1
|
Carriero F, Rubino V, Leone S, Montanaro R, Brancaleone V, Ruggiero G, Terrazzano G. Regulatory T R3-56 Cells in the Complex Panorama of Immune Activation and Regulation. Cells 2023; 12:2841. [PMID: 38132162 PMCID: PMC10742044 DOI: 10.3390/cells12242841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The interplay between immune activation and immune regulation is a fundamental aspect of the functional harmony of the immune system. This delicate balance is essential to triggering correct and effective immune responses against pathogens while preventing excessive inflammation and the immunopathogenic mechanisms of autoimmunity. The knowledge of all the mechanisms involved in immune regulation is not yet definitive, and, probably, the overall picture is much broader than what has been described in the scientific literature so far. Given the plasticity of the immune system and the diversity of organisms, it is highly probable that numerous other cells and molecules are still to be ascribed to the immune regulation process. Here, we report a general overview of how immune activation and regulation interact, based on the involvement of molecules and cells specifically dedicated to these processes. In addition, we discuss the role of TR3-56 lymphocytes as a new cellular candidate in the immune regulation landscape.
Collapse
Affiliation(s)
- Flavia Carriero
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| | - Valentina Rubino
- Department of Translational Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Stefania Leone
- Hematopoietic Stem Cell Transplantation Unit, Azienda Ospedaliera A. Cardarelli, 80131 Naples, Italy;
| | - Rosangela Montanaro
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| | - Vincenzo Brancaleone
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| | - Giuseppina Ruggiero
- Department of Translational Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.R.); (G.R.)
| | - Giuseppe Terrazzano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (F.C.); (R.M.); (V.B.)
| |
Collapse
|
2
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
3
|
Borges RC, Hohmann MS, Borghi SM. Dendritic cells in COVID-19 immunopathogenesis: insights for a possible role in determining disease outcome. Int Rev Immunol 2020; 40:108-125. [PMID: 33191813 DOI: 10.1080/08830185.2020.1844195] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This novel coronavirus emerged in China, quickly spreading to more than 200 countries worldwide. Although most patients are only mildly ill or even asymptomatic, some develop severe pneumonia and become critically ill. One of the biggest unanswered questions is why some develop severe disease, whilst others do not. Insight on the interaction between SARS-CoV-2 and the immune system and the contribution of dysfunctional immune responses to disease progression will be instrumental to the understanding of COVID-19 pathogenesis, risk factors for worst outcome, and rational design of effective therapies and vaccines. In this review we have gathered the knowledge available thus far on the epidemiology of SARS-COV-2 infection, focusing on the susceptibility of older individuals, SARS-CoV-2-host cell interaction during infection and the immune response directed at SARS-CoV-2. Dendritic cells act as crucial messengers linking innate and adaptative immunity against viral infections. Thus, this review also brings a focused discussion on the role of dendritic cells and their immune functions during SARS-CoV-2 infection and how immune evasion strategies of SARS-CoV-2 and advancing age mediate dendritic cell dysfunctions that contribute to COVID-19 pathogenesis and increased susceptibility to worst outcomes. This review brings to light the hypothesis that concomitant occurrence of dendritic cell dysfunction/cytopathic effects induced by SARS-CoV-2 and/or aging may influence disease outcome in the elderly. Lastly, a detailed discussion on the effects and mechanisms of action of drugs currently being tested for COVID-19 on the function of dendritic cells is also provided.
Collapse
Affiliation(s)
- Rodrigo Cerqueira Borges
- Avenida Professor Lineu Prestes, University Hospital, University of São Paulo, São Paulo, Brazil
| | - Miriam Sayuri Hohmann
- Departament of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio Marques Borghi
- Departament of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná, Brazil.,Center for Research in Health Sciences, University of Northern Paraná - Unopar, Londrina, Paraná, Brazil
| |
Collapse
|
4
|
Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults: what we may expect regarding pathogenesis, immune responses, and outcomes. GeroScience 2020; 42:505-514. [PMID: 32274617 PMCID: PMC7145538 DOI: 10.1007/s11357-020-00186-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 virus, the causative agent of the coronavirus infectious disease-19 (COVID-19), is taking the globe by storm, approaching 500,000 confirmed cases and over 21,000 deaths as of March 25, 2020. While under control in some affected Asian countries (Taiwan, Singapore, Vietnam), the virus demonstrated an exponential phase of infectivity in several large countries (China in late January and February and many European countries and the USA in March), with cases exploding by 30-50,000/day in the third and fourth weeks of March, 2020. SARS-CoV-2 has proven to be particularly deadly to older adults and those with certain underlying medical conditions, many of whom are of advanced age. Here, we briefly review the virus, its structure and evolution, epidemiology and pathogenesis, immunogenicity and immune, and clinical response in older adults, using available knowledge on SARS-CoV-2 and its highly pathogenic relatives MERS-CoV and SARS-CoV-1. We conclude by discussing clinical and basic science approaches to protect older adults against this disease.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA.
- University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, P.O. Box 249221, 1501 N. Campbell Ave, Tucson, AZ, 8524, USA.
| | - Kenneth S Knox
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
- Department of Medicine, University of Arizona-Phoenix, Phoenix, AZ, 85004, USA
| | - Carlos Tafich Rios
- Division of Geriatrics, General and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Bhupinder Natt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Mindy J Fain
- University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, P.O. Box 249221, 1501 N. Campbell Ave, Tucson, AZ, 8524, USA
- Division of Geriatrics, General and Palliative Medicine, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| |
Collapse
|
5
|
Nowill AE, Fornazin MC, Spago MC, Dorgan Neto V, Pinheiro VRP, Alexandre SSS, Moraes EO, Souza GHMF, Eberlin MN, Marques LA, Meurer EC, Franchi GC, de Campos-Lima PO. Immune Response Resetting in Ongoing Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1298-1312. [PMID: 31358659 PMCID: PMC6697741 DOI: 10.4049/jimmunol.1900104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/28/2019] [Indexed: 01/03/2023]
Abstract
Cure of severe infections, sepsis, and septic shock with antimicrobial drugs is a challenge because morbidity and mortality in these conditions are essentially caused by improper immune response. We have tested the hypothesis that repeated reactivation of established memory to pathogens may reset unfavorable immune responses. We have chosen for this purpose a highly stringent mouse model of polymicrobial sepsis by cecum ligation and puncture. Five weeks after priming with a diverse Ag pool, high-grade sepsis was induced in C57BL/6j mice that was lethal in 24 h if left untreated. Antimicrobial drug (imipenem) alone rescued 9.7% of the animals from death, but >5-fold higher cure rate could be achieved by combining imipenem and two rechallenges with the Ag pool (p < 0.0001). Antigenic stimulation fine-tuned the immune response in sepsis by contracting the total CD3+ T cell compartment in the spleen and disengaging the hyperactivation state in the memory T subsets, most notably CD8+ T cells, while preserving the recovery of naive subsets. Quantitative proteomics/lipidomics analyses revealed that the combined treatment reverted the molecular signature of sepsis for cytokine storm, and deregulated inflammatory reaction and proapoptotic environment, as well as the lysophosphatidylcholine/phosphatidylcholine ratio. Our results showed the feasibility of resetting uncontrolled hyperinflammatory reactions into ordered hypoinflammatory responses by memory reactivation, thereby reducing morbidity and mortality in antibiotic-treated sepsis. This beneficial effect was not dependent on the generation of a pathogen-driven immune response itself but rather on the reactivation of memory to a diverse Ag pool that modulates the ongoing response.
Collapse
Affiliation(s)
- Alexandre E Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil;
| | - Márcia C Fornazin
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | - Maria C Spago
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | - Vicente Dorgan Neto
- Surgery Department, Santa Casa School of Medical Sciences, São Paulo 01221-020, Brazil
| | - Vitória R P Pinheiro
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | - Simônia S S Alexandre
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil;
| | - Edgar O Moraes
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
| | - Gustavo H M F Souza
- Mass Spectrometry Research and Development Laboratory, Health Sciences Department, Waters Corporation, Barueri 06455-020, Brazil
| | - Marcos N Eberlin
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
| | - Lygia A Marques
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, Campinas 13083-859, Brazil; and
| | - Eduardo C Meurer
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, State University of Campinas, Campinas 13083-859, Brazil; and
| | - Gilberto C Franchi
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas 13083-888, Brazil
| | | |
Collapse
|
6
|
Zinkernagel RM. What if protective immunity is antigen-driven and not due to so-called "memory" B and T cells? Immunol Rev 2019; 283:238-246. [PMID: 29664570 DOI: 10.1111/imr.12648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vaccines or early childhood exposure to infection mediate immunity, that is, improved resistance against disease and death caused by a second infection with the same agent. This has been explained by and equaled to immunological memory, that is, an "altered immune system behavior" that is maintained in a presumably antigen-independent fashion. This review summarizes epidemiological and experimental data, that largely falsify this idea and that show that periodic re-exposure to antigen either, artificially as vaccines or naturally as low-level persisting antigens or infections, or immune complexes on follicular dendritic cells or endemic re-exposure is necessary for protection. Both, the huge success of vaccines in controlling childhood infections, the reduction in clinical disease and the chance of endemically re-exposure, have gradually reduced periodical re-exposure to infections and thereby endangered protective herd immunity. In parallel, vaccine deniers have created susceptibility islands even in an otherwise well vaccinated population, thereby creating a very new situation when compared to the later parts of the 20th century. If protective Immunity is-as emphasized here-antigen driven, then increasingly frequent revaccinations will be necessary (even more so with too much attenuated vaccines) to maintain both herd immunity and individual resistance to acute infections. Of course, this rule also applies to tumor vaccines.
Collapse
|
7
|
Ruiz-Sternberg ÁM, Moreira ED, Restrepo JA, Lazcano-Ponce E, Cabello R, Silva A, Andrade R, Revollo F, Uscanga S, Victoria A, Guevara AM, Luna J, Plata M, Dominguez CN, Fedrizzi E, Suarez E, Reina JC, Ellison MC, Moeller E, Ritter M, Shields C, Cashat M, Perez G, Luxembourg A. Efficacy, immunogenicity, and safety of a 9-valent human papillomavirus vaccine in Latin American girls, boys, and young women. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2018; 5:63-74. [PMID: 29269325 PMCID: PMC5887018 DOI: 10.1016/j.pvr.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND A 9-valent human papillomavirus (HPV6/11/16/18/31/33/45/52/58; 9vHPV) vaccine was developed to expand coverage of the previously developed quadrivalent (HPV6/11/16/18; qHPV) vaccine. METHODS Efficacy, immunogenicity, and safety outcomes were assessed in Latin American participants enrolled in 2 international studies of the 9vHPV vaccine, including a randomized, double-blinded, controlled with qHPV vaccine, efficacy, immunogenicity, and safety study in young women aged 16-26 years, and an immunogenicity and safety study in girls and boys aged 9-15 years. Participants (N=5312) received vaccination at Day 1, Month 2, and Month 6. Gynecological swabs were collected regularly in young women for cytological and HPV DNA testing. Serum was analyzed for HPV antibodies in all participants. Adverse events (AEs) were also monitored in all participants. RESULTS The 9vHPV vaccine prevented HPV 31-, 33-, 45-, 52-, and 58-related high-grade cervical, vulvar, and vaginal dysplasia with 92.3% efficacy (95% confidence interval 54.4, 99.6). Anti-HPV6, 11, 16, and 18 geometric mean titers at Month 7 were similar in the 9vHPV and qHPV vaccination groups. Anti-HPV antibody responses following vaccination were higher among girls and boys than in young women. Most (>99%) 9vHPV vaccine recipients seroconverted for all 9 HPV types at Month 7. Antibody responses to the 9 HPV types persisted over 5 years. The most common AEs were injection-site related, mostly of mild to moderate intensity. CONCLUSIONS The 9vHPV vaccine is efficacious, immunogenic, and well tolerated in Latin American young women, girls, and boys. These data support 9vHPV vaccination programs in Latin America, a region with substantial cervical cancer burden.
Collapse
Affiliation(s)
| | - Edson D Moreira
- Associação Obras Sociais Irmã Dulce and Oswaldo Cruz Foundation, Brazilian Ministry of Health, Bahia, Brazil
| | | | - Eduardo Lazcano-Ponce
- Research Center on Public Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | | | | | - Rosires Andrade
- Departamento de Tocoginecologia da Universidade Federal do Paraná, Curitiba, Brazil
| | - Francisco Revollo
- Centro de Investigaciones, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Santos Uscanga
- Arké Estudios Clínicos S.A. de C.V., Mexico City, Mexico
| | - Alejandro Victoria
- Department of Obstetrics and Gynecology, Fundacion Valle del Lili, Cali, Colombia
| | | | - Joaquín Luna
- Departamento de Ginecología y Obstetricia Clínica Colsanitas, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Manuel Plata
- Department of Gynecology, Fundación Cardioinfantil, Bogotá, Colombia
| | | | - Edison Fedrizzi
- Department of Gynecology and Obstetrics, University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Eugenio Suarez
- Gynecological Oncology Division Hospital Clinico San Borja Arriaran Universidad de Chile Campus Centro, Santiago, Chile
| | - Julio C Reina
- Department of Pediatrics, Universidad del Valle and Centro Medico Imbanaco, Cali, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Memory for antigens once encountered is a hallmark of the immune system of vertebrates, providing us with an immunity adapted to pathogens of our environment. Despite its fundamental relevance, the cells and genes representing immunological memory are still poorly understood. Here we discuss the concept of a circulating, proliferating, and ubiquitous population of effector lymphocytes vs concepts of resting and dormant populations of dedicated memory lymphocytes, distinct from effector lymphocytes and residing in defined tissues, particularly in barrier tissues and in the bone marrow. The lifestyle of memory plasma cells of the bone marrow may serve as a paradigm, showing that persistence of memory lymphocytes is not defined by intrinsic "half-lives", but rather conditional on distinct survival signals provided by dedicated niches. These niches are organized by individual mesenchymal stromal cells. They define the capacity of immunological memory and regulate its homeostasis.
Collapse
Affiliation(s)
- Hyun‐Dong Chang
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Koji Tokoyoda
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
| | - Andreas Radbruch
- Deutsches Rheuma‐Forschungszentrum Berlina Leibniz InstituteBerlinGermany
- Charité University MedicineBerlinGermany
| |
Collapse
|
9
|
Antibody persistence and evidence of immune memory at 5 years following administration of the 9-valent HPV vaccine. Vaccine 2017; 35:5050-5057. [DOI: 10.1016/j.vaccine.2017.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
|
10
|
|
11
|
Abstract
SUMMARYPlasmodium vivaxis the most geographically widespread of the malaria parasites causing human disease, yet it is comparatively understudied compared withPlasmodium falciparum.In this article we review what is known about naturally acquired immunity toP. vivax, and importantly, how this differs to that acquired againstP. falciparum.Immunity to clinicalP. vivaxinfection is acquired more quickly than toP. falciparum, and evidence suggests humans in endemic areas also have a greater capacity to mount a successful immunological memory response to this pathogen. Both of these factors give promise to the idea of a successfulP. vivaxvaccine. We review what is known about both the cellular and humoral immune response, including the role of cytokines, antibodies, immunoregulation, immune memory and immune dysfunction. Furthermore, we discuss where the future lies in terms of advancing our understanding of naturally acquired immunity toP. vivax, through the use of well-designed longitudinal epidemiological studies and modern tools available to immunologists.
Collapse
|
12
|
A Simple Flow-Cytometric Method Measuring B Cell Surface Immunoglobulin Avidity Enables Characterization of Affinity Maturation to Influenza A Virus. mBio 2015; 6:e01156. [PMID: 26242629 PMCID: PMC4526714 DOI: 10.1128/mbio.01156-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antibody (Ab) affinity maturation enables an individual to maintain immunity to an increasing number of pathogens within the limits of a total Ig production threshold. A better understanding of this process is critical for designing vaccines that generate optimal Ab responses to pathogens. Our study describes a simple flow-cytometric method that enumerates virus-specific germinal center (GC) B cells as well as their AC50, a measure of Ab avidity, defined as the antigen concentration required to detect 50% of specific B cells. Using a model of mouse Ab responses to the influenza A virus hemagglutinin (IAV HA), we obtained data indicating that AC50 decreases with time postinfection in an affinity maturation-dependent process. As proof of principle of the utility of the method, our data clearly show that relative to intranasal IAV infection, intramuscular immunization against inactivated IAV in adjuvant results in a diminished GC HA B cell response, with increased AC50 correlating with an increased serum Ab off-rate. Enabling simultaneous interrogation of both GC HA B cell quantity and quality, this technique should facilitate study of affinity maturation and rational vaccine design. Though it was first described 50 years ago, little is known about how antibody affinity maturation contributes to immunity. This question is particularly relevant to developing more effective vaccines for influenza A virus (IAV) and other viruses that are difficult vaccine targets. Limitations in methods for characterizing antigen-specific B cells have impeded progress in characterizing the quality of immune responses to vaccine and natural immunogens. In this work, we describe a simple flow cytometry-based approach that measures both the number and affinity of IAV-binding germinal center B cells specific for the IAV HA, the major target of IAV-neutralizing antibodies. Using this method, we showed that the route and form of immunization significantly impacts the quality and quantity of B cell antibody responses. This method provides a relatively simple yet powerful tool for better understanding the contribution of affinity maturation to viral immunity.
Collapse
|
13
|
|
14
|
Pappalardo F, Pennisi M, Ricupito A, Topputo F, Bellone M. Induction of T-cell memory by a dendritic cell vaccine: a computational model. Bioinformatics 2014; 30:1884-91. [DOI: 10.1093/bioinformatics/btu059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Ricupito A, Grioni M, Calcinotto A, Hess Michelini R, Longhi R, Mondino A, Bellone M. Booster vaccinations against cancer are critical in prophylactic but detrimental in therapeutic settings. Cancer Res 2013; 73:3545-54. [PMID: 23539449 DOI: 10.1158/0008-5472.can-12-2449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although cancer vaccines are in the clinic, several issues remain to be addressed to increase vaccine efficacy. In particular, whether how and how frequently a patient should be boosted remains to be defined. Here, we have assessed the ability of dendritic cell (DC)-based vaccines to induce a long-lasting tumor-specific CTL response in either prophylactic or therapeutic settings by taking advantage of transplantable and spontaneous mouse tumor models. Implementing a 24-hour ex vivo intracellular cytokine production assay, we have found that priming with a DC-based vaccine induced a long-lasting CTL response in wild-type mice, and homologous boosting better sustained the pool of central memory T cells, which associated with potent protection against B16F1 melanoma challenge. Appropriate timing of booster vaccination was also critical, as a tight boosting schedule hindered persistence of IFN-γ-competent memory CD8(+) T cells and mice survival in prophylactic settings. Conversely, prime/boost vaccination proved to be of no advantage or even detrimental in therapeutic settings in B16F1 and transgenic adenocarcinoma of the mouse prostate (TRAMP) models, respectively. Although DC priming was indeed needed for tumor shrinkage, restoration of immune competence, and prolonged survival of TRAMP mice, repeated boosting did not sustain the pool of central memory CTLs and was detrimental for mice overall survival. Thus, our results indicate that booster vaccinations impact antitumor immunity to different extents, depending on their prophylactic or therapeutic administration, and suggest evaluating the need for boosting in any given patient with cancer depending on the state of the disease.
Collapse
Affiliation(s)
- Alessia Ricupito
- Cellular Immunology Unit; Program of Immunology, Gene Therapy and Bio-Immunotherapy of Cancer (PIBIC, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 2012; 31:137-61. [PMID: 23215646 DOI: 10.1146/annurev-immunol-032712-095954] [Citation(s) in RCA: 606] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissues such as the skin and mucosae are frequently exposed to microbial pathogens. Infectious agents must be quickly and efficiently controlled by our immune system, but the low frequency of naive T cells specific for any one pathogen means dependence on primary responses initiated in draining lymph nodes, often allowing time for serious infection to develop. These responses imprint effectors with the capacity to home to infected tissues; this process, combined with inflammatory signals, ensures the effective targeting of primary immunity. Upon vaccination or previous pathogen exposure, increased pathogen-specific T cell numbers together with altered migratory patterns of memory T cells can greatly improve immune efficacy, ensuring infections are prevented or at least remain subclinical. Until recently, memory T cell populations were considered to comprise central memory T cells (TCM), which are restricted to the secondary lymphoid tissues and blood, and effector memory T cells (TEM), which broadly migrate between peripheral tissues, the blood, and the spleen. Here we review evidence for these two memory populations, highlight a relatively new player, the tissue-resident memory T cell (TRM), and emphasize the potential differences between the migratory patterns of CD4(+) and CD8(+) T cells. This new understanding raises important considerations for vaccine design and for the measurement of immune parameters critical to the control of infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
17
|
Gebhardt T, Mackay LK. Local immunity by tissue-resident CD8(+) memory T cells. Front Immunol 2012; 3:340. [PMID: 23162555 PMCID: PMC3493987 DOI: 10.3389/fimmu.2012.00340] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/23/2012] [Indexed: 12/18/2022] Open
Abstract
Microbial infection primes a CD8+ cytotoxic T cell response that gives rise to a long-lived population of circulating memory cells able to provide protection against systemic reinfection. Despite this, effective CD8+ T cell surveillance of barrier tissues such as skin and mucosa typically wanes with time, resulting in limited T cell-mediated protection in these peripheral tissues. However, recent evidence suggests that a specialized subset of CD103+ memory T cells can permanently lodge and persist in peripheral tissues, and that these cells can compensate for the loss of peripheral immune surveillance by circulating memory T cells. Here, we review evolving concepts regarding the generation and long-term persistence of these tissue-resident memory T cells (TRM) in epithelial and neuronal tissues. We further discuss the role of TRM cells in local infection control and their contribution to localized immune phenomena, in both mice and humans.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology, The University of Melbourne Melbourne, VIC, Australia
| | | |
Collapse
|
18
|
|
19
|
Reynaud CA, Descatoire M, Dogan I, Huetz F, Weller S, Weill JC. IgM memory B cells: a mouse/human paradox. Cell Mol Life Sci 2012; 69:1625-34. [PMID: 22481437 PMCID: PMC3337997 DOI: 10.1007/s00018-012-0971-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 11/14/2022]
Abstract
Humoral memory is maintained by two types of persistent cells, memory B cells and plasma cells, which have different phenotypes and functions. Long-lived plasma cells can survive for a lifespan within a complex niche in the bone marrow and provide continuous protective serum antibody levels. Memory B cells reside in secondary lymphoid organs, where they can be rapidly mobilized upon a new antigenic encounter. Surface IgG has long been taken as a surrogate marker for memory in the mouse. Recently, however, we have brought evidence for a long-lived IgM memory B cell population in the mouse, while we have also argued that, in humans, these same cells are not classical memory B cells but marginal zone (MZ) B cells which, as opposed to their mouse MZ counterpart, recirculate and carry a mutated B cell receptor. In this review, we will discuss these apparently paradoxical results.
Collapse
Affiliation(s)
- Claude-Agnès Reynaud
- Faculté de Médecine, Site Necker-Enfants Malades, INSERM U783 “Développement du système immunitaire”, Université Paris Descartes, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Marc Descatoire
- Faculté de Médecine, Site Necker-Enfants Malades, INSERM U783 “Développement du système immunitaire”, Université Paris Descartes, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Ismail Dogan
- Faculté de Médecine, Site Necker-Enfants Malades, INSERM U783 “Développement du système immunitaire”, Université Paris Descartes, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | - François Huetz
- Faculté de Médecine, Site Necker-Enfants Malades, INSERM U783 “Développement du système immunitaire”, Université Paris Descartes, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
- Unité de Biologie des Populations Lymphocytaires, CNRS URA 1961, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Sandra Weller
- Faculté de Médecine, Site Necker-Enfants Malades, INSERM U783 “Développement du système immunitaire”, Université Paris Descartes, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Jean-Claude Weill
- Faculté de Médecine, Site Necker-Enfants Malades, INSERM U783 “Développement du système immunitaire”, Université Paris Descartes, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| |
Collapse
|
20
|
Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc Natl Acad Sci U S A 2012; 109:7037-42. [PMID: 22509047 DOI: 10.1073/pnas.1202288109] [Citation(s) in RCA: 487] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although circulating memory T cells provide enhanced protection against pathogen challenge, they often fail to do so if infection is localized to peripheral or extralymphoid compartments. In those cases, it is T cells already resident at the site of virus challenge that offer superior immune protection. These tissue-resident memory T (T(RM)) cells are identified by their expression of the α-chain from the integrin α(E)(CD103)β(7), and can exist in disequilibrium with the blood, remaining in the local environment long after peripheral infections subside. In this study, we demonstrate that long-lived intraepithelial CD103(+)CD8(+) T(RM) cells can be generated in the absence of in situ antigen recognition. Local inflammation in skin and mucosa alone resulted in enhanced recruitment of effector populations and their conversion to the T(RM) phenotype. The CD8(+) T(RM) cells lodged in these barrier tissues provided long-lived protection against local challenge with herpes simplex virus in skin and vagina challenge models, and were clearly superior to the circulating memory T-cell cohort. The results demonstrate that peripheral T(RM) cells can be generated and survive in the absence of local antigen presentation and provide a powerful means of achieving immune protection against peripheral infection.
Collapse
|
21
|
Ulery BD, Kumar D, Ramer-Tait AE, Metzger DW, Wannemuehler MJ, Narasimhan B. Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS One 2011; 6:e17642. [PMID: 21408610 PMCID: PMC3048296 DOI: 10.1371/journal.pone.0017642] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/07/2011] [Indexed: 11/18/2022] Open
Abstract
Despite the successes provided by vaccination, many challenges still exist with respect to controlling new and re-emerging infectious diseases. Innovative vaccine platforms composed of adaptable adjuvants able to appropriately modulate immune responses, induce long-lived immunity in a single dose, and deliver immunogens in a safe and stable manner via multiple routes of administration are needed. This work describes the development of a novel biodegradable polyanhydride nanoparticle-based vaccine platform administered as a single intranasal dose that induced long-lived protective immunity against respiratory disease caused by Yesinia pestis, the causative agent of pneumonic plague. Relative to the responses induced by the recombinant protein F1-V alone and MPLA-adjuvanted F1-V, the nanoparticle-based vaccination regimen induced an immune response that was characterized by high titer and high avidity IgG1 anti-F1-V antibody that persisted for at least 23 weeks post-vaccination. After challenge, no Y. pestis were recovered from the lungs, livers, or spleens of mice vaccinated with the nanoparticle-based formulation and histopathological appearance of lung, liver, and splenic tissues from these mice post-vaccination was remarkably similar to uninfected control mice.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Devender Kumar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Amanda E. Ramer-Tait
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Dennis W. Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010; 10:787-96. [DOI: 10.1038/nri2868] [Citation(s) in RCA: 1300] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Abstract
The immune system is commonly perceived as an army of organs, tissues, cells, and molecules that protect from disease by eliminating pathogens. However, as in human society, a clear definition of good and evil might be sometimes difficult to achieve. Not only do we live in contact with a multitude of microbes, but we also live with billions of symbionts that span all the shades from mutualists to potential killers. Together, we compose a superorganism that is capable of optimal living. In that context, the immune system is not a killer, but rather a force that shapes homeostasis within the superorganism.
Collapse
Affiliation(s)
- G Eberl
- Department of Immunology, Institut Pasteur, Paris, France.
| |
Collapse
|
24
|
Expansion, maintenance, and memory in NK and T cells during viral infections: responding to pressures for defense and regulation. PLoS Pathog 2010; 6:e1000816. [PMID: 20361055 PMCID: PMC2845660 DOI: 10.1371/journal.ppat.1000816] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Colpitts S, Scott P. Memory T-cell subsets in parasitic infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:145-54. [PMID: 20795546 DOI: 10.1007/978-1-4419-6451-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Parasitic infections remain a major health problem throughout the world and unlike many viral or bacterial diseases, there are no vaccines to help control parasitic diseases. While several important advances have been made that will contribute to the development of parasite vaccines, such as cloning of dominant parasite antigens and a better understanding of the effector T-cell subsets needed for immunity, fundamental questions remain about how to induce long-term immunologic memory in vaccines. Here we examine a few of the experimental models that have been used to elucidate the nature of the memory T cells that are generated during parasitic infections. Although significant hurdles remain in the development of parasite vaccines, studies with both protozoa and gastrointestinal nematodes suggest that long-term immunity induced by vaccination is a realistic goal for control of parasitic infections.
Collapse
Affiliation(s)
- Sara Colpitts
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Room 310 Hill Pavilion, 380 South University Avenue, Philadelphia, Pennslyvania 19104-4539, USA
| | | |
Collapse
|
26
|
Abstract
CD1d-restricted natural killer (NKT) cells are important contributors to antigen-specific antibody responses. There is, therefore, considerable interest in the design and implementation of strategies to appropriately activate NKT cells and boost vaccine-induced protective antibody responses. In order to achieve these goals, investigators are examining the mechanisms by which NKT cells enhance antibody responses. Although information is limited, it is now appreciated that both cognate and noncognate interactions between CD1d-expressing B cells and NKT cells drive enhanced antibody responses. NKT cells may provide B-cell help in the form of direct receptor-mediated interactions as well as by secretion of soluble effectors, including cytokines. In this article, we review the evidence in support of these mechanisms and discuss how they likely take place in the context of interactions of NKT cells with other cell types, such as dendritic cells and helper T cells. We also discuss the evidence that NKT cells affect discrete differentiation events in the multistep process by which a naive B cell experiences antigen and develops into a memory B cell or an antibody-secreting plasma cell. Since most information on NKT cells and humoral immunity has been derived from murine studies, we discuss what is known about human NKT cells and humoral immunity. We offer thoughts on whether the findings in murine systems will translate to humans.
Collapse
Affiliation(s)
- Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
27
|
Kanchan V, Katare YK, Panda AK. Memory antibody response from antigen loaded polymer particles and the effect of antigen release kinetics. Biomaterials 2009; 30:4763-76. [DOI: 10.1016/j.biomaterials.2009.05.075] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/15/2009] [Indexed: 11/25/2022]
|
28
|
Cavalcanti YVN, Pereira VRA, Reis LC, Ramos ALG, Luna CF, Nascimento EJM, Lucena-Silva N. Evaluation of memory immune response to mycobacterium extract among household contact of tuberculosis cases. J Clin Lab Anal 2009; 23:57-62. [PMID: 19140213 DOI: 10.1002/jcla.20290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human immune response to tuberculosis (TB) is especially mediated by T CD4(+)lymphocytes. However, more studies are needed in order to understand the exact role of each cytokine in the mechanisms for cures. In this article, our aim was to analyze the production of TNF-alpha, IL-10, and IFN-gamma in peripheral blood mononuclear cells (PBMCs) among the household contacts of common primary TB cases, with or without histories of active TB infection, who were negative to parasitological and HIV tests. In order to characterize the cytokine production, PBMCs from these groups were stimulated with whole-protein extract of M. tuberculosis (WPE) antigen (rAgTb) for 24 and 48 hr. The culture supernatants were collected and IFN-gamma, TNF-alpha, and IL-10 were assayed using capture ELISA. There were no statistical differences between primary TB cases and their household contacts with or without previous histories of lung TB. Our results suggest that T memory cells, T regulatory cells, and the Th1/Th2 dichotomy may be responsible for the results described in this article. Further studies are currently underway.
Collapse
|
29
|
Protective and pathologic roles of the immune response to mouse hepatitis virus type 1: implications for severe acute respiratory syndrome. J Virol 2009; 83:9258-72. [PMID: 19570864 DOI: 10.1128/jvi.00355-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intranasal mouse hepatitis virus type 1 (MHV-1) infection of mice induces lung pathology similar to that observed in severe acute respiratory syndrome (SARS) patients. However, the severity of MHV-1-induced pulmonary disease varies among mouse strains, and it has been suggested that differences in the host immune response might account for this variation. It has also been suggested that immunopathology may represent an important clinical feature of SARS. Little is known about the host immune response to MHV-1 and how it might contribute to some of the pathological changes detected in infected mice. In this study we show that an intact type I interferon system and the adaptive immune responses are required for controlling MHV-1 replication and preventing morbidity and mortality in resistant C57BL/6J mice after infection. The NK cell response also helps minimize the severity of illness following MHV-1 infection of C57BL/6J mice. In A/J and C3H/HeJ mice, which are highly susceptible to MHV-1-induced disease, we demonstrate that both CD4 and CD8 T cells contribute to morbidity during primary infection, and memory responses can enhance morbidity and mortality during subsequent reexposure to MHV-1. However, morbidity in A/J and C3H/HeJ mice can be minimized by treating them with immune serum prior to MHV-1 infection. Overall, our findings highlight the role of the host immune response in contributing to the pathogenesis of coronavirus-induced respiratory disease.
Collapse
|
30
|
Abstract
This article provides a review of immunology to enhance understanding of vaccine efficacy and use, and elaborates on the immune response to vaccination. The use of vaccines to prevent infectious diseases represents a tremendous accomplishment of biomedical science, especially considering the complex interplay of the immune system with innumerable pathogens. Vaccines have allowed for total eradication of one disease and have significantly reduced the incidence of other diseases. In order to have a successful vaccine-based eradication program, the infection must be limited to humans without an animal reservoir and only one or a few strains may exist in viral infection. These strains must have constant antigenic properties. A number of vaccine types exist, both traditional and innovative, and are described herein.
Collapse
Affiliation(s)
- Brenda L Bartlett
- Center for Clinical Studies, University of Texas Health Sciences Health Science Center, Houston, Texas, USA.
| | | | | |
Collapse
|
31
|
MacLeod MKL, Clambey ET, Kappler JW, Marrack P. CD4 memory T cells: what are they and what can they do? Semin Immunol 2009; 21:53-61. [PMID: 19269850 PMCID: PMC2679806 DOI: 10.1016/j.smim.2009.02.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/04/2009] [Indexed: 11/29/2022]
Abstract
Immunological memory provides the basis for successful vaccines. It is important to understand the properties of memory cells. There is much known about the phenotype and functions of memory CD8 T cells, less about memory B cells, while CD4 memory T cells have proved difficult to study. Differences in the types of memory CD4 cells studied and the difficulties of tracking the small number of cells have led to conflicting and unclear results. Here we discuss the different systems used to study CD4 memory cells and ask whether, and in what circumstances, memory CD4 cells could provide protection against infections.
Collapse
Affiliation(s)
- Megan K L MacLeod
- Howard Hughes Medical Institute and Integrated Department of Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | |
Collapse
|
32
|
Khanna KM, Aguila CC, Redman JM, Suarez-Ramirez JE, Lefrançois L, Cauley LS. In situ imaging reveals different responses by naïve and memory CD8 T cells to late antigen presentation by lymph node DC after influenza virus infection. Eur J Immunol 2009; 38:3304-15. [PMID: 19009527 DOI: 10.1002/eji.200838602] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pulmonary influenza infection causes prolonged lymph node hypertrophy while processed viral antigens continue to be presented to virus-specific CD8 T cells. We show that naïve, but not central/memory, nucleoprotein (NP)-specific CD8 T cells recognized antigen-bearing CD11b(+) DC in the draining lymph nodes more than 30 days after infection. After these late transfers, the naïve CD8 T cells underwent an abortive proliferative response in the mediastinal lymph node (MLN), where large clusters of partially activated cells remained in the paracortex until at least a week after transfer. A majority of the endogenous NP-specific CD8 T cells that were in the MLN between 30 and 50 days after infection also showed signs of a continuing response to antigen stimulation. A high frequency of endogenous NP-specific CD8 T cells in the MLN indicates that late antigen presentation may help shape the epitope dominance hierarchy during reinfection.
Collapse
Affiliation(s)
- Kamal M Khanna
- Department of Immunology, University of Connecticut, Farmington, CT 06032-1319, USA
| | | | | | | | | | | |
Collapse
|
33
|
CD4 memory T cells on trial: immunological memory without a memory T cell. Trends Immunol 2008; 29:405-11. [PMID: 18674966 DOI: 10.1016/j.it.2008.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 11/24/2022]
Abstract
Immunological memory crucially depends on CD4 T cells. In contrast with B cells, we find no decisive evidence that CD4 T cells are permanently altered by antigen stimulation. We propose that the memory response is derived from an increase in frequency of resting naïve-like CD4 T cells with a half-life of years (or months in rodents), rather than the currently proposed specialized T-cell types that have a known lifespan of days. In addition, residual antigen will significantly influence the longevity of a memory response. Our model offers a new insight into immunological memory that could assist the development of CD4 T cell-based vaccines.
Collapse
|
34
|
Okwor I, Uzonna J. Persistent parasites and immunologic memory in cutaneous leishmaniasis: implications for vaccine designs and vaccination strategies. Immunol Res 2008; 41:123-36. [DOI: 10.1007/s12026-008-8016-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Khanolkar A, Badovinac VP, Harty JT. CD8 T cell memory development: CD4 T cell help is appreciated. Immunol Res 2008; 39:94-104. [PMID: 17917058 DOI: 10.1007/s12026-007-0081-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/25/2022]
Abstract
An important goal of vaccination strategies is to elicit long term, effective immunity. Therefore it is imperative to define the parameters that regulate the development and preservation of the numbers and functional quality of cells that confer this property to the host. CD8 T cells are a key component of the host adaptive immune response that helps eradicate invading viruses and other cell-associated pathogens. Once the primary infection is controlled, the CD8 T cells transition from being effector cells into memory cells that act as sentinels of the immune system capable of rapidly purging the host of recurrent infections by the same pathogen. The factors that regulate and orchestrate this transition from effector CD8 T cells into functionally robust memory CD8 T cells are poorly understood. In recent years it has been determined that CD4 T cells play a vital role in the survival and functional responsiveness of memory CD8 T cells. However, the mechanism(s) of this interaction are still unclear.
Collapse
Affiliation(s)
- Aaruni Khanolkar
- Department of Microbiology, University of Iowa, 3-512 Bowen Science Building, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
36
|
Abstract
Various signals during infection influence CD8 T cell memory generation, but these factors have yet to be fully defined. IL-12 is a proinflammatory cytokine that has been shown to enhance IFN-gamma-producing T cell responses and has been widely tested as a vaccine adjuvant. In this study, we show that IL-12-deficient mice generate a weaker primary CD8 T cell response and are more susceptible to Listeria monocytogenes infection, but have substantially more memory CD8 T cells and greater protective immunity against reinfection. Kinetic analyses show that in the absence of IL-12 there is a reduced contraction of Ag-specific CD8 T cells and a gradual increase in memory CD8 T cells as a result of increased homeostatic renewal. By signaling directly through its receptor on CD8 T cells, IL-12 influences their differentiation to favor the generation of fully activated effectors, but hinders the formation of CD8 T cell memory precursors and differentiation of long-term CD8 T cell memory(.) These results have implications for understanding memory T cell development and enhancing vaccine efficacy, and offer new insight into the role of IL-12 in coordinating the innate and adaptive immune response.
Collapse
Affiliation(s)
- Erika L Pearce
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
37
|
Tuuminen T, Kekäläinen E, Mäkelä S, Ala-Houhala I, Ennis FA, Hedman K, Mustonen J, Vaheri A, Arstila TP. Human CD8+ T cell memory generation in Puumala hantavirus infection occurs after the acute phase and is associated with boosting of EBV-specific CD8+ memory T cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:1988-95. [PMID: 17641066 DOI: 10.4049/jimmunol.179.3.1988] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The induction and maintenance of T cell memory is incompletely understood, especially in humans. We have studied the T cell response and the generation of memory during acute infection by the Puumala virus (PUUV), a hantavirus endemic to Europe. It causes a self-limiting infection with no viral persistence, manifesting as hemorrhagic fever with renal syndrome. HLA tetramer staining of PBMC showed that the CD8(+) T cell response peaked at the onset of the clinical disease and decreased within the next 3 wk. Expression of activation markers on the tetramer-positive T cells was also highest during the acute phase, suggesting that the peak population consisted largely of effector cells. Despite the presence of tetramer-positive T cells expressing cytoplasmic IFN-gamma, PUUV-specific cells producing IFN-gamma in vitro were rare during the acute phase. Their frequency, as well as the expression of IL-7R alpha mRNA and surface protein, increased during a follow-up period of 6 wk and probably reflected the induction of memory T cells. Simultaneously with the PUUV-specific response, we also noted in seven of nine patients an increase in EBV-specific T cells and the transient presence of EBV DNA in three patients, indicative of viral reactivation. Our results show that in a natural human infection CD8(+) memory T cells are rare during the peak response, gradually emerging during the first weeks of convalescence. They also suggest that the boosting of unrelated memory T cells may be a common occurrence in human viral infections, which may have significant implications for the homeostasis of the memory T cell compartment.
Collapse
|
38
|
Xu RH, Fang M, Klein-Szanto A, Sigal LJ. Memory CD8+ T cells are gatekeepers of the lymph node draining the site of viral infection. Proc Natl Acad Sci U S A 2007; 104:10992-7. [PMID: 17578922 PMCID: PMC1904153 DOI: 10.1073/pnas.0701822104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Indexed: 12/13/2022] Open
Abstract
It is uncertain how immunity protects against systemic viral diseases. Here, we demonstrate that in the absence of persistent virus, not only antibodies but also recall responses by long-lived memory CD8(+) T cells prevent mousepox, a disease caused by ectromelia virus, a close relative of the virus of human smallpox. Moreover, we show that to protect, recall CD8(+) T cells directly kill targets in the lymph node draining the primary site of infection thus curbing systemic viral spread. Therefore, our work provides the basis for a model where lymph nodes are not just organs where lymphocytes become activated and proliferate but also the sites where a major fight against virus spread takes place.
Collapse
Affiliation(s)
| | - Min Fang
- *Program of Viral Pathogenesis and
| | - Andres Klein-Szanto
- Department of Pathology, Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
39
|
Sester U, Sester M, Köhler H, Pees HW, Gärtner BC, Wain-Hobson S, Bocharov G, Meyerhans A. Maintenance of HIV-specific central and effector memory CD4 and CD8 T cells requires antigen persistence. AIDS Res Hum Retroviruses 2007; 23:549-53. [PMID: 17451343 DOI: 10.1089/aid.2006.0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The HIV-specific central and effector CD4 and CD8 memory T cell populations disappear from the peripheral blood of infected individuals under highly active antiretroviral therapy (HAART) with a mean half-life of 6.0 and 7.7 months, respectively. By contrast, cytomegalovirus (CMV)-specific responses are stable or increase. The striking quantitative differences between T cell memory to two persistent viral infections are instructive as to how antigen dosage contributes to the maintenance of antigen-specific memory T cell responses in humans.
Collapse
Affiliation(s)
- Urban Sester
- Department of Internal Medicine IV, University of the Saarland, 66421 Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The immune system has co-evolved with microbes that cause acute infectious disease. Immune responses must be appropriate to allow survival of both the individual and the species. These responses involve complex interactions that often go unmeasured.
Collapse
Affiliation(s)
- Rolf Zinkernagel
- Institute of Experimental Immunology, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
41
|
Agrewala JN, Brown DM, Lepak NM, Duso D, Huston G, Swain SL. Unique Ability of Activated CD4+ T Cells but Not Rested Effectors to Migrate to Non-lymphoid Sites in the Absence of Inflammation. J Biol Chem 2007; 282:6106-15. [PMID: 17197446 DOI: 10.1074/jbc.m608266200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies suggest that effector T cells generated by immune responses migrate to multiple non-lymphoid sites, even those without apparent expression of antigen or inflammation. To investigate the ability of distinct CD4(+) T lymphocyte subsets to enter and persist in non-lymphoid, noninflamed compartments, we examined the migration and persistence of naïve, effector, and rested effector CD4(+) T cells generated in vitro following transfer to nonimmunized adoptive hosts. Th1 and Th2 effectors migrated to both lymphoid and non-lymphoid organs (peritoneum, fat pads, and lung). In contrast, rested effectors and naïve cells migrated only to lymphoid areas. Adhesion molecule expression, but not chemokine receptor expression, correlated with the ability to enter non-lymphoid sites. Donor cells persisted longer in lymphoid than in non-lymphoid sites. When hosts with naïve and memory donor cells were challenged with antigen, effectors developed in situ, which also migrated to non-lymphoid sites. Memory cells showed an accelerated shift to non-lymphoid migration, in keeping with memory effector formation. These results suggest that only recently activated effector T cells can disperse to non-lymphoid sites in the absence of antigen and inflammation, and as effectors return to rest, they lose this ability. These data also argue that memory cells in lymphoid sites are longer lived and not in equilibrium with those in non-lymphoid sites.
Collapse
|
42
|
Homann D, Lewicki H, Brooks D, Eberlein J, Mallet-Designé V, Teyton L, Oldstone MBA. Mapping and restriction of a dominant viral CD4+ T cell core epitope by both MHC class I and MHC class II. Virology 2007; 363:113-23. [PMID: 17320138 PMCID: PMC1976554 DOI: 10.1016/j.virol.2006.12.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/12/2006] [Accepted: 12/08/2006] [Indexed: 11/25/2022]
Abstract
Virus-specific CD4(+) T cells contribute to effective virus control through a multiplicity of mechanisms including direct effector functions as well as "help" for B cell and CD8(+) T cell responses. Here, we have used the lymphocytic choriomeningitis virus (LCMV) system to assess the minimal constraints of a dominant antiviral CD4(+) T cell response. We report that the core epitope derived from the LCMV glycoprotein (GP) is 11 amino acids in length and provides optimal recognition by epitope-specific CD4(+) T cells. Surprisingly, this epitope is also recognized by LCMV-specific CD8(+) T cells and thus constitutes a unique viral determinant with dual MHC class I- and II-restriction.
Collapse
Affiliation(s)
- Dirk Homann
- Barbara Davis Center, University of Colorado at Denver and Health Sciences Center, 12801 East 17th Avenue, Aurora CO, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Community-acquired pneumonia: paving the way towards new vaccination concepts. COMMUNITY-ACQUIRED PNEUMONIA 2007. [PMCID: PMC7123104 DOI: 10.1007/978-3-7643-7563-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite the availability of antimicrobial agents and vaccines, community-acquired pneumonia remains a serious problem. Severe forms tend to occur in very young children and among the elderly, since their immune competence is eroded by immaturity and immune senescence, respectively. The main etiologic agents differ according to patient age and geographic area. Streptococcus pneumoniae, Haemophilus influenzae, respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV-3) are the most important pathogens in children, whereas influenza viruses are the leading cause of fatal pneumonia in the elderly. Effective vaccines are available against some of these organisms. However, there are still many agents against which vaccines are not available or the existent ones are suboptimal. To tackle this problem, empiric approaches are now being systematically replaced by rational vaccine design. This is facilitated by the growing knowledge in the fields of immunology, microbial pathogenesis and host response to infection, as well as by the availability of sophisticated strategies for antigen selection, potent immune modulators and efficient antigen delivery systems. Thus, a new generation of vaccines with improved safety and efficacy profiles compared to old and new agents is emerging. In this chapter, an overview is provided about currently available and new vaccination concepts.
Collapse
|
44
|
Lloyd AR, Jagger E, Post JJ, Crooks LA, Rawlinson WD, Hahn YS, Ffrench RA. Host and viral factors in the immunopathogenesis of primary hepatitis C virus infection. Immunol Cell Biol 2006; 85:24-32. [PMID: 17130897 DOI: 10.1038/sj.icb.7100010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Individuals infected with hepatitis C virus (HCV) have two possible outcomes of infection, clearance or persistent infection. The focus of this review is the host mechanisms that facilitate clearance. The interaction between HCV viral components and the immune system ultimately determines the balance between the virus and host. Strong evidence points to the aspects of cellular immune response as the key determinants of outcome. The recent discovery of viral evasion strategies targeting innate immunity suggests that the interferon-alpha/beta induction pathways are also critical. A growing body of evidence has implicated polymorphisms in both innate and adaptive immune response genes as determinants of viral clearance in individuals infected with HCV.
Collapse
Affiliation(s)
- Andrew R Lloyd
- Centre for Infection and Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Zinkernagel RM, Hengartner H. Protective 'immunity' by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called 'immunological memory'. Immunol Rev 2006; 211:310-9. [PMID: 16824138 DOI: 10.1111/j.0105-2896.2006.00402.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The idea of immunological memory originally arose from the observation that survivors of infections were subsequently resistant to disease caused by the same infection. While most immunologists accept a special 'remembering' memory quality, we have argued previously and document here that increased resistance against re-infection, i.e. immunity, reflects low-level antigen-driven T- and B-cell responses, resulting in elevated serum or mucosal titers of protective antibodies or of activated T cells, respectively. Periodic antigen re-exposure is from within, by persisting infection (long-term) or by immune complexes (short-term), or from without, by low-level re-infections. This simple concept is supported by clinical evidence and model experiments but is often ignored, although this concept, but not so-called 'immunological memory', as defined in textbooks (i.e. earlier and better responses of a primed host), is compatible with evolutionary maternal antibody transfer of protection as well as immunity against existing infections. The concept of 'immunity without immunological remembering memory' explains why it is easy to generate vaccines against acute cytopathic infections, particularly those of early childhood, where neutralizing antibodies are the key to protection, because it has been validated by adoptive transfer of maternal antibodies. It also explains why we have not succeeded (yet?) to generate truly protective vaccines against persisting infections, because we cannot imitate 'infection immunity' that is long-lasting, generating protective T- and B-cell stimulation against variable infections without causing disease by either immunopathology or tolerance.
Collapse
Affiliation(s)
- Rolf M Zinkernagel
- University Hospital Zürich, Institute of Experimental Immunology, Zürich, Switzerland.
| | | |
Collapse
|
46
|
Pearce EL, Shen H. Making sense of inflammation, epigenetics, and memory CD8+ T-cell differentiation in the context of infection. Immunol Rev 2006; 211:197-202. [PMID: 16824128 DOI: 10.1111/j.0105-2896.2006.00399.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent findings suggest a new paradigm that early inflammatory cytokines promote the effector T-cell response while inhibiting the development of CD8+ T-cell memory. Although this opposing effect may appear paradoxical at first, it makes biological sense in the context of an infection, by ensuring a maximal effector response that will clear the pathogen. Once infection is controlled, the withdrawal of inflammatory cytokines allows the differentiation of effectors into long-lived memory cells that provide protective immunity against re-infection. Memory T cells differ from naïve T cells in their responsiveness to stimulation, which leads to the rapid expression of effector functions. The molecular basis for enhanced functionality of memory T cells remains largely unknown. Recent results indicate that certain epigenetic changes are imprinted in memory T cells that play an important role in keeping them poised to respond immediately upon antigen re-encounter. These epigenetic modifications occur as naïve T cells become activated and are influenced by factors that regulate memory formation. Thus, epigenetic changes are an integral component of memory T-cell differentiation, while inflammation plays an unexpected regulatory role in the process. These advances in our understanding of T-cell memory will undoubtedly help design unconventional vaccine strategies for inducing large populations of long-lived and functional memory CD8+ T cells.
Collapse
Affiliation(s)
- Erika L Pearce
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
47
|
Lanzavecchia A, Bernasconi N, Traggiai E, Ruprecht CR, Corti D, Sallusto F. Understanding and making use of human memory B cells. Immunol Rev 2006; 211:303-9. [PMID: 16824137 PMCID: PMC7165660 DOI: 10.1111/j.0105-2896.2006.00403.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Summary: The work of our laboratory has focused on the study of human memory B cells. Using an in vitro approach we dissected the triggering requirements of B cells and unveiled a distinct role for TLRs in the activation of naive versus memory B cells. Using an ex vivo approach we analyzed the dynamics of memory B cells and ASCs and the kinetics of serum antibodies during secondary immune responses and in steady state conditions and used these quantitative data to build up a model of serological memory. According to this model memory B cells behave as `stem cells' capable of generating plasma cells and antibodies in an antigen‐dependent as well as in an antigen‐independent fashion. Finally we developed an efficient method to interrogate human memory B cells and to isolate human monoclonal antibodies. This method can be exploited for the production of neutralizing antibodies for serotherapy and for “analytic vaccinology”.
Collapse
|
48
|
Intlekofer AM, Wherry EJ, Reiner SL. Not-so-great expectations: re-assessing the essence of T-cell memory. Immunol Rev 2006; 211:203-13. [PMID: 16824129 DOI: 10.1111/j.0105-2896.2006.00396.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We are often taught that secondary, or memory, responses by lymphocytes are more vigorous than primary responses. An expectation commonly associated with this notion is that the initial encounter with a pathogen should result in immunity to re-infection. Although this outcome is sometimes the case, it is not universally true. In this review, we propose a unified model of T-cell memory to explain the apparent successes and failures of eliciting vaccine-like protection from prior encounters with pathogens. We speculate that memory T cells arise as an invariant consequence of clonal selection during an immune response. The quality of memory T cells, however, seems to vary in the degree to which they have acquired effector characteristics and, thus, their ability to confer immunity to re-infection. Although not all memory T cells possess the embellished attributes of fully developed effector cells, they all seem to share the rudimentary quality of preserving an antigen specificity that has proven itself useful. We suggest that the ability to maintain the integrity of the T-cell repertoire, more than establishing immunity to re-infection, may represent the fundamental form of memory for the adaptive immune system.
Collapse
Affiliation(s)
- Andrew M Intlekofer
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | |
Collapse
|
49
|
Abstract
CD4+ T cells are central regulators of both humoral and cellular immune responses. There are many subsets of CD4+ T cells, the most prominent being T-helper 1 (Th1), Th2, Th-17, and regulatory T cells, specialized in regulating different aspects of immunity. Without participation by these CD4+ T-cell subsets, B cells cannot undergo isotype switching to generate high-affinity antibodies, the microbicidal activity of macrophages is reduced, the efficiency of CD8+ T-cell responses and CD8+ T-cell memory are compromised, and downregulation of effector responses is impaired. It therefore stands to reason that memory CD4+ T cells are likely to fulfill an important facilitator role in the maintenance and control of protective immune responses. This review discusses some issues of importance for the generation of memory CD4+ T cells and focuses in particular on their heterogeneity and plasticity, with respect to both phenotypic characteristics and function. Finally, we discuss a number of factors that affect long-term maintenance of memory CD4+ T cells.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, The National Institute for Medical Research, Mill Hill, London, UK.
| | | | | |
Collapse
|
50
|
Obaro SK, Ota MO. Sense and the science of childhood immunization: Can we achieve more with less? Vaccine 2006; 24:6460-7. [PMID: 16911848 DOI: 10.1016/j.vaccine.2006.06.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Revised: 06/17/2006] [Accepted: 06/20/2006] [Indexed: 11/28/2022]
Abstract
The threat of biological terrorism with small pox virus and a global influenza pandemic in the face of limited vaccine supply recently stimulated research into the evaluation of fractional dose vaccine regimens, with promising immunogenicity results. While this approach is not new, it has been less applied to vaccines for less sensational but nevertheless, significant killer diseases. This manuscript provides an overview of the basics of immunization as it applies to the current practice of immunization in children, comments on the untapped avenues for cost reduction of vaccine delivery, and the potential for saving more lives with currently available resources.
Collapse
Affiliation(s)
- Stephen K Obaro
- Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213-2583, USA.
| | | |
Collapse
|