1
|
Ye X, Toyama T, Taguchi K, Arisawa K, Kaneko T, Tsutsumi R, Yamamoto M, Saito Y. Sulforaphane decreases serum selenoprotein P levels through enhancement of lysosomal degradation independent of Nrf2. Commun Biol 2023; 6:1060. [PMID: 37857700 PMCID: PMC10587141 DOI: 10.1038/s42003-023-05449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Selenoprotein P (SeP) is a major selenoprotein in serum predominantly produced in the liver. Excess SeP impairs insulin secretion from the pancreas and insulin sensitivity in skeletal muscle, thus inhibition of SeP could be a therapeutic strategy for type 2 diabetes. In this study, we examine the effect of sulforaphane (SFN), a phytochemical of broccoli sprouts and an Nrf2 activator, on SeP expression in vitro and in vivo. Treatment of HepG2 cells with SFN decreases inter- and intra-cellular SeP levels. SFN enhances lysosomal acidification and expression of V-ATPase, and inhibition of this process cancels the decrease of SeP by SFN. SFN activates Nrf2 in the cells, while Nrf2 siRNA does not affect the decrease of SeP by SFN or lysosomal acidification. These results indicate that SFN decreases SeP by enhancing lysosomal degradation, independent of Nrf2. Injection of SFN to mice results in induction of cathepsin and a decrease of SeP in serum. The findings from this study are expected to contribute to developing SeP inhibitors in the future, thereby contributing to treating and preventing diseases related to increased SeP.
Collapse
Affiliation(s)
- Xinying Ye
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kotoko Arisawa
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Takayuki Kaneko
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Ryouhei Tsutsumi
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
2
|
Soria-Tiedemann M, Michel G, Urban I, Aldrovandi M, O’Donnell VB, Stehling S, Kuhn H, Borchert A. Unbalanced Expression of Glutathione Peroxidase 4 and Arachidonate 15-Lipoxygenase Affects Acrosome Reaction and In Vitro Fertilization. Int J Mol Sci 2022; 23:ijms23179907. [PMID: 36077303 PMCID: PMC9456195 DOI: 10.3390/ijms23179907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
Glutathione peroxidase 4 (Gpx4) and arachidonic acid 15 lipoxygenase (Alox15) are counterplayers in oxidative lipid metabolism and both enzymes have been implicated in spermatogenesis. However, the roles of the two proteins in acrosomal exocytosis have not been explored in detail. Here we characterized Gpx4 distribution in mouse sperm and detected the enzyme not only in the midpiece of the resting sperm but also at the anterior region of the head, where the acrosome is localized. During sperm capacitation, Gpx4 translocated to the post-acrosomal compartment. Sperm from Gpx4+/Sec46Ala mice heterozygously expressing a catalytically silent enzyme displayed an increased expression of phosphotyrosyl proteins, impaired acrosomal exocytosis after in vitro capacitation and were not suitable for in vitro fertilization. Alox15-deficient sperm showed normal acrosome reactions but when crossed into a Gpx4-deficient background spontaneous acrosomal exocytosis was observed during capacitation and these cells were even less suitable for in vitro fertilization. Taken together, our data indicate that heterozygous expression of a catalytically silent Gpx4 variant impairs acrosomal exocytosis and in vitro fertilization. Alox15 deficiency hardly impacted the acrosome reaction but when crossed into the Gpx4-deficient background spontaneous acrosomal exocytosis was induced. The detailed molecular mechanisms for the observed effects may be related to the compromised redox homeostasis.
Collapse
Affiliation(s)
- Mariana Soria-Tiedemann
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Geert Michel
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Iris Urban
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sabine Stehling
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Astrid Borchert
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-034
| |
Collapse
|
3
|
Abstract
Selenoprotein P (SeP) is one of the 25 human selenocysteine (Sec)-containing proteins, and is generally thought to function as a plasma carrier of the trace element selenium in the body. Recent studies, however, indicate unsuspected pivotal roles of SeP in human diseases, particularly in type 2 diabetes mellitus (T2DM) and pulmonary arterial hypertension (PAH). In this review, we will summarize the characteristics of SeP and recent advances in the field, especially focusing on the emerging roles of SeP in pathophysiological conditions. We will also discuss potential medical/pharmaceutical applications targeting SeP.
Collapse
Affiliation(s)
- Ryouhei Tsutsumi
- Laboratory of Metabolism and Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yoshiro Saito
- Laboratory of Metabolism and Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
4
|
Maity S, Banerjee R, Goswami P, Chakrabarti M, Mukherjee A. Oxidative stress responses of two different ecophysiological species of earthworms (Eutyphoeus waltoni and Eisenia fetida) exposed to Cd-contaminated soil. CHEMOSPHERE 2018; 203:307-317. [PMID: 29626808 DOI: 10.1016/j.chemosphere.2018.03.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to assess the biomarkers of oxidative stress [reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR), aldehyde dehydrogenase (ALDH) and lipid peroxidation (LPO)] in earthworms of different ecological categories [epigeic Eisenia fetida (E. fetida) and anecic Eutyphoeus waltoni (E. waltoni)] exposed to cadmium (Cd)-polluted soil (30, 60 and 120 mg kg-1) for 28 days. Cd accumulation in earthworms increased significantly with increasing exposure dose and duration. However, E. fetida showed a relatively higher level of Cd accumulation until day 21; thereafter, depletion in the Cd level was recorded for the highest exposure dose. In E. waltoni, the detoxification enzymes and GSH level increased significantly with increasing exposure dose and Cd accumulation for 14 days (acute phase). In contrast, in E. fetida, acute exposure to Cd increased detoxification enzymes with decrease in GSH levels. For both species, sub-chronic exposures (28 days) increased lipid peroxidation with decrease in detoxification enzymes. GPx and ALDH responses of Cd-exposed earthworms showed a similar trend. Thus, these enzymes can be used as general biomarkers in these two species. The consistent variations in GST, GPx and ALDH activities suggest that E. waltoni may be used as a bioindicator species; this further signifies the use of endemic earthworms as a bioindicator to assess the risk of soil contamination. The present investigation indicates that Cd accumulation and biomarker responses in earthworms depend on dose and duration of exposure and on the concerned species.
Collapse
Affiliation(s)
- Sulata Maity
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Ritesh Banerjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Priya Goswami
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Manoswini Chakrabarti
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
5
|
Jiao Y, Wang Y, Guo S, Wang G. Glutathione peroxidases as oncotargets. Oncotarget 2017; 8:80093-80102. [PMID: 29108391 PMCID: PMC5668124 DOI: 10.18632/oncotarget.20278] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
6
|
de Angelis C, Galdiero M, Pivonello C, Salzano C, Gianfrilli D, Piscitelli P, Lenzi A, Colao A, Pivonello R. The environment and male reproduction: The effect of cadmium exposure on reproductive function and its implication in fertility. Reprod Toxicol 2017; 73:105-127. [PMID: 28774687 DOI: 10.1016/j.reprotox.2017.07.021] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/11/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
Cadmium is an environmental pollutant known as endocrine disruptor. Testis is particularly susceptible to cadmium, and testis injury occurs at high but even low levels of exposure. Cadmium reproductive toxicity is mediated by multiple mechanisms, including structural damage to testis vasculature and blood-testis barrier, inflammation, cytotoxicity on Sertoli and Leydig cells, oxidative stress mainly by means of mimicry and interference with essential ions, apoptosis, interference with selected signaling pathways and epigenetic regulation of genes involved in the regulation of reproductive function, and disturbance of the hypothalamus-pituitary-gonadal axis. The current review outlines epidemiological observational findings from environmental and occupational exposure in humans, and reports experimental studies in humans and animals. Lastly, a focus on the pathogenetic mechanisms of cadmium toxicity and on the specific mechanisms of cadmium sensitivity and resistance, particularly assessed in animal models, is included. Despite convincing experimental findings in animals and supporting evidences in humans identifying cadmium as reproductive toxicant, observational findings are controversial, suffering from heterogeneity of study design and pattern of exposure, and from co-exposure to multiple pollutants.
Collapse
Affiliation(s)
| | | | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| | - Ciro Salzano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| | - Daniele Gianfrilli
- Dipartimento di Medicina Sperimentale, Università di Roma "La Sapienza", Rome, Italy.
| | | | - Andrea Lenzi
- Dipartimento di Medicina Sperimentale, Università di Roma "La Sapienza", Rome, Italy.
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| |
Collapse
|
7
|
Brütsch SH, Rademacher M, Roth SR, Müller K, Eder S, Viertel D, Franz C, Kuhn H, Borchert A. Male Subfertility Induced by Heterozygous Expression of Catalytically Inactive Glutathione Peroxidase 4 Is Rescued in Vivo by Systemic Inactivation of the Alox15 Gene. J Biol Chem 2016; 291:23578-23588. [PMID: 27634046 DOI: 10.1074/jbc.m116.738930] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
Glutathione peroxidase 4 (GPX4) and arachidonic acid 15-lipoxygenase (ALOX15) are antagonizing enzymes in the metabolism of hydroperoxy lipids. In spermatoid cells and/or in the male reproductive system both enzymes are apparently expressed, and GPX4 serves as anti-oxidative enzyme but also as a structural protein. In this study we explored whether germ line inactivation of the Alox15 gene might rescue male subfertility induced by heterozygous expression of catalytically silent Gpx4. To address this question we employed Gpx4 knock-in mice expressing the Sec46Ala-Gpx4 mutant, in which the catalytic selenocysteine was replaced by a redox inactive alanine. Because homozygous Gpx4 knock-in mice (Sec46Ala-Gpx4+/+) are not viable we created heterozygous animals (Sec46Ala-Gpx4+/-) and crossed them with Alox15 knock-out mice (Alox15-/-). Male Sec46Ala-Gpx4+/- mice, but not their female littermates, were subfertile. Sperm extracted from the epididymal cauda showed strongly impaired motility characteristics and severe structural midpiece alterations (swollen mitochondria, intramitochondrial vacuoles, disordered mitochondrial capsule). Despite these structural alterations, they exhibited similar respiration characteristics than wild-type sperm. When Sec46Ala-Gpx4+/- mice were crossed with Alox15-deficient animals, the resulting males (Sec46Ala-Gpx4+/-+Alox15-/-) showed normalized fertility, and sperm motility was reimproved to wild-type levels. Taken together these data suggest that systemic inactivation of the Alox15 gene normalizes the reduced fertility of male Sec46Ala-Gpx4+/- mice by improving the motility of their sperm. If these data can be confirmed in humans, ALOX15 inhibitors might counteract male infertility related to GPX4 deficiency.
Collapse
Affiliation(s)
- Simone Hanna Brütsch
- From the Institute of Biochemistry, Charite-University Medicine Berlin, Virchowweg 6, D-10117 Berlin, Germany and
| | - Marlena Rademacher
- From the Institute of Biochemistry, Charite-University Medicine Berlin, Virchowweg 6, D-10117 Berlin, Germany and
| | - Sophia Regina Roth
- From the Institute of Biochemistry, Charite-University Medicine Berlin, Virchowweg 6, D-10117 Berlin, Germany and
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Susanne Eder
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Dagmar Viertel
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Christiane Franz
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Hartmut Kuhn
- From the Institute of Biochemistry, Charite-University Medicine Berlin, Virchowweg 6, D-10117 Berlin, Germany and
| | - Astrid Borchert
- From the Institute of Biochemistry, Charite-University Medicine Berlin, Virchowweg 6, D-10117 Berlin, Germany and
| |
Collapse
|
8
|
Suzuki Y, Nakagawa K, Kato S, Tatewaki N, Mizuochi S, Ito J, Eitsuka T, Nishida H, Miyazawa T. Metabolism and cytotoxic effects of phosphatidylcholine hydroperoxide in human hepatoma HepG2 cells. Biochem Biophys Res Commun 2015; 458:920-7. [PMID: 25704087 DOI: 10.1016/j.bbrc.2015.02.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 11/30/2022]
Abstract
In this study, we investigated cellular uptake and metabolism of phosphatidylcholine hydroperoxide (PCOOH) in human hepatoma HepG2 cells by high performance liquid chromatography-tandem mass spectrometry, and then evaluated whether PCOOH or its metabolites cause pathophysiological effects such as cytotoxicity and apoptosis. Although we found that most PCOOH was reduced to PC hydroxide in HepG2 cells, the remaining PCOOH caused cytotoxic effects that may be mediated through an unusual apoptosis pathway. These results will enhance our fundamental understanding of how PCOOH, which is present in oxidized low density lipoproteins, is involved in the development of atherosclerosis.
Collapse
Affiliation(s)
- Yuuri Suzuki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Naoto Tatewaki
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Shunsuke Mizuochi
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Takahiro Eitsuka
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Hiroshi Nishida
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan
| | - Teruo Miyazawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; Food Biotechnology Innovation Project NICHe, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
9
|
Fröhlich E, Wahl R. The current role of targeted therapies to induce radioiodine uptake in thyroid cancer. Cancer Treat Rev 2014; 40:665-74. [DOI: 10.1016/j.ctrv.2014.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/18/2022]
|
10
|
Ufer C, Wang CC. The Roles of Glutathione Peroxidases during Embryo Development. Front Mol Neurosci 2011; 4:12. [PMID: 21847368 PMCID: PMC3148772 DOI: 10.3389/fnmol.2011.00012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/13/2011] [Indexed: 01/31/2023] Open
Abstract
Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on GPx4.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, Charité - University Medicine Berlin Berlin, Germany
| | | |
Collapse
|
11
|
Traulsen H, Steinbrenner H, Buchczyk DP, Klotz LO, Sies H. Selenoprotein P Protects Low-density Lipoprotein Against Oxidation. Free Radic Res 2009; 38:123-8. [PMID: 15104205 DOI: 10.1080/10715760320001634852] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Selenoprotein P (SeP) is an extracellular glycoprotein with 8-10 selenocysteines per molecule, containing approximately 50% of total selenium in human serum. An antioxidant function of SeP has been postulated. In the present study, we show that SeP protects low-density lipoproteins (LDL) against oxidation in a cell-free in-vitro system. LDL were isolated from human blood plasma and oxidized with CuCl2, 2,2'-azobis(2-amidinopropane) (AAPH) or peroxynitrite in the presence or absence of SeP, using the formation of conjugated dienes as parameter for lipid peroxidation. SeP delayed the CuCl2- and AAPH-induced LDL oxidation significantly and more efficiently than bovine serum albumin used as control. In contrast, SeP was not capable of inhibiting peroxynitrite-induced LDL oxidation. The protection of LDL against CuCl2- and AAPH-induced oxidation provides evidence for the antioxidant capacity of SeP. Because SeP associates with endothelial membranes, it may act in vivo as a protective factor inhibiting the oxidation of LDL by reactive oxygen species.
Collapse
Affiliation(s)
- Henrik Traulsen
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
12
|
Steinbrenner H, Sies H. Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta Gen Subj 2009; 1790:1478-85. [PMID: 19268692 DOI: 10.1016/j.bbagen.2009.02.014] [Citation(s) in RCA: 520] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 02/27/2009] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species (ROS) are derived from cellular oxygen metabolism and from exogenous sources. An excess of ROS results in oxidative stress and may eventually cause cell death. ROS levels within cells and in extracellular body fluids are controlled by concerted action of enzymatic and non-enzymatic antioxidants. The essential trace element selenium exerts its antioxidant function mainly in the form of selenocysteine residues as an integral constituent of ROS-detoxifying selenoenzymes such as glutathione peroxidases (GPx), thioredoxin reductases (TrxR) and possibly selenoprotein P (SeP). In particular, the dual role of selenoprotein P as selenium transporter and antioxidant enzyme is highlighted herein. A cytoprotective effect of selenium supplementation has been demonstrated for various cell types including neurons and astrocytes as well as endothelial cells. Maintenance of full GPx and TrxR activity by adequate dietary selenium supply has been proposed to be useful for the prevention of several cardiovascular and neurological disorders. On the other hand, selenium supplementation at supranutritional levels has been utilised for cancer prevention: antioxidant selenoenzymes as well as prooxidant effects of selenocompounds on tumor cells are thought to be involved in the anti-carcinogenic action of selenium.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
13
|
Speckmann B, Walter PL, Alili L, Reinehr R, Sies H, Klotz LO, Steinbrenner H. Selenoprotein P expression is controlled through interaction of the coactivator PGC-1alpha with FoxO1a and hepatocyte nuclear factor 4alpha transcription factors. Hepatology 2008; 48:1998-2006. [PMID: 18972406 DOI: 10.1002/hep.22526] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Selenoprotein P (SeP), the major selenoprotein in plasma, is produced mainly by the liver, although SeP expression is detected in many organs. Recently, we reported stimulation of SeP promoter activity by the forkhead box transcription factor FoxO1a in hepatoma cells and its attenuation by insulin. Here, we demonstrate that this translates into fine-tuning of SeP production and secretion by insulin. Overexpression of peroxisomal proliferator activated receptor-gamma coactivator 1alpha (PGC-1alpha) enhanced the stimulatory effect of FoxO1a on SeP promoter activity. We identified a novel functional binding site for hepatocyte nuclear factor (HNF)-4alpha, termed hepatocyte nuclear factor binding element 1, in the human SeP promoter directly upstream of the FoxO-responsive element daf16-binding element 2 (DBE2). Point mutations in hepatocyte nuclear factor binding element 1 alone or together with DBE2 decreased basal activity and responsiveness of the SeP promoter to PGC-1alpha. Moreover, the PGC-1alpha-inducing glucocorticoid dexamethasone strongly enhanced SeP messenger RNA levels and protein secretion in cultured rat hepatocytes, whereas insulin suppressed the stimulation of both PGC-1alpha and SeP caused by dexamethasone treatment. In a brain-derived neuroblastoma cell line with low basal SeP expression, SeP transcription was stimulated by PGC-1alpha together with FoxO1a, and overexpression of HNF-4alpha potentiated this effect. CONCLUSION High-level expression of SeP in liver is ensured by concerted action of the coactivator PGC-1alpha and the transcription factors FoxO1a and HNF-4alpha. Hence, the production of SeP is regulated similarly to that of the gluconeogenic enzyme glucose-6-phosphatase. As hepatic SeP production is crucial for selenium distribution throughout the body, the present study establishes PGC-1alpha as a key regulator of selenium homeostasis.
Collapse
Affiliation(s)
- Bodo Speckmann
- Institute for Biochemistry and Molecular Biology I, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Fröhlich E, Czarnocka B, Brossart P, Wahl R. Antitumor effects of arsenic trioxide in transformed human thyroid cells. Thyroid 2008; 18:1183-93. [PMID: 19014326 DOI: 10.1089/thy.2008.0114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND To improve radioiodine treatment of metastasized differentiated thyroid carcinomas, substances that increase iodide uptake are needed. Many tumors are not responsive to retinoic acid as a differentiating agent. Therefore, identification of other differentiating substances is needed. Arsenic trioxide (ATO) was investigated for its potential to increase iodide uptake. METHODS The action of ATO on proliferation, differentiation, and apoptosis was evaluated in follicular and papillary thyroid carcinoma cell lines. To get insight into the mode of action of ATO, coincubations with inhibitors of the phosphoinositide 3 (PI3) kinase pathway (V-Akt Murine Thymoma Viral Oncogene Homolog 1, Akt inhibitors) were performed; glutathione (GSH) levels were determined, as well as synergistic effects of ATO with inhibitors of GSH metabolism, inductors of oxidative stress. As a potential additional target of the pleiotropic action of ATO, its effect on glucose uptake was investigated. The expression of sodium iodide symporter, pendrin, phospho-Akt, and glucose transporter 1 was studied to reveal a potential effect of ATO on the transcription of specific genes. RESULTS ATO reduced proliferation, increased iodide uptake and apoptosis, and, as an additional new mechanism, decreased glucose uptake in transformed thyrocytes. The pharmacological reduction of the amount of reduced GSH was effective in enhancing the differentiating action of ATO, whereas the combination of ATO with Akt-1 inhibitors reduced cell number but did not increase differentiation. CONCLUSIONS Our study suggests a new therapeutic option for postoperative treatment of radioiodine nonresponsive differentiated thyroid carcinomas.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/drug therapy
- Adenocarcinoma, Follicular/metabolism
- Adenocarcinoma, Follicular/pathology
- Adenocarcinoma, Follicular/radiotherapy
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Arsenic Trioxide
- Arsenicals/pharmacology
- Biological Transport, Active/drug effects
- Carcinoma, Papillary/drug therapy
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/radiotherapy
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Glucose/metabolism
- Glutathione/metabolism
- Humans
- Iodides/metabolism
- Iodine Radioisotopes/therapeutic use
- Oncogene Protein v-akt/antagonists & inhibitors
- Oxides/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Radiation Tolerance
- Reactive Oxygen Species/metabolism
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/radiotherapy
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Department of Endocrinology, Metabolism, Nephrology, and Clinical Chemistry, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
15
|
Bosschaerts T, Guilliams M, Noel W, Hérin M, Burk RF, Hill KE, Brys L, Raes G, Ghassabeh GH, De Baetselier P, Beschin A. Alternatively activated myeloid cells limit pathogenicity associated with African trypanosomiasis through the IL-10 inducible gene selenoprotein P. THE JOURNAL OF IMMUNOLOGY 2008; 180:6168-75. [PMID: 18424738 DOI: 10.4049/jimmunol.180.9.6168] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Uncontrolled inflammation is a major cause of tissue injury/pathogenicity often resulting in death of a host infected with African trypanosomes. Thus, comparing the immune response in hosts that develop different degrees of disease severity represents a promising approach to discover processes contributing to trypanosomiasis control. It is known that limitation of pathogenicity requires a transition in the course of infection, from an IFN-gamma-dependent response resulting in the development of classically activated myeloid cells (M1), to a counterbalancing IL-10-dependent response associated with alternatively activated myeloid cells (M2). Herein, mechanisms and downstream effectors by which M2 contribute to lower the pathogenicity and the associated susceptibility to African trypanosomiasis have been explored. Gene expression analysis in IL-10 knockout and wild-type mice, that are susceptible and relatively resistant to Trypanosoma congolense infection, respectively, revealed a number of IL-10-inducible genes expressed by M2, including Sepp1 coding for selenoprotein P. Functional analyses confirm that selenoprotein P contributes to limit disease severity through anti-oxidant activity. Indeed, Sepp1 knockout mice, but not Sepp1(Delta)(240-361) mice retaining the anti-oxidant motif but lacking the selenium transporter domain of selenoprotein P, exhibited increased tissue injury that associated with increased production of reactive oxygen species and increased apoptosis in the liver immune cells, reduced parasite clearance capacity of myeloid cells, and decreased survival. These data validate M2-associated molecules as functioning in reducing the impact of parasite infection on the host.
Collapse
Affiliation(s)
- Tom Bosschaerts
- Department of Molecular and Cellular Interactions, Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Biochemical analysis of selenoprotein expression in brain cell lines and in distinct brain regions. Cell Tissue Res 2008; 332:403-14. [DOI: 10.1007/s00441-008-0575-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
|
17
|
Hepatic selenoprotein P (SePP) expression restores selenium transport and prevents infertility and motor-incoordination in Sepp-knockout mice. Biochem J 2008; 409:741-9. [DOI: 10.1042/bj20071172] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SePP (selenoprotein P) is central for selenium transport and distribution. Targeted inactivation of the Sepp gene in mice leads to reduced selenium content in plasma, kidney, testis and brain. Accordingly, activities of selenoenzymes are reduced in Sepp−/− organs. Male Sepp−/− mice are infertile. Unlike selenium deficiency, Sepp deficiency leads to neurological impairment with ataxia and seizures. Hepatocyte-specific inactivation of selenoprotein biosynthesis reduces plasma and kidney selenium levels similarly to Sepp−/− mice, but does not result in neurological impairment, suggesting a physiological role of locally expressed SePP in the brain. In an attempt to define the role of liver-derived circulating SePP in contrast with locally expressed SePP, we generated Sepp−/− mice with transgenic expression of human SePP under control of a hepatocyte-specific transthyretin promoter. Secreted human SePP was immunologically detectable in serum from SEPP1-transgenic mice. Selenium content and selenoenzyme activities in serum, kidney, testis and brain of Sepp−/−;SEPP1 (SEPP1-transgenic Sepp−/−) mice were increased compared with Sepp−/− controls. When a selenium-adequate diet (0.16-0.2 mg/kg of body weight) was fed to the mice, liver-specific expression of SEPP1 rescued the neurological defects of Sepp−/− mice and rendered Sepp−/− males fertile. When fed on a low-selenium diet (0.06 mg/kg of body weight), Sepp−/−;SEPP1 mice survived 4 weeks longer than Sepp−/− mice, but ultimately developed the neurodegenerative phenotype. These results indicate that plasma SePP derived from hepatocytes is the main transport form of selenium supporting the kidney, testis and brain. Nevertheless, local Sepp expression is required to maintain selenium content in selenium-privileged tissues such as brain and testis during dietary selenium restriction.
Collapse
|
18
|
Zhang Y, Zhou Y, Schweizer U, Savaskan NE, Hua D, Kipnis J, Hatfield DL, Gladyshev VN. Comparative Analysis of Selenocysteine Machinery and Selenoproteome Gene Expression in Mouse Brain Identifies Neurons as Key Functional Sites of Selenium in Mammals. J Biol Chem 2008; 283:2427-38. [DOI: 10.1074/jbc.m707951200] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Jarrett SG, Albon J, Boulton M. The contribution of DNA repair and antioxidants in determining cell type-specific resistance to oxidative stress. Free Radic Res 2007; 40:1155-65. [PMID: 17050169 DOI: 10.1080/10715760600876613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aims of this study were; (i) to elucidate the mechanisms involved in determining cell type-specific responses to oxidative stress and (ii) to test the hypothesis that cell types which are subjected to high oxidative burdens in vivo, have greater oxidative stress resistance. Cultures of the retinal pigment epithelium (RPE), corneal fibroblasts, alveolar type II epithelium and skin epidermal cells were studied. Cellular sensitivity to H2O2 was determined by the MTT assay. Cellular antioxidant status (CuZnSOD, MnSOD, GPX, CAT) was analyzed with enzymatic assays and the susceptibility and repair capacities of nuclear and mitochondrial genomes were assessed by QPCR. Cell type-specific responses to H2O2 were observed. The RPE had the greatest resistance to oxidative stress (P>0.05; compared to all other cell types) followed by the corneal fibroblasts (P < 0.05; compared to skin and lung cells). The oxidative tolerance of the RPE coincided with greater CuZnSOD, GPX and CAT enzymatic activity (P < 0.05; compared to other cells). The RPE and corneal fibroblasts both had up-regulated nDNA repair post-treatment (P < 0.05; compared to all other cells). In summary, variations in the synergistic interplay between enzymatic antioxidants and nDNA repair have important roles in influencing cell type-specific vulnerability to oxidative stress. Furthermore, cells located in highly oxidizing microenvironments appear to have more efficient oxidative defence and repair mechanisms.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Cell and Molecular Biology Unit, School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
20
|
Brauer VFH, Schweizer U, Köhrle J, Paschke R. Selenium and goiter prevalence in borderline iodine sufficiency. Eur J Endocrinol 2006; 155:807-12. [PMID: 17132749 DOI: 10.1530/eje.1.02302] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DESIGN Selenium (Se) is required for the biosynthesis of selenocysteine-containing proteins. Several selenoenzymes, e.g. glutathione peroxidases and thioredoxin reductases, are expressed in the thyroid. Selenoenzymes of the deiodinase family regulate the levels of thyroid hormones. For clinical investigators, it is difficult to determine the role of Se in the etiology of (nodular-)goiter, because there are considerable variations of Se concentrations in different populations as reflected by dietary habits, bioavailability of Se compounds, and racial differences. Moreover, most previous clinical trials which investigated the influence of Se on thyroid volume harbored a bias due to the coexistence of severe iodine deficiency in the study populations. METHODS Therefore, we investigated the influence of Se on thyroid volume in an area with borderline iodine sufficiency. First, we investigated randomly selected probands for urinary iodine (UI) and creatinine excretion in spot urine samples and determined the prevalence of goiter and thyroid nodules by high-resolution ultrasonography. After this, we determined urinary Se excretion (USe) in probands with goiter as well as in matched probands without goiter. Adjustments between the two compared groups were made for age, gender, history of thyroid disorders, smoking, and UI excretion. RESULTS The mean USe and UI rates of all 172 probands were 24 micro g Se/l or 27 micro g Se/g creatinine and 96 micro g I/l or 113 micro g I/g creatinine indicating borderline selenium (20-200 micro g/l) and iodine (100-200 micro g/l) sufficiency of the study population. Probands with goiter (n=89) showed significantly higher USe levels than probands with normal thyroid volume (n=83; P < 0.05). USe rates were not influenced by present smoking or pregnancy. CONCLUSIONS In our investigation, USe was not an independent risk factor for the development of goiter. The higher USe in probands with goiter in comparison with probands with normal thyroid volume is most likely a coincidence. Se does not significantly influence thyroid volume in borderline iodine sufficiency because the iodine status is most likely the more important determinant.
Collapse
Affiliation(s)
- Volker F H Brauer
- Third Department of Medicine, University of Leipzig, Ph-Rosenthal-Street, 27, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
21
|
Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F. Selenium Supplementation Restores the Antioxidative Capacity and Prevents Cell Damage in Bone Marrow Stromal Cells In Vitro. Stem Cells 2006; 24:1226-35. [PMID: 16424399 DOI: 10.1634/stemcells.2005-0117] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bone marrow stromal cells (BMSCs) and other cell populations derived from mesenchymal precursors are developed for cell-based therapeutic strategies and undergo cellular stress during ex vivo procedures. Reactive oxygen species (ROS) of cellular and environmental origin are involved in redox signaling, cumulative cell damage, senescence, and tumor development. Selenium-dependent (glutathione peroxidases [GPxs] and thioredoxin reductases [TrxRs]) and selenium-independent (superoxide dismutases [SODs] and catalase [CAT]) enzyme systems regulate cellular ROS steady state levels. SODs process superoxide anion to hydrogen peroxide, which is subsequently neutralized by GPx and CAT; TrxR neutralizes other ROS, such as peroxinitrite. Primary BMSCs and telomerase-immortalized human mesenchymal stem cells (hMSC-TERT) express GPx1-3, TrxR1, TrxR2, SOD1, SOD2, and CAT. We show here that in standard cell cultures (5%-10% fetal calf serum, 5-10 nM selenite), the activity of antioxidative selenoenzymes is impaired in hMSC-TERT and BMSCs. Under these conditions, the superoxide anion processing enzyme SOD1 is not sufficiently stimulated by an ROS load. Resulting oxidative stress favors generation of micronuclei in BMSCs. Supplementation of selenite (100 nM) restores basal GPx and TrxR activity, rescues basal and ROS-stimulated SOD1 mRNA expression and activity, and reduces ROS accumulation in hMSC-TERT and micronuclei generation in BMSCs. In conclusion, BMSCs in routine cell culture have low antioxidative capacity and are subjected to oxidative stress, as indicated by the generation of micronuclei. Selenite supplementation of BMSC cultures appears to be an important countermeasure to restore their antioxidative capacity and to reduce cell damage in the context of tissue engineering and transplantation procedures.
Collapse
Affiliation(s)
- Regina Ebert
- Musculosceletal Research Center, Orthopaedic Department, University of Würzburg, Brettreichstrasse 11, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Steinbrenner H, Alili L, Bilgic E, Sies H, Brenneisen P. Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 2006; 40:1513-23. [PMID: 16632112 DOI: 10.1016/j.freeradbiomed.2005.12.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/24/2005] [Accepted: 12/20/2005] [Indexed: 01/15/2023]
Abstract
Selenoprotein P (SeP) is a highly glycosylated, selenium-rich plasma protein. Aside from its role as selenium carrier protein, an antioxidative function of SeP has been suggested. Astrocytes, which detoxify reactive oxygen species in the brain, were described as potential target cells of SeP. We investigated the expression of SeP in human astrocytes and its involvement in the protection of these cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage. We show that primary human astrocytes and the human astrocytoma cell line MOG-G-CCM express SeP as an unglycosylated protein, which is not secreted. SeP expression in astrocytes is constitutive. Preincubation of astrocytes with hepatocyte-derived SeP mimicks the protective effect of low-molecular-weight selenocompounds such as sodium selenite or selenomethionine against oxidative damage, shielding astrocytes from t-BHP-induced cytotoxicity. Selenium supplementation of astrocytes counteracts oxidative stress via an increase in expression and activity of the selenoenzyme cytosolic glutathione peroxidase (cGPx). Furthermore, specific downregulation of SeP expression by small interfering RNA decreases cell viability of human astrocytes and makes them more susceptible to t-BHP-induced cytotoxicity. Our results implicate an antioxidant activity of constitutively expressed SeP in selenium-deficient astrocytes, while during adequate selenium supply the enhanced protection against oxidative stress is exerted by cGPx.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
Recent identification of new selenocysteine-containing proteins has revealed relationships between the two trace elements selenium (Se) and iodine and the hormone network. Several selenoproteins participate in the protection of thyrocytes from damage by H(2)O(2) produced for thyroid hormone biosynthesis. Iodothyronine deiodinases are selenoproteins contributing to systemic or local thyroid hormone homeostasis. The Se content in endocrine tissues (thyroid, adrenals, pituitary, testes, ovary) is higher than in many other organs. Nutritional Se depletion results in retention, whereas Se repletion is followed by a rapid accumulation of Se in endocrine tissues, reproductive organs, and the brain. Selenoproteins such as thioredoxin reductases constitute the link between the Se metabolism and the regulation of transcription by redox sensitive ligand-modulated nuclear hormone receptors. Hormones and growth factors regulate the expression of selenoproteins and, conversely, Se supply modulates hormone actions. Selenoproteins are involved in bone metabolism as well as functions of the endocrine pancreas and adrenal glands. Furthermore, spermatogenesis depends on adequate Se supply, whereas Se excess may impair ovarian function. Comparative analysis of the genomes of several life forms reveals that higher mammals contain a limited number of identical genes encoding newly detected selenocysteine-containing proteins.
Collapse
Affiliation(s)
- J Köhrle
- Institut für Experimentelle Endokrinologie, Charité, Humboldt Universität zu Berlin, Schumannstrasse 20/21, D-10098 Berlin, Germany.
| | | | | | | |
Collapse
|
24
|
Brenneisen P, Steinbrenner H, Sies H. Selenium, oxidative stress, and health aspects. Mol Aspects Med 2005; 26:256-67. [PMID: 16105679 DOI: 10.1016/j.mam.2005.07.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolic processes which generate oxidants and antioxidants are governed by genetic disposition as well as environmental factors. Changes in lifestyle, including increased environmental pollution, sun exposure, and dietary habits modify the challenge of the organism by reactive oxygen species. Defense mechanisms are reinforced by increasing dietary intake of antioxidants and micronutrients such as vitamins and selenium (Se). Se deficiency has been recognized to promote some disease states. Epidemiological findings link a lowered Se status to neurodegenerative and cardiovascular diseases as well as to increased cancer risk. While evidence exists to suggest that additional selenocompounds would be beneficial in some health conditions, results from future intervention trials are needed to substantiate the argument for increasing Se intake. Several pieces of the puzzle concerning the molecular mechanisms underlying the reactive oxygen species-triggered disease state and intervention by enzymatic antioxidants have been elucidated. A novel concept of protection of stromal cells against the dominating influence of tumor cells in tumor-stroma interaction by selenocompounds and other antioxidants is presented herein, which may translate into therapeutic strategies in chemoprevention of tumor invasion.
Collapse
Affiliation(s)
- Peter Brenneisen
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
25
|
Schweizer U, Streckfuss F, Pelt P, Carlson BA, Hatfield DL, Köhrle J, Schomburg L. Hepatically derived selenoprotein P is a key factor for kidney but not for brain selenium supply. Biochem J 2005; 386:221-6. [PMID: 15638810 PMCID: PMC1134785 DOI: 10.1042/bj20041973] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Liver-specific inactivation of Trsp, the gene for selenocysteine tRNA, removes SePP (selenoprotein P) from plasma, causing serum selenium levels to fall from 298 microg/l to 50 microg/l and kidney selenium to decrease to 36% of wild-type levels. Likewise, glutathione peroxidase activities decreased in plasma and kidney to 43% and 18% respectively of wild-type levels. This agrees nicely with data from SePP knockout mice, supporting a selenium transport role for hepatically expressed SePP. However, brain selenium levels remain unaffected and neurological defects do not occur in the liver-specific Trsp knockout mice, while SePP knockout mice suffer from neurological defects. This indicates that a transport function in plasma is exerted by hepatically derived SePP, while in brain SePP fulfils a second, hitherto unexpected, essential role.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Neurobiologie des Selens, Neurowissenschaftliches Forschungszentrum, Charité-Universitätsmedizin Berlin, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF. Selenoprotein P Is Required for Mouse Sperm Development1. Biol Reprod 2005; 73:201-11. [PMID: 15744015 DOI: 10.1095/biolreprod.105.040360] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Selenoprotein P (SEPP1), an extracellular glycoprotein of unknown function, is a unique member of the selenoprotein family that, depending on species, contains 10-17 selenocysteines in its primary structure; in contrast, all other family members contain a single selenocysteine residue. The SEPP1-null (Sepp1(-/-)) male but not the female mice are infertile, but the cellular basis of this male phenotype has not been defined. In this study, we demonstrate that mature spermatozoa of Sepp1(-/-) males display a specific set of flagellar structural defects that develop temporally during spermiogenesis and after testicular maturation in the epididymis. The flagellar defects include a development of a truncated mitochondrial sheath, an extrusion of a specific set of axonemal microtubules and outer dense fibers from the principal piece, and ultimately a hairpin-like bend formation at the midpiece-principal piece junction. The sperm defects found in Sepp1(-/-) males appear to be the same as those observed in wild-type (Sepp1(+/+)) males fed a low selenium diet. Supplementation of dietary selenium levels for Sepp1(-/-) males neither reverses the development of sperm defects nor restores fertility. These data demonstrate that SEPP1 is required for development of functional spermatozoa and indicate that it is an essential component of the selenium delivery pathway for developing germ cells.
Collapse
Affiliation(s)
- Gary E Olson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | |
Collapse
|
27
|
Menth M, Schmutzler C, Mentrup B, Hoang-Vu C, Takahashi K, Honjoh T, Köhrle J. Selenoprotein expression in Hürthle cell carcinomas and in the human Hürthle cell carcinoma line XTC.UC1. Thyroid 2005; 15:405-16. [PMID: 15929660 DOI: 10.1089/thy.2005.15.405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hürthle cell carcinomas (HTC) are characterized by mitochondrial amplification and enhanced oxygen metabolism. To clarify if defects in enzymes scavenging reactive oxygen species are involved in the pathogenesis of HTC, we analyzed selenium (Se)-dependent expression of various detoxifying selenoproteins in the HTC cell line XTC.UC1. Glutathione peroxidase and thioredoxin reductase activity was found both in cell lysates and conditioned media of XTC.UC1 cells and was increased by Na(2)SeO(3). Western blot analysis demonstrated the presence of thioredoxin reductase both in cell lysates and conditioned media and of glutathione peroxidase 3 in conditioned media. Type I 5'-deiodinase, another selenoprotein that catalyzes thyroid hormone metabolism, was detectable only in cell lysates by enzyme assay and Western blot, and responded to stimulation by both Na(2)SeO(3) and retinoic acid. A selenoprotein P signal was detected in conditioned media by Western blot, but was not enhanced by Na(2)SeO(3) treatment. In situ hybridization revealed glutathione peroxidase mRNAs in HTC specimen; glutathione peroxidase 3 mRNA levels were reduced. These data suggest adequate expression and Se-dependent regulation of a couple of selenoproteins involved in antioxidant defense and thyroid hormone metabolism in XTC.UC1 cells, so far giving no evidence of a role of these proteins in the pathogenesis of HTCs.
Collapse
Affiliation(s)
- Marianne Menth
- Abteilung für Molekulare Innere Medizin und Klinische Forschergruppe der Medizinischen Poliklinik, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Ufer C, Borchert A, Kuhn H. Functional characterization of cis- and trans-regulatory elements involved in expression of phospholipid hydroperoxide glutathione peroxidase. Nucleic Acids Res 2003; 31:4293-303. [PMID: 12888488 PMCID: PMC169948 DOI: 10.1093/nar/gkg650] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phospholipid hydroperoxide glutathione peroxidase (phGPx) is a member of the seleno glutathione peroxidase family that is comprised of five selenoproteins capable of reducing hydroperoxy lipids to the corresponding alcohols. The enzyme has been implicated in antioxidative defense, but its high expression level in testicular tissue suggests a more specific function during sperm maturation. The phGPx is encoded for by a joint sperm nucleus/phGPx gene (sn/phGPx) and can be expressed as a mitochondrial or cytosolic isoform. Although sn/phGPx genes have been cloned from various mammalian species expression regulation of the enzyme has not been studied in detail. We investigated the 5'-flanking region of the murine sn/phGPx gene and observed basic promoter activity in a 200 bp region localized immediately upstream of the translational initiation site of the cytosolic isoform (3'-ATG). DNase protection assays indicated the presence of five distinct protein-binding regions and electrophoretic mobility shift assays and supershift experiments revealed binding of stimulating protein 1 (SP1), nuclear factor Y (NF-Y) and members of the SMAD family. Site-directed mutagenesis of the consensus binding sequences abolished in vitro transcription factor binding. Expression of reporter genes was most effectively impaired when SP1/SP3 and NF-Y binding site-deficient constructs were tested. Chromatin immunoprecipitation suggested the in vivo relevance of these transcription factors. Our data indicate that the basic phGPx promoter constitutes a 200 bp oligonucleotide, which is localized immediately upstream of the 3'-ATG and involves functional SP1/SP3, NF-Y and SMAD binding sites. The corresponding trans-regulatory proteins may contribute to differential expression regulation of the mitochondrial and cytosolic phGPx isoforms.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, Humboldt University Medical School Charité, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | |
Collapse
|
29
|
Kong BW, Kim H, Foster DN. Cloning and expression analysis of chicken phospholipid-hydroperoxide glutathione peroxidase. Anim Biotechnol 2003; 14:19-29. [PMID: 12887177 DOI: 10.1081/abio-120020183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phospholipid-hydroperoxide glutathione peroxidase (GPX4 or PHGPX) is a unique selenium dependent glutathione peroxidase that reduces phospholipid, cholesterol, and cholesteryl ester hydroperoxides. Phospholipid-hydroperoxide glutathione peroxidase has been shown to exist as both a 197 amino acid mitochondrial targeting protein and as a 170 amino acid non-mitochondrial protein. The cDNA encoding the non-mitochondrial chicken GPX4 (cGPX4) has been isolated from an immortalized DF-1 chicken embryonic fibroblast (CEF) cell line cDNA library. The nucleotide sequence of cGPX4 was 802 bp in length with an open reading frame (ORF) that encoded 170 amino acids but lacked the N-terminal domain that encoded the mitochondrial leader sequence (MLS). Chicken non-mitochondrial GPX4 was highly expressed in brain and stromal tissues. Surprisingly, it was found that ovarian stromal tissue cGPX4 expression is regulated quite differently according to the reproductive status of the bird, suggesting that GPX4 may play an important role in reproduction in response to steroid hormones, in addition to its general antioxidant functions.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | | | | |
Collapse
|
30
|
Borchert A, Savaskan NE, Kuhn H. Regulation of expression of the phospholipid hydroperoxide/sperm nucleus glutathione peroxidase gene. Tissue-specific expression pattern and identification of functional cis- and trans-regulatory elements. J Biol Chem 2003; 278:2571-80. [PMID: 12427732 DOI: 10.1074/jbc.m209064200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A sperm nucleus glutathione peroxidase (snGPx), which is closely related to the phospholipid hydroperoxide glutathione peroxidase (phGPx), was recently discovered in late spermatids. Both GPx isoforms originate from a joint ph/snGPx gene, but their N-terminal peptides are encoded by alternative first exons. The expression of the two enzymes is differentially regulated in various cells, but little is known about the regulatory mechanisms. To explore the tissue-specific regulation of expression of the two isoenzymes, we first investigated their tissue distribution. Whereas phGPx is expressed at low levels in many organs, snGPx was only detected in testis, kidney, and in the human embryonic kidney cell line HEK293. Subcellular fractionation studies and immunoelectron microscopy revealed a cytosolic localization. To explore the mechanistic reasons for the differential expression pattern, we first tested the activity of the putative phGPx and snGPx promoters. The 5'-flanking region of the joint ph/snGPx gene exhibits strong promoter activity. In contrast, the putative snGPx promoter, which comprises 334 bp of intronic sequences, lacks major promoter activity. However, it strongly suppresses the activity of the ph/snGPx promoter. These data suggest negative regulatory elements in the first intron of the ph/snGPx gene, and DNase protection assays revealed the existence of several protein-binding sites. The corresponding trans-regulatory proteins (SP1, ERG1, GATA1, SREBP1, USF1, and CREBP1) were identified, and in vivo binding of EGR1 and SREBP1 was shown by chromatin immunoprecipitation. These data indicate for the first time somatic expression of the snGPx and provide evidence for the existence of intronic negative cis-regulatory elements in the ph/snGPx gene. Our failure to detect an alternative snGPx promoter suggests that transcription of the ph/snGPx gene may be regulated by a joint basic promoter. The decision, which GPx isoform is expressed in a given cell, appears to be made by alternative splicing of a joint primary transcript.
Collapse
Affiliation(s)
- Astrid Borchert
- Institute of Biochemistry, Humboldt University Medical School Charité, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | |
Collapse
|
31
|
Abstract
Selenium (Se) is an essential trace element for animals and humans that is obtained from dietary sources including cereals, grains and vegetables. The Se content of plants varies considerably according to its concentration in soil. Plants convert Se mainly into Se-methionine (Se-Met) and incorporate it into protein in place of methionine (Met). Selenocystine (Se-Cys), methyl-Se-Cys and gamma-glutamyl-Se-methyl-Cys are not significantly incorporated into plant protein and are at relatively low levels irrespective of soil Se content. Higher animals are unable to synthesize Se-Met and only Se-Cys was detected in rats supplemented with Se as selenite. Renal regulation is the mode by which whole body Se is controlled. Se is concentrated in hair and nail and it occurs almost exclusively in organic compounds. The potentiating effect of Se deficiency on lipid peroxidation is enhanced in some tissues by concurrent deficiency of copper or manganese. In the in vitro system, the chemical form of Se is an important factor in eliciting cellular responses. Although the cytotoxic mechanisms of selenite and other redoxing Se compounds are still unclear, it has been suggested that they derive from their ability to catalyze the oxidation of thiols and to produce superoxide simultaneously. Selenite-induced cytotoxicity and apoptosis in human carcinoma cells can be inhibited with copper (CuSO(4)) as an antioxidant. High doses of selenite result in induction of 8-hydroxydeoxyguanosine (8-OHdG) in mouse skin cell DNA and in primary human keratinocytes. It may cause DNA fragmentation and decreased DNA synthesis, cell growth inhibition, DNA synthesis, blockade of the cell cycle at the S/G(2)-M phase and cell death by necrosis. In contrast, in cells treated with methylselenocyanate or Se methylselenocysteine, the cell cycle progression was blocked at the G(1) phase and cell death was predominantly induced by apoptosis.
Collapse
Affiliation(s)
- H Tapiero
- Université de Paris - Faculté de Pharmacie, CNRS UMR 8612, 5, rue Jean-Baptiste Clément, 94200, Chatenay-Malabry, France.
| | | | | |
Collapse
|
32
|
Müller AS, Pallauf J. Effect of increasing selenite concentrations, vitamin E supplementation and different fetal calf serum content on GPx1 activity in primary cultured rabbit hepatocytes. J Trace Elem Med Biol 2003; 17:183-92. [PMID: 14968931 DOI: 10.1016/s0946-672x(03)80024-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Primary rabbit hepatocytes from 6 week old female New Zealand White rabbits (3.0 x 10(6) viable hepatocytes per treatment) were incubated for 24 h or 48 h with two basic variants of the selenium and vitamin E free DMEM/F12-HAM nutrition medium containing 2.5% or 10% fetal calf serum (FCS). Selenium and vitamin E concentrations of the media were varied by the addition of 0, 10, 50 and 100 ng Se/mL medium as sodium selenite and 100 microg alpha-tocopheryl acetate/mL. Lactic dehydrogenase (LDH) leakage of the hepatocytes was not influenced by the various selenium concentrations of the media, whereas vitamin E addition significantly inhibited LDH release. The activity of cellular glutathione peroxidase (GPx1) was markedly induced by increasing the selenium supplementation of the culture media. Vitamin E supply further enhanced GPx1 induction. In hepatocytes cultivated at the lower serum concentration (2.5% FCS), increasing the selenite concentration of the media raised GPx1 and reduced the intracellular levels of the reduced tripeptide glutathione (GSH). No vectored relation between the selenium concentration of the media and the activity of superoxide dismutase (SOD) could be observed. After both incubation periods (24 h and 48 h) SOD activity was significantly higher in the cytosol of hepatocytes grown in media containing 10% FCS as compared to cells incubated at the 2.5% FCS level. Furthermore, SOD activity was reduced by the addition of vitamin E to the media. In conclusion the results indicate an effective metabolism of rabbit hepatocytes for selenite even in amounts as low as nanograms. A general cytoprotective role for vitamin E can be shown by its ability to decrease LDH leakage and by the reduction of SOD activity.
Collapse
Affiliation(s)
- Andreas S Müller
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
33
|
Al-Taie OH, Seufert J, Mörk H, Treis H, Mentrup B, Thalheimer A, Starostik P, Abel J, Scheurlen M, Köhrle J, Jakob F. A complex DNA-repeat structure within the Selenoprotein P promoter contains a functionally relevant polymorphism and is genetically unstable under conditions of mismatch repair deficiency. Eur J Hum Genet 2002; 10:499-504. [PMID: 12173025 DOI: 10.1038/sj.ejhg.5200811] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Revised: 04/02/2002] [Accepted: 04/02/2002] [Indexed: 11/09/2022] Open
Abstract
Epidemiological data, animal studies and interventional studies provide evidence for a potential chemopreventive effect of selenium during development of colorectal cancer. The human glycoprotein Selenoprotein P (SeP) contains up to 50% of plasma selenium content. SeP is expressed in the gastrointestinal tract and the liver, where its expression is downregulated by various proinflammatory cytokines (Il1beta, TGFbeta, IFNgamma). Previously, we have demonstrated dramatically reduced SeP expression in human colon adenomas. Here, we have identified a complex (A)4-C-(A)4-GG-(A)8-GCT-(TC)5-(T)17 (bp -429 to bp - 477) repeat structure within the SeP promoter and we have analysed this regulatory DNA sequence with respect to polymorphisms, genomic instability and functional relevance to promoter activity. As opposed to the (TC)5 variant we identified a novel (TC)3 polymorphism within this repeat in the general population, which conferred significantly reduced basal promoter activity to reporter gene constructs in HepG2 cells. Allelic distribution of this (TC)(n) element was similar in colon carcinoma patients and healthy controls. Additionally, we observed genetic instability within the (T)17 repeat motif in colon cancers of the mutator phenotype. This instability of the (T)17 repeat had no effect on basal promoter activity in reporter gene assays. In conclusion, we characterised a complex repeat structure within the SeP promoter that may be of functional relevance to SeP gene expression. Further studies on the effect of different SeP promoter genotypes on SeP protein expression and disease susceptibility are needed.
Collapse
|
34
|
Jakob F, Becker K, Paar E, Ebert-Duemig R, Schütze N. Expression and regulation of thioredoxin reductases and other selenoproteins in bone. Methods Enzymol 2002; 347:168-79. [PMID: 11898403 DOI: 10.1016/s0076-6879(02)47015-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The expression of thioredoxin reductases and other selenoproteins in cells of the bone microenvironment may represent an important means of regulation of bone resorption and remodeling in health and disease. Selenoproteins and their substrates may influence intracellular and extracellular redox-dependent signaling, transcription factor activity, posttranslational modification of proteins, and general or compartmentalized scavenging from ROIs. However, the evaluation of their biological role in bone and their potential in terms of therapeutic approaches is just beginning.
Collapse
Affiliation(s)
- Franz Jakob
- Orthopedic Department, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Abstract
4 x 5 growing female rabbits (New Zealand White) with an initial live weight of 610 +/- 62 g were fed a torula yeast based semisynthetic diet low in selenium (<0.03 mg/kg diet) and containing <2 mg alpha-tocopherol per kg (group I). Group II received a vitamin E supplementation of 150 mg alpha-tocopherylacetate per kg diet, whereas for group III 0.40 mg Se as Na-selenite and for group IV both supplements were added. Selenium status and parameters of tissue damage were analyzed after 10 weeks on experiment (live weight 2,355 +/- 145 g). Selenium depletion of the Se deficient rabbits (groups I and II) was indicated by a significantly lower plasma Se content (group I: 38.3 +/- 6.23 microg Se/mL plasma, group II: 42.6 +/- 9.77, group III: 149 +/- 33.4, group IV: 126 +/- 6.45) and a significantly lower liver Se content (group I: 89.4 +/- 18.2 microg/kg fresh matter, group II: 111 +/- 26.2) as compared to the Se supplemented groups III (983 +/- 204) and IV (926 +/- 73.9). After 5 weeks on the experimental diets differences in the development of plasma glutathione peroxidase were observed. As compared to the initial status group (45.2 +/- 4.50) pGPx activity in mU/mg protein was decreased in group I (19.1 +/- 7.08), remained almost stable in the vitamin E supplemented group II (46.3 +/- 11.2) whereas an elevated enzyme activity was measured in the Se supplemented groups III (62.4 +/- 23.9) and IV (106 +/- 19.9). In the rabbit organs investigated 10 weeks of Se deficiency caused a significant loss of Se dependent cellular glutathione peroxidase activity (GPx1) of 94% (liver), 80% (kidney), 50% (heart muscle) and 60% (musculus longissimus dorsi) in comparison to Se supplemented control animals. Damage of cellular lipids and proteins in the liver was due to either Se or vitamin E deficiency. However damage was most severe under conditions of a combined Se and vitamin E deficiency. It can be concluded that the activity of plasma glutathione peroxidase is a sensitive indicator of Se deficiency in rabbits. The loss of GPx1 activity indicates the selenium depletion in various rabbit organs. Both selenium and vitamin E are essential and highly efficient antioxidants which protect rabbits against lipid and protein oxidation.
Collapse
Affiliation(s)
- Andreas S Muller
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Germany
| | | | | |
Collapse
|
36
|
Mostert V, Wolff S, Dreher I, Köhrle J, Abel J. Identification of an element within the promoter of human selenoprotein P responsive to transforming growth factor-beta. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6176-81. [PMID: 11733012 DOI: 10.1046/j.0014-2956.2001.02565.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Selenoprotein P (SeP) is a plasma protein that contains up to 10 selenocysteine residues and accounts for about 50% of total selenium in human plasma. We have previously shown that SeP expression in the human liver cell line HepG2 is inhibited by transforming growth factor (TGF)-beta1 on a transcriptional level. Smad proteins are the transcriptional mediators of TGF-beta signalling and putative Smad-binding elements (SBE) comprising the core sequence CAGACA are present at two positions in the SeP promoter. The aim of our study was to investigate whether Smad molecules are involved in inhibition of SeP expression by TGF-beta1 and to locate the promoter region critical for this effect. As seen in electrophoretic-mobility-shift assays, TGF-beta1 treatment led to enhanced binding of nuclear proteins to a putative SBE from the SeP promoter. Overexpression of Smad 3 and 4, but not of Smad 2, resulted in a marked down-regulation of SeP mRNA expression. Similar effects were observed for luciferase expression under control of a human SeP-promoter construct. Deletion as well as point-mutation of putative SBEs led to a loss of promoter sensitivity towards TGF-beta1 treatment. Hence, we demonstrated an involvement of Smad 3 and 4 in transcriptional regulation of SeP by TGF-beta1 and we were able to identify the TGF-beta-responsive element in the SeP promoter.
Collapse
Affiliation(s)
- V Mostert
- Medizinisches Institut für Umwelthygiene an der Heinrich-Heine-Universität Düsseldorf Abteilung Experimentelle Toxikologie, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
37
|
Abstract
Reactive oxygen species (ROS) are known mediators of intracellular signaling cascades. Excessive production of ROS may, however, lead to oxidative stress, loss of cell function, and ultimately apoptosis or necrosis. A balance between oxidant and antioxidant intracellular systems is hence vital for cell function, regulation, and adaptation to diverse growth conditions. Thioredoxin reductase (TrxR) in conjunction with thioredoxin (Trx) is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In mammals, extracellular forms of Trx also have cytokine-like effects. Mammalian TrxR has a highly reactive active site selenocysteine residue resulting in a profound reductive capacity, reducing several substrates in addition to Trx. Due to the reactivity of TrxR, the enzyme is inhibited by many clinically used electrophilic compounds including nitrosoureas, aurothioglucose, platinum compounds, and retinoic acid derivatives. The properties of TrxR in combination with the functions of Trx position this system at the core of cellular thiol redox control and antioxidant defense. In this review, we focus on the reactions of the Trx system with ROS molecules and different cellular antioxidant enzymes. We summarize the TrxR-catalyzed regeneration of several antioxidant compounds, including ascorbic acid (vitamin C), selenium-containing substances, lipoic acid, and ubiquinone (Q10). We also discuss the general cellular effects of TrxR inhibition. Dinitrohalobenzenes constitute a unique class of immunostimulatory TrxR inhibitors and we consider the immunomodulatory effects of dinitrohalobenzene compounds in view of their reactions with the Trx system.
Collapse
Affiliation(s)
- J Nordberg
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
38
|
Mörk H, al-Taie OH, Bähr K, Zierer A, Beck C, Scheurlen M, Jakob F, Köhrle J. Inverse mRNA expression of the selenocysteine-containing proteins GI-GPx and SeP in colorectal adenomas compared with adjacent normal mucosa. Nutr Cancer 2001; 37:108-16. [PMID: 10965527 DOI: 10.1207/s15327914nc3701_14] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Four selenocysteine-containing proteins (gastrointestinal glutathione peroxidase, plasma glutathione peroxidase, selenoprotein P, and thioredoxin reductase-alpha) are expressed in the colonic mucosa. Because of their antioxidant functions, a protective role in colon carcinogenesis is discussed. The aim of this study was to elucidate an involvement of gastrointestinal selenoproteins during the adenoma-carcinoma sequence. Matched pairs of biopsies of colorectal adenomas and adjacent normal mucosa from 11 patients were analyzed for mRNA expression, protein expression, or enzyme activity of selenoproteins by Northern blot, Western blot, or enzymatic tests. All adenomas revealed a marked reduction of selenoprotein P and a variable increase of gastrointestinal glutathione peroxidase mRNA compared with adjacent tissue. Thioredoxin reductase-alpha and plasma glutathione peroxidase mRNA expression were not altered in adenomas. The Northern blot results were confirmed by Western blot analysis or enzyme activity measurement, respectively. We conclude that gastrointestinal glutathione peroxidase and selenoprotein P play a complementary role in the antioxidative cell defense along the adenoma-carcinoma sequence. It remains to be shown whether upregulation of gastrointestinal glutathione peroxidase in adenomas represents a compensatory mechanism to reduce susceptibility for oxidative damage resulting from the loss of selenoprotein P.
Collapse
Affiliation(s)
- H Mörk
- Medizinische Poliklinik, University of Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kelner MJ, Bagnell RD, Montoya MA, Lanham KA. Structural organization of the human gastrointestinal glutathione peroxidase (GPX2) promoter and 3'-nontranscribed region: transcriptional response to exogenous redox agents. Gene 2000; 248:109-16. [PMID: 10806356 DOI: 10.1016/s0378-1119(00)00137-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The flanking upstream and downstream regions of the human GPX270%). The human GPX2 promoter region was not G-C rich (<50% G+C) and classical TATA/CCAAT elements were not present. The ubiquitous SP1 and AP elements were present. Several GATA elements as well as liver-specific sites (HNF series) were present. Despite the unique intestinal specific expression of GPX2, classical intestine-specific sites were not detected in the flanking 5' or 3' regions. The ability of the GPX2 promoter to direct transcription was confirmed. Exogenous agents capable of producing oxidative stress, such as paraquat, could induce the transcriptional activity of the GPX2 promoter. Analysis of three previously reported polymorphism sites revealed that they represented the most common polymorphisms. Surprisingly, the human GPX2 promoter could direct transcription and respond to oxidative stress in the murine NIH3T3 fibroblast cell line, which is devoid of the ability to bind to a variety of intestinal specific elements. This finding suggests that the unique intestinal specific expression of GPX2 may be due to elements in the intron, the flanking 3'-nontranslated region, or to elements existing even farther upstream. The ability of GPX2 to respond transcriptionally to redox stress is likely to be more physiologically relevant than post-transcriptional regulation which is dependent upon selenium availability.
Collapse
Affiliation(s)
- M J Kelner
- Department of Pathology, University of California, 200 West Arbor Drive, San Diego, CA 92103-8320, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
Selenoprotein P (SeP) is a plasma protein which contains 10 selenocysteine residues per polypeptide. It accounts for more than 50% of the selenium content in rat and human plasma but its function is still not completely understood. However, a function as an extracellular antioxidant seems most probable. A protective function of SeP in human plasma against the potent endotoxin peroxynitrite and phospholipid hydroperoxide reducing activity was demonstrated in vitro. An association of SeP with the vascular endothelium, a prime target of peroxynitrite toxicity, was shown in vivo. SeP of bovine serum acts as a survival-promoting factor in neuronal cell culture. Analysis of the human SeP promoter indicates a transcriptional regulation of SeP by inflammatory mediators.
Collapse
Affiliation(s)
- V Mostert
- Medizinisches Institut für Umwelthygiene an der Heinrich-Heine Universität Düsseldorf, Abteilung Experimentelle Toxikologie, Auf'm Hennekamp 50, Düsseldorf, 40225, Germany
| |
Collapse
|
41
|
Tujebajeva RM, Harney JW, Berry MJ. Selenoprotein P expression, purification, and immunochemical characterization. J Biol Chem 2000; 275:6288-94. [PMID: 10692426 DOI: 10.1074/jbc.275.9.6288] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most selenoproteins contain a single selenocysteine residue per polypeptide chain, encoded by an in-frame UGA codon. Selenoprotein P is unique in that its mRNA encodes 10-12 selenocysteine residues, depending on species. In addition to the high number of selenocysteines, the protein is cysteine- and histidine-rich. The function of selenoprotein P has remained elusive, in part due to the inability to express the recombinant protein. This has been attributed to presumed inefficient translation through the selenocysteine/stop codons. Herein, we report for the first time the expression of recombinant rat selenoprotein P in a transiently transfected human epithelial kidney cell line, as well as the endogenously expressed protein from HepG2 and Chinese hamster ovary cells. The majority of the expressed protein migrates with the predicted 57-kDa size of full-length glycosylated selenoprotein P. Based on the histidine-rich nature of selenoprotein P, we have purified the recombinant and endogenously expressed proteins using nickel-agarose affinity chromatography. We show that the recombinant rat and endogenous human proteins react in Western blotting and immunoprecipitation assays with commercial anti-histidine antibodies. The ability to express, purify, and immunochemically detect the recombinant protein provides a foundation for investigating the functions and efficiency of expression of this intriguing protein.
Collapse
Affiliation(s)
- R M Tujebajeva
- Thyroid Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
42
|
Abstract
The biological roles of selenium and its mode of action have only recently begun to be revealed. To date, the major functions of selenium can be attributed to its antioxidative properties and its role in the regulation of thyroid hormone metabolism, cell growth and eicosanoid biosynthesis. The unusual feature of selenoprotein synthesis is that selenocysteine insertion is specified by the stop UGA codon. A number of selenocysteine-specific gene products and a stem-loop structure in the 3' untranslated region are required for selenocysteine biosynthesis and the decoding of UGA codons in the open reading frame of the mRNA. The major biological functions of selenium are achieved through its redox activity when present as selenocysteine at the active sites of selenoproteins and these proteins are selenium-dependent since replacement with the sulphur analogue cysteine causes loss of enzyme activity. Both organic and inorganic forms of selenium may be utilised by the body, with the selenoamino acids showing greatest bioavailability. Knowledge of the biochemistry of the element coupled with appropriate techniques for the study of the distribution of selenium species in health and disease could help to identify sensitive markers of selenium status.
Collapse
Affiliation(s)
- S G Patching
- Division of Chemistry, Sheffield Hallam University, Howard St., Sheffield, U.K
| | | |
Collapse
|
43
|
Mostert V, Dreher I, Kohrle J, Abel J. Transforming growth factor-beta1 inhibits expression of selenoprotein P in cultured human liver cells. FEBS Lett 1999; 460:23-6. [PMID: 10571054 DOI: 10.1016/s0014-5793(99)01298-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of cytokines on the expression of selenoprotein P (SeP) in the human liver cell line HepG2 was investigated. Treatment with interleukin-1beta, interferon-gamma, and tumor necrosis factor-alpha had no effect on SeP levels in culture media or on SeP mRNA expression. Conversely, Western analysis revealed a dose-dependent reduction of SeP content in culture medium after treatment with transforming growth factor (TGF)-beta1 with an 1C50 of 31 pM. Treatment with 100 pM TGF-51 for 48 h led to a decrease to 21 +/- 9% of controls. RT-PCR analysis of SeP mRNA expression demonstrated an inhibition of SeP transcription to 40+/-2% of control levels after 24 h. The expression of a luciferase reporter construct under control of the human SeP promoter was downregulated by TGF-beta1 treatment in a dose-dependent fashion indicating a transcriptional regulation of the SeP gene by TGF-beta1.
Collapse
Affiliation(s)
- V Mostert
- Medical Institute of Environmental Hygiene at the Heinrich-Heine-Universität Düsseldorf, Department of Experimental Toxicology, Germany
| | | | | | | |
Collapse
|
44
|
Ebert-Dümig R, Seufert J, Schneider D, Köhrle J, Schütze N, Jakob F. [Expression of selenoproteins in monocytes and macrophages--implications for the immune system]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1999; 94 Suppl 3:29-34. [PMID: 10554525 DOI: 10.1007/bf03042187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Monocytes differentiate from myeloid precursors towards the macrophage state of differentiation under the influence of 1,25-dihydroxy vitamins D3 (1,25 [OH]2 vitamin D3) and other factors and this is further propagated by colony stimulating factors (MCSF and GMCSF). Macrophage activation and phagocytosis of foreign particles are regularly accompanied by a so called "respiratory burst", an increase in the production of reactive oxygen species (ROS), exerted by the enzyme complex NADPH oxidase. A number of antioxidant enzymes is expressed at the same time to protect the cells from the cytotoxic effects of ROS directed against engulfed microorganisms. The selenium-dependent glutathione peroxidases and thioredoxin reductases are important examples. The cytosolic GPx isoenzyme (cGPx) and thioredoxin reductase alpha (TrxR alpha) are upregulated during the process of differentiation and under the influence of 1.25 (OH)2 vitamin D3. GPx isoenzymes neutralize H2O2. TrxR reduce sulfhydryl-groups like in cysteins either directly or via their cofactor thioredoxin and thus are involved in protein folding and critical protein-protein and protein-DNA interactions, e.g. modulation of dimerization and/or DNA-binding and ligand binding of transcription factors (glucocorticoid receptor and other steroid receptors, NF kappa B). In addition, the antibiotic peptide NK-lysin was shown to be a substrate for TrxR alpha, suggesting that TrxR protects the cell itself from the cytotoxic effects of NK-lysin. Selenium is incorporated into selenocysteine (Secys) in a regulated fashion in the presence of a hairpin structure (Secis element) in the 3'UTR of selenoprotein genes. Secis elements direct the insertion of Secys at UGA codons, which function as opal stop codons in the absence of a suitable Secis element and in selenium deficiency. The above mentioned processes might therefore be altered in relative selenium deficiency or vice versa be upregulated through selenium supplementation. We have shown that TrxR alpha is a 1.25 (OH)2 vitamin D3-responsive early gene in monocytic cells and that TrxR activity as well as GPx activity in these cells can be upregulated by the addition of selenium in vitro and ex vivo. Recent work demonstrates that thioredoxin rapidly enters the cell nucleus upon treatment of cells with H2O2, but little is known about the compartimentalization of the respiratory burst and the intracellular localization of antioxidant enzymes during that process. Macrophage function is insufficient if the generation of a respiratory burst is altered like in hereditary chronic granulomatous disease on one hand, but on the other hand is as well disturbed, if there is a lack in antioxidant enzyme activity. Thioredoxin has been identified as a lymphocyte growth factor and might therefore be involved in the crosstalk between macrophages and lymphocytes. The relevance of the above mentioned and other yet undefined monocytic selenoproteins remains to be elucidated in detail as well as the relevance of selenium supplementation in nutrition in general and in situations of critical infectious disease and autoimmunity.
Collapse
Affiliation(s)
- R Ebert-Dümig
- Interdisziplinäres Zentrum für Klinische Forschung, Universität Würzburg
| | | | | | | | | | | |
Collapse
|
45
|
Mörk H, Lex B, Scheurlen M, Dreher I, Schütze N, Köhrle J, Jakob F. Expression pattern of gastrointestinal selenoproteins--targets for selenium supplementation. Nutr Cancer 1999; 32:64-70. [PMID: 9919613 DOI: 10.1080/01635589809514720] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There is experimental and epidemiological evidence for an association between low selenium levels and gastrointestinal cancer incidence, prevalence, and mortality. To identify targets for selenium supplementation in the human digestive tract, we examined mRNA expression of various selenocysteine-containing proteins in normal mucosa biopsy specimens. Tissue samples from the esophagus and from different sites of the stomach, small bowel, and colon were obtained during endoscopies of the upper and lower gastrointestinal tract. Northern blot analyses revealed a lack of cytosolic glutathione peroxidase mRNA but a differential mRNA expression pattern of gastrointestinal and plasma glutathione peroxidase, selenoprotein P, and thioredoxin reductase. Glutathione peroxidase and thioredoxin reductase activities were detected in the mucosa of all biopsies, but the differential pattern did not reflect the differential mRNA steady-state levels. In addition to gastrointestinal glutathione peroxidase, which was found to play a role in colon cancer resistance, we identified further gastrointestinal selenoproteins, which may be involved in gastrointestinal cell defense and cell differentiation.
Collapse
Affiliation(s)
- H Mörk
- Medizinische Poliklinik/Klinische Forschergruppe, Universität Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- M Maiorino
- Dipartimento di Chimica Biologica, Padova, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The gastrointestinal glutathione peroxidase (GI-GPx) is the fourth member of the GPx family. In rodents, it is exclusively expressed in the gastrointestinal tract, in humans also in liver. It has, therefore, been discussed to function as a primary barrier against the absorption of ingested hydroperoxides. A vital function of GI-GPx can be deduced from the unusual stability of its mRNA under selenium-limiting conditions, the presence of low amounts of GI-GPx protein in selenium deficiency where cGPx is absent, and the fast reappearance of the GI-GPx protein upon refeeding of cultured cells with selenium compared to the slower reappearance of cGPx protein. Furthermore, the Secis efficiency of GI-GPx is low when compared to cGPx and PHGPx. It is, however, almost independent of the selenium status of the cells tested. All these characteristics rank GI-GPx high in the hierarchy of selenoproteins and point to a role of GI-GPx which might be more crucial than that of cGPx, at least in the gastrointestinal system.
Collapse
Affiliation(s)
- K Wingler
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Institute of Nutritional Science, University of Potsdam
| | | |
Collapse
|
48
|
Bellisola G, Brätter P, Cinque G, Francia G, Galassini S, Gawlik D, Negretti de Brätter VE, Azzolina L. The TSH-dependent variation of the essential elements iodine, selenium and zinc within human thyroid tissues. J Trace Elem Med Biol 1998; 12:177-82. [PMID: 9857330 DOI: 10.1016/s0946-672x(98)80006-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Instrumental Neutron Activation Analysis was used in order to measure iodine, selenium and zinc concentration in thyroid samples. A pair of samples of normal and nodular tissue were collected from the thyroid gland from 72 patients selected on the basis of pathological criteria (44 cases of multinodular goiter, 12 of chronic lymphocytic thyroiditis (CLT), 6 of thyroid adenoma (TA) and 12 of thyroid cancer (TC)). The check for tissue homogeneity and sampling error was performed by means of the coefficient of variation (CV%) of the elements in replicate samples of normal and altered tissues. High CV% values (> 15%) for iodine reflected a functional variability in thyroid follicles, while low CV% values (< 10%) for selenium and zinc indicated that the composition of selected tissues was rather homogeneous. The variation of the element's concentration was compared in normal and altered tissues. The mean element concentrations had values close to those already reported in the literature; furthermore, our patients had marginal iodine and selenium deficiency. Both normal and nodular tissues in CLT showed statistically significant lower zinc values as compared with the other thyroid diseases. To evaluate the thyroid function, thyroid stimulating hormone (TSH) and thyroxine (T4) levels were measured in the serum of patients. Two arbitrary serum-TSH threshold levels (TSH < 1.0 and > 4.0 mU/L) were introduced in order to classify, respectively, hyperthyroidism and hypothyroidism, as well as euthyroid conditions (1.0 < TSH < 4.0 mU/L), and each patient was assigned to one of these groups. The influence of TSH in the variation of the concentration of iodine, selenium and zinc in normal and altered human thyroid tissues was significant.
Collapse
Affiliation(s)
- G Bellisola
- Istituto di Immunologia e Malattie Infettive, Università di Verona, Policlinico Borgo Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kelner MJ, Montoya MA. Structural organization of the human selenium-dependent phospholipid hydroperoxide glutathione peroxidase gene (GPX4): chromosomal localization to 19p13.3. Biochem Biophys Res Commun 1998; 249:53-5. [PMID: 9705830 DOI: 10.1006/bbrc.1998.9086] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary structure of human selenium-dependent phospholipid hydroperoxide glutathione peroxidase (GPX4) was determined by genomic cloning. The gene structure of GPX4 spans only 2.8 kb and consists of 7 exons. The coding sequence resides on all 7 exons, and the mitochondrial leader sequence is contained entirely within the first exon. The selenocysteine coding nucleotide resides on the third exon. The introns all commenced with the consensus nucleotide sequence GTR and ended with the consensus nucleotide sequence YAG. Analysis of the GPX4 gene sequence identified a potential alternative tissue-specific first exon. Chromosomal FISH studies placed the GPX4 gene at 19p13.3 location, and downstream of the 23 k-Da polypeptide DNA-directed RNA polymerase gene.
Collapse
Affiliation(s)
- M J Kelner
- Department of Pathology, University of California, San Diego 92103-8320, USA.
| | | |
Collapse
|
50
|
Abstract
In vertebrates several proteins containing a covalently bound selenocysteine residue have been identified. Among these, selenoprotein P is the most unusual one: depending on the species, 8-12 selenocysteine residues are cotranslationally integrated into the polypeptide chain. The protein was traced in rat plasma, but its role has not been worked out so far. In order to improve our understanding on selenoprotein P we investigated its tissue-specific expression and its genomic DNA. RNA in situ hybridization analyses confirmed the liver-specific expression in mice. Selenoprotein P was also found to be expressed in testis, brain, gut, and hematopoietic cells. The murine selp gene contains five exons within 10.3 kb with a coding sequence restricted to exons 2 to 5. The complete gene including the selp promoter was sequenced. One TATA motif 38 bp upstream to exon 1 suggests transcription of selp by RNA polymerase II. Within the 1116 bp upstream of exon 1 four hepatic nuclear factor 3beta (HNF3beta) binding motifs were found, which is in line with liver-specific expression of selenoprotein P. The expression in hematopoietic cells might be due to multiple GATA-1 motifs. Two BRN-2 motifs suitable for the binding of brain-specific regulatory factors correlated to the selenoprotein P expression in the cerebellum. Selenoprotein P was also expressed in Leydig cells which could be regulated by binding proteins docking to the SRY motifs present in the promoter region.
Collapse
Affiliation(s)
- P Steinert
- Department of Physiological Chemistry, Technical University of Braunschweig, Germany
| | | | | |
Collapse
|