1
|
Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, Wang X, Song H, Liu H, Luo X. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med 2016; 39:167-173. [PMID: 27909715 PMCID: PMC5179187 DOI: 10.3892/ijmm.2016.2814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022] Open
Abstract
It is unknown whether a scaffold containing both small intestinal submucosa (SIS) and mesenchymal stem cells (MSCs) for transplantation may improve pancreatic islet function and survival. In this study, we examined the effects of a SIS-MSC scaffold on islet function and survival in vitro and in vivo. MSCs and pancreatic islets were isolated from Sprague-Dawley rats, and SIS was isolated from Bamei pigs. The islets were apportioned among 3 experimental groups as follows: SIS-islets, SIS-MSC-islets and control-islets. In vitro, islet function was measured by a glucose-stimulated insulin secretion test; cytokines in cultured supernatants were assessed by enzyme-linked immunosorbent assay; and gene expression was analyzed by reverse transcription-quantitative PCR. In vivo, islet transplantation was performed in rats, and graft function and survival were monitored by measuring the blood glucose levels. In vitro, the SIS-MSC scaffold was associated with improved islet viability and enhanced insulin secretion compared with the controls, as well as with the increased the expression of insulin 1 (Ins1), pancreatic and duodenal homeobox 1 (Pdx1), platelet endothelial cell adhesion molecule 1 [Pecam1; also known as cluster of differentiation 31 (CD31)] and vascular endothelial growth factor A (Vegfa) in the islets, increased growth factor secretion, and decreased tumor necrosis factor (TNF) secretion. In vivo, the SIS-MSC scaffold was associated with improved islet function and graft survival compared with the SIS and control groups. On the whole, our findings demonstrate that the SIS-MSC scaffold significantly improved pancreatic islet function and survival in vitro and in vivo. This improvement may be associated with the upregulation of insulin expression, the improvement of islet microcirculation and the secretion of cytokines.
Collapse
Affiliation(s)
- Dan Wang
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoming Ding
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wujun Xue
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zheng
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohui Tian
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Li
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohong Wang
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huanjin Song
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hua Liu
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohui Luo
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
2
|
Mirzamohammadi S, Aali E, Najafi R, Kamarul T, Mehrabani M, Aminzadeh A, Sharifi AM. Effect of 17β-estradiol on mediators involved in mesenchymal stromal cell trafficking in cell therapy of diabetes. Cytotherapy 2014; 17:46-57. [PMID: 25457279 DOI: 10.1016/j.jcyt.2014.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have shown great promise for cell therapy of a wide range of diseases such as diabetes. However, insufficient viability of transplanted cells reaching to damaged tissues has limited their potential therapeutic effects. Expression of estrogen receptors on stem cells may suggest a role for 17β-estradiol (E2) in regulating some functions in these cells. There is evidence that E2 enhances homing of stem cells. Induction of hypoxia-inducible factor-1α (HIF-1α) by E2 and the profound effect of HIF-1α on migration of cells have previously been demonstrated. We investigated the effect of E2 on major mediators involved in trafficking and subsequent homing of MSCs both in vitro and in vivo in diabetic rats. METHODS E2 has been selected to improve the poor migration capacity of MSCs toward sites of injury. MSCs were incubated with different concentrations of E2 for varying periods of time to investigate whether estradiol treatment could be effective to enhance the efficiency of MSC transplantation. RESULTS E2 significantly enhanced the viability of the cells that were blocked by ICI 182,780 (estrogen receptor antagonist). E2 also increased HIF-1α, CXC chemokine receptor 4 and C-C chemokine receptor 2 protein and messenger RNA levels measured by Western blot and reverse transcription-polymerase chain reaction. The enzymatic activity of matrix metalloproteinase 2 and metalloproteinase 9 was elevated in E2-treated cells through the use of gelatin zymography. Finally, the improved migration capacity of E2-treated MSCs was evaluated with the use of a Boyden chamber and in vivo migration assays. CONCLUSIONS Our data support that conditioning of MSCs with E2 promotes migration of cells in cultured MSCs in vitro and in a diabetic rat model in vivo through regulation of major mediators of cell trafficking.
Collapse
Affiliation(s)
- Solmaz Mirzamohammadi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Aali
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Tunku Kamarul
- Tissue Engineering Group (TEG) and Research, National Orthopedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopedics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehrnaz Mehrabani
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Aminzadeh
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int 2014; 2014:306573. [PMID: 24876848 PMCID: PMC4021690 DOI: 10.1155/2014/306573] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/13/2022] Open
Abstract
Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs) are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.
Collapse
|
4
|
Egan CG. Potential therapeutic use of deferoxamine and mesenchymal stem cells in type-1 diabetes: assembling another piece of the jigsaw, in what is a complex puzzle. Expert Opin Biol Ther 2013; 13:1221-4. [PMID: 23706016 DOI: 10.1517/14712598.2013.804506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mesenchymal stem cells (MSCs) are recognized for their potential in regenerative medicine. Due to long-term negative effects associated with insulin administration and difficulty with pancreas transplantation, patients with type-1 diabetes could significantly benefit from organ-targeted cell-based therapy. Although several pharmacological agents increase the homing capacity of MSCs, the mechanisms regulating this process are still poorly understood. In this issue, Najafi et al. have demonstrated that pre-treatment of bone marrow-derived MSCs with the iron chelator and hypoxia mimetic, deferoxamine, can increase homing to the pancreas in a rat model of diabetes. This effect appears to be driven through specific chemokines in addition to hypoxia-inducing factor 1-alpha. Results from this study provide important clues in our endeavour to solve a complex process. Further studies will help determine whether these findings may offer potential therapeutic benefit to patients with diabetes.
Collapse
|
5
|
Domínguez-Bendala J, Ricordi C. Present and future cell therapies for pancreatic beta cell replenishment. World J Gastroenterol 2012; 18:6876-84. [PMID: 23322984 PMCID: PMC3531670 DOI: 10.3748/wjg.v18.i47.6876] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/27/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.
Collapse
|
6
|
Domínguez-Bendala J, Lanzoni G, Inverardi L, Ricordi C. Concise review: mesenchymal stem cells for diabetes. Stem Cells Transl Med 2011. [PMID: 23197641 DOI: 10.5966/sctm.2011-0017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have already made their mark in the young field of regenerative medicine. Easily derived from many adult tissues, their therapeutic worth has already been validated for a number of conditions. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Here we review the potential use of MSCs for the treatment of type 1 diabetes mellitus, a devastating chronic disease in which the insulin-producing cells of the pancreas (the β-cells) are the target of an autoimmune process. It has been hypothesized that stem cell-derived β-cells may be used to replenish the islet mass in diabetic patients, making islet transplantation (a form of cell therapy that has already proven effective at clinically restoring normoglycemia) available to millions of prospective patients. Here we review the most current advances in the design and application of protocols for the differentiation of transplantable β-cells, with a special emphasis in analyzing MSC potency according to their tissue of origin. Although no single method appears to be ripe enough for clinical trials yet, recent progress in reprogramming (a biotechnological breakthrough that relativizes the thus far insurmountable barriers between embryonal germ layers) bodes well for the rise of MSCs as a potential weapon of choice to develop personalized therapies for type 1 diabetes.
Collapse
|
7
|
Misler S. The isolated pancreatic islet as a micro-organ and its transplantation to cure diabetes: celebrating the legacy of Paul Lacy. Islets 2010; 2:210-24. [PMID: 21099316 PMCID: PMC3322537 DOI: 10.4161/isl.2.4.12156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 02/07/2023] Open
Abstract
Over the past three decades the pancreatic islet of Langerhans has taken center stage as an endocrine micro-organ whose glucoregulatory function is highly explicable on the basis of the increasingly well understood activities of three highly interactive secretory cells. Islet dysfunction underlies both type 1 and type 2 diabetes mellitus (DM); its protection from immune attack and gluco-and lipo-toxicity may prevent the development of DM; and its replacement by non-surgical transplantation may be curative of DM. During a career marked by vision, focus and tenacity, Paul Lacy contributed substantially to the development of each of these concepts. In this review we focus on Lacy's contribution to the development of the concept of the islet as a micro-organ, how this foreshadowed our current detailed understanding of single cell function and cell-cell interactions and how this led to a reduced model of islet function encouraging islet transplantation. Next, we examine how clinical allotransplantation, first undertaken by Lacy, has contributed to a more complex view of the interaction of islet endocrine cells with its circulation and neighboring tissues, both "in situ" and after transplantation. Lastly, we consider recent developments in some alternative approaches to treatment of DM that Lacy could glimpse on the horizon but did not have the chance to participate in.
Collapse
Affiliation(s)
- Stanley Misler
- Departments of Internal Medicine (Renal Division) and Cell Biology/Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
8
|
Yang KC, Qi Z, Wu CC, Shirouza Y, Lin FH, Yanai G, Sumi S. The cytoprotection of chitosan based hydrogels in xenogeneic islet transplantation: An in vivo study in streptozotocin-induced diabetic mouse. Biochem Biophys Res Commun 2010; 393:818-23. [PMID: 20171166 DOI: 10.1016/j.bbrc.2010.02.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
Immune rejection and scarcity of donor tissues are the restrictions of islets transplantation. In this study, the cytoprotection of chitosan hydrogels in xenogeneic islet transplantation was demonstrated. Wistar rat islets encapsulated in chitosan hydrogels were performed glucose challenge test and live/dead cell staining in vitro. Islets/chitosan hydrogels were transplanted into the renal subcapsular space of diabetic C57BL/6 mice. Non-fasting blood glucose level (NFBG), body weight, intraperitoneal glucose tolerance test (IPGTT), and glucose disappearance rate were determined perioperatively. The serum insulin level was analyzed, and the kidney transplanted with islets/chitosan hydrogels were retrieved for histological examination after sacrifice. The present results showed that islets encapsulated in chitosan hydrogels secreted insulin in response to the glucose stimulation as naked islets with higher cell survival. The NFBG of diabetic mice transplanted with islets/chitosan hydrogels decreased from 487+/-46 to 148+/-32 at one day postoperation and maintained in the range of 201+/-36 mg/dl for four weeks with an increase in body weight. IPGTT showed the glucose disappearance rate of mice transplanted with islets/chitosan hydrogels was significant faster than that of mice transplanted with naked islets; the serum insulin level increased from 0.29+/-0.06 to 1.69+/-0.65 microg/dl postoperatively. Histological examination revealed that the islets successfully engrafted at renal subcapsular space with positive insulin staining. The immunostain was negative for neither the T-cell lineages nor the monocyte/macrophages. This study indicates that the chitosan hydrogels deliver and protect encapsulated islets successfully in xenotransplantation.
Collapse
Affiliation(s)
- Kai-Chiang Yang
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The development of new methods for noninvasive imaging is an area of biotechnology that is of great relevance for the diagnosis and characterization of diabetes mellitus. Noninvasive imaging can be used to study the dynamics of beta-cell mass and function; beta-cell death; vascularity, innervation and autoimmune attack of pancreatic islets; and the efficacy of islet transplantation to remedy beta-cell loss in patients with diabetes mellitus. In this Review, we focus on the application of MRI for monitoring islet transplantation and on the potential causes of islet graft failure, which are still poorly understood. Questions that have been addressed by MRI studies encompass graft longevity, and the effects of immune rejection, glucose toxic effects, and the transplanted islets' purity on graft fate. We also highlight novel technologies for simultaneous imaging and delivery of experimental therapies that aim to extend the lifespan and functionality of islet grafts. On the basis of this evidence, MRI represents a valuable platform for a thorough investigation of beta-cell function in the context of islet transplantation. State-of-the-art multimodality approaches, such as PET-MRI, can extend our current capabilities and help answer the critical questions that currently inhibit the prevention and cure of diabetes mellitus.
Collapse
Affiliation(s)
- Zdravka Medarova
- Molecular Imaging Laboratory, Massachusetts General Hospital-Massachusetts Institute of Technology-Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
10
|
Abstract
Type 1 diabetes (insulin-dependent, IDDM) results in immune-mediated destruction of pancreatic beta cells, which leads to a deficiency in insulin secretion and as a result, to hyperglycaemia. Keeping blood glucose levels under tight control represents the most effective way either to prevent the onset or to reduce the progression of the chronic complications of IDDM. At present, pancreatic islet transplantation is emerging as the most promising clinical modality, which can stop diabetes progression without increasing the incidence of hypoglycaemic events. Although early results of clinical trials using the Edmonton Protocol and its variations are very encouraging, it is still unclear how long the islets will survive and how often the transplantation procedure will be successful. In order to monitor transplantation efficiency and graft survival, reliable non-invasive imaging methods are critically needed. If such methods are introduced clinically, essential information regarding the location, function and viability of transplanted islets can be obtained repeatedly and non-invasively. This review will focus on the latest advancements in the field of in vivo imaging of islet transplantation and describe various islet labelling and imaging techniques. In addition, we will critically look into limitations and obstacles currently present on the way to successful clinical implementation of this approach.
Collapse
Affiliation(s)
- Z Medarova
- Molecular Imaging Program, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
11
|
Arefanian H, Tredget EB, Rajotte RV, Korbutt GS, Gill RG, Rayat GR. Combination of anti-CD4 with anti-LFA-1 and anti-CD154 monoclonal antibodies promotes long-term survival and function of neonatal porcine islet xenografts in spontaneously diabetic NOD mice. Cell Transplant 2008; 16:787-98. [PMID: 18087999 DOI: 10.3727/000000007783465244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by the autoimmune destruction of pancreatic islet beta-cells, which are required for the production of insulin. Islet transplantation has been shown to be an effective treatment option for TIDM; however, the current shortage of human islet donors limits the application of this treatment to patients with brittle T1DM. Xenotransplantation of pig islets is a potential solution to the shortage of human donor islets provided xenograft rejection is prevented. We demonstrated that a short-term administration of a combination of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs) was highly effective in preventing rejection of neonatal porcine islet (NPI) xenografts in non-autoimmune-prone B6 mice. However, the efficacy of this therapy in preventing rejection of NPI xenografts in autoimmune-prone nonobese diabetic (NOD) mice is not known. Given that the current application of islet transplantation is for the treatment of T1DM, we set out to determine whether a combination of anti-LFA-1 and anti-CD154 mAbs could promote long-term survival of NPI xenografts in NOD mice. Short-term administration of a combination of anti-LFA-1 and anti-CD154 mAbs, which we found highly effective in preventing rejection of NPI xenografts in B6 mice, failed to promote long-term survival of NPI xenografts in NOD mice. However, addition of anti-CD4 mAb to short-term treatment of a combination of anti-LFA-1 and anti-CD154 mAbs resulted in xenograft function in 9/12 animals and long-term graft (>100 days) survival in 2/12 mice. Immunohistochemical analysis of islet grafts from these mice identified numerous insulin-producing beta-cells. Moreover, the anti-porcine antibody as well as autoreactive antibody responses in these mice was reduced similar to those observed in naive nontransplanted mice. These data demonstrate that simultaneous targeting of LFA-1, CD154, and CD4 molecules can be effective in inducing long-term islet xenograft survival and function in autoimmune-prone NOD mice.
Collapse
Affiliation(s)
- Hossein Arefanian
- Surgical-Medical Research Institute, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Significant progress has been made in the field of beta-cell replacement therapies by islet transplantation in patients with unstable Type 1 diabetes mellitus (T1DM). Recent clinical trials have shown that islet transplantation can reproducibly lead to insulin independence when adequate islet numbers are implanted. Benefits include improvement of glycemic control, prevention of severe hypoglycemia and amelioration of quality of life. Numerous challenges still limit this therapeutic option from becoming the treatment of choice for T1DM. The limitations are primarily associated with the low islet yield of human pancreas isolations and the need for chronic immunosuppressive therapies. Herein the authors present an overview of the historical progress of islet transplantation and outline the recent advances of the field. Cellular therapies offer the potential for a cure for patients with T1DM. The progress in beta-cell replacement treatment by islet transplantation as well as those of emerging immune interventions for the restoration of self tolerance justify great optimism for years to come.
Collapse
Affiliation(s)
- Simona Marzorati
- University of Miami Miller School of Medicine, Cell Transplant Center and Clinical Islet Transplant Program, Diabetes Research Institute, 1450 NW, 10th Avenue (R-134), Miami, FL 33136, USA
| | | | | |
Collapse
|
13
|
Narang AS, Mahato RI. Biological and Biomaterial Approaches for Improved Islet Transplantation. Pharmacol Rev 2006; 58:194-243. [PMID: 16714486 DOI: 10.1124/pr.58.2.6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes.
Collapse
Affiliation(s)
- Ajit S Narang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 26 S. Dunlap St., Feurt Building, Room 413, Memphis, TN 38163, USA
| | | |
Collapse
|
14
|
Froud T, Ricordi C, Baidal DA, Hafiz MM, Ponte G, Cure P, Pileggi A, Poggioli R, Ichii H, Khan A, Ferreira JV, Pugliese A, Esquenazi VV, Kenyon NS, Alejandro R. Islet transplantation in type 1 diabetes mellitus using cultured islets and steroid-free immunosuppression: Miami experience. Am J Transplant 2005; 5:2037-46. [PMID: 15996257 DOI: 10.1111/j.1600-6143.2005.00957.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following the success obtained with transplantation of fresh human islets under steroid-free immunosuppression, this trial evaluated the transplantation of islets that had undergone a period of in vitro culture and the potential of tumor necrosis factor (TNF-alpha) blockade to improve islet engraftment. Subjects included 16 patients with type 1 diabetes mellitus (T1DM); half were randomly assigned to receive Infliximab immediately preceding initial infusion. Immunosuppression consisted of daclizumab induction and sirolimus/tacrolimus maintenance. Out of 16 subjects 14 achieved insulin independence with one or two islet infusions; adverse events precluded completion in two. Without supplemental infusions, 11/14 (79%) subjects were insulin independent at 1 year, 6/14 (43%) at 18 months; these same subjects remain insulin independent at 33+/-6 months. While on immunosuppression, all patients maintained graft function. Out of 14 patients, 8 suffered chronic partial graft loss, likely immunological in nature, 5 of these received supplemental infusions. Currently, 11 subjects remain on immunosuppression, 8 (73%) are insulin independent, two with supplemental infusions. Insulin independent subjects demonstrated normalization of HbA1c, fructosamine and Mean Amplitude of Glycemic Excursions (MAGE) values. No clinical benefit of infliximab was identified. These results demonstrate that transplantation of cultured human islet allografts results in reproducible insulin independence in all subjects under this immunosuppressive regimen, comparable to that of freshly transplanted islets (Edmonton protocol).
Collapse
Affiliation(s)
- Tatiana Froud
- Diabetes Research Institute and Departments of Surgery and Radiology, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ricordi C, Inverardi L, Kenyon NS, Goss J, Bertuzzi F, Alejandro R. Requirements for success in clinical islet transplantation. Transplantation 2005; 79:1298-300. [PMID: 15912093 DOI: 10.1097/01.tp.0000157275.64874.84] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A few groups have endured the challenges of time, anecdotal success stories, logistic and funding impediments, to bring the field of clinical islet transplantation where it stands today. The recent improvement in clinical results has paralleled a renewed interest in islet transplantation and an increasing number of centers have entered the field. Selected institutions have now clearly demonstrated that insulin independence can be a reproducible and achievable goal. Other centers struggle with mixed results, while occasional early failures of islet transplants are still observed. This center effect underlines not just a learning curve, but also the complexity of the approach, which requires multidisciplinary expertise and attention to critical variables that need to be closely monitored to assure adequate clinical outcomes. The future success and large scale applicability of islet transplantation will rely on the synergistic research progress in critical areas that contribute to the sequential and integrated approach required for success in clinical islet transplantation.
Collapse
Affiliation(s)
- Camillo Ricordi
- The Diabetes Research Institute at University of Miami School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Wang H, Lee SS, Gao W, Czismadia E, McDaid J, Ollinger R, Soares MP, Yamashita K, Bach FH. Donor treatment with carbon monoxide can yield islet allograft survival and tolerance. Diabetes 2005; 54:1400-6. [PMID: 15855326 DOI: 10.2337/diabetes.54.5.1400] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Treatment of animals or certain cells with carbon monoxide (CO), a product of heme degradation by heme oxygenase-1 (HO-1), has potent anti-inflammatory and antiapoptotic effects that contribute to the survival of transplanted organs. We report here that inducing HO-1 in, or administering CO to, only the donor can be used in a therapeutic manner to sustain the survival of transplanted allogeneic islets. Similar treatments of only the islets or only the recipient are also salutary. Administering CO only to the donor frequently leads to long-term survival of those islets in untreated allogeneic recipients, which are then antigen-specifically tolerant. Several proinflammatory and proapoptotic genes that are strongly induced in islets after transplantation in the untreated situation were significantly suppressed after administering CO to the donor without further treatment. These included tumor necrosis factor-alpha, inducible nitric oxide synthase, monocyte chemoattractant protein-1, granzyme B, and Fas/Fas ligand, all of which contribute to the pathogenesis of the rejection of transplanted islets. This correlated with a lesser infiltration of recipient macrophages into the transplanted islets. Our present findings show that induction of HO-1 in, or administration of CO to, only the donor, islets, or the recipient or combinations of such treatments improve allogeneic islet survival.
Collapse
Affiliation(s)
- Hongjun Wang
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Ave., RN #361, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Taira M, Inaba M, Takada K, Baba S, Fukui J, Ueda Y, Kwon AH, Hisha H, Kamiyama Y, Ikehara S. Treatment of streptozotocin-induced diabetes mellitus in rats by transplantation of islet cells from two major histocompatibility complex disparate rats in combination with intra bone marrow injection of allogeneic bone marrow cells. Transplantation 2005; 79:680-7. [PMID: 15785374 DOI: 10.1097/01.tp.0000155500.17348.94] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have established a new method for the transplantation of allogeneic pancreatic islets obtained from two different rat strains in combination with a newly developed bone marrow transplantation (BMT) method in which bone marrow cells (BMCs) are directly injected into the bone marrow cavity (intra bone marrow BMT [IBM-BMT]). METHODS Streptozotocin-induced diabetic Brown Norway (BN: RT1A(n)) rats were injected with fludarabine, irradiated with 5.0 Gy x 2, and BMCs from two allogeneic rat strains, Fischer 344 (F344: RT1A(1)) and PVG (PVG: RT1A(c)), were then directly injected into the bone marrow cavity (IBM-BMT). Simultaneously, approximately 600 pancreatic islets (PIs) from F344 and PVG rats were mixed and transplanted into the liver by way of the portal vein. RESULTS All the recipients thus treated showed normoglycemia 30 days after the treatment. Hematolymphoid cells were completely reconstituted with the two donor-type cells, and immunologic tolerance to F344 and PVG major histocompatibility complex (MHC) determinants were induced. CONCLUSIONS The transplantation of PIs from two MHC-disparate donors was completely achieved in combination with IBM-BMT, resulting in the improvement of blood glucose levels and the amelioration of diabetes mellitus.
Collapse
Affiliation(s)
- Mitsuru Taira
- First Department of Pathology, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi City, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Matsumoto S, Tanaka K, Strong DM, Reems JA. Efficacy of human islet isolation from the tail section of the pancreas for the possibility of living donor islet transplantation. Transplantation 2004; 78:839-43. [PMID: 15385802 DOI: 10.1097/01.tp.0000130177.03326.d5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Islet transplantation is on the rise for the treatment of type 1 diabetes. Apparent donor shortages could be alleviated through use of living donor pancreata. A critical issue for using a section of pancreas from living donors is whether islet yields would be sufficient for transplantation. METHODS After obtaining human pancreata, islets were isolated from the head section (n=20, head group), tail section (n=23, tail group) or whole pancreas (n=24, whole group). Islets were isolated by enzymatic digestion followed by purification, then assessed for yields, purity, morphology, functionality, and insulin content. RESULTS Fifteen of twenty cases (75%) in the head group, all cases (100%) in the tail group, and 23 of 24 cases (96%) in the whole group were successfully completed for islet isolation. Islet yield per gram pancreas was significantly higher in the tail group compared with both the head and whole groups (head, 1,472+/-326 IE/g; tail, 4,256+/-574 IE/g; whole, 2,424+/-506 IE/g). Total islet yield from the head group was significantly lower compared with both tail and whole groups (head, 75,016+/-18,933 IE; tail, 197,469+/-28,236 IE; whole, 208,207+/-43,414 IE), and the tail group showed similar islet yield to the whole group. The whole group showed significantly lower purities and the head group showed significantly lower morphologic scores. There were no significant differences in viability, function, and insulin content among the three groups. CONCLUSIONS The tail section of the human pancreas is suitable for islet isolation. The living donor islet transplantation may be feasible using only this section of the pancreas for the first transplantation to reduce hypoglycemic unawareness for small recipients, which might be followed by the second islet transplantation from cadaveric donor.
Collapse
Affiliation(s)
- Shinichi Matsumoto
- Kyoto University Hospital Transplantation, Unit 54, Shogoin, Kawara-cho, Sakyo-ku, Kyoto, Japan.
| | | | | | | |
Collapse
|
19
|
|