1
|
Asmus JJ, Toplis B, Roets F, Botha A. Predicting interactions of the frass-associated yeast Hyphopichia heimii with Olea europaea subsp. cuspidata and twig-boring bark beetles. Folia Microbiol (Praha) 2022; 67:899-911. [PMID: 35767213 DOI: 10.1007/s12223-022-00985-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
Bark beetles are destructive insect pests known to form symbioses with different fungal taxa, including yeasts. The aim of this study was to (1) determine the prevalence of the rare yeast Hyphopichia heimii in bark beetle frass from wild olive trees in South Africa and to (2) predict the potential interaction of this yeast with trees and bark beetles. Twenty-eight culturable yeast species were isolated from frass in 35 bark beetle galleries, including representatives of H. heimii from nine samples. Physiological characterization of H. heimii isolates revealed that none was able to degrade complex polymers present in hemicellulose; however, all were able to assimilate sucrose and cellobiose, sugars associated with an arboreal habitat. All isolates were able to produce the auxin indole acetic acid, indicative of a potential symbiosis with the tree. Sterol analysis revealed that the isolates possessed ergosterol quantities ranging from 3.644 ± 0.119 to 13.920 ± 1.230 mg/g dry cell weight, which suggested that H. heimii could serve as a source of sterols in bark beetle diets, as is known for other bark beetle-associated fungi. In addition, gas chromatography-mass spectrometry demonstrated that at least one of the isolates, Hyphopichia heimii CAB 1614, was able to convert the insect pheromone cis-verbenol to the anti-aggregation pheromone verbenone. This indicated that H. heimii could potentially influence beetle behaviour. These results support the contention of a tripartite symbiosis between H. heimii, olive trees, and bark beetles.
Collapse
Affiliation(s)
- Justin J Asmus
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Barbra Toplis
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
2
|
Sarkar S, Dey A, Kumar V, Batiha GES, El-Esawi MA, Tomczyk M, Ray P. Fungal Endophyte: An Interactive Endosymbiont With the Capability of Modulating Host Physiology in Myriad Ways. FRONTIERS IN PLANT SCIENCE 2021; 12:701800. [PMID: 34659281 PMCID: PMC8514756 DOI: 10.3389/fpls.2021.701800] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Endophytic fungi ubiquitously dwell inside the tissue-spaces of plants, mostly asymptomatically. They grow either intercellularly or intracellularly in a particular host plant to complete the whole or part of their life cycle. They have been found to be associated with almost all the plants occurring in a natural ecosystem. Due to their important role in the survival of plants (modulate photosynthesis, increase nutrient uptake, alleviate the effect of various stresses) they have been selected to co-evolve with their hosts through the course of evolution. Many years of intense research have discovered their tremendous roles in increasing the fitness of the plants in both normal and stressed conditions. There are numerous literature regarding the involvement of various endophytic fungi in enhancing plant growth, nutrient uptake, stress tolerance, etc. But, there are scant reports documenting the specific mechanisms employed by fungal endophytes to manipulate plant physiology and exert their effects. In this review, we aim to document the probable ways undertaken by endophytic fungi to alter different physiological parameters of their host plants. Our objective is to present an in-depth elucidation about the impact of fungal endophytes on plant physiology to make this evolutionarily conserved symbiotic interaction understandable from a broader perspective.
Collapse
Affiliation(s)
- Sohini Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | | | - Michał Tomczyk
- Departament of Pharmacognosy, Medical University of Białystok, Białystok, Poland
| | - Puja Ray
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
3
|
Wang R, Clarke BB, Belanger FC. Transcriptome Analysis of Choke Stroma and Asymptomatic Inflorescence Tissues Reveals Changes in Gene Expression in Both Epichloë festucae and Its Host Plant Festuca rubra subsp. rubra. Microorganisms 2019; 7:E567. [PMID: 31744076 PMCID: PMC6921078 DOI: 10.3390/microorganisms7110567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Many cool-season grasses have symbiotic relationships with Epichloë (Ascomycota, Clavicipitaceae) fungal endophytes that inhabit the intercellular spaces of the above-ground parts of the host plants. The presence of the Epichloë endophytes is generally beneficial to the hosts due to enhanced tolerance to biotic and abiotic stresses conferred by the endophytes. Many Epichloë spp. are asexual, and those infections always remain asymptomatic. However, some Epichloë spp. have a sexual stage and produce a macroscopic fruiting body, a stroma, that envelops the developing inflorescence causing a syndrome termed "choke disease". Here, we report a fungal and plant gene expression analysis of choke stroma tissue and asymptomatic inflorescence tissue of Epichloë festucae-infected strong creeping red fescue (Festuca rubra subsp. rubra). Hundreds of fungal genes and over 10% of the plant genes were differentially expressed when comparing the two tissue types. The differentially expressed fungal genes in the choke stroma tissue indicated a change in carbohydrate and lipid metabolism, as well as a change in expression of numerous genes for candidate effector proteins. Plant stress-related genes were up-regulated in the stroma tissue, suggesting the plant host was responding to the epiphytic stage of E. festucae as a pathogen.
Collapse
Affiliation(s)
| | | | - Faith C. Belanger
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (R.W.); (B.B.C.)
| |
Collapse
|
4
|
Schirrmann MK, Zoller S, Croll D, Stukenbrock EH, Leuchtmann A, Fior S. Genomewide signatures of selection in Epichloë reveal candidate genes for host specialization. Mol Ecol 2018; 27:3070-3086. [PMID: 29633410 DOI: 10.1111/mec.14585] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
Host specialization is a key process in ecological divergence and speciation of plant-associated fungi. The underlying determinants of host specialization are generally poorly understood, especially in endophytes, which constitute one of the most abundant components of the plant microbiome. We addressed the genetic basis of host specialization in two sympatric subspecies of grass-endophytic fungi from the Epichloë typhina complex: subsp. typhina and clarkii. The life cycle of these fungi entails unrestricted dispersal of gametes and sexual reproduction before infection of a new host, implying that the host imposes a selective barrier on viability of the progeny. We aimed to detect genes under divergent selection between subspecies, experiencing restricted gene flow due to adaptation to different hosts. Using pooled whole-genome sequencing data, we combined FST and DXY population statistics in genome scans and detected 57 outlier genes showing strong differentiation between the two subspecies. Genomewide analyses of nucleotide diversity (π), Tajima's D and dN/dS ratios indicated that these genes have evolved under positive selection. Genes encoding secreted proteins were enriched among the genes showing evidence of positive selection, suggesting that molecular plant-fungus interactions are strong drivers of endophyte divergence. We focused on five genes encoding secreted proteins, which were further sequenced in 28 additional isolates collected across Europe to assess genetic variation in a larger sample size. Signature of positive selection in these isolates and putative identification of pathogenic function supports our findings that these genes represent strong candidates for host specialization determinants in Epichloë endophytes. Our results highlight the role of secreted proteins as key determinants of host specialization.
Collapse
Affiliation(s)
- Melanie K Schirrmann
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland.,Research Group Molecular Diagnostics, Genomics and Bioinformatics, Agroscope, Wädenswil, Switzerland
| | - Stefan Zoller
- Genetic Diversity Centre (GDC), ETH Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Adrian Leuchtmann
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | - Simone Fior
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Li HM, Sullivan R, Moy M, Kobayashi DY, Belanger FC. Expression of a novel chitinase by the fungal endophyte in Poa ampla. Mycologia 2017. [DOI: 10.1080/15572536.2005.11832951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | | | - Faith C. Belanger
- Department of Plant Biology and Pathology, Cook College, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08903
| |
Collapse
|
6
|
Eaton CJ, Dupont PY, Solomon P, Clayton W, Scott B, Cox MP. A Core Gene Set Describes the Molecular Basis of Mutualism and Antagonism in Epichloë spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:218-31. [PMID: 25496592 DOI: 10.1094/mpmi-09-14-0293-fi] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Beneficial plant-fungal interactions play an important role in the ability of plants to survive changing environmental conditions. In contrast, phytopathogenic fungi fall at the opposite end of the symbiotic spectrum, causing reduced host growth or even death. In order to exploit beneficial interactions and prevent pathogenic ones, it is essential to understand the molecular differences underlying these alternative states. The association between the endophyte Epichloë festucae and Lolium perenne (perennial ryegrass) is an excellent system for studying these molecular patterns due to the existence of several fungal mutants that have an antagonistic rather than a mutualistic interaction with the host plant. By comparing gene expression in a wild-type beneficial association with three mutant antagonistic associations disrupted in key signaling genes, we identified a core set of 182 genes that show common differential expression patterns between these two states. These gene expression changes are indicative of a nutrient-starvation response, as supported by the upregulation of genes encoding degradative enzymes, transporters, and primary metabolism, and downregulation of genes encoding putative small-secreted proteins and secondary metabolism. These results suggest that disruption of a mutualistic symbiotic interaction may lead to an elevated uptake and degradation of host-derived nutrients and cell-wall components, reminiscent of phytopathogenic interactions.
Collapse
|
7
|
Bassett SA, Bond JJ, Kwan FYS, McCulloch AF, Haynes PA, Johnson RD, Bryan GT, Jordan TW. Proteomic analysis of a filamentous fungal endophyte using EST datasets. Proteomics 2009; 9:2295-300. [PMID: 19337992 DOI: 10.1002/pmic.200800585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proteomic analysis of many species of fungi, particularly filamentous fungi, is difficult due to the lack of publicly available genome sequence data and the problems associated with cross-species comparisons. Furthermore, the detection of fungal proteins in biological systems where there are a greater number of proteins present from other eukaryote species provides additional challenges. We present an EST-based approach for identifying proteins from a fungal endophyte of temperate grasses and demonstrate that this method is well suited for fungi with minimal sequence data.
Collapse
Affiliation(s)
- Shalome A Bassett
- AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Spiering MJ, Greer DH, Schmid J. Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of In Planta endophyte concentration. ANNALS OF BOTANY 2006; 98:379-87. [PMID: 16735403 PMCID: PMC2803460 DOI: 10.1093/aob/mcl108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/03/2006] [Accepted: 04/04/2006] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Neotyphodium lolii is a fungal endophyte of perennial ryegrass (Lolium perenne), improving grass fitness through production of bioactive alkaloids. Neotyphodium species can also affect growth and physiology of their host grasses (family Poaceae, sub-family Pooideae), but little is known about the mechanisms. This study examined the effect of N. lolii on net photosynthesis (P(n)) and growth rates in ryegrass genotypes differing in endophyte concentration in all leaf tissues. METHODS Plants from two ryegrass genotypes, Nui D and Nui UIV, infected with N. lolii (E+) differing approx. 2-fold in endophyte concentration or uninfected clones thereof (E-) were grown in a controlled environment. For each genotype x endophyte treatment, plant growth rates were assessed as tillering and leaf extension rates, and the light response of P(n), dark respiration and transpiration measured in leaves of young (30-45 d old) and old (>90 d old) plants with a single-chamber open infrared gas-exchange system. KEY RESULTS Neotyphodium lolii affected CO(2)-limited rates of P(n), which were approx. 17 % lower in E+ than E- plants (P < 0.05) in the young plants. Apparent photon yield and dark respiration were unaffected by the endophyte (P > 0.05). Neotyphodium lolii also decreased transpiration (P < 0.05), but only in complete darkness. There were no endophyte effects on P(n) in the old plants (P > 0.05). E+ plants grew faster immediately after replanting (P < 0.05), but had approx. 10 % lower growth rates during mid-log growth (P < 0.05) than E- plants, but there was no effect on final plant biomass (P > 0.05). The endophyte effects on P(n) and growth tended to be more pronounced in Nui UIV, despite having a lower endophyte concentration than Nui D. CONCLUSIONS Neotyphodium lolii affects CO(2) fixation, but not light interception and photochemistry of P(n). The impact of N. lolii on plant growth and photosynthesis is independent of endophyte concentration in the plant, suggesting that the endophyte mycelium is not simply an energy drain to the plant. However, the endophyte effects on P(n) and plant growth are strongly dependent on the plant growth phase.
Collapse
Affiliation(s)
- Martin J Spiering
- Institute of Molecular BioSciences, College of Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
9
|
Li HM, Crouch JA, Belanger FC. Fungal endophyte N-acetylglucosaminidase expression in the infected host grass. ACTA ACUST UNITED AC 2005; 109:363-73. [PMID: 15912954 DOI: 10.1017/s0953756204002205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fungal endophytes of the genera Neotyphodium and Epichlolë are important mutualistic symbionts and pathogens of many cool-season grass species. Here we report the characterization of a secreted N-acetylglucosaminidase from the Neotyphodium sp. endophyte that infects the grass Poa ampla. The enzyme was expressed at low levels within the host, and activity could be detected in the apoplastic protein fraction. Low-level expression could also be detected in endophyte-infected perennial ryegrass (Lolium perenne), Chewings fescue (Festuca rubra subsp. fallax), and tall fescue (L. arundinaceum). The enzyme may function in the recycling of chitin oligomers generated from turnover of the fungal cell wall. This is the first report of a secreted N-acetylglucosaminidase expressed by an endophytic fungus in the infected host plant.
Collapse
Affiliation(s)
- Huaijun Michael Li
- Department of Plant Biology and Pathology, Cook College, Rutgers University,, 59 Dudley Road, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
10
|
Schardl CL, Leuchtmann A, Spiering MJ. Symbioses of grasses with seedborne fungal endophytes. ANNUAL REVIEW OF PLANT BIOLOGY 2004; 55:315-40. [PMID: 15377223 DOI: 10.1146/annurev.arplant.55.031903.141735] [Citation(s) in RCA: 434] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Grasses (family Poaceae) and fungi of the family Clavicipitaceae have a long history of symbiosis ranging in a continuum from mutualisms to antagonisms. This continuum is particularly evident among symbioses involving the fungal genus Epichloe (asexual forms = Neotyphodium spp.). In the more mutualistic symbiota, the epichloe endophytes are vertically transmitted via host seeds, and in the more antagonistic symbiota they spread contagiously and suppress host seed set. The endophytes gain shelter, nutrition, and dissemination via host propagules, and can contribute an array of host fitness enhancements including protection against insect and vertebrate herbivores and root nematodes, enhancements of drought tolerance and nutrient status, and improved growth particularly of the root. In some systems, such as the tall fescue N. coenophialum symbioses, the plant may depend on the endophyte under many natural conditions. Recent advances in endophyte molecular biology promise to shed light on the mechanisms of the symbioses and host benefits.
Collapse
Affiliation(s)
- Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546-0312, USA.
| | | | | |
Collapse
|
11
|
Moy M, Li HM, Sullivan R, White JF, Belanger FC. Endophytic fungal beta-1,6-glucanase expression in the infected host grass. PLANT PHYSIOLOGY 2002; 130:1298-308. [PMID: 12427996 PMCID: PMC166650 DOI: 10.1104/pp.010108] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 07/30/2002] [Accepted: 07/30/2002] [Indexed: 05/24/2023]
Abstract
Mutualistic fungal endophytes infect many grass species and often confer benefits to the hosts such as reduced herbivory by insects and animals. The physiological interactions between the endophytes and their hosts have not been well characterized. Fungal-secreted proteins are likely to be important components of the interaction. In the interaction between Poa ampla and the endophyte Neotyphodium sp., a fungal beta-1,6-glucanase is secreted into the apoplast, and activity of the enzyme is detectable in endophyte-infected plants. Sequence analysis indicates the beta-1,6-glucanase is homologous to enzymes secreted by the mycoparasitic fungi Trichoderma harzianum and Trichoderma virens. DNA gel-blot analysis indicated the beta-1,6-glucanase was encoded by a single gene. As a secreted protein, the beta-1,6-glucanase may have a nutritional role for the fungus. In culture, beta-1,6-glucanase activity was induced in the presence of beta-1,6-glucans. From RNA gel blots, similar beta-1,6-glucanases were expressed in tall fescue (Festuca arundinacea Schreb.) and Chewings fescue (Festuca rubra L. subsp. fallax [Thuill] Nyman) infected with the endophyte species Neotyphodium coenophialum and Epichloë festucae, respectively.
Collapse
Affiliation(s)
- Melinda Moy
- Department of Plant Biology and Pathology, Cook College, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08903, USA
| | | | | | | | | |
Collapse
|