliation(s)
- Kwok Kei Lai
- Department of Chemistry
- Hong Kong University of Science and Technology
- Hong Kong, P. R. China
| | - Reinhard Renneberg
- Department of Chemistry
- Hong Kong University of Science and Technology
- Hong Kong, P. R. China
| | - Wing Cheung Mak
- Department of Physics, Chemistry and Biology
- Biosensors and Bioelectronics Centre
- Linköping University
- 58183 Linköping, Sweden
- Department of Clinical and Experimental Medicine
| |
Collapse
|
15
|
Nishikawa T, Yamamoto T, Honjo KI, Ichioka H, Yamamoto K, Kanamura N, Kato H, Wato M, Kubo T, Mori M, Tanaka A. Marfan's syndrome: Clinical manifestations in the oral-craniofacial area, biophysiological roles of fibrillins and elastic extracellular microfibers, and disease control of the fibrillin gene. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2013. [DOI: 10.1016/j.ajoms.2013.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Murasawa Y, Watanabe K, Yoneda M, Zako M, Kimata K, Sakai LY, Isogai Z. Homotypic versican G1 domain interactions enhance hyaluronan incorporation into fibrillin microfibrils. J Biol Chem 2013; 288:29170-81. [PMID: 23963449 DOI: 10.1074/jbc.m113.456947] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Versican G1 domain-containing fragments (VG1Fs) have been identified in extracts from the dermis in which hyaluronan (HA)-versican-fibrillin complexes are found. However, the molecular assembly of VG1Fs in the HA-versican-microfibril macrocomplex has not yet been elucidated. Here, we clarify the role of VG1Fs in the extracellular macrocomplex, specifically in mediating the recruitment of HA to microfibrils. Sequential extraction studies suggested that the VG1Fs were not associated with dermal elements through HA binding properties alone. Overlay analyses of dermal tissue sections using the recombinant versican G1 domain, rVN, showed that rVN deposited onto the elastic fiber network. In solid-phase binding assays, rVN bound to isolated nondegraded microfibrils. rVN specifically bound to authentic versican core protein produced by dermal fibroblasts. Furthermore, rVN bound to VG1Fs extracted from the dermis and to nondenatured versican but not to fibrillin-1. Homotypic binding of rVN was also seen. Consistent with these binding properties, macroaggregates containing VG1Fs were detected in high molecular weight fractions of sieved dermal extracts and visualized by electron microscopy, which revealed localization to microfibrils at the microscopic level. Importantly, exogenous rVN enhanced HA recruitment both to isolated microfibrils and to microfibrils in tissue sections in a dose-dependent manner. From these data, we propose that cleaved VG1Fs can be recaptured by microfibrils through VG1F homotypical interactions to enhance HA recruitment to microfibrils.
Collapse
|
17
|
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012; 33:981-1030. [PMID: 23065822 PMCID: PMC5393155 DOI: 10.1210/er.2011-1034] [Citation(s) in RCA: 1067] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait.
Collapse
|
18
|
Davis MR, Summers KM. Structure and function of the mammalian fibrillin gene family: implications for human connective tissue diseases. Mol Genet Metab 2012; 107:635-47. [PMID: 22921888 DOI: 10.1016/j.ymgme.2012.07.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/30/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022]
Abstract
Fibrillins and latent transforming growth factor β binding proteins (LTBPs) are components of the extracellular matrix of connective tissue. While fibrillins are integral to the 10nm microfibrils, and often associated with elastin, all family members are likely to have an additional role in regulating the bioavailability of transforming growth factor β (TGBβ). Both fibrillins and LTBPs are large glycoproteins, containing a series of calcium binding epidermal growth factor domains as well as a number of copies of a unique 8 cysteine domain found only in this protein superfamily. There are three mammalian fibrillins and four LTBPs. Fibrillin monomers link head to tail in microfibrils which can then form two and three dimensional structures. In some tissues elastin is recruited to the fibrillin microfibrils to provide elasticity to the tissue. LTBPs are part of the TGBβ large latent complex which sequesters TGBβ in the extracellular matrix. Fibrillin-1 appears to bind to LTBPs to assist in this process and is thus involved in regulating the bioavailability of TGBβ. Mutation of fibrillin genes results in connective tissue phenotypes which reflect both the increased level of active TGBβ and the structural failure of the extracellular matrix due to the absence or abnormality of fibrillin protein. Fibrillinopathies include Marfan syndrome, familial ectopia lentis, familial thoracic aneurysm (mutations of FBN1) and congenital contractural arachnodactyly (mutation of FBN2). There are no diseases currently associated with mutation of FBN3 in humans, and this gene is no longer active in rodents. Expression patterns of fibrillin genes are consistent with their role in extracellular matrix structure of connective tissue. FBN1 expression is high in most cell types of mesenchymal origin, particularly bone. Human and mouse FBN2 expression is high in fetal cells and has more restricted expression in mesenchymal cell types postnatally. FBN3 is expressed early in development (embryonic and fetal tissues) in humans. The fibrillins are thus important in maintaining the structure and integrity of the extracellular matrix and, in combination with their sequence family members the LTBPs, also contribute to the regulation of the TGFβ family of major growth factors.
Collapse
Affiliation(s)
- Margaret R Davis
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | | |
Collapse
|
19
|
Zilberberg L, Todorovic V, Dabovic B, Horiguchi M, Couroussé T, Sakai LY, Rifkin DB. Specificity of latent TGF-β binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin. J Cell Physiol 2012; 227:3828-36. [PMID: 22495824 DOI: 10.1002/jcp.24094] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibrillin microfibrils are extracellular matrix structures with essential functions in the development and the organization of tissues including blood vessels, bone, limbs and the eye. Fibrillin-1 and fibrillin-2 form the core of fibrillin microfibrils, to which multiple proteins associate to form a highly organized structure. Defining the components of this structure and their interactions is crucial to understand the pathobiology of microfibrillopathies associated with mutations in fibrillins and in microfibril-associated molecules. In this study, we have analyzed both in vitro and in vivo the role of fibrillin microfibrils in the matrix deposition of latent TGF-β binding protein 1 (LTBP-1), -3 and -4; the three LTBPs that form a complex with TGF-β. In Fbn1(-/-) ascending aortas and lungs, LTBP-3 and LTBP-4 are not incorporated into a matrix lacking fibrillin-1 microfibrils, whereas LTBP-1 is still deposited. In addition, in cultures of Fbn1(-/-) smooth muscle cells or lung fibroblasts, LTBP-3 and LTBP-4 are not incorporated into a matrix lacking fibrillin-1 microfibrils, whereas LTBP-1 is still deposited. Fibrillin-2 is not involved in the deposition of LTBP-1 in Fbn1(-/-) extracellular matrix as cells deficient for both fibrillin-1 and fibrillin-2 still incorporate LTBP-1 in their matrix. However, blocking the formation of the fibronectin network in Fbn1(-/-) cells abrogates the deposition of LTBP-1. Together, these data indicate that LTBP-3 and LTBP-4 association with the matrix depends on fibrillin-1 microfibrils, whereas LTBP-1 association depends on a fibronectin network.
Collapse
Affiliation(s)
- Lior Zilberberg
- Department of Cell Biology, New York University Langone School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Mellman K, Huisken J, Dinsmore C, Hoppe C, Stainier DY. Fibrillin-2b regulates endocardial morphogenesis in zebrafish. Dev Biol 2012; 372:111-9. [PMID: 22841646 DOI: 10.1016/j.ydbio.2012.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/22/2012] [Accepted: 07/14/2012] [Indexed: 10/28/2022]
Abstract
scotch tape (sco) is a zebrafish cardiac mutant initially proposed to exhibit a reduced amount of cardiac jelly, the extracellular matrix between the myocardial and endocardial layers. We analyzed sco(te382) mutant hearts in detail using both selective plane illumination microscopy (SPIM) and transmission electron microscopy (TEM), and observed a fascinating endocardial defect. Time-lapse SPIM imaging of wild-type and mutant embryos revealed significant and dynamic gaps between endocardial cells during development. Although these gaps close in wild-type animals, they fail to close in the mutants, ultimately leading to a near complete absence of endocardial cells in the atrial chamber by the heart looping stage. TEM analyses confirm the presence of gaps between endocardial cells in sco mutants, allowing the apparent leakage of cardiac jelly into the lumen. High-resolution mapping places the sco(te382) mutation within the fbn2b locus, which encodes the extracellular matrix protein Fibrillin 2b (OMIM ID: 121050). Complementation and further phenotypic analyses confirm that sco is allelic to puff daddy(gw1) (pfd(gw1)), a null mutant in fbn2b, and that sco(te382) is a hypomorphic allele of fbn2b. fbn2b belongs to a family of genes responsible for the assembly of microfibrils throughout development, and is essential for microfibril structural integrity. In sco(te382) mutants, Fbn2b is disabled by a missense mutation in a highly conserved cbEGF domain, which likely interferes with protein folding. Integrating data obtained from microscopy and molecular biology, we posit that this mutation impacts the rigidity of Fbn2b, imparting a structural defect that weakens endocardial adhesion thereby resulting in perforated endocardium.
Collapse
Affiliation(s)
- Katharine Mellman
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Cardiovascular Research Institute, University of California, San Francisco, 1550 4th St, Room 384, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
21
|
Strydom H, Maltha JC, Kuijpers-Jagtman AM, Von den Hoff JW. The oxytalan fibre network in the periodontium and its possible mechanical function. Arch Oral Biol 2012; 57:1003-11. [PMID: 22784380 DOI: 10.1016/j.archoralbio.2012.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/29/2012] [Accepted: 06/13/2012] [Indexed: 01/20/2023]
Abstract
The biomechanical character of the periodontal ligament (PDL) is crucial in its response to functional and orthodontic forces. Collagen has been the primary subject of investigations in this field. Several studies, however, indicate that oxytalan fibres, which belong to the elastic fibre family, also contribute to the biomechanical character and behaviour of the PDL. In order to elucidate this, we have evaluated the available literature on the oxytalan fibre network within the PDL and supra-alveolar tissues with respect to development, morphology and distribution, and response to mechanical stimulation. To this end, we have combined the classical histological studies with more recent in vitro studies. Oxytalan fibres develop simultaneously with the root and the vascular system within the PDL. A close association between oxytalan fibres and the vascular system also remains later in life, suggesting a role in vascular support. Mechanical loading of the PDL, through orthodontic force application, appears to induce an increase in the number, size, and length of oxytalan fibres. In line with this, in vitro stretching of PDL fibroblasts (PDLFs) results in an increased production of fibrillin, a major structural component of the microfibrils that make up oxytalan fibres. The available data suggest a mechanical function for oxytalan, but to date experimental data are limited. Further research is required to clarify their exact mechanical function and possible role in orthodontic tooth movement.
Collapse
Affiliation(s)
- Hardus Strydom
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | |
Collapse
|
22
|
Bochicchio B, Pepe A. Role of polyproline II conformation in human tropoelastin structure. Chirality 2012; 23:694-702. [PMID: 22135799 DOI: 10.1002/chir.20979] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this review, we present a comprehensive overview of the molecular studies on human tropoelastin domains accomplished by Tamburro and co-workers in the last decade. The used approach is the reductionist approach applied to human tropoelastin and is based on the observation that the tropoelastin gene exhibits a cassette-like organization, with a regular alternation of cross-linking and hydrophobic domains putatively responsible for the elasticity of the protein. The peculiar structure of human tropoelastin gene prompted us to study the isolated domains encoded by the exons of tropoelastin, with the perspective to get deep insights into the structural properties of the whole protein. At the molecular level, the results clearly evidence large flexibility of the polypeptide chains in the hydrophobic domains, which oscillate between rather extended and folded conformations. An important role was assigned to poly-proline II conformation considered as the hinge structure in the dynamic conformational equilibrium suggested for the hydrophobic domains. For the lysine-rich cross-linking domains, the structural studies exactly localized α-helix along the polypeptide sequence. Furthermore, at supramolecular level, these studies showed that several domains are able to self-assemble in two different aggregation patterns, the fibrous elastin-like structure for some proline-rich hydrophobic domains and the amyloid-like for some glycine-rich hydrophobic domains. Accordingly, the studies suggest that the reductionist approach was a valid tool for studying a complex protein, such as elastin, elucidating not only the structure but also the specific role played by its constituent domains.
Collapse
Affiliation(s)
- Brigida Bochicchio
- Laboratory of Protein Chemistry, Department of Chemistry A. M. Tamburro, University of Basilicata, Potenza, Italy.
| | | |
Collapse
|
23
|
Brinckmann J, Hunzelmann N, Kahle B, Rohwedel J, Kramer J, Gibson MA, Hubmacher D, Reinhardt DP. Enhanced fibrillin-2 expression is a general feature of wound healing and sclerosis: potential alteration of cell attachment and storage of TGF-beta. J Transl Med 2010; 90:739-52. [PMID: 20195245 DOI: 10.1038/labinvest.2010.49] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Wound healing and sclerosis are characterized by an increase of extracellular matrix proteins, which are characteristically expressed in the embryo-fetal period. We analyzed the expression of fibrillin-2, which is typically found in embryonic tissues, but only scarcely in adult skin. In wound healing and sclerotic skin diseases such as lipodermatosclerosis and scleroderma, a marked increase of fibrillin-2 expression was found by immunohistology. Double labelling of fibrillin-2 and tenascin-C, which is also expressed in wound healing and sclerosis, showed co-localization of both proteins. Solid-phase and slot blot-overlay assays showed a dose-dependent binding of the recombinant N-terminal half of fibrillin-2 (rFBN2-N) to tenascin-C. Real-time PCR showed an increase of the fibrillin-2 gene expression in cell culture triggered by typical mediators for fibroblast activation such as serum, IL-4, and TGF-beta. By contrast, prolonged hypoxia is not associated with changes in fibrillin-2 expression. Tenascin-C is an anti-adhesive substrate for fibroblasts, whereas fibrillin-2 stimulates cell attachment. Attachment assays using mixed substrates showed decreased cell attachment when tenascin-C and rFBN2-N were coated together, compared with the attachment to rFBN2-N alone. Fibrillins are involved in storage and activation of TGF-beta. Immunohistology with an antibody against the latency-associated peptide (LAP (TGF-beta1)) showed a marked increase of inactive LAP-bound TGF-beta1 in wound healing and sclerotic skin whereas normal skin showed only a weak expression. Double immunofluorescence confirmed a partial colocalization of both proteins. In conclusion, we show that a stimulation of the fibrillin-2 expression is a characteristic feature of fibroblasts present in wound healing and sclerosis, which may be involved in the alteration of cell attachment and storage of inactive TGF-beta in the matrix.
Collapse
|
24
|
Tsutsui K, Manabe RI, Yamada T, Nakano I, Oguri Y, Keene DR, Sengle G, Sakai LY, Sekiguchi K. ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem 2010; 285:4870-82. [PMID: 19940141 PMCID: PMC2836092 DOI: 10.1074/jbc.m109.076919] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Indexed: 11/06/2022] Open
Abstract
ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs)-like (ADAMTSL) proteins, a subgroup of the ADAMTS superfamily, share several domains with ADAMTS proteinases, including thrombospondin type I repeats, a cysteine-rich domain, and an ADAMTS spacer, but lack a catalytic domain. We identified two new members of ADAMTSL proteins, ADAMTSL-6alpha and -6beta, that differ in their N-terminal amino acid sequences but have common C-terminal regions. When transfected into MG63 osteosarcoma cells, both isoforms were secreted and deposited into pericellular matrices, although ADAMTSL-6alpha, in contrast to -6beta, was barely detectable in the conditioned medium. Immunolabeling at the light and electron microscopic levels showed their close association with fibrillin-1-rich microfibrils in elastic connective tissues. Surface plasmon resonance analyses demonstrated that ADAMTSL-6beta binds to the N-terminal half of fibrillin-1 with a dissociation constant of approximately 80 nm. When MG63 cells were transfected or exogenously supplemented with ADAMTSL-6, fibrillin-1 matrix assembly was promoted in the early but not the late stage of the assembly process. Furthermore, ADAMTSL-6 transgenic mice exhibited excessive fibrillin-1 fibril formation in tissues where ADAMTSL-6 was overexpressed. All together, these results indicated that ADAMTSL-6 is a novel microfibril-associated protein that binds directly to fibrillin-1 and promotes fibrillin-1 matrix assembly.
Collapse
Affiliation(s)
- Ko Tsutsui
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Ri-ichiroh Manabe
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Tomiko Yamada
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Itsuko Nakano
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| | - Yasuko Oguri
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | | | - Gerhard Sengle
- the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Lynn Y. Sakai
- the Shriners Hospital for Children and
- the Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Kiyotoshi Sekiguchi
- From the Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan, and
| |
Collapse
|
25
|
Yu J, Urban JPG. The elastic network of articular cartilage: an immunohistochemical study of elastin fibres and microfibrils. J Anat 2010; 216:533-41. [PMID: 20148992 DOI: 10.1111/j.1469-7580.2009.01207.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The elastic network of articular cartilage was investigated by immunohistochemistry using specific antibodies to elastin and fibrillin-1. Articular cartilage was dissected from defined regions of bovine metacarpophalangeal joints. Elastin fibres and microfibrils were dual-immunostained by labelling with distinct fluorescent dyes. A conventional fluorescence microscope combined with a polarized light filter was used to study the organization and degree of colocalization of elastin fibres, microfibrils and of the collagen network. We observed an elaborately organized elastic network. In the uppermost superficial zone, where few cells were present, elastin fibres and microfibrils formed a dense three dimensional network showing some degree of colocalization. The thickness and organization of this elastic network varied dramatically from region to region and was most extensive in the metacarpal palmar region. In the middle and deep zones, very few elastin fibres were observed but microfibrils formed a network in the inter-territorial matrix and dense network around the cells. Our finding of a three dimensional network of dense, well organized elastin fibres and microfibrils in the surface zone of the articular cartilage matrix, and a dense network of microfibrils around the cells deeper into the tissue suggests the elastic network could play both a mechanical and a biological role in articular cartilage.
Collapse
Affiliation(s)
- Jing Yu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
26
|
Sherratt MJ. Tissue elasticity and the ageing elastic fibre. AGE (DORDRECHT, NETHERLANDS) 2009; 31:305-25. [PMID: 19588272 PMCID: PMC2813052 DOI: 10.1007/s11357-009-9103-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/08/2009] [Indexed: 04/16/2023]
Abstract
The ability of elastic tissues to deform under physiological forces and to subsequently release stored energy to drive passive recoil is vital to the function of many dynamic tissues. Within vertebrates, elastic fibres allow arteries and lungs to expand and contract, thus controlling variations in blood pressure and returning the pulmonary system to a resting state. Elastic fibres are composite structures composed of a cross-linked elastin core and an outer layer of fibrillin microfibrils. These two components perform distinct roles; elastin stores energy and drives passive recoil, whilst fibrillin microfibrils direct elastogenesis, mediate cell signalling, maintain tissue homeostasis via TGFβ sequestration and potentially act to reinforce the elastic fibre. In many tissues reduced elasticity, as a result of compromised elastic fibre function, becomes increasingly prevalent with age and contributes significantly to the burden of human morbidity and mortality. This review considers how the unique molecular structure, tissue distribution and longevity of elastic fibres pre-disposes these abundant extracellular matrix structures to the accumulation of damage in ageing dermal, pulmonary and vascular tissues. As compromised elasticity is a common feature of ageing dynamic tissues, the development of strategies to prevent, limit or reverse this loss of function will play a key role in reducing age-related morbidity and mortality.
Collapse
Affiliation(s)
- Michael J Sherratt
- Tissue Injury and Repair Group, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
27
|
Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev 2009; 89:957-89. [PMID: 19584318 DOI: 10.1152/physrev.00041.2008] [Citation(s) in RCA: 664] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An important factor in the transition from an open to a closed circulatory system was a change in vessel wall structure and composition that enabled the large arteries to store and release energy during the cardiac cycle. The component of the arterial wall in vertebrates that accounts for these properties is the elastic fiber network organized by medial smooth muscle. Beginning with the onset of pulsatile blood flow in the developing aorta, smooth muscle cells in the vessel wall produce a complex extracellular matrix (ECM) that will ultimately define the mechanical properties that are critical for proper function of the adult vascular system. This review discusses the structural ECM proteins in the vertebrate aortic wall and will explore how the choice of ECM components has changed through evolution as the cardiovascular system became more advanced and pulse pressure increased. By correlating vessel mechanics with physiological blood pressure across animal species and in mice with altered vessel compliance, we show that cardiac and vascular development are physiologically coupled, and we provide evidence for a universal elastic modulus that controls the parameters of ECM deposition in vessel wall development. We also discuss mechanical models that can be used to design better tissue-engineered vessels and to test the efficacy of clinical treatments.
Collapse
Affiliation(s)
- Jessica E Wagenseil
- Department of Biomedical Engineering, Saint Louis University, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
28
|
Yanagino T, Yuasa K, Nagahama M, Matsuda Y, Tsuji A. Transcriptional regulation of fibrillin-2 gene by E2F family members in chondrocyte differentiation. J Cell Biochem 2009; 106:580-8. [DOI: 10.1002/jcb.22029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Glab J, Wess T. Changes in the Molecular Packing of Fibrillin Microfibrils During Extension Indicate Intrafibrillar and Interfibrillar Reorganization in Elastic Response. J Mol Biol 2008; 383:1171-80. [DOI: 10.1016/j.jmb.2008.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 11/24/2022]
|
30
|
Gomez-Duran A, Carvajal-Gonzalez JM, Mulero-Navarro S, Santiago-Josefat B, Puga A, Fernandez-Salguero PM. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling. Biochem Pharmacol 2008; 77:700-12. [PMID: 18812170 DOI: 10.1016/j.bcp.2008.08.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 02/06/2023]
Abstract
As our knowledge on the mechanisms that control cell function increases, more complex signaling pathways and quite intricate cross-talks among regulatory proteins are discovered. Establishing accurate interactions between cellular networks is essential for a healthy cell and different alterations in signaling are known to underline human disease. Transforming growth factor beta (TGFbeta) is an extracellular cytokine that regulates such critical cellular responses as proliferation, apoptosis, differentiation, angiogenesis and migration, and it is assumed that the latency-associated protein LTBP-1 plays a relevant role in TGFbeta targeting and activation in the extracellular matrix (ECM). The dioxin receptor (AhR) is a unique intracellular protein long studied because of its critical role in xenobiotic-induced toxicity and carcinogenesis. Yet, a large set of studies performed in cellular systems and in vivo animal models have suggested important xenobiotic-independent functions for AhR in cell proliferation, differentiation and migration and in tissue homeostasis. Remarkably, AhR activity converges with TGFbeta-dependent signaling through LTBP-1 since cells lacking AhR expression have phenotypic alterations that can be explained, at least in part, by the coordinated regulation of both proteins. Here, we will discuss the existence of functional interactions between AhR and TGFbeta signaling. We will focus on regulatory and functional aspects by analyzing how AhR status determines TGFbeta activity and by proposing a mechanism through which LTBP-1, a novel AhR target gene, mediates such effects. We will integrate ECM proteases in the AhR-LTBP-1-TGFbeta axis and suggest a model that could help explain some in vivo phenotypes associated to AhR deficiency.
Collapse
Affiliation(s)
- Aurea Gomez-Duran
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Martin G. Keane
- From the Departments of Medicine (M.G.K., R.E.P.) and Genetics (R.E.P.) and the Institute for Cardiovascular Medicine (M.G.K., R.E.P.), University of Pennsylvania School of Medicine, Philadelphia
| | - Reed E. Pyeritz
- From the Departments of Medicine (M.G.K., R.E.P.) and Genetics (R.E.P.) and the Institute for Cardiovascular Medicine (M.G.K., R.E.P.), University of Pennsylvania School of Medicine, Philadelphia
| |
Collapse
|
32
|
Ramirez F, Dietz HC. Fibrillin-rich microfibrils: Structural determinants of morphogenetic and homeostatic events. J Cell Physiol 2008; 213:326-30. [PMID: 17708531 DOI: 10.1002/jcp.21189] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fibrillin-rich microfibrils are specialized extracellular matrix assemblies that endow connective tissues with mechanical stability and elastic properties, and that participate in the regulation of organ formation, growth and homeostasis. Their physiological importance is underscored by the complex spectrum of clinical manifestations associated with mutations of fibrillin-1 and fibrillin-2 in Marfan syndrome (MFS) and congenital contractural arachnodactyly, respectively. Early evidence suggested that fibrillin-1 mutations in MFS lead to loss of tissue integrity by perturbing microfibril assembly and function. Recent studies in genetically targeted mice have however revealed that fibrillin-1 and fibrillin-2 mutations perturb signaling events mediated by TGF-beta superfamily members. As such, these studies have established a new biological paradigm whereby fibrillin-rich microfibrils are structural networks that specify the local concentration and timely release of signaling molecules during morphogenesis and tissue remodeling. This review summarizes our current understanding of the role of fibrillin-rich microfibrils in development and disease, as well as exciting new applications in the clinical management of MFS and related connective tissue disorders.
Collapse
Affiliation(s)
- Francesco Ramirez
- Child Health Institute of New Jersey, Robert W. Johnson Medical School, New Brunswick, New York 08901, USA.
| | | |
Collapse
|
33
|
Structure, Processing, and Polymerization of Rainbow Trout Egg Vitelline Envelope Proteins. NATO SCIENCE FOR PEACE AND SECURITY SERIES A: CHEMISTRY AND BIOLOGY 2008. [DOI: 10.1007/978-1-4020-8811-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
McGowan SE, Holmes AJ, Mecham RP, Ritty TM. Arg-Gly-Asp-containing domains of fibrillins-1 and -2 distinctly regulate lung fibroblast migration. Am J Respir Cell Mol Biol 2007; 38:435-45. [PMID: 18006876 DOI: 10.1165/rcmb.2007-0281oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Development of the extracellular matrix is a critical feature of alveolar formation and actively involves pulmonary interstitial fibroblasts. The elastic fiber network is an interconnected system of load-bearing fibers that also influences the behavior of adjacent cells, particularly the interstitial lung fibroblasts (LF). We hypothesized that discrete domains of fibrillins-1 and -2 interact with LF integrins and direct their migration in the presence of platelet-derived growth factor (PDGF)-A. Surfaces coated with recombinant peptides lacking or including an arginine-glycine-aspartic acid (RGD) motif were used to study LF migration across porous filters and on protein-coated glass. Exon 24 of fibrillin-2 (Fib2 24), which encodes for an RGD-containing transforming growth factor-beta-binding (TB) domain, stimulated migration with greater directional persistence and more effectively stimulated trans-filter migration at low concentrations. Exons 36-44 of fibrillin-1 (Fib1 36-44), which include epidermal growth factor-like domains and an RGD-containing TB domain, induce more lamlellipodia and more widespread remodeling of the leading edge, resulting in greater migration velocity than did Fib2 24. Distinct structural features in regions that surround the RGD motifs may differentially regulate how the PDGF receptor-alpha promotes integrin distribution and actin filament remodeling at the cell's leading edge. Understanding how fibrillins regulate LF migration may help elucidate how the elastic fiber system could be restored as an interconnected unit, which fails to occur in emphysematous lungs.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| | | | | | | |
Collapse
|
35
|
Nishimura A, Sakai H, Ikegawa S, Kitoh H, Haga N, Ishikiriyama S, Nagai T, Takada F, Ohata T, Tanaka F, Kamasaki H, Saitsu H, Mizuguchi T, Matsumoto N. FBN2, FBN1, TGFBR1, and TGFBR2 analyses in congenital contractural arachnodactyly. Am J Med Genet A 2007; 143A:694-8. [PMID: 17345643 DOI: 10.1002/ajmg.a.31639] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
FBN2, FBN1, TGFBR1, and TGFBR2 were analyzed by direct sequencing in 15 probands with suspected congenital contractural arachnodactyly (CCA). A total of four novel FBN2 mutations were found in four probands (27%, 4/15), but remaining the 11 did not show any abnormality in either of the genes. This study indicated that FBN2 mutations were major abnormality in CCA, and TGFBR and FBN1 defects may not be responsible for the disorder. FBN2 mutations were only found at introns 30, 31, and 35 in this study. Thus analysis of a mutational hotspot from exons 22 to 36 (a middle part) of FBN2 should be prioritized in CCA as previously suggested.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vakonakis I, Campbell ID. Extracellular matrix: from atomic resolution to ultrastructure. Curr Opin Cell Biol 2007; 19:578-83. [PMID: 17942296 PMCID: PMC4827755 DOI: 10.1016/j.ceb.2007.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 09/05/2007] [Indexed: 11/17/2022]
Abstract
The extracellular matrix (ECM) is a highly organized multimolecular structure, essential for life in higher organisms. Although substantial high-resolution structural information is available for relatively small fragments of ECM components, the inherent difficulty in preparing and analyzing samples of large, fibrous polymers impedes structural efforts. Here, we review recent advances in understanding the structure of three important ECM components: collagen, fibrillin and fibronectin. Emphasis is placed on the key role of intermolecular interactions in assembling larger, microm scale, structures.
Collapse
Affiliation(s)
- Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
37
|
Howarth R, Yearwood C, Harvey JF. Application of dHPLC for mutation detection of the fibrillin-1 gene for the diagnosis of Marfan syndrome in a National Health Service Laboratory. ACTA ACUST UNITED AC 2007; 11:146-52. [PMID: 17627385 DOI: 10.1089/gte.2006.0514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in the fibrillin-1 gene FBN1. Mutation detection of this 65-exon gene presents a particular challenge for the diagnostic service in cost, time constraints, and the need to maintain a stringently optimized assay procedure. Using denaturing high-performance liquid chromatography (dHPLC), we have designed a procedure for rapid mutation scanning, redesigning 50% of published primer sets, screening by Ensembl to avoid inclusion of polymorphic variations and employing a limited set of PCR conditions to allow for a high-throughput 96-well format. We have screened 262 unrelated patients with MFS or Marfan-like phenotypes and detected 103 (39.3%) mutations including 93 different mutations, 72 of which are novel. The mutations include 55 missense (53.4%) 19 splice site (18.5%), 17 frameshift (16.5%), 11 nonsense (10.7%) and 1 in-frame deletion/insertion.
Collapse
Affiliation(s)
- Rachel Howarth
- Wessex Regional Genetics Laboratory, Salisbury Hospital NHS Trust, Salisbury, Wiltshire, SP2 8BJ, UK
| | | | | |
Collapse
|
38
|
Bourge JL, Robert AM, Robert L, Renard G. Zonular fibers, multimolecular composition as related to function (elasticity) and pathology. ACTA ACUST UNITED AC 2007; 55:347-59. [PMID: 17350767 DOI: 10.1016/j.patbio.2007.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/20/2007] [Indexed: 11/24/2022]
Abstract
Zonular fibers (ZF) play an important role in accommodation. With the rapid increase over the last decade of the oldest part of the population in industrialized countries, age-dependent loss of accommodation became an increasingly important problem. It appeared therefore interesting to review old and recent literature on ZF, their composition, structure and pathological alterations. By comparing former and recent reports it appeared to us, that several previous reports were not sufficiently taken in consideration for the understanding of the rheological properties of ZF. Elastin and proteoglycans-glycosaminoglycans were reported previously as constituents of ZF. Their presence besides fibrillin, the major constituent, helps to explain the rheological properties of these fibers, and especially their elasticity and its age- and pathology-dependent decline. Our review points also to some of the major problems, which remain to be addressed by future experiments.
Collapse
Affiliation(s)
- J-L Bourge
- Department of ophthalmology, Hôtel-Dieu Hospital, University Paris-V, 1, place du Parvis-Notre-Dame, 75181 Paris cedex 04, France
| | | | | | | |
Collapse
|
39
|
Hirani R, Hanssen E, Gibson MA. LTBP-2 specifically interacts with the amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this microfibrillar protein. Matrix Biol 2007; 26:213-23. [PMID: 17293099 DOI: 10.1016/j.matbio.2006.12.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 11/20/2022]
Abstract
LTBP-2 is a matrix protein of unknown function since, unlike other LTBPs, it does not form covalent complexes with latent TGF-beta. We have previously shown that LTBP-2 has widespread association with fibrillin-containing microfibrils in developing aorta and other tissues. We have now shown that full-length human recombinant LTBP-2 specifically binds to the amino-terminal region of fibrillin-1, but not to fibrillin-2, in solid phase assays and overlay blotting. The binding was enhanced by the inclusion of 2 mM Ca2+ ions in the assay buffer and abolished by 5 mM EDTA indicating that the interaction was directly or indirectly Ca2+ ion dependent. The K(d) for the interaction was calculated from the specific binding curve as 9.4 nM. A recombinant carboxyl-terminal fragment of LTBP-2 was shown to a) bind the amino-terminal fragment of fibrillin-1 and b) block completely the binding of full length LTBP-2 to fibrillin-1. This result indicates that the major fibrillin-1 binding site resides close to the carboxyl-terminus of LTBP-2. Further competitive binding studies showed that an analogous carboxyl terminal fragment of LTBP-1 was able to block the binding of LTBP-2 to fibrillin-1 and that the C-terminal fragment of LTBP-2 could block the interaction of the LTBP-1 fragment with the fibrillin. Thus the binding site for LTBP-2 on fibrillin-1 appears to be the same or in close proximity to that for LTBP-1. Immunohistochemical analysis of developing human aorta showed distinctive but extensively overlapping distributions for LTBPs-1 and -2. Both LTBPs showed extensive co-localization with fibrillin-1 and elastic lamellae but LTBP-2 had extensive signal throughout the medial layer whereas LTBP-1 showed strong localization only in the outer medial layer. The finding indicates that there is a possibility for LTBP-2 to compete with LTBP-1 for binding to fibrillin-containing microfibrils throughout the aortic wall but particularly in the outer medial region where the LTBP-1 is predominantly located. Overall, the results support the concept that that LTBP-2 may be an indirect negative modulator for storage of the large latent TGF-beta complex on microfibrils in aorta and other fibrillin-rich tissues.
Collapse
Affiliation(s)
- Rena Hirani
- Discipline of Pathology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | |
Collapse
|
40
|
Lemaire R, Bayle J, Mecham RP, Lafyatis R. Microfibril-associated MAGP-2 Stimulates Elastic Fiber Assembly. J Biol Chem 2007; 282:800-8. [PMID: 17099216 DOI: 10.1074/jbc.m609692200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elastic fibers are complex structures composed of a tropoelastin inner core and microfibril outer mantle guiding tropoelastin deposition. Microfibrillar proteins mainly include fibrillins and microfibril-associated glycoproteins (MAGPs). MAGP-2 exhibits developmental expression peaking at elastic fiber onset, suggesting that MAGP-2 mediates elastic fiber assembly. To determine whether MAGP-2 regulates elastic fiber assembly, we used an in vitro model featuring doxycycline-regulated cells conditionally overexpressing exogenous MAGP-2 and constitutively expressing enhanced green fluorescent protein-tagged tropoelastin. Analysis by immunofluorescent staining showed that MAGP-2 overexpression dramatically increased elastic fibers levels, independently of extracellular levels of soluble tropoelastin, indicating that MAGP-2 stimulates elastic fiber assembly. This was associated with increased levels of matrix-associated MAGP-2. Electron microscopy showed that MAGP-2 specifically associates with microfibrils and that elastin globules primarily colocalize with MAGP-2-associated microfibrils, suggesting that microfibril-associated MAGP-2 facilitates elastic fiber assembly. MAGP-2 overexpression did not change levels of matrix-associated fibrillin-1, MAGP-1, fibulin-2, fibulin-5, or emilin-1, suggesting that microfibrils and other elastic fiber-associated proteins known to regulate elastogenesis do not mediate MAGP-2-induced elastic fiber assembly. Moreover, mutation analysis showed that MAGP-2 does not stimulate elastic fiber assembly through its RGD motif, suggesting that integrin receptor binding does not mediate MAGP-2-induced elastic fiber assembly. Because MAGP-2 interacts with Jagged-1 that controls cell-matrix interaction and cell motility, two key factors in elastic fiber macroassembly, microfibril-associated MAGP-2 may stimulate elastic fiber macroassembly by targeting the release of elastin globules from the cell membrane onto developing elastic fibers.
Collapse
Affiliation(s)
- Raphael Lemaire
- Department of Medicine, Arthritis Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
The mechanical properties of the lung are largely determined by the connective tissue networks laid down during development. The macromolecules most important for lung mechanics and structural integrity are collagen, elastin, and proteoglycans. Members of the fibrillar collagen gene family provide the structural framework of the various lung compartments and elastic fibers provide elastic recoil. Elastin is also an important architectural component that influences lung development, predominantly during the alveolar stage. Previous studies have conclusively shown that elastin degradation is a key step in the pathogenesis of chronic obstructive pulmonary disease. Exacerbating the disease process is the inability of lung cells to repair damaged elastic fibers, which leads to permanently compromised lung function and ongoing degenerative disease. Elastic fibers are among the most difficult matrix structures to repair because of their size, molecular complexity, and the requirement for numerous helper proteins to facilitate fiber assembly. Recent studies of elastin assembly combined with new insight into the functional role of elastic fiber proteins obtained from gene inactivation studies and linkage of human disease to elastin mutations provide new insight into the molecular and cellular complexities of elastin homeostasis.
Collapse
Affiliation(s)
- Adrian Shifren
- Department of Cell Biology and Physiology, Campus Box 8228, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
42
|
Carta L, Pereira L, Arteaga-Solis E, Lee-Arteaga SY, Lenart B, Starcher B, Merkel CA, Sukoyan M, Kerkis A, Hazeki N, Keene DR, Sakai LY, Ramirez F. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem 2006; 281:8016-23. [PMID: 16407178 PMCID: PMC3052983 DOI: 10.1074/jbc.m511599200] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrillin-rich microfibrils are extracellular assemblies that impart structural properties to the connective tissue. To elucidate the contribution of fibrillin-rich microfibrils to organogenesis, we have examined the vascular phenotype of a newly created strain of mice that completely lacks fibrillin-1 and the consequences of combined deficiency of fibrillins 1 and 2 on tissue formation. The results demonstrated that fibrillins 1 and 2 perform partially overlapping functions during aortic development. Fbn1-/- mice died soon after birth from ruptured aortic aneurysm, impaired pulmonary function, and/or diaphragmatic collapse. Analysis of the neonatal Fbn1-/- aorta documented a disorganized and poorly developed medial layer but normal levels of elastin cross-links. Transcriptional profiling revealed that aneurysm progression in Fbn1 null mice is accompanied by unproductive up-regulation of gene products normally involved in tissue repair and vascular integrity, such as plasminogen activator inhibitor-1, activin A, and cysteine-rich angiogenic protein 61. In contrast to Fbn1-/- mice, Fbn2 null mice had a well developed and morphologically normal aortic wall. However, virtually all Fbn1-/-;Fbn2-/- embryos and about half of the Fbn1+/-;Fbn2-/- embryos died in utero and displayed a significantly more severe vascular phenotype than Fbn1-/- mice. Consistent with a specialized function of fibrillin-2, electron microscopy visualized ultrastructurally different microfibrils in Fbn1 null compared with control cell cultures. Collectively, these data demonstrate that involvement of fibrillin-2 in the initial assembly of the aortic matrix overlaps in part with fibrillin-1 and that continued fibrillin-1 deposition is absolutely required for the maturation and function of the vessel during neonatal life.
Collapse
Affiliation(s)
- Luca Carta
- Laboratory of Genetics and Organogenesis, Hospital for Special Surgery, the Weill Medical College of Cornell University, New York, New York 10021
| | - Lygia Pereira
- Departmento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Emilio Arteaga-Solis
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029
| | - Sui Y. Lee-Arteaga
- Laboratory of Genetics and Organogenesis, Hospital for Special Surgery, the Weill Medical College of Cornell University, New York, New York 10021
| | - Brett Lenart
- Laboratory of Genetics and Organogenesis, Hospital for Special Surgery, the Weill Medical College of Cornell University, New York, New York 10021
| | - Barry Starcher
- University of Texas Health Science Center, Tyler, Texas 75708
| | - Christian A. Merkel
- Departmento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Marina Sukoyan
- Departmento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Alexander Kerkis
- Departmento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Noriko Hazeki
- Shriners Hospitals for Children and Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Douglas R. Keene
- Shriners Hospitals for Children and Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Lynn Y. Sakai
- Shriners Hospitals for Children and Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Francesco Ramirez
- Laboratory of Genetics and Organogenesis, Hospital for Special Surgery, the Weill Medical College of Cornell University, New York, New York 10021
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| |
Collapse
|
43
|
Dallas SL, Chen Q, Sivakumar P. Dynamics of Assembly and Reorganization of Extracellular Matrix Proteins. Curr Top Dev Biol 2006; 75:1-24. [PMID: 16984808 DOI: 10.1016/s0070-2153(06)75001-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter will review advances in our understanding of the dynamics of assembly and reorganization of extracellular matrix (ECM) proteins and will highlight the role of fibronectin as a key orchestrator for the assembly of multiple ECM proteins. The dynamic rather than static nature of the ECM will be emphasized by reviewing time-lapse imaging studies in living cell and embryo systems, with a particular focus on fibronectin and members of the fibrillin superfamily. These studies have provided new insights into the assembly and reorganization of ECM fibrillar networks, suggesting that fibril assembly is a hierarchical process, with increasingly larger fibrillar structures formed by the progressive aggregation of smaller units. These studies have also revealed that motile cells appear to be actively involved in the assembly and reorganization of ECM fibrillar networks by shunting fibrillar material from one location to another, adding fibrillar material to the ends of growing fibrils, and exchanging material between fibrils. A common theme emerging from these studies is that cell- and tissue-generated mechanical forces are critical in the assembly and remodeling of the ECM.
Collapse
Affiliation(s)
- Sarah L Dallas
- Department of Oral Biology, School of Dentistry University of Missouri, Kansas City, USA
| | | | | |
Collapse
|
44
|
Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM. Proteomic analysis of fibrillin-rich microfibrils. Proteomics 2006; 6:111-22. [PMID: 16302274 DOI: 10.1002/pmic.200401340] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
MS has been used to investigate the composition of fibrillin-rich microfibrils from non-elastic and elastic tissues, and to compare fibrillin-1 tryptic fingerprints derived from whole zonules, microfibrils and recombinant fibrillin-1. In all microfibril preparations, fibrillin-1 was abundant and the only fibrillin isoform. MAGP-1 was the only other microfibril-associated molecule. gamma-Crystallin co-purified with zonular microfibrils, so this association may contribute to ciliary zonule anchorage to lens. Recombinant fibrillin-1 tryptic peptides mapped throughout the molecule and included virtually all predicted peptides except for those larger than 4.5 kDa, smaller than 600 Da or post-translationally modified. In contrast, fewer microfibril tryptic fibrillin-1 peptides were detected, although they were derived from domains throughout the molecule and included two peptides after the C-terminal furin processing site. Several microfibril-derived N- and C-terminal domains never yielded any peptides, while tryptic peptides from other domains yielded numerous peptides, suggesting that some tissue microfibril features are retained after trypsinisation. This first MS analysis of a purified extracellular matrix assembly has provided new insights into microfibril composition and fibrillin-1 organisation within them.
Collapse
Affiliation(s)
- Stuart A Cain
- Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK
| | | | | | | | | | | |
Collapse
|
45
|
Dietz HC, Loeys B, Carta L, Ramirez F. Recent progress towards a molecular understanding of Marfan syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 139C:4-9. [PMID: 16273535 DOI: 10.1002/ajmg.c.30068] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marfan syndrome (MFS) is a systemic disorder of the connective tissue that is inherited as an autosomal dominant trait and which displays variable manifestations in the ocular, skeletal, and cardiovascular systems. These pleiotropic manifestations are accounted for by mutations in fibrillin-1, the building block of extracellular microfibrils. During the past 10 years, we have witnessed significant progress in delineating the pathological events responsible for the manifestations of MFS. Much of this progress has been based on the creation and analysis of fibrillin-1 mutant mouse lines that faithfully recapitulate the spectrum of clinical severity of MFS. These studies have established the critical contribution of fibrillin-1 deficiency to disease progression through altered cell-matrix interactions and dysregulated TGF-beta signaling. As a result, our definition of MFS as the prototypical structural disorder of the connective tissue has changed to that of a developmental abnormality with broad and complex effects on the morphogenesis and function of multiple organ systems. Importantly, new biological targets have emerged that may yield exciting new opportunities for the development of productive treatment strategies in MFS.
Collapse
Affiliation(s)
- Harry C Dietz
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
46
|
Koli K, Hyytiäinen M, Ryynänen MJ, Keski-Oja J. Sequential deposition of latent TGF-β binding proteins (LTBPs) during formation of the extracellular matrix in human lung fibroblasts. Exp Cell Res 2005; 310:370-82. [PMID: 16157329 DOI: 10.1016/j.yexcr.2005.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/30/2005] [Accepted: 08/01/2005] [Indexed: 11/28/2022]
Abstract
Latent TGF-beta binding proteins (LTBPs) mediate the targeting of latent TGF-beta complexes into ECM structures, which is important for TGF-beta activation and functions. LTBPs-1, -3 and -4 associate with and regulate the bioavailability of TGF-betas. We investigated whether LTBP-3 and -4 are associated with pericellular fibrillar structures of human lung fibroblast ECM, and which of their domains are important for this function. Immunoblotting analyses of isolated insoluble matrices as well as immunofluorescence analyses and confocal microscopy indicated that both LTBP-3 and -4 get assembled into the ECM. Interestingly, LTBP-4 was not detected until 7-10 days of culture and LTBP-3 until 14 days of culture. This was a major difference from the deposition kinetics of LTBP-1, which was detected already within 2 days of culture. Expression analyses by real time RT-PCR indicated that the slow appearance of LTBP-3 and -4 was due to the low expression levels soon after subculture. Recombinant N-terminal fragments of LTBP-3 and -4 bound readily to fibroblast ECM. The C-terminal domain of LTBP-4, but not of LTBP-3, also associated with the matrix structures. The levels of ECM-associated latent complexes of TGF-beta1 increased in parallel with the increased production and deposition of the LTBPs. The amount of active TGF-beta in the conditioned medium decreased during extended culture. Our results suggest that ECM is an important site of deposition also for LTBP-3 and -4 and that the temporal and spatial targeting of the TGF-beta complexes are associated with ECM maturation.
Collapse
Affiliation(s)
- Katri Koli
- Department of Virology, Haartman Institute and Helsinki University Hospital, University of Helsinki, Biomedicum/A506, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
47
|
Abstract
Many eukaryotic proteins share a sequence designated as the zona pellucida (ZP) domain. This structural element, present in extracellular proteins from a wide variety of organisms, from nematodes to mammals, consists of approximately 260 amino acids with eight conserved cysteine (Cys) residues and is located close to the C terminus of the polypeptide. ZP domain proteins are often glycosylated, modular structures consisting of multiple types of domains. Predictions can be made about some of the structural features of the ZP domain and ZP domain proteins. The functions of ZP domain proteins vary tremendously, from serving as structural components of egg coats, appendicularian mucous houses, and nematode dauer larvae, to serving as mechanotransducers in flies and receptors in mammals and nonmammals. Generally, ZP domain proteins are present in filaments and/or matrices, which is consistent with the role of the domain in protein polymerization. A general mechanism for assembly of ZP domain proteins has been presented. It is likely that the ZP domain plays a common role despite its presence in proteins of widely diverse functions.
Collapse
Affiliation(s)
- Luca Jovine
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | | | | | |
Collapse
|
48
|
Lemaire R, Korn JH, Shipley JM, Lafyatis R. Increased expression of type I collagen induced by microfibril-associated glycoprotein 2: novel mechanistic insights into the molecular basis of dermal fibrosis in scleroderma. ACTA ACUST UNITED AC 2005; 52:1812-23. [PMID: 15934076 DOI: 10.1002/art.21059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Mutations in fibrillin 1, a key component of extracellular microfibrils, are associated with connective tissue disorders such as Marfan's syndrome or skin fibrosis in the tight skin mouse model of scleroderma. Previous studies have suggested that fibrillin 1 mediates skin fibrosis via its interface with associated microfibrillar proteins and type I collagen; in particular, microfibril-associated glycoprotein 2 (MAGP-2), an extracellular matrix protein that binds to fibrillins and the alphavbeta3 integrin, is increased in TSK mouse and human scleroderma skin. Because the function of MAGP-2 in the biologic processes of the matrix remains unknown, this study investigated whether MAGP-2 regulates type I collagen. METHODS Fibroblast cultures conditionally overexpressing MAGP-2 were developed. Cells were analyzed by Western blotting, Northern blotting, pulse-chase analysis, and immunofluorescence to assess the effect of MAGP-2 on type I collagen. RESULTS Cells overexpressing MAGP-2 formed increased MAGP-2 matrix and showed a 3-fold increase in intracellular type I procollagen. This increase was associated with increased levels of type I collagen in the medium and matrix. Increased type I collagen colocalized with the MAGP-2 matrix. MAGP-2 overexpression had no effect on type I procollagen messenger RNA, but markedly increased the half-life of type I procollagen. MAGP-2 induced type I collagen even under conditions in which no MAGP-2 matrix was detectable, and did not require the presence of the RGD motif of MAGP-2 in its integrin-binding site. CONCLUSION This study shows that MAGP-2 stabilizes type I procollagen, identifying an important function of MAGP-2 in extracellular matrix homeostasis. It also suggests that MAGP-2 might mediate skin fibrosis in TSK mice and in patients with scleroderma.
Collapse
Affiliation(s)
- Raphael Lemaire
- The Arthritis Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
49
|
Pannu H, Fadulu VT, Chang J, Lafont A, Hasham SN, Sparks E, Giampietro PF, Zaleski C, Estrera AL, Safi HJ, Shete S, Willing MC, Raman CS, Milewicz DM. Mutations in Transforming Growth Factor-β Receptor Type II Cause Familial Thoracic Aortic Aneurysms and Dissections. Circulation 2005; 112:513-20. [PMID: 16027248 DOI: 10.1161/circulationaha.105.537340] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
A genetic predisposition for progressive enlargement of thoracic aortic aneurysms leading to type A dissection (TAAD) is inherited in an autosomal-dominant manner in up to 19% of patients, and a number of chromosomal loci have been identified for the condition. Having mapped a TAAD locus to 3p24–25, we sequenced the gene for transforming growth factor-β receptor type II (
TGFBR2
) to determine whether mutations in this gene resulted in familial TAAD.
Methods and Results—
We sequenced all 8 coding exons of
TGFBR2
by using genomic DNA from 80 unrelated familial TAAD cases. We found
TGFBR2
mutations in 4 unrelated families with familial TAAD who did not have Marfan syndrome. Affected family members also had descending aortic disease and aneurysms of other arteries. Strikingly, all 4 mutations affected an arginine residue at position 460 in the intracellular domain, suggesting a mutation “hot spot” for familial TAAD. Despite identical mutations in the families, assessment of linked polymorphisms suggested that these families were not distantly related. Structural analysis of the TGFBR2 serine/threonine kinase domain revealed that R460 is strategically located within a highly conserved region of this domain and that the amino acid substitutions resulting from these mutations will interfere with the receptor’s ability to transduce signals.
Conclusion—
Germline
TGFBR2
mutations are responsible for the inherited predisposition to familial TAAD in 5% of these cases. Our results have broad implications for understanding the role of TGF-β signaling in the pathophysiology of TAAD.
Collapse
Affiliation(s)
- Hariyadarshi Pannu
- Department of Internal Medicine, Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Batey S, Randles LG, Steward A, Clarke J. Cooperative Folding in a Multi-domain Protein. J Mol Biol 2005; 349:1045-59. [PMID: 15913648 DOI: 10.1016/j.jmb.2005.04.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/08/2005] [Accepted: 04/14/2005] [Indexed: 11/27/2022]
Abstract
Most protein domains are found in multi-domain proteins, yet most studies of protein folding have concentrated on small, single-domain proteins or on isolated domains from larger proteins. Spectrin domains are small (106 amino acid residues), independently folding domains consisting of three long alpha-helices. They are found in multi-domain proteins with a number of spectrin domains in tandem array. Structural studies have shown that in these arrays the last helix of one domain forms a continuous helix with the first helix of the following domain. It has been demonstrated that a number of spectrin domains are stabilised by their neighbours. Here we investigate the molecular basis for cooperativity between adjacent spectrin domains 16 and 17 from chicken brain alpha-spectrin (R16 and R17). We show that whereas the proteins unfold as a single cooperative unit at 25 degrees C, cooperativity is lost at higher temperatures and in the presence of stabilising salts. Mutations in the linker region also cause the cooperativity to be lost. However, the cooperativity does not rely on specific interactions in the linker region alone. Most mutations in the R17 domain cause a decrease in cooperativity, whereas proteins with mutations in the R16 domain still fold cooperatively. We propose a mechanism for this behaviour.
Collapse
Affiliation(s)
- Sarah Batey
- University of Cambridge, Department of Chemistry, MRC Centre for Protein Engineering, Lensfield Rd, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|