1
|
Verdier E, Gaspar N, Marques Da Costa ME, Marchais A. SETDB1 amplification in osteosarcomas: Insights from its role in healthy tissues and other cancer types. Oncotarget 2025; 16:51-62. [PMID: 39945463 PMCID: PMC11823473 DOI: 10.18632/oncotarget.28688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Epigenetic modifications, which reversibly regulate gene expression without altering the DNA sequence, are increasingly described in the literature as essential elements in the processes leading to cancer development. SETDB1 regulates histone 3 (H3) K9 di- and trimethylation, promoting heterochromatin formation, and plays a key role in gene silencing. Epigenetic deregulation of SETDB1 expression appears to be involved in different cancers types, particularly in aggressive, relapsing or treatment-resistant subtypes. Despite advances in research, the full range of mechanisms through which this protein acts remains unclear; however, it is evident that SETDB1 has a pivotal role, particularly in the mesenchymal stem cells differentiation, tumor evasion and treatment resistance. Its role in genetically complex sarcomas, such as osteosarcoma, has not been fully explored, although recent Omics analyses suggest its presence and amplification in osteosarcoma. Given its involvement in osteoblastogenesis and adipogenesis, we discuss the potential of SETDB1 as a key target for new therapeutic strategies in osteosarcoma.
Collapse
Affiliation(s)
- Elodie Verdier
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| | - Nathalie Gaspar
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| | - Maria Eugenia Marques Da Costa
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| | - Antonin Marchais
- UMR 1015 Tumour Immunology and anti-cancer immunotherapy Unit, Gustave Roussy Cancer Campus, Villejuif 94800, France
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
2
|
Su XM, Yuan DY, Liu N, Zhang ZC, Yang M, Li L, Chen S, Zhou Y, He XJ. ALFIN-like proteins link histone H3K4me3 to H2A ubiquitination and coordinate diverse chromatin modifications in Arabidopsis. MOLECULAR PLANT 2025; 18:130-150. [PMID: 39668562 DOI: 10.1016/j.molp.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Trimethylation of histone H3K4 (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications in plants remains poorly understood. In this study, we show that the Arabidopsis thaliana ALFIN-LIKE (AL) proteins contain a C-terminal PHD finger capable of binding to H3K4me3 and a PHD-associated AL (PAL) domain that interacts with components of the Polycomb repressive complex 1, thereby facilitating H2A ubiquitination (H2Aub) at H3K4me3-enriched genes throughout the genome. Furthermore, we demonstrate that loss of function of SDG2, encoding a key histone H3K4 methyltransferase, leads to a reduction in H3K4me3 level, which subsequently causes a genome-wide decrease in H2Aub, revealing a strong association between H3K4me3 and H2Aub. Finally, we discover that the PAL domain of AL proteins interacts with various other chromatin-related proteins or complexes, including those involved in regulating H2A.Z deposition, H3K27me3 demethylation, histone deacetylation, and chromatin accessibility. Our genome-wide analysis suggests that the AL proteins play a crucial role in coordinating H3K4me3 with multiple other chromatin modifications across the genome.
Collapse
Affiliation(s)
- Xiao-Min Su
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Na Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Jian He
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
3
|
Rong M, Gao SX, Huang PC, Guo YW, Wen D, Jiang JM, Xu YH, Wei JH. Genome-wide identification of the histone modification gene family in Aquilaria sinensis and functional analysis of several HMs in response to MeJA and NaCl stress. Int J Biol Macromol 2024; 281:135871. [PMID: 39357718 DOI: 10.1016/j.ijbiomac.2024.135871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Histone modifications (HMs) play various roles in growth, development, and resistance to abiotic stress. However, HMs have been systematically identified in a few plants, and identification of HMs in medicinal plants is very rare. Aquilaria sinensis is a typical stress-induced medicinal plant, in which HMs remain unexplored. We conducted a comprehensive study to identify HMs and obtained 123 HMs. To conduct evolutionary analysis, we constructed phylogenetic trees and analyzed gene structures. To conduct functional analysis, we performed promoter, GO, and KEGG analyses and ortholog analyses against AtHMs. Based on the expression profiles of different tissues and different layers of Agar-Wit, some HMs of A. sinensis (AsHMs) were predicted to be involved in the formation of agarwood, and their response to MeJA and NaCl stress was tested by qRT-PCR analysis. By analyzing the enrichment of H3K4me3, H3K27me3, and H4K5ac in the promoter regions of two key sesquiterpene synthase genes, AsTPS13/18, we hypothesized that AsHMs play important roles in the synthesis of agarwood sesquiterpenes. We confirmed this hypothesis by conducting RNAi transgenic interference experiments. This study provided valuable information and important biological theories for studying epigenetic regulation in the formation of agarwood. It also provided a framework for conducting further studies on the biological functions of HMs.
Collapse
Affiliation(s)
- Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shi-Xi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Peng-Cheng Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yu-Wei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Dong Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jie-Mei Jiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China.
| |
Collapse
|
4
|
Tian Y, Zhang C, Tian X, Zhang L, Yin T, Dang Y, Liu Y, Lou H, He Q. H3T11 phosphorylation by CKII is required for heterochromatin formation in Neurospora. Nucleic Acids Res 2024; 52:9536-9550. [PMID: 39106166 PMCID: PMC11381320 DOI: 10.1093/nar/gkae664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Heterochromatin is a key feature of eukaryotic genomes and is crucial for maintaining genomic stability. In fission yeast, heterochromatin nucleation is mainly mediated by DNA-binding proteins or the RNA interference (RNAi) pathway. In the filamentous fungus Neurospora crassa, however, the mechanism that causes the initiation of heterochromatin at the relics of repeat-induced point mutation is unknown and independent of the classical RNAi pathway. Here, we show that casein kinase II (CKII) and its kinase activity are required for heterochromatin formation at the well-defined 5-kb heterochromatin of the 5H-cat-3 region and transcriptional repression of its adjacent cat-3 gene. Similarly, mutation of the histone H3 phosphorylation site T11 also impairs heterochromatin formation at the same locus. The catalytic subunit CKA colocalizes with H3T11 phosphorylation (H3pT11) within the 5H-cat-3 domain and the deletion of cka results in a significant decrease in H3T11 phosphorylation. Furthermore, the loss of kinase activity of CKII results in a significant reduction of H3pT11, H3K9me3 (histone H3 lysine 9 trimethylation) and DNA methylation levels, suggesting that CKII regulates heterochromatin formation by promoting H3T11 phosphorylation. Together, our results establish that histone H3 phosphorylation by CKII is a critical event required for heterochromatin formation.
Collapse
Affiliation(s)
- Yuan Tian
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chengcheng Zhang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Tian
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Tong Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiqiang Lou
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Zhang S, Kiarasi F. Therapeutic effects of resveratrol on epigenetic mechanisms in age-related diseases: A comprehensive review. Phytother Res 2024; 38:2347-2360. [PMID: 38421057 DOI: 10.1002/ptr.8176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
Recently, various studies have shown that epigenetic changes are associated with aging and age-related diseases. Both animal and human models have revealed that epigenetic processes are involved in aging mechanisms. These processes happen at multiple levels and include histone modification, DNA methylation, and changes in noncoding RNA expression. Consequently, changes in the organization of chromatin and DNA accessibility lead to the regulation of gene expression. With increasing awareness of the pivotal function of epigenetics in the aging process, researchers' attention has been drawn to how these epigenetic changes can be modified to prevent, stop, or reverse aging, senescence, and age-related diseases. Among various agents that can affect epigenetic, polyphenols are well-known phytochemicals found in fruits, vegetables, and plants. Polyphenols are found to modify epigenetic-related mechanisms in various diseases and conditions, such as metabolic disorders, obesity, neurodegenerative diseases, cancer, and cardiovascular diseases. Resveratrol (RSV) is a member of the stilbene subgroup of polyphenols which is derived from various plants, such as grapes, apples, and blueberries. Therefore, herein, we aim to summarize how RSV affects different epigenetic processes to change aging-related mechanisms. Furthermore, we discuss its roles in age-related diseases, such as Alzheimer's, Parkinson's, osteoporosis, and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Farzam Kiarasi
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Deng X, Liang S, Tang Y, Li Y, Xu R, Luo L, Wang Q, Zhang X, Liu Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123393. [PMID: 38266695 DOI: 10.1016/j.envpol.2024.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In recent years, there has been growing concern about the adverse effects of endocrine disrupting chemicals (EDCs) on male fertility. Epigenetic modification is critical for male germline development, and has been suggested as a potential mechanism for impaired fertility induced by EDCs. Bisphenol A (BPA) has been recognized as a typical EDC. BPA and its analogues, which are still widely used in various consumer products, have garnered increasing attention due to their reproductive toxicity and the potential to induce epigenetic alteration. This literature review provides an overview of studies investigating the adverse effects of bisphenol exposures on epigenetic modifications and male fertility. Existing studies provide evidence that exposure to bisphenols can lead to adverse effects on male fertility, including declined semen quality, altered reproductive hormone levels, and adverse reproductive outcomes. Epigenetic patterns, including DNA methylation, histone modification, and non-coding RNA expression, can be altered by bisphenol exposures. Transgenerational effects, which influence the fertility and epigenetic patterns of unexposed generations, have also been identified. However, the magnitude and direction of certain outcomes varied across different studies. Investigations into the dynamics of histopathological and epigenetic alterations associated with bisphenol exposures during developmental stages can enhance the understanding of the epigenetic effects of bisphenols, the implication of epigenetic alteration on male fertility, and the health of successive generation.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Yi SJ, Lim J, Kim K. Exploring epigenetic strategies for the treatment of osteoporosis. Mol Biol Rep 2024; 51:398. [PMID: 38453825 DOI: 10.1007/s11033-024-09353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
The worldwide trend toward an aging population has resulted in a higher incidence of chronic conditions, such as osteoporosis. Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mass and increased fracture risk, encompasses primary and secondary forms, each with distinct etiologies. Mechanistically, osteoporosis involves an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Current pharmacological interventions for osteoporosis, such as bisphosphonates, denosumab, and teriparatide, aim to modulate bone turnover and preserve bone density. Hormone replacement therapy and lifestyle modifications are also recommended to manage the condition. While current medications offer therapeutic options, they are not devoid of limitations. Recent studies have highlighted the importance of epigenetic mechanisms, including DNA methylation and histone modifications, in regulating gene expression during bone remodeling. The use of epigenetic drugs, or epidrugs, to target these mechanisms offers a promising avenue for therapeutic intervention in osteoporosis. In this review, we comprehensively examine the recent advancements in the application of epidrugs for treating osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jaeho Lim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
8
|
Yao B, Xing M, Meng S, Li S, Zhou J, Zhang M, Yang C, Qu S, Jin Y, Yuan H, Zen K, Ma C. EBF2 Links KMT2D-Mediated H3K4me1 to Suppress Pancreatic Cancer Progression via Upregulating KLLN. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302037. [PMID: 38015024 PMCID: PMC10787067 DOI: 10.1002/advs.202302037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/09/2023] [Indexed: 11/29/2023]
Abstract
Mono-methylation of histone H3 on Lys 4 (H3K4me1), which is catalyzed by histone-lysine N-methyltransferase 2D (KMT2D), serves as an important epigenetic regulator in transcriptional control. In this study, the authors identify early B-cell factor 2 (EBF2) as a binding protein of H3K4me1. Combining analyses of RNA-seq and ChIP-seq data, the authors further identify killin (KLLN) as a transcriptional target of KMT2D and EBF2 in pancreatic ductal adenocarcinoma (PDAC) cells. KMT2D-dependent H3K4me1 and EBF2 are predominantly over-lapped proximal to the transcription start site (TSS) of KLLN gene. Comprehensive functional assays show that KMT2D and EBF2 cooperatively inhibit PDAC cells proliferation, migration, and invasion through upregulating KLLN. Such inhibition on PDAC progression is also achieved through increasing H3K4me1 level by GSK-LSD1, a selective inhibitor of lysine-specific demethylase 1 (LSD1). Taken together, these findings reveal a new mechanism underlying PDAC progression and provide potential therapeutic targets for PDAC treatment.
Collapse
Affiliation(s)
- Bing Yao
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Mengying Xing
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Shixin Meng
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Shang Li
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Jingwan Zhou
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Ming Zhang
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Chen Yang
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Yucui Jin
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC20007USA
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Changyan Ma
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical University101 Longmian AvenueNanjing211166China
| |
Collapse
|
9
|
González J, Bosch-Presegué L, Marazuela-Duque A, Guitart-Solanes A, Espinosa-Alcantud M, Fernandez AF, Brown JP, Ausió J, Vazquez BN, Singh PB, Fraga MF, Vaquero A. A complex interplay between H2A.Z and HP1 isoforms regulates pericentric heterochromatin. Front Cell Dev Biol 2023; 11:1293122. [PMID: 38020886 PMCID: PMC10665487 DOI: 10.3389/fcell.2023.1293122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Pericentric heterochromatin (PCH) plays an essential role in the maintenance of genome integrity and alterations in PCH have been linked to cancer and aging. HP1 α, β, and γ, are hallmarks of constitutive heterochromatin that are thought to promote PCH structure through binding to heterochromatin-specific histone modifications and interaction with a wide range of factors. Among the less understood components of PCH is the histone H2A variant H2A.Z, whose role in the organization and maintenance of PCH is poorly defined. Here we show that there is a complex interplay between H2A.Z and HP1 isoforms in PCH. While the loss of HP1α results in the accumulation of H2A.Z.1 in PCH, which is associated with a significant decrease in its mobile fraction, H2A.Z.1 binds preferentially to HP1β in these regions. Of note, H2A.Z.1 downregulation results in increased heterochromatinization and instability of PCH, reflected by accumulation of the major epigenetic hallmarks of heterochromatin in these regions and increased frequency of chromosome aberrations related to centromeric/pericentromeric defects. Our studies support a role for H2A.Z in genome stability and unveil a key role of H2A.Z in the regulation of heterochromatin-specific epigenetic modifications through a complex interplay with the HP1 isoforms.
Collapse
Affiliation(s)
- Jessica González
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Laia Bosch-Presegué
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca I Innovació en Ciències de La Vida i de La Salut a La Catalunya Central (IrisCC), Barcelona, Spain
| | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Anna Guitart-Solanes
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - María Espinosa-Alcantud
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Agustín F. Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
| | - Jeremy P. Brown
- Department of Immunology and Inflammation, Imperial College London, Commonwealth Building, The Hammersmith Hospital, London, United Kingdom
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Berta N. Vazquez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Cytology and Histology Unit. Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Prim B. Singh
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Mario F. Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
10
|
Dwivedi S, Chavan A, Paul AT. SET7, a lysine-specific methyl transferase: An intriguing epigenetic target to combat diabetic nephropathy. Drug Discov Today 2023; 28:103754. [PMID: 37648018 DOI: 10.1016/j.drudis.2023.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Diabetic nephropathy (DN) is a dreadful complication of diabetes that affects ∼50% of diabetics and is a leading cause of end-stage renal disease (ESRD). Studies have linked aberrant expression of lysine methyltransferases (KMTs) to the onset and progression of DN. SET7 is a KMT that methylates specific lysine residues of the histone and nonhistone proteins. It plays an important role in the transforming growth factor-β (TGF-β)-induced upregulation of extracellular matrix (ECM)-associated genes that are responsible for the inflammatory cascade observed in DN. Inhibiting SET7 has potential to attenuate renal disorders in animal studies. This review will focus on the role of SET7 in DN and its potential as a therapeutic target to combat DN.
Collapse
Affiliation(s)
- Samarth Dwivedi
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atharva Chavan
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India
| | - Atish T Paul
- Natural Product Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (Pilani Campus), Pilani 333031, Rajasthan, India.
| |
Collapse
|
11
|
Seni S, Singh RK, Prasad M. Dynamics of epigenetic control in plants via SET domain containing proteins: Structural and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194966. [PMID: 37532097 DOI: 10.1016/j.bbagrm.2023.194966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3-9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.
Collapse
Affiliation(s)
- Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.
| |
Collapse
|
12
|
Wang Z, Zhang C, Guo J, Wang W, Si Q, Chen C, Luo Y, Duan Z. Exosomal miRNA-223-3p derived from tumor associated macrophages promotes pulmonary metastasis of breast cancer 4T1 cells. Transl Oncol 2023; 35:101715. [PMID: 37329828 PMCID: PMC10366638 DOI: 10.1016/j.tranon.2023.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Research about the effect of exosomes derived from tumor associated macrophages (TAM-exos) in the distant organ metastasis of breast cancer is limited. In this study, we found that TAM-exos could promote the migration of 4T1 cells. Through comparing the expression of microRNAs in 4T1 cells, TAM-exos, and exosomes from bone marrow derived macrophages (BMDM-exos) by sequencing, miR-223-3p and miR-379-5p were screened out as two noteworthy differentially expressed microRNAs. Furthermore, miR-223-3p was confirmed to be the reason for the improved migration and metastasis of 4T1 cells. The expression of miR-223-3p was also increased in 4T1 cells isolated from the lung of tumor-bearing mice. Cbx5, which has been reported to be closely related with metastasis of breast cancer, was identified to be the target of miR-223-3p. Based on the information of breast cancer patients from online databases, miR-223-3p had a negative correlation with the overall survival rate of breast cancer patients within a three-year follow-up, while Cbx5 showed an opposite relationship. Taken together, miR-223-3p in TAM-exos can be delivered into 4T1 cells and exosomal miR-223-3p promotes pulmonary metastasis of 4T1 cells by targeting Cbx5.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Chen Zhang
- Department of Immunology, Nankai University, Tianjin 300071, China
| | - Jian Guo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- BioMetas(Shanghai) Limited, 201203, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China.
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
13
|
Jin MJ, Wang ZL, Wu ZH, He XJ, Zhang Y, Huang Q, Zhang LZ, Wu XB, Yan WY, Zeng ZJ. Phenotypic dimorphism between honeybee queen and worker is regulated by complicated epigenetic modifications. iScience 2023; 26:106308. [PMID: 36942051 PMCID: PMC10024153 DOI: 10.1016/j.isci.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/12/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Phenotypic dimorphism between queens and workers is an important biological characteristic of honeybees that has been the subject of intensive research. The enormous differences in morphology, lifespan, physiology, and behavior between queens and workers are caused by a complicated set of factors. Epigenetic modifications are considered to play an important role in this process. In this study, we analyzed the differences in chromosome interactions and H3K27ac and H3K4me1 modifications between the queens and workers using high-throughput chromosome conformation capture (Hi-C) and Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) technologies. We found that the queens contain more chromosome interactions and more unique H3K27ac modifications than workers; in contrast, workers have more H3K4me1 modifications than queens. Moreover, we identified Map3k15 as a potential caste gene in queen-worker differentiation. Our results suggest that chromosomal conformation and H3K27ac and H3K4me1 modifications are involved in regulating queen-worker differentiation, which reveals that the queen-worker phenotypic dimorphism is regulated by multiple epigenetic modifications.
Collapse
Affiliation(s)
- Meng Jie Jin
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
| | - Zhi Hao Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
| | - Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
| | - Yong Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P.R.China
- Jiangxi Province Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, P. R. China
- Corresponding author
| |
Collapse
|
14
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
15
|
Bekdash RA. Methyl Donors, Epigenetic Alterations, and Brain Health: Understanding the Connection. Int J Mol Sci 2023; 24:ijms24032346. [PMID: 36768667 PMCID: PMC9917111 DOI: 10.3390/ijms24032346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Methyl donors such as choline, betaine, folic acid, methionine, and vitamins B6 and B12 are critical players in the one-carbon metabolism and have neuroprotective functions. The one-carbon metabolism comprises a series of interconnected chemical pathways that are important for normal cellular functions. Among these pathways are those of the methionine and folate cycles, which contribute to the formation of S-adenosylmethionine (SAM). SAM is the universal methyl donor of methylation reactions such as histone and DNA methylation, two epigenetic mechanisms that regulate gene expression and play roles in human health and disease. Epigenetic mechanisms have been considered a bridge between the effects of environmental factors, such as nutrition, and phenotype. Studies in human and animal models have indicated the importance of the optimal levels of methyl donors on brain health and behavior across the lifespan. Imbalances in the levels of these micronutrients during critical periods of brain development have been linked to epigenetic alterations in the expression of genes that regulate normal brain function. We present studies that support the link between imbalances in the levels of methyl donors, epigenetic alterations, and stress-related disorders. Appropriate levels of these micronutrients should then be monitored at all stages of development for a healthier brain.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
16
|
Niharika, Roy A, Mishra J, Chakraborty S, Singh SP, Patra SK. Epigenetic regulation of pluripotency inducer genes NANOG and SOX2 in human prostate cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:241-260. [PMID: 37019595 DOI: 10.1016/bs.pmbts.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cells of multicellular organisms are genetically homogeneous but heterogenous in structure and function by virtue of differential gene expression. During embryonic development, differential gene expression by modification of chromatin (DNA and histone complex) regulates the developmental proceedings before and after the germ layers are formed. Post-replicative DNA modification, where the fifth carbon atom of the cytosine gets methylated (hereafter, DNA methylation), does not incorporate mutations within the DNA. In the past few years, a boom has been observed in the field of research related to various epigenetic regulation models, which includes DNA methylation, post-translational modification of histone tails, control of chromatin structure by non-coding RNAs, and remodeling of nucleosome. Epigenetic effects like DNA methylation or histone modification play a cardinal role in development but also be able to arise stochastically, as observed during aging, in tumor development and cancer progression. Over the past few decades, researchers allured toward the involvement of pluripotency inducer genes in cancer progression and apparent for prostate cancer (PCa); also, PCa is the most diagnosed tumor worldwide and comes to the second position in causing mortality in men. The anomalous articulation of pluripotency-inducing transcription factor; SRY-related HMG box-containing transcription factor-2 (SOX2), Octamer-binding transcription factor 4 (OCT4) or POU domain, class 5, transcription factor 1 (POU5F1), and NANOG have been reported in different cancers which includes breast cancer, tongue cancer, and lung cancer, etc. Although there is a variety in gene expression signatures demonstrated by cancer cells, the epigenetic mode of regulation at the pluripotency-associated genes in PCa has been recently explored. This chapter focuses on the epigenetic control of NANOG and SOX2 genes in human PCa and the precise role thereof executed by the two transcription factors.
Collapse
|
17
|
Dwivedi Y, Shelton RC. Genomics in Treatment Development. ADVANCES IN NEUROBIOLOGY 2023; 30:363-385. [PMID: 36928858 DOI: 10.1007/978-3-031-21054-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The Human Genome Project mapped the 3 billion base pairs in the human genome, which ushered in a new generation of genomically focused treatment development. While this has been very successful in other areas, neuroscience has been largely devoid of such developments. This is in large part because there are very few neurological or mental health conditions that are related to single-gene variants. While developments in pharmacogenomics have been somewhat successful, the use of genetic information in practice has to do with drug metabolism and adverse reactions. Studies of drug metabolism related to genetic variations are an important part of drug development. However, outside of cancer biology, the actual translation of genomic information into novel therapies has been limited. Epigenetics, which relates in part to the effects of the environment on DNA, is a promising newer area of relevance to CNS disorders. The environment can induce chemical modifications of DNA (e.g., cytosine methylation), which can be induced by the environment and may represent either shorter- or longer-term changes. Given the importance of environmental influences on CNS disorders, epigenetics may identify important treatment targets in the future.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard C Shelton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Kuzdere T, Flury V, Schalch T, Iesmantavicius V, Hess D, Bühler M. Differential phosphorylation of Clr4 SUV39H by Cdk1 accompanies a histone H3 methylation switch that is essential for gametogenesis. EMBO Rep 2022; 24:e55928. [PMID: 36408846 PMCID: PMC9827552 DOI: 10.15252/embr.202255928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
Methylation of histone H3 at lysine 9 (H3K9) is a hallmark of heterochromatin that plays crucial roles in gene silencing, genome stability, and chromosome segregation. In Schizosaccharomyces pombe, Clr4 mediates both di- and tri-methylation of H3K9. Although H3K9 methylation has been intensely studied in mitotic cells, its role during sexual differentiation remains unclear. Here, we map H3K9 methylation genome-wide during meiosis and show that constitutive heterochromatin temporarily loses H3K9me2 and becomes H3K9me3 when cells commit to meiosis. Cells lacking the ability to tri-methylate H3K9 exhibit meiotic chromosome segregation defects. Finally, the H3K9 methylation switch is accompanied by differential phosphorylation of Clr4 by the cyclin-dependent kinase Cdk1. Our results suggest that a conserved master regulator of the cell cycle controls the specificity of an H3K9 methyltransferase to prevent ectopic H3K9 methylation and to ensure faithful gametogenesis.
Collapse
Affiliation(s)
- Tahsin Kuzdere
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland,University of BaselBaselSwitzerland
| | - Valentin Flury
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland,University of BaselBaselSwitzerland
| | - Thomas Schalch
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK
| | | | - Daniel Hess
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland,University of BaselBaselSwitzerland
| |
Collapse
|
19
|
Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol 2022; 11:101. [PMID: 36384676 PMCID: PMC9667634 DOI: 10.1186/s40164-022-00356-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Programmed cell death protein 1(PD-1) is a type of immune-inhibitory checkpoint protein, which delivers inhibitory signals to cytotoxic T cells by binding to the programmed death ligand-1 (PD-L1) displayed on the surface of cancer cells. Antibodies blocking PD-1/PD-L1 interaction have been extensively used in treatment of human malignancies and have achieved promising outcomes in recent years. However, gradual development of resistance to PD-1/PD-L1 blockade has decreased the effectiveness of this immunotherapy in cancer patients. The underlying epigenetic mechanisms need to be elucidated for application of novel strategies overcoming this immunotherapy resistance. Epigenetic aberrations contribute to cancerogenesis by promoting different hallmarks of cancer. Moreover, these alterations may lead to therapy resistance, thereby leading to poor prognosis. Recently, the epigenetic regulatory drugs have been shown to decrease the resistance to PD-1/PD-L1 inhibitors in certain cancer patients. Inhibitors of the non-coding RNAs, DNA methyltransferases, and histone deacetylases combined with PD-1/PD-L1 inhibitors have shown considerable therapeutic efficacy against carcinomas as well as blood cancers. Importantly, DNA methylation-mediated epigenetic silencing can inhibit antigen processing and presentation, which promotes cancerogenesis and aggravates resistance to PD-1/PD-L1 blockade immunotherapy. These observations altogether suggest that the combination of the epigenetic regulatory drugs with PD-1/PD-L1 inhibitors may present potential solution to the resistance caused by monotherapy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Dai
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medical, Foshan University, Foshan, China
| | - Can Küçük
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye
- Basic and Translational Research Program, İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China.
| |
Collapse
|
20
|
Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:622-632. [PMID: 34324953 DOI: 10.1016/j.semcancer.2021.07.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 07/25/2021] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and has a high fatality rate. Genetic and epigenetic aberrations are commonly observed in HCC. The epigenetic processes include chromatin remodelling, histone alterations, DNA methylation, and noncoding RNA (ncRNA) expression and are connected with the progression and metastasis of HCC. Due to their potential reversibility, these epigenetic alterations are widely targeted for the development of biomarkers. In-depth understanding of the epigenetics of HCC is critical for developing rational clinical strategies that can provide a meaningful improvement in overall survival and prediction of therapeutic outcomes. In this article, we have summarised the epigenetic modifications involved in HCC progression and highlighted the potential biomarkers for diagnosis and drug development.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, 304022, Rajasthan, India
| | - Prameswari Kasa
- Dr. L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, 532410 AP, India
| | - Bassel F El-Rayes
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
King D, Wilson CR, Herron L, Deng CL, Mehdi S, Tiwary P, Hof F, Isaacs L. Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ. Org Biomol Chem 2022; 20:7429-7438. [PMID: 36097881 PMCID: PMC9632254 DOI: 10.1039/d2ob01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.
Collapse
Affiliation(s)
- David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Chelsea R Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lukas Herron
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Shams Mehdi
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
22
|
Dynamic and aberrant patterns of H3K4me3, H3K9me3, and H3K27me3 during early zygotic genome activation in cloned mouse embryos. ZYGOTE 2022; 30:903-909. [DOI: 10.1017/s0967199422000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
Somatic cell nuclear transfer (NT) is associated with aberrant changes in epigenetic reprogramming that impede the development of embryos, particularly during zygotic genome activation. Here, we characterized epigenetic patterns of H3K4me3, H3K9me3, and H3K27me3 in mouse NT embryos up to the second cell cycle (i.e. four-celled stage) during zygotic genome activation. In vivo fertilized and parthenogenetically activated (PA) embryos served as controls. In fertilized embryos, maternal and paternal pronuclei exhibited asymmetric H3K4me3, H3K9me3, and H3K27me3 modifications, with the paternal pronucleus showing delayed epigenetic modifications. Higher levels of H3K4me3 and H3K9me3 were observed in NT and PA embryos than in fertilized embryos. However, NT embryos exhibited a lower level of H3K27me3 than PA and fertilized embryos from pronuclear stage 3 to the four-celled stage. Our finding that NT embryos exhibited aberrant H3K4me3, H3K9me3, and H3K27me3 modifications in comparison with fertilized embryos during early zygotic genome activation help to unravel the epigenetic mechanisms of methylation changes in early NT reprogramming and provide an insight into the role of histone H3 in the regulation of cell plasticity during natural reproduction and somatic cell NT.
Collapse
|
23
|
Maree JP, Tvardovskiy A, Ravnsborg T, Jensen ON, Rudenko G, Patterton HG. Trypanosoma brucei histones are heavily modified with combinatorial post-translational modifications and mark Pol II transcription start regions with hyperacetylated H2A. Nucleic Acids Res 2022; 50:9705-9723. [PMID: 36095123 PMCID: PMC9508842 DOI: 10.1093/nar/gkac759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Trypanosomes diverged from the main eukaryotic lineage about 600 million years ago, and display some unusual genomic and epigenetic properties that provide valuable insight into the early processes employed by eukaryotic ancestors to regulate chromatin-mediated functions. We analysed Trypanosoma brucei core histones by high mass accuracy middle-down mass spectrometry to map core histone post-translational modifications (PTMs) and elucidate cis-histone combinatorial PTMs (cPTMs). T. brucei histones are heavily modified and display intricate cPTMs patterns, with numerous hypermodified cPTMs that could contribute to the formation of non-repressive euchromatic states. The Trypanosoma brucei H2A C-terminal tail is hyperacetylated, containing up to five acetylated lysine residues. MNase-ChIP-seq revealed a striking enrichment of hyperacetylated H2A at Pol II transcription start regions, and showed that H2A histones that are hyperacetylated in different combinations localised to different genomic regions, suggesting distinct epigenetic functions. Our genomics and proteomics data provide insight into the complex epigenetic mechanisms used by this parasite to regulate a genome that lacks the transcriptional control mechanisms found in later-branched eukaryotes. The findings further demonstrate the complexity of epigenetic mechanisms that were probably shared with the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Johannes P Maree
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Gloria Rudenko
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hugh-G Patterton
- Center for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
24
|
Wang Y, Shen Z. Unmasking the mammalian SET domain-containing protein 4. NAR Cancer 2022; 4:zcac021. [PMID: 35854936 PMCID: PMC9277757 DOI: 10.1093/narcan/zcac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
SET domain-containing protein 4 (SETD4) is a member of a unique class of protein lysine methyltransferases. Here, we introduce the basic features of SETD4 and summarize the key findings from recent studies with emphases on its roles in tissue development and tumorigenesis, and its methylation substrates. SETD4 is expressed in stem/progenitor cells. Ablation of Setd4+ cells impedes the repopulation of acinar cells after pancreatic injury. Setd4 deletion in mice promotes the recovery of radiation-induced bone marrow (BM) failure by boosting the function of BM niche, facilitates the generation of endothelial cells and neovascularization of capillary vessels in the heart, enhances the proliferation of BM mesenchymal stem cells and disrupts the TLR4 signaling in BM-derived macrophages. SETD4 expression is also associated with the maintenance of quiescent breast cancer stem cells. While mouse Setd4 knockout delays radiation-induced T-lymphoma formation, elevated SETD4 expression has been observed in some proliferative cancer cells and is associated with a pro-survival potential. Oncogenic fusions of SETD4 have also been identified in cancer, albeit rare. In addition, SETD4 methylates lysine-570 in the C-terminal globular domain of KU70, which enables KU70 translocation to cytoplasm to suppress apoptosis.
Collapse
Affiliation(s)
- Yuan Wang
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School , 195 Little Albany Street , New Brunswick, NJ 08901, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School , 195 Little Albany Street , New Brunswick, NJ 08901, USA
| |
Collapse
|
25
|
N-Methyltransferase CaASHH3 Acts as a Positive Regulator of Immunity against Bacterial Pathogens in Pepper. Int J Mol Sci 2022; 23:ijms23126492. [PMID: 35742935 PMCID: PMC9224371 DOI: 10.3390/ijms23126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Proteins with conserved SET domain play a critical role in plant immunity. However, the means of organization and functions of these proteins are unclear, particularly in non-model plants such as pepper (Capsicum annum L.). Herein, we functionally characterized CaASHH3, a member of class II (the ASH1 homologs H3K36) proteins in pepper immunity against Ralstonia solanacearum and Pseudomonas syringae pv tomato DC3000 (Pst DC3000). The CaASHH3 was localized in the nucleus, and its transcript levels were significantly enhanced by R. solanacearum inoculation (RSI) and exogenous application of salicylic acid (SA), methyl jasmonate (MeJA), ethephon (ETH), and abscisic acid (ABA). Knockdown of CaASHH3 by virus-induced gene silencing (VIGS) compromised peppers’ resistance to RSI. Furthermore, silencing of CaASHH3 impaired hypersensitive-response (HR)-like cell death response due to RSI and downregulated defense-associated marker genes, including CaPR1, CaNPR1, and CaABR1. The CaASHH3 protein was revealed to affect the promoters of CaNPR1, CaPR1, and CaHSP24. Transiently over-expression of CaASHH3 in pepper leaves elicited HR-like cell death and upregulated immunity-related marker genes. To further study the role of CaASHH3 in plant defense in vivo, CaASHH3 transgenic plants were generated in Arabidopsis. Overexpression of CaASHH3 in transgenic Arabidopsis thaliana enhanced innate immunity against Pst DC3000. Furthermore, CaASHH3 over-expressing transgenic A. thaliana plants exhibited upregulated transcriptional levels of immunity-associated marker genes, such as AtNPR1, AtPR1, and AtPR2. These results collectively confirm the role of CaASHH3 as a positive regulator of plant cell death and pepper immunity against bacterial pathogens, which is regulated by signaling synergistically mediated by SA, JA, ET, and ABA.
Collapse
|
26
|
Fonseca R, Capel C, Yuste-Lisbona FJ, Quispe JL, Gómez-Martín C, Lebrón R, Hackenberg M, Oliver JL, Angosto T, Lozano R, Capel J. Functional characterization of the tomato HAIRPLUS gene reveals the implication of the epigenome in the control of glandular trichome formation. HORTICULTURE RESEARCH 2022; 9:uhab015. [PMID: 35039829 PMCID: PMC8795820 DOI: 10.1093/hr/uhab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/18/2022] [Accepted: 10/01/2021] [Indexed: 06/14/2023]
Abstract
Trichomes are specialised epidermal cells developed in the aerial surface of almost every terrestrial plant. These structures form physical barriers, which combined with their capability of synthesis of complex molecules, prevent plagues from spreading and confer trichomes a key role in the defence against herbivores. In this work, the tomato gene HAIRPLUS (HAP) that controls glandular trichome density in tomato plants was characterised. HAP belongs to a group of proteins involved in histone tail modifications although some also bind methylated DNA. HAP loss of function promotes epigenomic modifications in the tomato genome reflected in numerous differentially methylated cytosines and causes transcriptomic changes in hap mutant plants. Taken together, these findings demonstrate that HAP links epigenome remodelling with multicellular glandular trichome development and reveal that HAP is a valuable genomic tool for pest resistance in tomato breeding.
Collapse
Affiliation(s)
- Rocío Fonseca
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Jorge L Quispe
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Cristina Gómez-Martín
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - Ricardo Lebrón
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - José L Oliver
- Department of Genetics, Faculty of Science, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Laboratory of Bioinformatics, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n,18100 Granada, Spain
| | - Trinidad Angosto
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Juan Capel
- Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
27
|
Chakravarti R, Lenka SK, Gautam A, Singh R, Ravichandiran V, Roy S, Ghosh D. A Review on CRISPR-Mediated Epigenome Editing: A Future Directive for Therapeutic Management of Cancer. Curr Drug Targets 2022; 23:836-853. [DOI: 10.2174/1389450123666220117105531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Recent studies have shed light on the role of epigenetic marks in certain diseases like cancer, type II diabetes mellitus (T2DM), obesity, and cardiovascular dysfunction, to name a few. Epigenetic marks like DNA methylation and histone acetylation are randomly altered in the disease state. It has been seen that methylation of DNA and histones can result in down-regulation of gene expression, whereas histone acetylation, ubiquitination, and phosphorylation are linked to enhanced expression of genes. How can we precisely target such epigenetic aberrations to prevent the advent of diseases? The answer lies in the amalgamation of the efficient genome editing technique, CRISPR, with certain effector molecules that can alter the status of epigenetic marks as well as employ certain transcriptional activators or repressors. In this review, we have discussed the rationale of epigenetic editing as a therapeutic strategy and how CRISPR-Cas9 technology coupled with epigenetic effector tags can efficiently edit epigenetic targets. In the later part, we have discussed how certain epigenetic effectors are tagged with dCas9 to elicit epigenetic changes in cancer. Increased interest in exploring the epigenetic background of cancer and non-communicable diseases like type II diabetes mellitus and obesity accompanied with technological breakthroughs has made it possible to perform large-scale epigenome studies.
Collapse
Affiliation(s)
- Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Swadhin Kumar Lenka
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Syamal Roy
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
28
|
Eliyahu A, Barel O, Greenbaum L, Zaks Hoffer G, Goldberg Y, Raas-Rothschild A, Singer A, Bar-Joseph I, Kunik V, Javasky E, Staretz-Chacham O, Pode-Shakked N, Bazak L, Ruhrman-Shahar N, Pras E, Frydman M, Shohat M, Pode-Shakked B. Refining the Phenotypic Spectrum of KMT5B-Associated Developmental Delay. Front Pediatr 2022; 10:844845. [PMID: 35433545 PMCID: PMC9005902 DOI: 10.3389/fped.2022.844845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The role of lysine methyltransferases (KMTs) and demethylases (KDMs) in the regulation of chromatin modification is well-established. Recently, deleterious heterozygous variants in KMT5B were implicated in individuals with intellectual disability (ID) and/or autism spectrum disorder. We describe three unrelated patients with global developmental delay (GDD) or ID, macrocephaly and additional features. Using whole exome sequencing, each of the probands was found to harbor a distinct de novo heterozygous disease-causing variant in KMT5B: c.541C > G (p.His181Asp); c.833A > T (p.Asn278Ile); or c.391_394delAAAG (p.Lys131GlufsTer6). We discuss herein their clinical presentations, and compare them to those of previously reported patients. Furthermore, using a three-dimensional computational model of the KMT5B protein, we demonstrate the predicted structural effects of the two missense variants. Our findings support the role of de novo missense and nonsense variants in KMT5B-associated GDD/ID, and suggest that this gene should be considered in the differential diagnosis of neurodevelopmental disorders accompanied by macrocephaly and/or overgrowth.
Collapse
Affiliation(s)
- Aviva Eliyahu
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Joseph Sagol Neusroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - Gal Zaks Hoffer
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Raphael Recanati Genetics Institute, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel
| | - Yael Goldberg
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Raphael Recanati Genetics Institute, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel
| | - Annick Raas-Rothschild
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Amihood Singer
- Department of Community Genetics, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Ifat Bar-Joseph
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | | | - Elisheva Javasky
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Orna Staretz-Chacham
- Metabolic Clinic, Soroka Medical Center, Be'er Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University, Be'er Sheva, Israel
| | - Naomi Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,The Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel
| | - Lily Bazak
- The Raphael Recanati Genetics Institute, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel.,Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat Gan, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Noa Ruhrman-Shahar
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Raphael Recanati Genetics Institute, Rabin Medical Center - Beilinson Hospital, Petah Tikva, Israel
| | - Elon Pras
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Moshe Frydman
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Mordechai Shohat
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,The Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
29
|
Genome-wide methylome pattern predictive network analysis reveal mesenchymal stem cell's propensity to undergo cardiovascular lineage. 3 Biotech 2022; 12:12. [PMID: 34966635 PMCID: PMC8660944 DOI: 10.1007/s13205-021-03058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/07/2021] [Indexed: 01/03/2023] Open
Abstract
Mesenchymal stem cells (MSCs) differentiation toward cardiovascular lineage prediction using the global methylome profile will highlight its prospective utility in regenerative medicine. We examined the propensity prediction to cardiovascular lineage using 5-Aza, a well-known cardiac lineage inducer. The customized 180 K microarray was performed and further analysis of global differentially methylated regions by Ingenuity pathway analysis (IPA) in both MSCs and 5-AC-treated MSCs. The cluster enrichment tools sorted differentially enriched genes and further annotated to construct the interactive networks. Prediction analysis revealed pathways pertaining to the cardiovascular lineage found active in the native MSCs, suggesting its higher propensity to undergo cardiac, smooth muscle cell, and endothelial lineages in vitro. Interestingly, gene interaction network also proposed majorly stemness gene network NANOG and KLF6, cardiac-specific transcription factors GATA4, NKX2.5, and TBX5 were upregulated in the native MSCs. Furthermore, the expression of cardiovascular lineage specific markers such as Brachury, CD105, CD90, CD31, KDR and various forms of ACTIN (cardiac, sarcomeric, smooth muscle) were validated in native MSCs using real time PCR and immunostaining and blotting analysis. In 5-AC-treated MSCs, mosaic interactive networks were observed to persuade towards osteogenesis and cardiac lineage, indicating that 5-AC treatment resulted in nonspecific lineage induction in MSCs, while MSCs by default have a higher propensity to undergo cardiovascular lineage. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03058-2.
Collapse
|
30
|
Jeong K, Murphy JM, Kim JH, Campbell PM, Park H, Rodriguez Y, Choi C, Kim JS, Park S, Kim HJ, Scammell JG, Weber DS, Honkanen RE, Schlaepfer DD, Ahn EYE, Lim STS. FAK Activation Promotes SMC Dedifferentiation via Increased DNA Methylation in Contractile Genes. Circ Res 2021; 129:e215-e233. [PMID: 34702049 DOI: 10.1161/circresaha.121.319066] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale: Vascular smooth muscle cells (SMCs) exhibit remarkable plasticity and can undergo dedifferentiation upon pathological stimuli associated with disease and interventions. Objective: Although epigenetic changes are critical in SMC phenotype switching, a fundamental regulator that governs the epigenetic machineries regulating the fate of SMC phenotype has not been elucidated. Methods and Results: Using SMCs, mouse models, and human atherosclerosis specimens, we found that focal adhesion kinase (FAK) activation elicits SMC dedifferentiation by stabilizing DNA methyltransferase 3A (DNMT3A). FAK in SMCs is activated in the cytoplasm upon serum stimulation in vitro or vessel injury and active FAK prevents DNMT3A from nuclear FAK-mediated degradation. However, pharmacological or genetic FAK catalytic inhibition forced FAK nuclear localization, which reduced DNMT3A protein via enhanced ubiquitination and proteasomal degradation. Reduced DNMT3A protein led to DNA hypomethylation in contractile gene promoters, which increased SMC contractile protein expression. RNA sequencing identified SMC contractile genes as a foremost upregulated group by FAK inhibition from injured femoral artery samples compared to vehicle group. DNMT3A knockdown in injured arteries reduced DNA methylation and enhanced contractile gene expression supports the notion that nuclear FAK-mediated DNMT3A degradation via E3 ligase TRAF6 drives differentiation of SMCs. Furthermore, we observed that SMCs of human atherosclerotic lesions exhibited decreased nuclear FAK, which was associated with increased DNMT3A levels and decreased contractile gene expression. Conclusions: This study reveals that nuclear FAK induced by FAK catalytic inhibition specifically suppresses DNMT3A expression in injured vessels resulting in maintaining SMC differentiation by promoting the contractile gene expression. Thus, FAK inhibitors may provide a new treatment option to block SMC phenotypic switching during vascular remodeling and atherosclerosis.
Collapse
Affiliation(s)
- Kyuho Jeong
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | - James M Murphy
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | - Jung-Hyun Kim
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | | | - Hyeonsoo Park
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, KOREA, REPUBLIC OF
| | - Yelitza Rodriguez
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| | - Chungsik Choi
- Physiology, University of South Alabama College of Medicine, UNITED STATES
| | - Jun-Sub Kim
- Biotechnology, Korea National University of Transportation, KOREA, REPUBLIC OF
| | - Sangwon Park
- Pharmacology, Gyeongsang National University, KOREA, REPUBLIC OF
| | - Hyun Joon Kim
- Anatomy and Convergence Medical Sciences, Gyeongsang National University
| | - Jonathan G Scammell
- Comparative Medicine, University of South Alabama College of Medicine, UNITED STATES
| | - David S Weber
- Physiology and Cell Biology, University of South Alabama College of Medicine, UNITED STATES
| | - Richard E Honkanen
- Biochemistry and Molecualr Biology, University of South Alabama College of Medicine, UNITED STATES
| | - David D Schlaepfer
- Obstetrics, Gynecology, and Reproductive Medicine, University of California, San Diego Moores Cancer Center, UNITED STATES
| | | | - Ssang-Taek Steve Lim
- Biochemistry and Molecular Biology, University of South Alabama College of Medicine, UNITED STATES
| |
Collapse
|
31
|
Yang B, Wang JQ, Tan Y, Yuan R, Chen ZS, Zou C. RNA methylation and cancer treatment. Pharmacol Res 2021; 174:105937. [PMID: 34648969 DOI: 10.1016/j.phrs.2021.105937] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
To this date, over 100 different types of RNA modification have been identified. Methylation of different RNA species has emerged as a critical regulator of transcript expression. RNA methylation and its related downstream signaling pathways are involved in plethora biological processes, including cell differentiation, sex determination and stress response, and others. It is catalyzed by the RNA methyltransferases, is demethylated by the demethylases (FTO and ALKBH5) and read by methylation binding protein (YTHDF1 and IGF2BP1). Increasing evidence indicates that this process closely connected to cancer cell proliferation, cellular stress, metastasis, immune response. And RNA methylation related protein has been becoming a promising targets of cancer therapy. This review outlines the relationship between different types of RNA methylation and cancer, and some FTO inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Baochen Yang
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China; University of Science and Technology, Shenzhen, Guangdong, PR China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, PR China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Yao Tan
- Shenzhen Aier Eye Hospital Affiliated to Jinan University, Shenzhen, Guangdong, PR China
| | - Runzhu Yuan
- Department of Biology, School of Medicine, Southern University of Science and Technology, Shenzhen, PR China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA.
| | - Chang Zou
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, PR China; School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen, PR China.
| |
Collapse
|
32
|
Mechanism of the Conformational Change of the Protein Methyltransferase SMYD3: A Molecular Dynamics Simulation Study. Int J Mol Sci 2021; 22:ijms22137185. [PMID: 34281237 PMCID: PMC8267938 DOI: 10.3390/ijms22137185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
SMYD3 is a SET-domain-containing methyltransferase that catalyzes the transfer of methyl groups onto lysine residues of substrate proteins. Methylation of MAP3K2 by SMYD3 has been implicated in Ras-driven tumorigenesis, which makes SMYD3 a potential target for cancer therapy. Of all SMYD family proteins, SMYD3 adopt a closed conformation in a crystal structure. Several studies have suggested that the conformational changes between the open and closed forms may regulate the catalytic activity of SMYD3. In this work, we carried out extensive molecular dynamics simulations on a series of complexes with a total of 21 μs sampling to investigate the conformational changes of SMYD3 and unveil the molecular mechanisms. Based on the C-terminal domain movements, the simulated models could be depicted in three different conformational states: the closed, intermediate and open states. Only in the case that both the methyl donor binding pocket and the target lysine-binding channel had bound species did the simulations show SMYD3 maintaining its conformation in the closed state, indicative of a synergetic effect of the cofactors and target lysine on regulating the conformational change of SMYD3. In addition, we performed analyses in terms of structure and energy to shed light on how the two regions might regulate the C-terminal domain movement. This mechanistic study provided insights into the relationship between the conformational change and the methyltransferase activity of SMYD3. The more complete understanding of the conformational dynamics developed here together with further work may lay a foundation for the rational drug design of SMYD3 inhibitors.
Collapse
|
33
|
Khan A, Paneni F, Jandeleit-Dahm K. Cell-specific epigenetic changes in atherosclerosis. Clin Sci (Lond) 2021; 135:1165-1187. [PMID: 33988232 PMCID: PMC8314213 DOI: 10.1042/cs20201066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cerebrovascular and cardiovascular consequences such as heart failure and stroke and is a major contributor to cardiovascular-related mortality worldwide. Atherosclerosis development is a complex process that involves specific structural, functional and transcriptional changes in different vascular cell populations at different stages of the disease. The application of single-cell RNA sequencing (scRNA-seq) analysis has discovered not only disease-related cell-specific transcriptomic profiles but also novel subpopulations of cells once thought as homogenous cell populations. Vascular cells undergo specific transcriptional changes during the entire course of the disease. Epigenetics is the instruction-set-architecture in living cells that defines and maintains the cellular identity by regulating the cellular transcriptome. Although different cells contain the same genetic material, they have different epigenomic signatures. The epigenome is plastic, dynamic and highly responsive to environmental stimuli. Modifications to the epigenome are driven by an array of epigenetic enzymes generally referred to as writers, erasers and readers that define cellular fate and destiny. The reversibility of these modifications raises hope for finding novel therapeutic targets for modifiable pathological conditions including atherosclerosis where the involvement of epigenetics is increasingly appreciated. This article provides a critical review of the up-to-date research in the field of epigenetics mainly focusing on in vivo settings in the context of the cellular role of individual vascular cell types in the development of atherosclerosis.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Francesco Paneni
- Cardiovascular Epigenetics and Regenerative Medicine, Centre for Molecular Cardiology, University of Zurich, Switzerland
| | - Karin A.M. Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
34
|
Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci 2021; 28:27. [PMID: 33840388 PMCID: PMC8040241 DOI: 10.1186/s12929-021-00721-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic drug discovery field has evidenced significant advancement in the recent times. A plethora of small molecule inhibitors have progressed to clinical stage investigations and are being explored exhaustively to ascertain conclusive benefits in diverse malignancies. Literature precedents indicates that substantial amount of efforts were directed towards the use of epigenetic tools in monotherapy as well as in combination regimens at the clinical level, however, the preclinical/preliminary explorations were inclined towards the identification of prudent approaches that can leverage the anticancer potential of small molecule epigenetic inhibitors as single agents only. This review article presents an update of FDA approved epigenetic drugs along with the epigenetic inhibitors undergoing clinical stage investigations in different cancer types. A detailed discussion of the pragmatic strategies that are expected to steer the progress of the epigenetic therapy through the implementation of emerging approaches such as PROTACS and CRISPR/Cas9 along with logical ways for scaffold fabrication to selectively approach the enzyme isoforms in pursuit of garnering amplified antitumor effects has been covered. In addition, the compilation also presents the rational strategies for the construction of multi-targeting scaffold assemblages employing previously identified pharmacophores as potential alternatives to the combination therapy.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Biomedical Commercialization Center, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
35
|
Zhou S, Liu X, Sun W, Zhang M, Yin Y, Pan S, He D, Shen M, Yang J, Zheng Q, Wang W. The COMPASS-like complex modulates fungal development and pathogenesis by regulating H3K4me3-mediated targeted gene expression in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:422-439. [PMID: 33559339 PMCID: PMC7938624 DOI: 10.1111/mpp.13035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 05/07/2023]
Abstract
Histone-3-lysine-4 (H3K4) methylation is catalysed by the multiprotein complex known as the Set1/COMPASS or MLL/COMPASS-like complex, an element that is highly evolutionarily conserved from yeast to humans. However, the components and mechanisms by which the COMPASS-like complex targets the H3K4 methylation of plant-pathogenic genes in fungi remain elusive. Here we present a comprehensive analysis combining biochemical, molecular, and genome-wide approaches to characterize the roles of the COMPASS-like family in the rice blast fungus Magnaporthe oryzae, a model plant pathogen. We purified and identified six conserved subunits of COMPASS from M. oryzae: MoBre2 (Cps60/ASH2L), MoSpp1 (Cps40/Cfp1), MoSwd2 (Cps35), MoSdc1 (Cps25/DPY30), MoSet1 (MLL/ALL), and MoRbBP5 (Cps50), using an affinity tag on MoBre2. We determined the sequence repeat in dual-specificity kinase splA and ryanodine receptors domain of MoBre2 can interact directly with the DPY30 domain of MoSdc1 in vitro. Furthermore, we found that deletion of the genes encoding COMPASS subunits of MoBre2, MoSPP1, and MoSwd2 caused similar defects regarding invasive hyphal development and pathogenicity. Genome-wide profiling of H3K4me3 revealed that it has remarkable co-occupancy at the transcription start site regions of target genes. Significantly, these target genes are often involved in spore germination and pathogenesis. Decreased gene expression caused by the deletion of MoBre2, MoSwd2, or MoSpp1 was highly correlated with a decrease in H3K4me3. These results suggest that MoBre2, MoSpp1, and MoSwd2 function as a whole COMPASS complex, contributing to fungal development and pathogenesis by regulating H3K4me3-targeted genes in M. oryzae.
Collapse
Affiliation(s)
- Sida Zhou
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Xiuying Liu
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Wanyu Sun
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Mengyu Zhang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Yue Yin
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Song Pan
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Dan He
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Mi Shen
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Qi Zheng
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| |
Collapse
|
36
|
Loganathan C, Kannan A, Panneerselvam A, Mariajoseph-Antony LF, Kumar SA, Anbarasu K, Prahalathan C. The possible role of sirtuins in male reproduction. Mol Cell Biochem 2021; 476:2857-2867. [PMID: 33738675 DOI: 10.1007/s11010-021-04116-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/20/2021] [Indexed: 12/12/2022]
Abstract
Global influence of male infertility is increasing in recent decades. Proper understanding of genetics, anatomy, physiology and the intricate interrelation of male reproductive system are much needed for explaining the etiology of male infertility; and a detailed study on the epigenetics, indeed, will reveal the molecular mechanism behind its etiology. Sirtuins, the molecular sensors, are NAD+ dependent histone deacetylases and ADP- ribosyl transferases, participate in the chief events of epigenetics. In mammals, sirtuin family comprises seven members (SIRT1-SIRT7), and they all possess a conserved NAD+ binding catalytic domain, termed the sirtuin core domain which is imperative for their activity. Sirtuins exert a pivotal role in cellular homeostasis, energy metabolism, apoptosis, age-related disorders and male reproductive system. However, their exact role in male reproduction is still obscure. This article specifically reviews the role of mammalian sirtuins in male reproductive function, thereby, prompting further research to discover the restorative methods and its implementation in reproductive medicine.
Collapse
Affiliation(s)
- Chithra Loganathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | | | - Kumarasamy Anbarasu
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India. .,Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India.
| |
Collapse
|
37
|
Benedetti R, Bajardi F, Capozziello S, Carafa V, Conte M, Del Sorbo MR, Nebbioso A, Singh M, Stunnenberg HG, Valadan M, Altucci L, Altucci C. Different Approaches to Unveil Biomolecule Configurations and Their Mutual Interactions. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1716241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- R. Benedetti
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - F. Bajardi
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Napoli, Italy
| | - S. Capozziello
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Napoli, Italy
- Gran Sasso Science Institute, L’Aquila, Italy
| | - V. Carafa
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - M. Conte
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - M. R. Del Sorbo
- Istituto Statale d’Istruzione Superiore “Leonardo da Vinci”, Poggiomarino, NA, Italy
| | - A. Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - M. Singh
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - H. G. Stunnenberg
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, the Netherlands
| | - M. Valadan
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Napoli, Italy
| | - L. Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - C. Altucci
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Napoli, Italy
| |
Collapse
|
38
|
Bajardi F, Altucci L, Benedetti R, Capozziello S, Sorbo MRD, Franci G, Altucci C. DNA Mutations via Chern-Simons Currents. EUROPEAN PHYSICAL JOURNAL PLUS 2021; 136:1080. [PMID: 34725629 PMCID: PMC8551353 DOI: 10.1140/epjp/s13360-021-01960-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
We test the validity of a possible schematization of DNA structure and dynamics based on the Chern-Simons theory, that is a topological field theory mostly considered in the context of effective gravity theories. By means of the expectation value of the Wilson Loop, derived from this analogue gravity approach, we find the point-like curvature of genomic strings in KRAS human gene and COVID-19 sequences, correlating this curvature with the genetic mutations. The point-like curvature profile, obtained by means of the Chern-Simons currents, can be used to infer the position of the given mutations within the genetic string. Generally, mutations take place in the highest Chern-Simons current gradient locations and subsequent mutated sequences appear to have a smoother curvature than the initial ones, in agreement with a free energy minimization argument.
Collapse
Affiliation(s)
- Francesco Bajardi
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli“Federico II”, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
- INFN Sezione di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
- Biogem “Istituto di Biologia molecolare e genetica”, 83031 Ariano Irpino, Italy
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “L. Vanvitelli”, Napoli, Italy
| | - Salvatore Capozziello
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli“Federico II”, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
- INFN Sezione di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Maria Rosaria Del Sorbo
- Istituto Statale d’Istruzione Superiore “Leonardo da Vinci”, via F. Turati Poggiomarino, Naples, Italy
- Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli“Federico II”, Via Claudio n.21, 80125 Napoli, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA Italy
- Sezione Microbiologia Clinica, A.O.U. S. Giovanni di Dio e Ruggi D’Aragona, Largo Città di Ippocrate, 84131 Salerno, Italy
| | - Carlo Altucci
- INFN Sezione di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, 80126 Napoli, Italy
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, via Pansini 5, Napoli, Italy
| |
Collapse
|
39
|
Shaurya A, Garnett GAE, Starke MJ, Grasdal MC, Dewar CC, Kliuchynskyi AY, Hof F. An easily accessible, lower rim substituted calix[4]arene selectively binds N, N-dimethyllysine. Org Biomol Chem 2021; 19:4691-4696. [PMID: 33978657 DOI: 10.1039/d1ob00524c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Post-translational modifications (PTMs) are critical controllers of protein functions. One set of important PTMs are N-methylated side chains of lysine and arginine, which exist in several functionally distinct forms. Multiple groups have demonstrated the selective binding of the most hydrophobic family member, trimethyllysine (Kme3), using various macrocyclic hosts, but the selective binding of lower methylation states remains challenging. Herein we report that the installation of a sulfonate ester on the lower rim phenol of p-sulfonatocalix[4]arene efficiently generates a potent, N,N-dimethyllysine (Kme2)-selective host in one step from commercially available starting materials. We characterize its binding behaviors in solution, and examine the relationship between its unusual conformational dynamics and its guest-binding properties.
Collapse
Affiliation(s)
- Alok Shaurya
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Graham A E Garnett
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Melissa J Starke
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Mark C Grasdal
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Charlotte C Dewar
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Anton Y Kliuchynskyi
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| | - Fraser Hof
- Department of Chemistry and Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
40
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
41
|
Rubattu S, Stanzione R, Cotugno M, Bianchi F, Marchitti S, Forte M. Epigenetic control of natriuretic peptides: implications for health and disease. Cell Mol Life Sci 2020; 77:5121-5130. [PMID: 32556416 PMCID: PMC11105024 DOI: 10.1007/s00018-020-03573-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
The natriuretic peptides (NPs) family, including a class of hormones and their receptors, is largely known for its beneficial effects within the cardiovascular system to preserve regular functions and health. The concentration level of each component of the family is of crucial importance to guarantee a proper control of both systemic and local cardiovascular functions. A fine equilibrium between gene expression, protein secretion and clearance is needed to achieve the final optimal level of NPs. To this aim, the regulation of gene expression and translation plays a key role. In this regard, we know the existence of fine regulatory mechanisms, the so-called epigenetic mechanisms, which target many genes at either the promoter or the 3'UTR region to inhibit or activate their expression. The gene encoding ANP (NPPA) is regulated by histone modifications, DNA methylation, distinct microRNAs and a natural antisense transcript (NPPA-AS1) with consequent implications for both health and disease conditions. Notably, ANP modulates microRNAs on its own. Histone modifications of BNP gene (NPPB) are associated with several cardiomyopathies. The proBNP processing is regulated by miR30-GALNT1/2 axis. Among other components of the NPs family, CORIN, NPRA, NPRC and NEP may undergo epigenetic regulation. A better understanding of the epigenetic control of the NPs family will allow to gain more insights on the pathological basis of common cardiovascular diseases and to identify novel therapeutic targets. The present review article aims to discuss the major achievements obtained so far with studies on the epigenetic modulation of the NPs family.
Collapse
Affiliation(s)
- Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Isernia, Italy.
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Dong E, Pandey SC. Prenatal stress induced chromatin remodeling and risk of psychopathology in adulthood. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:185-215. [PMID: 33461663 PMCID: PMC7864549 DOI: 10.1016/bs.irn.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New insights into the pathophysiology of psychiatric disorders suggest the existence of a complex interplay between genetics and environment. This notion is supported by evidence suggesting that exposure to stress during pregnancy exerts profound effects on the neurodevelopment and behavior of the offspring and predisposes them to psychiatric disorders later in life. Accumulated evidence suggests that vulnerability to psychiatric disorders may result from permanent negative effects of long-term changes in synaptic plasticity due to altered epigenetic mechanisms (histone modifications and DNA methylation) that lead to condensed chromatin architecture, thereby decreasing the expression of candidate genes during early brain development. In this chapter, we have summarized the literature of clinical studies on psychiatric disorders induced by maternal stress during pregnancy. We also discussed the epigenetic alterations of gene regulations induced by prenatal stress. Because the clinical manifestations of psychiatric disorders are complex, it is obvious that the biological progression of these diseases cannot be studied only in postmortem brains of patients and the use of animal models is required. Therefore, in this chapter, we have introduced a well-established mouse model of prenatal stress (PRS) generated in restrained pregnant dams. The behavioral phenotypes of the offspring (PRS mice) born to the stressed dam and underlying epigenetic changes in key molecules related to synaptic activity were described and highlighted. PRS mice may serve as a useful model for investigating the pathogenesis of psychiatric disorders and may be a useful tool for screening for the potential compounds that may normalize aberrant epigenetic mechanisms induced by prenatal stress.
Collapse
Affiliation(s)
- Erbo Dong
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
43
|
Shen Z, Huang L, Jin S, Zheng Y. Cloning and Expression Analysis of Two Kdm Lysine Demethylases in the Testes of Mature Yaks and Their Sterile Hybrids. Animals (Basel) 2020; 10:ani10030521. [PMID: 32244964 PMCID: PMC7142534 DOI: 10.3390/ani10030521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The hybrid of male cattle (Bos taurus) with female yaks (Bos grunniens) is called the cattle–yak. All female cattle–yaks are fertile, but all males are sterile. To date, there is no clear conclusion on the mechanism leading to cattle–yak male sterility. The domain conservation and expression profiles of lysine histone demethylases (KDMs) suggest that they might play important roles during gametogenesis. The objective of this study was to explore the molecular mechanism for male sterility of yak hybrids based on two demethylases, KDM1A and KDM4B. The mRNA and protein expression of KDM1A and KDM4B were dramatically decreased in the testes of adult cattle–yaks compared with adult yaks. In addition, the level of H3K36me3 in the testes of cattle–yaks was significantly lower than in yaks. These results suggest that the male sterility of cattle–yaks might be associated with reduced histone methylation modifications. These results provide valuable epigenetic information regarding the molecular mechanism resulting in male sterility of cattle–yaks. Abstract The objective of this study was to explore the molecular mechanism for male sterility of yak hybrids based on two demethylases. Total RNA was extracted from the testes of adult yaks (n = 10) and yak hybrids (cattle–yaks, n = 10). The coding sequences (CDS) of two lysine demethylases (KDMs), KDM1A and KDM4B, were cloned by RT-PCR. The levels of KDM1A and KDM4B in yaks and cattle–yaks testes were detected using Real-time PCR and Western blotting for mRNA and protein, respectively. In addition, the histone methylation modifications of H3K36me3 and H3K27me3 were compared between testes of yaks and cattle–yaks using ELISA. The CDS of KDM1A and KDM4B were obtained from yak testes. The results showed that the CDS of KDM1A exhibited two variants: variant 1 has a CDS of 2622 bp, encoding 873 amino acids, while variant 2 has a CDS of 2562 bp, encoding 853 amino acids. The CDS of the KDM4B gene was 3351 bp in length, encoding 1116 amino acids. The mRNA and protein expression of KDM1A and KDM4B, as well as the level of H3K36me3, were dramatically decreased in the testes of cattle–yaks compared with yaks. The present results suggest that the male sterility of cattle–yaks might be associated with reduced histone methylation modifications.
Collapse
Affiliation(s)
| | | | | | - Yucai Zheng
- Correspondence: ; Tel.: +86-02885522400; Fax: +86-28-85528039
| |
Collapse
|
44
|
Liang Q, Geng Q, Jiang L, Liang M, Li L, Zhang C, Wang W. Protein methylome analysis in Arabidopsis reveals regulation in RNA-related processes. J Proteomics 2020; 213:103601. [PMID: 31809900 DOI: 10.1016/j.jprot.2019.103601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
Abstract
Protein methylation has been proposed as an important post-translational modification, which occurs predominantly on lysine and arginine residues. Recent discoveries have revealed that protein methylation is also present on non-histones besides histones, and plays critical roles in regulating protein stability and function. However, proteome-wide identification of methylated proteins in plants remains unexplored. Here, we present the first global survey of monomethyl arginine, symmetric and asymmetric dimethyl arginine, and monomethyl, dimethyl, trimethyl lysine modifications in the proteomes of 10-day-old Arabidopsis seedlings through a combination of immunoaffinity purification and mass spectrometry analysis. In total, we identified 617 methylation sites which mapped to 412 proteins, with 263 proteins harboring 381 lysine methylation sites and 149 proteins harboring 236 arginine methylation sites. Among them, 607 methylation sites on 408 proteins were novel findings. Motif analysis revealed that glycine preferentially flanked methylated arginine residues, whereas aspartate and glutamate enriched around mono- and dimethylated lysine sites. Methylated proteins were involved in a variety of metabolic processes, showing significant enrichment in RNA-related metabolic pathways including spliceosome, RNA transport, and ribosome. Our data provide a global view of methylated non-histone proteins in Arabidopsis, laying foundations for elucidating the biological function of protein methylation in plants. SIGNIFICANCE: Protein methylation has emerged as a common and important modification both in eukaryotes and prokaryotes. The identification of methylated sites/peptides is fundamental for further functional analysis of protein methylation. This study was the first proteome-scale identification of lysine and arginine methylation in plants. We found that methylation occurred widely on non-histone proteins in Arabidopsis and was involved in diverse biological functions. The results provide foundations for the investigation of the protein methylome in Arabidopsis and provide powerful resources for the functional analysis of protein methylation in plants.
Collapse
Affiliation(s)
- Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qinghe Geng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Liang
- Jingjie PTM BioLab (Hangzhou) Co.Ltd, Hangzhou 310018, China
| | - Linhan Li
- Jingjie PTM BioLab (Hangzhou) Co.Ltd, Hangzhou 310018, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
45
|
Sun J, Shi F, Yang N. Exploration of the Substrate Preference of Lysine Methyltransferase SMYD3 by Molecular Dynamics Simulations. ACS OMEGA 2019; 4:19573-19581. [PMID: 31788587 PMCID: PMC6881823 DOI: 10.1021/acsomega.9b01842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
SMYD3, a SET and MYND domain containing lysine methyltransferase, catalyzes the transfer of the methyl group from a methyl donor onto the Nε group of a lysine residue in the substrate protein. Methylation of MAP3 kinase kinase (MAP3K2) by SMYD3 has been implicated in Ras-driven tumorigenesis. The crystal structure of SMYD3 in complex with MAP3K2 peptide reveals a shallow hydrophobic pocket (P-2), which accommodates the binding of a phenylalanine residue at the -2 position of the substrate (F258) is a crucial determinant of substrate specificity of SMYD3. To better understand the substrate preference of SMYD3 at the -2 position, molecular dynamics (MD) simulations and the MM/GBSA method were performed on the crystal structure of SMYD3-MAP3K2 complex (PDB: 5EX0) after substitution of F258 residue of MAP3K2 to each of the other 19 natural residues, respectively. Binding free energy calculations reveal that the P-2 pocket prefers an aromatic hydrophobic group and none of the substitutions behave better than the wild-type phenylalanine residue does. Furthermore, we investigated the structure-activity relationships (SAR) of a series of non-natural phenylalanine derivative substitutions at the -2 position and found that quite a few modifications on the sidechain of F258 residue could strengthen its binding to the P-2 pocket of SMYD3. These explorations provide insights into developing novel SMYD3 inhibitors with high potency and high selectivity against MAP3K2 and cancer.
Collapse
Affiliation(s)
| | | | - Na Yang
- E-mail: . Tel/Fax: + 8622 85358193
| |
Collapse
|
46
|
Gaździcka J, Gołąbek K, Strzelczyk JK, Ostrowska Z. Epigenetic Modifications in Head and Neck Cancer. Biochem Genet 2019; 58:213-244. [PMID: 31712935 PMCID: PMC7113219 DOI: 10.1007/s10528-019-09941-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common human malignancy in the world, with high mortality and poor prognosis for patients. Among the risk factors are tobacco and alcohol intake, human papilloma virus, and also genetic and epigenetic modifications. Many studies show that epigenetic events play an important role in HNSCC development and progression, including DNA methylation, chromatin remodeling, histone posttranslational covalent modifications, and effects of non-coding RNA. Epigenetic modifications may influence silencing of tumor suppressor genes by promoter hypermethylation, regulate transcription by microRNAs and changes in chromatin structure, or induce genome instability through hypomethylation. Moreover, getting to better understand aberrant patterns of methylation may provide biomarkers for early detection and diagnosis, while knowledge about target genes of microRNAs may improve the therapy of HNSCC and extend overall survival. The aim of this review is to present recent studies which demonstrate the role of epigenetic regulation in the development of HNSCC.
Collapse
Affiliation(s)
- Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland.
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| | - Zofia Ostrowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808, Zabrze, Katowice, Poland
| |
Collapse
|
47
|
Govarthanan K, Gupta PK, Ramasamy D, Kumar P, Mahadevan S, Verma RS. DNA methylation microarray uncovers a permissive methylome for cardiomyocyte differentiation in human mesenchymal stem cells. Genomics 2019; 112:1384-1395. [PMID: 31415810 DOI: 10.1016/j.ygeno.2019.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/25/2019] [Accepted: 08/11/2019] [Indexed: 12/22/2022]
Abstract
Differentiation of Wharton's Jelly-Mesenchymal Stem cells (WJ-MSCs) into cardiomyocytes (CMs) in vitro has been reported widely although contradictions remain regarding the maturation of differentiated MSCs into fully functioning CMs. Studies suggest that use of epigenetic modifiers like 5'Azacytidine (5-AC) in MSCs de-methylates DNA and results in expression of cardiac-specific genes (CSGs). However, only partial expression of the CSG set leads to incomplete differentiation of WJ-MSCs to CMs. We used the Agilent 180 K human DNA methylation microarray on WJ-MSCs, 5-AC treated WJ-MSCs and human cardiac tissue (hCT) to analyze differential DNA methylation profiles which were then validated by bisulfite sequencing PCR (BSP). BSP confirmed that only a limited number of CSGs were de-methylated by 5-AC in WJ-MSCs. It also revealed that hCT displays a methylation profile similar to promoter regions of CSG in untreated WJ-MSCs. Thus, the presence of hypo-methylated CSGs indicates that WJ-MSCs are ideal cell types for cardiomyogenic differentiation.
Collapse
Affiliation(s)
- Kavitha Govarthanan
- Stem cells and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Piyush Kumar Gupta
- Stem cells and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Deepa Ramasamy
- Stem cells and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Pavitra Kumar
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chennai 600044, Tamilnadu, India
| | - Shobana Mahadevan
- Seethapathy Clinic and Hospital, Royapettah, Chennai 60014, Tamilnadu, India
| | - Rama Shanker Verma
- Stem cells and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India.
| |
Collapse
|
48
|
Crump NT, Milne TA. Why are so many MLL lysine methyltransferases required for normal mammalian development? Cell Mol Life Sci 2019; 76:2885-2898. [PMID: 31098676 PMCID: PMC6647185 DOI: 10.1007/s00018-019-03143-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) family of proteins became known initially for the leukemia link of its founding member. Over the decades, the MLL family has been recognized as an important class of histone H3 lysine 4 (H3K4) methyltransferases that control key aspects of normal cell physiology and development. Here, we provide a brief history of the discovery and study of this family of proteins. We address two main questions: why are there so many H3K4 methyltransferases in mammals; and is H3K4 methylation their key function?
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Bone Remodeling: Histone Modifications as Fate Determinants of Bone Cell Differentiation. Int J Mol Sci 2019; 20:ijms20133147. [PMID: 31252653 PMCID: PMC6651527 DOI: 10.3390/ijms20133147] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
The bone tissue is a dynamic complex that constitutes of several interdependent systems and is continuously remodeled through the concerted actions of bone cells. Osteoblasts are mononucleated cells, derived from mesenchymal stem cells, responsible for bone formation. Osteoclasts are large multinucleated cells that differentiate from hematopoietic progenitors of the myeloid lineage and are responsible for bone resorption. The lineage-specific differentiation of bone cells requires an epigenetic regulation of gene expressions involving chromatin dynamics. The key step for understanding gene regulatory networks during bone cell development lies in characterizing the chromatin modifying enzymes responsible for reorganizing and potentiating particular chromatin structure. This review covers the histone-modifying enzymes involved in bone development, discusses the impact of enzymes on gene expression, and provides future directions and clinical significance in this area.
Collapse
|
50
|
Zhang J, Chen J, Yang J, Xu C, Hu Q, Wu H, Cai W, Guo Q, Gao W, He C, Yang C, Yang J. Suv39h1 downregulation inhibits neointimal hyperplasia after vascular injury. Atherosclerosis 2019; 288:76-84. [PMID: 31330382 DOI: 10.1016/j.atherosclerosis.2019.06.909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/09/2019] [Accepted: 06/19/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Neointimal hyperplasia resulting from pathological vascular smooth muscle cells (VSMCs) activation is a common pathophysiological basis for numerous proliferative vascular diseases, such as restenosis. Suv39h1, an important transcription suppressor, may be involved in this process. Herein, we investigated the role of Suv39h1 in pathological intimal hyperplasia and its possible mechanisms in vitro and in vivo. METHODS An adenovirus vector for Suv39h1 overexpression and a lentiviral vector for its downregulation were constructed and used to transfect cultured VSMCs in vitro. The functional changes in VSMCs stimulated by angiotensin II (Ang II) were observed and the possible mechanism was investigated. Additionally, rat carotid arteries with balloon injury were locally transfected with these viral vectors and changes in neointima formation, proliferating cell nuclear antigen (Pcna) expression and collagen deposition were examined. RESULTS Upon Ang II stimulation, the expression of Suv39h1 and inhibitor of DNA binding 3 (Id3) was significantly increased. Suv39h1 downregulation inhibited Ang II-stimulated migration and proliferation of VSMCs, antagonized the production of Id3 and promoted p21 and p27Kip1 expression. In contrast, Suv39h1 overexpression had the opposite effects. Suv39h1 regulated the transcription of p21 and p27Kip1 by controlling H3K9me3 in the proximal promoter regions. Consistent with the VSMCs results, Suv39h1 and Id3 expression was significantly increased in blood vessels after balloon injury. Suv39h1 downregulation inhibited intimal hyperplasia, and attenuated Pcna expression and collagen synthesis in the intima, while Suv39h1 overexpression had the opposite effects. CONCLUSIONS Suv39h1 downregulation effectively inhibited neointimal hyperplasia after vascular injury.
Collapse
Affiliation(s)
- Jing Zhang
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Wanyin Cai
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Qing Guo
- Department of Ophthalmology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Wenqi Gao
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Chao He
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Chaojun Yang
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
| |
Collapse
|