1
|
Isolani R, Pilatti F, de Paula MN, Valone L, da Silva EL, de Oliveira Caleare A, Seixas FAV, Hensel A, Mello JCPD. Limonium brasiliense rhizomes extract against virulence factors of Porphyromonas gingivalis: Inhibition of gingipains, bacterial adhesion, and biofilm formation. Fitoterapia 2024; 177:106120. [PMID: 38992475 DOI: 10.1016/j.fitote.2024.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Periodontitis is clinically characterized by destruction of the tooth support system and tooth loss. Porphyromonas gingivalis (Pg) plays a dominant role in periodontitis. Fractions and isolated compounds from an acetone-water extract of the roots of Limonium brasiliense (Lb) were tested in vitro for their anti-adhesive capacity against Pg on human KB buccal cells, influence on gingipains, the main virulence factors of Pg, and biofilm formation. Fractions EAF and FLB7 (50 μg/mL) reduced the bacterial adhesion of Pg to KB cells significantly (63 resp. 70%). The proanthocyanidin samarangenin A inhibited the adhesion (72%, 30 μM), samarangenin B (71%, 20 μM), and the flavan-3-ol epigallocatechin-3-O-gallate (79%, 30 μM). Fraction AQF, representing hydrophilic compounds, reduced the proteolytic activity of Arginin-specific gingipain (IC50 12.78 μg/mL). Fractions EAF and FLB7, characterized by lipohilic constituents, inhibited Arg-gingipain (IC50 3 μg/mL). On Lysine-specific gingipain, AQF has an IC50 15.89, EAF 14.15, and FLB7 6 μg/mL. The reduced bacterial adhesion is due to a strong interaction of proanthocyanidins with gingipains. AQF, EAF, and FLB7 significantly inhibited biofilm formation: IC50 11.34 (AQF), 11.66 (EAF), and 12.09 μg/mL (FLB7). In silico analysis indicated, that the polyphenols act against specific targets of Pg, not affecting mammalian cells. Therefore, Lb might be effective for prevention of periodontal disease by influencing virulence factors of Pg.
Collapse
Affiliation(s)
- Raquel Isolani
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Fernanda Pilatti
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Mariana Nascimento de Paula
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Larissa Valone
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Eloisa Lorenzi da Silva
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Angelo de Oliveira Caleare
- Laboratory of Technological Innovation in the Development of Drugs and Cosmetics; Postgraduate Program in Biological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, NRW, Germany
| | - João Carlos Palazzo de Mello
- Pharmaceutical Biology Laboratory, Palafito; Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
2
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
3
|
Lv H, Zhang Z, Fu B, Li Z, Yin T, Liu C, Xu B, Wang D, Li B, Hao J, Zhang L, Wang J. Characteristics of the gut microbiota of patients with symptomatic carotid atherosclerotic plaques positive for bacterial genetic material. Front Cell Infect Microbiol 2024; 13:1296554. [PMID: 38282614 PMCID: PMC10811106 DOI: 10.3389/fcimb.2023.1296554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Background The gut microbiota (GM) is believed to be closely associated with symptomatic carotid atherosclerosis (SCAS), yet more evidence is needed to substantiate the significant role of GM in SCAS. This study, based on the detection of bacterial DNA in carotid plaques, explores the characteristics of GM in SCAS patients with plaque bacterial genetic material positivity, aiming to provide a reference for subsequent research. Methods We enrolled 27 healthy individuals (NHF group) and 23 SCAS patients (PFBS group). We utilized 16S rDNA V3-V4 region gene sequencing to analyze the microbiota in fecal samples from both groups, as well as in plaque samples from the carotid bifurcation extending to the origin of the internal carotid artery in all patients. Results Our results indicate significant differences in the gut microbiota (GM) between SCAS patients and healthy individuals. The detection rate of bacterial DNA in plaque samples was approximately 26%. Compared to patients with negative plaques (PRSOPWNP group), those with positive plaques (PRSOPWPP group) exhibited significant alterations in their GM, particularly an upregulation of 11 bacterial genera (such as Klebsiella and Streptococcus) in the gut, which were also present in the plaques. In terms of microbial gene function prediction, pathways such as Fluorobenzoate degradation were significantly upregulated in the GM of patients with positive plaques. Conclusion In summary, our study is the first to identify significant alterations in the gut microbiota of patients with positive plaques, providing crucial microbial evidence for further exploration of the pathogenesis of SCAS.
Collapse
Affiliation(s)
- Hang Lv
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Bo Fu
- Department of Precision Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chao Liu
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Bin Xu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dawei Wang
- Department of Orthopedics, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Baojie Li
- Bio-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
4
|
Cavenague MF, Teixeira AF, Fernandes LGV, Nascimento ALTO. LIC12254 Is a Leptospiral Protein That Interacts with Integrins via the RGD Motif. Trop Med Infect Dis 2023; 8:tropicalmed8050249. [PMID: 37235297 DOI: 10.3390/tropicalmed8050249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Pathogenic leptospires can bind to receptors on mammalian cells such as cadherins and integrins. Leptospira effectively adheres to cells, overcomes host barriers and spreads into the bloodstream, reaching internal target organs such as the lungs, liver and kidneys. Several microorganisms produce proteins that act as ligands of integrins through the RGD motif. Here, we characterized a leptospiral RGD-containing protein encoded by the gene lic12254. In silico analysis of pathogenic, intermediate and saprophytic species showed that LIC12254 is highly conserved among pathogenic species, and is unique in presenting the RGD motif. The LIC12254-coding sequence is greatly expressed in the virulent Leptospira interrogans L1-130 strain compared with the culture-attenuated L. interrogans M20 strain. We also showed that the recombinant protein rLIC12254 binds to αVβ8 and α8 human integrins most likely via the RGD motif. These interactions are dose-dependent and saturable, a typical property of receptor-ligand interactions. The binding of the recombinant protein lacking this motif-rLIC12254 ΔRAA-to αVβ8 was almost totally abolished, while that with the α8 human integrin was decreased by 65%. Taken together, these results suggest that this putative outer membrane protein interacts with integrins via the RGD domain and may play a key role in leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Maria F Cavenague
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Aline F Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
| | - Luis G V Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
| | - Ana L T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-000, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| |
Collapse
|
5
|
Wan J, Zhao X, Liu J, Chen K, Li C. Src kinase mediates coelomocytes phagocytosis via interacting with focal adhesion kinase in Vibrio splendidus challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:411-420. [PMID: 35462003 DOI: 10.1016/j.fsi.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Immune cells have many efficient ways to participate in the host immunity, including phagocytosis, which is an important pathway to eliminate pathogens. Only β-integrin-mediated phagocytosis pathways have been confirmed in Apostichopus japonicus. The Src family kinases (SFKs), a class of non-receptor tyrosine kinases plays an important role in the regulation of phagocytic signals in invertebrates. However, the SFK-mediated phagocytic mechanism is largely unknown in A. japonicus. In this study, a novel SFK homologue (AjSrc) with a conservative SH3 domain, an SH2 domain, and a tyrosine kinase domain was identified from A. japonicus. Both gene and protein expression of AjSrc and phosphorylation levels increased under Vibrio splendidus challenged, reaching the highest level at 24 h. Knock-down of AjSrc could depress coelomocytes' phagocytosis by 25% compared to the control group. To better understand the mechanism of AjSrc-mediated phagocytosis, focal adhesion kinase (FAK) was identified by a Co-immunoprecipitation experiment to be verified as an interactive protein of AjSrc. The phagocytosis rates of coelomocytes were decreased by 33% and 37% in AjFAK and AjSrc + AjFAK interference groups compared with the control group, respectively. Furthermore, the phosphorylation level of AjFAK was increased and reached the maximum level at 24 h post V. splendidus infection, as the same as that of AjSrc. Our results suggested that AjSrc could mediate V. splendidus-induced coelomocytes' phagocytosis via interacting with AjFAK and co-phosphorylation. This study enriched the mechanism of phagocytosis in echinoderm and provided the new theoretical foundation for disease control of sea cucumber.
Collapse
Affiliation(s)
- Junjie Wan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Kaiyu Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
6
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
7
|
Bacterial Outer Membrane Protein OmpX Regulates β1 Integrin and Epidermal Growth Factor Receptor (EGFR) Involved in Invasion of M-HeLa Cells by Serratia proteamaculans. Int J Mol Sci 2021; 22:ijms222413246. [PMID: 34948042 PMCID: PMC8703988 DOI: 10.3390/ijms222413246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/31/2023] Open
Abstract
Opportunistic pathogen Serratia proteamaculans are able to penetrate the eukaryotic cells. The penetration rate can be regulated by bacterial surface protein OmpX. OmpX family proteins are able to bind to host cell surface to the epidermal growth factor receptor (EGFR) and the extracellular matrix protein fibronectin, whose receptors are in return the α5 β1 integrins. Here we elucidated the involvement of these host cell proteins in S. proteamaculans invasion. We have shown that, despite the absence of fibronectin contribution to S. proteamaculans invasion, β1 integrin was directly involved in invasion of M-HeLa cells. Herewith β1 integrin was not the only receptor that determines sensitivity of host cells to bacterial invasion. Signal transfer from EGFR was also involved in the penetration of these bacteria into M-HeLa cells. However, M-HeLa cells have not been characterized by large number of these receptors. It turned out that S. proteamaculans attachment to the host cell surface resulted in an increment of EGFR and β1 integrin genes expression. Such gene expression increment also caused Escherichia coli attachment, transformed with a plasmid encoding OmpX from S. proteamaculans. Thus, an OmpX binding to the host cell surface caused an increase in the EGFR and β1 integrin expression involved in S. proteamaculans invasion.
Collapse
|
8
|
Fuchisawa Y, Abe H, Koyama K, Koseki S. Competitive growth kinetics of Campylobacter jejuni, Escherichia coli O157:H7 and Listeria monocytogenes with enteric microflora in a small-intestine model. J Appl Microbiol 2021; 132:1467-1478. [PMID: 34498377 PMCID: PMC9291610 DOI: 10.1111/jam.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022]
Abstract
Aims The biological events occurring during human digestion help to understand the mechanisms underlying the dose–response relationships of enteric bacterial pathogens. To better understand these events, we investigated the growth and reduction behaviour of bacterial pathogens in an in vitro model simulating the environment of the small intestine. Methods and Results The foodborne pathogens Campylobacter jejuni, Listeria monocytogenes and Escherichia coli O157:H7 were cultured with multiple competing enteric bacteria. Differences in the pathogen's growth kinetics due to the relative amount of competing enteric bacteria were investigated. These growth differences were described using a mathematical model based on Bayesian inference. When pathogenic and enteric bacteria were inoculated at 1 log CFU per ml and 9 log CFU per ml, respectively, L. monocytogenes was inactivated over time, while C. jejuni and E. coli O157:H7 survived without multiplying. However, as pathogen inocula were increased, its inhibition by enteric bacteria also decreased. Conclusions Although the growth of pathogenic species was inhibited by enteric bacteria, the pathogens still survived. Significance and Impact of the Study Competition experiments in a small‐intestine model have enhanced understanding of the infection risk in the intestine and provide insights for evaluating dose–response relationships.
Collapse
Affiliation(s)
- Yuto Fuchisawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroki Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kento Koyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shigenobu Koseki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Gati NS, Temme IJ, Middendorf-Bauchart B, Kehl A, Dobrindt U, Mellmann A. Comparative phenotypic characterization of hybrid Shiga toxin-producing / uropathogenic Escherichia coli, canonical uropathogenic and Shiga toxin-producing Escherichia coli. Int J Med Microbiol 2021; 311:151533. [PMID: 34425494 DOI: 10.1016/j.ijmm.2021.151533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Hybrid Shiga toxin (Stx)-producing Escherichia coli (STEC) and uropathogenic E. coli (UPEC) strains are phylogenetically positioned between STEC and UPEC and can cause both diarrhea and urinary tract infections (UTIs). However, their virulence properties and adaptation to different host milieu in comparison to canonical UPEC and STEC strains are unknown. We determined phenotypes of the STEC/UPEC hybrid with respect to virulence including acid resistance, motility, biofilm formation, siderophore production, and adherence to human colonic Caco-2 and bladder T24 cells and compared to phenotypes of commensal strain MG1655, UPEC strain 536, and STEC strains B2F1 and Sakai. Moreover, we assessed the adaptation of the hybrid to artificial urine medium (AUM) and simulated colonic environment medium (SCEM). Overall acid resistance at pH 2.5 was high except in strains B2F1 and hybrid 05-00787 which showed reduced and extremely low acid resistance, respectively. Motility was reduced in hybrid 05-00787 and 09-05501 but strong in the remaining hybrids. While some hybrids showed high biofilm formation in LB, overall biofilm formation in SCEM and AUM were low and non-existent, respectively. All strains tested showed siderophore activity at equilibrium. All strains except MG1655 adhered to Caco-2 cells with the hybrid having similar adherence when compared to 536 but exhibited 2 and 3 times lower adherence when compared to B2F1 and Sakai, respectively. All Stx-producing strains adhered stronger to T24 cells than strains 536 and MG1655. Overall growth in LB, SCEM and AUM was consistent within the hybrid strains, except hybrid 05-00787 which showed significantly different growth patterns. Our data suggest that the hybrid is adapted to both, the intestinal and extraintestinal milieu. Expression of phenotypes typical of intestinal and extraintestinal pathogens thereby supports its potential to cause diarrhea and UTI.
Collapse
Affiliation(s)
| | | | | | - Alexander Kehl
- University Hospital Münster, Institute of Hygiene, Münster, Germany
| | - Ulrich Dobrindt
- University Hospital Münster, Institute of Hygiene, Microbial Genome-Plasticity, Münster, Germany
| | | |
Collapse
|
10
|
Han SI, Huang C, Han A. In-droplet cell separation based on bipolar dielectrophoretic response to facilitate cellular droplet assays. LAB ON A CHIP 2020; 20:3832-3841. [PMID: 32926042 DOI: 10.1039/d0lc00710b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise manipulation of cells within water-in-oil emulsion droplets has the potential to vastly expand the type of cellular assays that can be conducted in droplet-based microfluidics systems. However, achieving such manipulation remains challenging. Here, we present an in-droplet label-free cell separation technology by utilizing different dielectrophoretic responses of two different cell types. Two pairs of angled planar electrodes were utilized to generate positive or negative dielectrophoretic force acting on each cell type, which results in selective in-droplet movement of only one specific cell type at a time. A downstream asymmetric Y-shaped microfluidic junction splits the mother droplet into two daughter droplets, each of which contains only one cell type. The capability of this platform was successfully demonstrated by conducting in-droplet separation from a mixture of Salmonella cells and macrophages, two cell types commonly used as a bacterial pathogenicity analysis model. This technology enable the precise manipulation of cells within droplets, which can be exploited as a critical function in implementing broader ranges of droplet-based microfluidics cellular assays.
Collapse
Affiliation(s)
- Song-I Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
11
|
Extraction of Membrane Components from Neisseria gonorrhoeae Using Catanionic Surfactant Vesicles: A New Approach for the Study of Bacterial Surface Molecules. Pharmaceutics 2020; 12:pharmaceutics12090787. [PMID: 32825235 PMCID: PMC7559012 DOI: 10.3390/pharmaceutics12090787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 01/11/2023] Open
Abstract
Identification of antigens is important for vaccine production. We tested extraction protocols using cetyltrimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS) to formulate surfactant vesicles (SVs) containing components from Neisseria gonorrhoeae. Carbohydrate and protein assays demonstrated that protein and carbohydrates were incorporated into the vesicle leaflet. Depending on the extraction protocol utilized, 100–400 µg of protein/mL of SVs solution was obtained. Gel electrophoresis followed by silver staining demonstrated that SV extracts contained lipooligosaccharide and a subset of bacterial proteins and lipoproteins. Western blotting and mass spectral analysis indicated that the majority of the proteins were derived from the outer membrane. Mass spectrometric and bioinformatics analysis of SVs identified 29 membrane proteins, including porin and opacity-associated protein. Proteins embedded in the SVs leaflet could be degraded by the addition of trypsin or proteinase K. Our data showed that the incorporation of CTAT and SDBS into vesicles eliminated their toxicity as measured by a THP-1 killing assay. Incorporation of gonococcal cell surface components into SVs reduced toxicity as compared to the whole cell extracts, as measured by cytokine induction, while retaining the immunogenicity. This process constitutes a general method for extracting bacterial surface components and identification of antigens that might be included in vaccines.
Collapse
|
12
|
Jiao LF, Dai TM, Zhong SQ, Jin M, Sun P, Zhou QC. Vibrio parahaemolyticus infection impaired intestinal barrier function and nutrient absorption in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 99:184-189. [PMID: 32035168 DOI: 10.1016/j.fsi.2020.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The intestine is the primary target of pathogenic microbes during invasion. However, the interaction of Vibrio parahaemolyticus (V. parahaemolyticus) with intestinal epithelial cells and its effects on the intestinal function of Litopenaeus vannamei (L. vannamei) are poorly studied. Therefore, the aim of this study was to investigate the influence of V. parahaemolyticus infection on intestinal barrier function and nutrient absorption in L. vannamei. In the present study, a total of 90 shrimp were randomly divided into two groups including the control group and V. parahaemolyticus infection group (final concentration of 1 × 105 CFU/mL), with three replicates per group. The result showed that compared with the control group, V. parahaemolyticus infection increased (P < 0.05) serum diamine oxidase activity and endotoxin quantification, and down-regulated (P < 0.05) the mRNA levels of intestinal peroxinectin, integrin, midline fasciclin at 48 h and 72 h; V. parahaemolyticus infection decreased (P < 0.05) the mRNA expression of intestinal amino acid transporter (CAT1, EAAT3 and ASCT1) and glucose transporter (SGLT-1, GLUT) at 24 h, 48 h and 72 h, and increased (P < 0.05) serum glucose and amino acid (Asp, Thr, Ser, Glu, Gly, Ala, Val, Ile, Leu, Tyr, Phe, Lys, His and Arg) concentration at 24 h. The results indicated that V. parahaemolyticus infection increased intestinal permeability, inhibited absorption of glucose and amino acid in L. vannamei.
Collapse
Affiliation(s)
- Le Fei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Tian Meng Dai
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Sun Qian Zhong
- Ningbo Economic Technical Development Area Bolun Marine Surveyors Office, Ningbo, 315800, PR China
| | - Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Qi Cun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
13
|
Kappler U, Nasreen M, McEwan A. New insights into the molecular physiology of sulfoxide reduction in bacteria. Adv Microb Physiol 2019; 75:1-51. [PMID: 31655735 DOI: 10.1016/bs.ampbs.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sulfoxides occur in biology as products of the S-oxygenation of small molecules as well as in peptides and proteins and their formation is often associated with oxidative stress and can affect biological function. In bacteria, sulfoxide damage can be reversed by different types of enzymes. Thioredoxin-dependent peptide methionine sulfoxide reductases (MSR proteins) repair oxidized methionine residues and are found in all Domains of life. In bacteria MSR proteins are often found in the cytoplasm but in some bacteria, including pathogenic Neisseria, Streptococci, and Haemophilus they are extracytoplasmic. Mutants lacking MSR proteins are often sensitive to oxidative stress and in pathogens exhibit decreased virulence as indicated by reduced survival in host cell or animal model systems. Molybdenum enzymes are also known to reduce S-oxides and traditionally their physiological role was considered to be in anaerobic respiration using dimethylsulfoxide (DMSO) as an electron acceptor. However, it now appears that some enzymes (MtsZ) of the DMSO reductase family of Mo enzymes use methionine sulfoxide as preferred physiological substrate and thus may be involved in scavenging/recycling of this amino acid. Similarly, an enzyme (MsrP/YedY) of the sulfite oxidase family of Mo enzymes has been shown to be involved in repair of methionine sulfoxides in periplasmic proteins. Again, some mutants deficient in Mo-dependent sulfoxide reductases exhibit reduced virulence, and there is evidence that these Mo enzymes and some MSR systems are induced by hypochlorite produced by the innate immune system. This review describes recent advances in the understanding of the molecular microbiology of MSR systems and the broadening of the role of Mo-dependent sulfoxide reductase to encompass functions beyond anaerobic respiration.
Collapse
Affiliation(s)
- Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Abstract
The obligate human pathogen Neisseria gonorrhoeae colonizes primarily the mucosal columnar epithelium of the male urethra and the female endocervix. In addition, gonococci can infect the anorectal, pharyngeal, and gingival mucosae and epithelial cells of the conjunctiva. More rarely, the organism can disseminate through the bloodstream, which can involve interactions with other host cell types, including blood vessel endothelial cells and innate immune cells such as dendritic cells, macrophages, and neutrophils. "Disseminated gonococcal infection" is a serious condition with various manifestations resulting from the seeding of organs and tissues with the pathogen. The host response to gonococcal infection is inflammatory. Knowledge of the biology of gonococcal interactions has been served well through the use of a wide variety of ex vivo models using host tissues and eukaryotic cell monocultures. These models have helped identify bacterial surface adhesins and invasins and the corresponding cell surface receptors that play roles in gonococcal pathogenesis. Furthermore, they have been useful for understanding virulence mechanisms as well as innate and adaptive immune responses. In this chapter, readers are provided with protocols for examining the basic interactions between gonococci and a representative human cell line.
Collapse
|
15
|
Inhibition of adherence of the yeast Candida albicans to buccal epithelial cells by synthetic aromatic glycoconjugates. Eur J Med Chem 2018; 160:82-93. [PMID: 30321803 DOI: 10.1016/j.ejmech.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
The yeast Candida albicans is an opportunistic fungal pathogen which induces superficial and systemic infections in immunocompromised patients. Adherence to host tissue is critical to its ability to colonise and infect the host. The work presented here describes the synthesis of a small library of aromatic glycoconjugates (AGCs) and their evaluation as inhibitors of C. albicans adherence to exfoliated buccal epithelial cells (BECs). We identified a divalent galactoside, ligand 2a, capable of displacing over 50% of yeast cells already attached to the BECs. Fluorescence imaging indicates that 2a may bind to structural components of the fungal cell wall.
Collapse
|
16
|
Arango Duque G, Acevedo Ospina HA. Understanding TGEV-ETEC Coinfection through the Lens of Proteomics: A Tale of Porcine Diarrhea. Proteomics Clin Appl 2018; 12:e1700143. [PMID: 29281177 PMCID: PMC7167695 DOI: 10.1002/prca.201700143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/13/2017] [Indexed: 11/09/2022]
Abstract
Porcine diarrhea and gastroenteritis are major causes of piglet mortality that result in devastating economic losses to the industry. A plethora of pathogens can cause these diseases, with the transmissible gastroenteritis virus (TGEV) and enterotoxigenic Escherichia coli K88 (ETEC) being two of the most salient. In the December 2017 issue of Proteomics Clinical Aplications, Xia and colleagues used comparative proteomics to shed light on how these microbes interact to cause severe disease . The authors discovered that TGEV induces an epithelial-mesenchymal transition-like phenotype that augments cell adhesion proteins mediating the attachment of ETEC to intestinal epithelial cells. Moreover, coinfection was found to modulate several host proteins that could bolster pathogen persistence. Importantly, the authors observed that ETEC suppresses the production of inflammatory cytokines induced by TGEV, which may in turn promote the long-term survival of both microbes.
Collapse
|
17
|
Guantario B, Zinno P, Schifano E, Roselli M, Perozzi G, Palleschi C, Uccelletti D, Devirgiliis C. In Vitro and in Vivo Selection of Potentially Probiotic Lactobacilli From Nocellara del Belice Table Olives. Front Microbiol 2018; 9:595. [PMID: 29643848 PMCID: PMC5882814 DOI: 10.3389/fmicb.2018.00595] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
Table olives are increasingly recognized as a vehicle as well as a source of probiotic bacteria, especially those fermented with traditional procedures based on the activity of indigenous microbial consortia, originating from local environments. In the present study, we report characterization at the species level of 49 Lactic Acid Bacteria (LAB) strains deriving from Nocellara del Belice table olives fermented with the Spanish or Castelvetrano methods, recently isolated in our previous work. Ribosomal 16S DNA analysis allowed identification of 4 Enterococcus gallinarum, 3 E. casseliflavus, 14 Leuconostoc mesenteroides, 19 Lactobacillus pentosus, 7 L. coryniformis, and 2 L. oligofermentans. The L. pentosus and L. coryniformis strains were subjected to further screening to evaluate their probiotic potential, using a combination of in vitro and in vivo approaches. The majority of them showed high survival rates under in vitro simulated gastro-intestinal conditions, and positive antimicrobial activity against Salmonella enterica serovar Typhimurium, Listeria monocytogenes and enterotoxigenic Escherichia coli (ETEC) pathogens. Evaluation of antibiotic resistance to ampicillin, tetracycline, chloramphenicol, or erythromycin was also performed for all selected strains. Three L. coryniformis strains were selected as very good performers in the initial in vitro testing screens, they were antibiotic susceptible, as well as capable of inhibiting pathogen growth in vitro. Parallel screening employing the simplified model organism Caenorhabditis elegans, fed the Lactobacillus strains as a food source, revealed that one L. pentosus and one L. coryniformis strains significantly induced prolongevity effects and protection from pathogen-mediated infection. Moreover, both strains displayed adhesion to human intestinal epithelial Caco-2 cells and were able to outcompete foodborne pathogens for cell adhesion. Overall, these results are suggestive of beneficial features for novel LAB strains, which renders them promising candidates as starters for the manufacturing of fermented table olives with probiotic added value.
Collapse
Affiliation(s)
- Barbara Guantario
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Paola Zinno
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Italy
| | - Marianna Roselli
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Giuditta Perozzi
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Claudio Palleschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Italy
| | - Chiara Devirgiliis
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| |
Collapse
|
18
|
Abstract
Background Like many members of the Enterobacteriaceae family, Yersinia ruckeri has the ability to invade non professional phagocytic cells. Intracellular location is advantageous for the bacterium because it shields it from the immune system and can help it cross epithelial membranes and gain entry into the host. In the present manuscript, we report on our investigation regarding the mechanisms of Y. ruckeri’s invasion of host cells. Results A gentamycin assay was applied to two isolates, belonging to both the biotype 1 (ATCC 29473) and biotype 2 (A7959–11) and using several cell culture types: Atlantic Salmon Kidney, Salmon Head Kidney and, Chinook salmon embryos cells at both low and high passage numbers. Varying degrees of sensitivity to Y. ruckeri infection were found between the cell types and the biotype 1 strain was found to be more invasive than the non-motile biotype 2 isolate. Furthermore, the effect of six chemical compounds (Cytochalasin D, TAE 226, vinblastine, genistein, colchicine and, N-acetylcysteine), known to interfere with bacterial invasion strategies, were investigated. All of these compounds had a significant impact on the ability of the bacterium to invade host cells. Changes in the concentration of bacterial cells over time were investigated and the results suggested that neither isolate could survive intracellularly for sustained periods. Conclusions These results suggest that Y. ruckeri can gain entrance into host cells through several mechanisms, and might take advantage of both the actin and microtubule cytoskeletal systems.
Collapse
|
19
|
The Potential Virulence Factors of Providencia stuartii: Motility, Adherence, and Invasion. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3589135. [PMID: 29682537 PMCID: PMC5841065 DOI: 10.1155/2018/3589135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/30/2017] [Accepted: 01/21/2018] [Indexed: 11/17/2022]
Abstract
Providencia stuartii is the most common Providencia species capable of causing human infections. Currently P. stuartii is involved in high incidence of urinary tract infections in catheterized patients. The ability of bacteria to swarm on semisolid (viscous) surfaces and adhere to and invade host cells determines the specificity of the disease pathogenesis and its therapy. In the present study we demonstrated morphological changes of P. stuartii NK cells during migration on the viscous medium and discussed adhesive and invasive properties utilizing the HeLa-M cell line as a host model. To visualize the interaction of P. stuartii NK bacterial cells with eukaryotic cells in vitro scanning electron and confocal microscopy were performed. We found that bacteria P. stuartii NK are able to adhere to and invade HeLa-M epithelial cells and these properties depend on the age of bacterial culture. Also, to invade the host cells the infectious dose of the bacteria is essential. The microphotographs indicate that after incubation of bacterial P. stuartii NK cells together with epithelial cells the bacterial cells both were adhered onto and invaded into the host cells.
Collapse
|
20
|
Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections. Microbiol Spectr 2017; 4. [PMID: 27227305 DOI: 10.1128/microbiolspec.vmbf-0023-2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies.
Collapse
|
21
|
Byvalov AA, Kononenko VL, Konyshev IV. Effect of lipopolysaccharide O-side chains on the adhesiveness of Yersinia pseudotuberculosis to J774 macrophages as revealed by optical tweezers. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Izaguirre MF, Casco VH. E-cadherin roles in animal biology: A perspective on thyroid hormone-influence. Cell Commun Signal 2016; 14:27. [PMID: 27814736 PMCID: PMC5097364 DOI: 10.1186/s12964-016-0150-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/26/2016] [Indexed: 01/15/2023] Open
Abstract
The establishment, remodeling and maintenance of tissular architecture during animal development, and even across juvenile to adult life, are deeply regulated by a delicate interplay of extracellular signals, cell membrane receptors and intracellular signal messengers. It is well known that cell adhesion molecules (cell-cell and cell-extracellular matrix) play a critical role in these processes. Particularly, adherens junctions (AJs) mediated by E-cadherin and catenins determine cell-cell contact survival and epithelia function. Consequently, this review seeks to encompass the complex and prolific knowledge about E-cadherin roles during physiological and pathological states, particularly focusing on the influence exerted by the thyroid hormone (TH).
Collapse
Affiliation(s)
- María Fernanda Izaguirre
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería (Bioingeniería-Bioinformática), Universidad Nacional de Entre Ríos, Ruta 11, Km 10, Oro Verde, Entre Ríos, Argentina
| | - Victor Hugo Casco
- Laboratorio de Microscopia Aplicada a Estudios Moleculares y Celulares, Facultad de Ingeniería (Bioingeniería-Bioinformática), Universidad Nacional de Entre Ríos, Ruta 11, Km 10, Oro Verde, Entre Ríos, Argentina.
| |
Collapse
|
23
|
Mydock-McGrane L, Cusumano Z, Han Z, Binkley J, Kostakioti M, Hannan T, Pinkner JS, Klein R, Kalas V, Crowley J, Rath NP, Hultgren SJ, Janetka JW. Antivirulence C-Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections. J Med Chem 2016; 59:9390-9408. [PMID: 27689912 PMCID: PMC5087331 DOI: 10.1021/acs.jmedchem.6b00948] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Gram-negative
uropathogenic Escherichia coli (UPEC)
bacteria are a causative pathogen of urinary tract infections
(UTIs). Previously developed antivirulence inhibitors of the type
1 pilus adhesin, FimH, demonstrated oral activity in animal models
of UTI but were found to have limited compound exposure due to the
metabolic instability of the O-glycosidic bond (O-mannosides). Herein, we disclose that compounds having
the O-glycosidic bond replaced with carbon linkages
had improved stability and inhibitory activity against FimH. We report
on the design, synthesis, and in vivo evaluation of this promising
new class of carbon-linked C-mannosides that show
improved pharmacokinetic (PK) properties relative to O-mannosides. Interestingly, we found that FimH binding is stereospecifically
modulated by hydroxyl substitution on the methylene linker, where
the R-hydroxy isomer has a 60-fold increase in potency.
This new class of C-mannoside antagonists have significantly
increased compound exposure and, as a result, enhanced efficacy in
mouse models of acute and chronic UTI.
Collapse
Affiliation(s)
| | - Zachary Cusumano
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | | | | | | | - Thomas Hannan
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | | | | | | | | | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri , Saint Louis, Missouri 63121 United States
| | - Scott J Hultgren
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | - James W Janetka
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| |
Collapse
|
24
|
Luo G, Huang L, Su Y, Qin Y, Xu X, Zhao L, Yan Q. flrA, flrB and flrC regulate adhesion by controlling the expression of critical virulence genes in Vibrio alginolyticus. Emerg Microbes Infect 2016; 5:e85. [PMID: 27485498 PMCID: PMC5034100 DOI: 10.1038/emi.2016.82] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Adhesion is an important virulence trait of Vibrio alginolyticus. Bacterial adhesion is influenced by environmental conditions; however, the molecular mechanism underlying this effect remains unknown. The expression levels of flrA, flrB and flrC were significantly downregulated in adhesion-deficient V. alginolyticus strains cultured under Cu2+, Pb2+, Hg2+ and low-pH stresses. Silencing these genes led to deficiencies in adhesion, motility, flagellar assembly, biofilm formation and exopolysaccharide (EPS) production. The expression levels of fliA, flgH, fliS, fliD, cheR, cheV and V12G01_22158 (Gene ID) were significantly downregulated in all of the RNAi groups, whereas the expression levels of toxT, ctxB, acfA, hlyA and tlh were upregulated in flrA- and flrC-silenced groups. These genes play a key role in the virulence mechanisms of most pathogenic Vibrio species. Furthermore, the expression of flrA, flrB and flrC was significantly influenced by temperature, salinity, starvation and pH. These results indicate that (1) flrA, flrB and flrC are important for V. alginolyticus adhesion; (2) flrA, flrB and flrC significantly influence bacterial adhesion, motility, biofilm formation and EPS production by controlling expression of key genes involved in those phenotypes; and (3) flrA, flrB and flrC regulate adhesion in the natural environment with different temperatures, pH levels, salinities and starvation time.
Collapse
Affiliation(s)
- Gang Luo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| |
Collapse
|
25
|
Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev 2016; 27:167-99. [PMID: 24696432 DOI: 10.1128/cmr.00080-13] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract.
Collapse
|
26
|
Silva LP, Fernandes LGV, Vieira ML, de Souza GO, Heinemann MB, Vasconcellos SA, Romero EC, Nascimento ALTO. Evaluation of two novel leptospiral proteins for their interaction with human host components. Pathog Dis 2016; 74:ftw040. [PMID: 27129366 DOI: 10.1093/femspd/ftw040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 11/12/2022] Open
Abstract
Pathogenic species of the genus Leptospira are the etiological agents of leptospirosis, the most widespread zoonosis. Mechanisms involved in leptospiral pathogenesis are not well understood. By data mining the genome sequences of Leptospira interrogans we have identified two proteins predicted to be surface exposed, LIC10821 and LIC10064. Immunofluorescence and proteinase K assays confirmed that the proteins are exposed. Reactivity of the recombinant proteins with human sera has shown that rLIC10821, but not rLIC10064, is recognized by antibodies in confirmed leptospirosis serum samples, suggesting its expression during infection. The rLIC10821 was able to bind laminin, in a dose-dependent fashion, and was called Lsa37 (leptospiral surface adhesin of 37 kDa). Studies with human plasma components demonstrated that rLIC10821 interacts with plasminogen (PLG) and fibrinogen (Fg). The binding of Lsa37 with PLG generates plasmin when PLG activator was added. Fibrin clotting reduction was observed in a thrombin-catalyzed reaction, when Fg was incubated with Lsa37, suggesting that this protein may interfere in the coagulation cascade during the disease. Although LIC10064 protein is more abundant than the corresponding Lsa37, binding activity with all the components tested was not detected. Thus, Lsa37 is a novel versatile adhesin that may mediate Leptospira-host interactions.
Collapse
Affiliation(s)
- Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Luis G V Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Eliete C Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 355, CEP 01246-902, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
27
|
Karimi S, Ahl D, Vågesjö E, Holm L, Phillipson M, Jonsson H, Roos S. In Vivo and In Vitro Detection of Luminescent and Fluorescent Lactobacillus reuteri and Application of Red Fluorescent mCherry for Assessing Plasmid Persistence. PLoS One 2016; 11:e0151969. [PMID: 27002525 PMCID: PMC4803345 DOI: 10.1371/journal.pone.0151969] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
Lactobacillus reuteri is a symbiont that inhabits the gastrointestinal (GI) tract of mammals, and several strains are used as probiotics. After introduction of probiotic strains in a complex ecosystem like the GI tract, keeping track of them is a challenge. The main objectives of this study were to introduce reporter proteins that would enable in vivo and in vitro detection of L. reuteri and increase knowledge about its interactions with the host. We describe for the first time cloning of codon-optimized reporter genes encoding click beetle red luciferase (CBRluc) and red fluorescent protein mCherry in L. reuteri strains ATCC PTA 6475 and R2LC. The plasmid persistence of mCherry-expressing lactobacilli was evaluated by both flow cytometry (FCM) and conventional plate count (PC), and the plasmid loss rates measured by FCM were lower overall than those determined by PC. Neutralization of pH and longer induction duration significantly improved the mCherry signal. The persistency, dose-dependent signal intensity and localization of the recombinant bacteria in the GI tract of mice were studied with an in vivo imaging system (IVIS), which allowed us to detect fluorescence from 6475-CBRluc-mCherry given at a dose of 1×1010 CFU and luminescence signals at doses ranging from 1×105 to 1×1010 CFU. Both 6475-CBRluc-mCherry and R2LC-CBRluc were localized in the colon 1 and 2 h after ingestion, but the majority of the latter were still found in the stomach, possibly reflecting niche specificity for R2LC. Finally, an in vitro experiment showed that mCherry-producing R2LC adhered efficiently to the intra cellular junctions of cultured IPEC-J2 cells. In conclusion, the two reporter genes CBRluc and mCherry were shown to be suitable markers for biophotonic imaging (BPI) of L. reuteri and may provide useful tools for future studies of in vivo and in vitro interactions between the bacteria and the host.
Collapse
Affiliation(s)
- Shokoufeh Karimi
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David Ahl
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Evelina Vågesjö
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Lena Holm
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mia Phillipson
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Hans Jonsson
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefan Roos
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
28
|
Thakur P, Chawla R, Tanwar A, Chakotiya AS, Narula A, Goel R, Arora R, Sharma RK. Attenuation of adhesion, quorum sensing and biofilm mediated virulence of carbapenem resistant Escherichia coli by selected natural plant products. Microb Pathog 2016; 92:76-85. [PMID: 26792674 DOI: 10.1016/j.micpath.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/31/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
The multi-drug resistance offered by Carbapenem Resistant Escherichia coli (Family: Enterobacteriaceae; Class: Gammaproteobacteria) against third line antibiotics can be attributed towards its ability to develop biofilm. Such process involves adhesion and quorum-sensing induced colonization leading to biomass development. The present study explored the anti-adhesion, anti-quorum sensing and anti-biofilm potential of 05 pre-standardized potent herbals. Berberis aristata (PTRC-2111-A) exhibited maximum potential in all these activities i.e. 91.3% ± 0.05% (Anti-adhesion), 96.06% ± 0.05% (Anti-Quorum sensing) and 51.3% ± 0.07% (Anti-Biofilm formation) respectively. Camellia sinensis (PTRC-31911-A) showed both anti-adhesion (84.1% ± 0.03%) and anti-quorum sensing (90.0%) potential while Holarrhena antidysenterica (PTRC-8111-A) showed only anti-quorum sensing potential as compared to standards/antibiotics. These findings were in line with the molecular docking analysis of phytoligands against Lux S and Pilin receptors. Furthermore, the pairwise correlation analysis of the tested activities with qualitative, quantitative and bioactivity functional descriptors revealed that an increased content of alkaloid, moderate content of flavonoids and decreased content of tannins supported all the three activities. In addition, nitric oxide and superoxide scavenging activity were found to be correlated with anti-quorum sensing activity. The findings indicated clearly that B. aristata (Family: Berberidaceae) and C. sinensis (Family: Theaceae) were potent herbal leads with significant therapeutic potential which further needs to be explored at pre-clinical level in the future.
Collapse
Affiliation(s)
- Pallavi Thakur
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raman Chawla
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.
| | - Ankit Tanwar
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Ankita Singh Chakotiya
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Alka Narula
- Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - Rajeev Goel
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Rajesh Arora
- Office of DG (LS), Defence Research and Development Organisation, DRDO Bhawan, Delhi, India
| | - Rakesh Kumar Sharma
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
29
|
Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Llobet E, González-Nicolau M, Insua JL, Tomas JM, Sansonetti PJ, Tournebize R, Bengoechea JA. Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling. J Biol Chem 2015; 290:16678-97. [PMID: 25971969 PMCID: PMC4505419 DOI: 10.1074/jbc.m114.621292] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 01/01/2023] Open
Abstract
Klebsiella pneumoniae is an etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group has shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule polysaccharide (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-of-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening: metabolism and transport genes (32% of the mutants) and envelope-related genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression, which in turn underlined the NF-κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of the immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS O-polysaccharide and T2SS mutant-induced responses were dependent on TLR2-TLR4-MyD88 activation suggested that LPS O-polysaccharide and PulA perturbed Toll-like receptor (TLR)-dependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS O-polysaccharide and PulA T2SS could be new targets for the design of new antimicrobials. Increasing TLR-governed defense responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Anna Tomás
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Leticia Lery
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France
| | - Verónica Regueiro
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Camino Pérez-Gutiérrez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Verónica Martínez
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - David Moranta
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Enrique Llobet
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Mar González-Nicolau
- From the Infection and Immunity Program, Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), 07110 Mallorca, Spain, the Instituto de Investigación Sanitaria de Palma (IdisPa), 07120 Mallorca, Spain, the Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jose L Insua
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - Juan M Tomas
- the Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Philippe J Sansonetti
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75231 Paris, France
| | - Régis Tournebize
- the Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris, France, INSERM U786, 75724 Paris, France, Imagopole, Plateforme d'Imagerie Dynamique, Institut Pasteur, 75724 Paris, France, and
| | - José A Bengoechea
- the Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, United Kingdom, the Consejo Superior de Investigaciones Científicas (CSIC), 28008 Madrid, Spain
| |
Collapse
|
30
|
Caricilli AM, Castoldi A, Câmara NOS. Intestinal barrier: A gentlemen’s agreement between microbiota and immunity. World J Gastrointest Pathophysiol 2014; 5:18-32. [PMID: 24891972 PMCID: PMC4024517 DOI: 10.4291/wjgp.v5.i1.18] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/26/2013] [Accepted: 01/14/2014] [Indexed: 02/07/2023] Open
Abstract
Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host’s adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.
Collapse
|
31
|
Evangelista K, Franco R, Schwab A, Coburn J. Leptospira interrogans binds to cadherins. PLoS Negl Trop Dis 2014; 8:e2672. [PMID: 24498454 PMCID: PMC3907533 DOI: 10.1371/journal.pntd.0002672] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Leptospirosis, caused by pathogenic species of Leptospira, is the most widespread zoonosis and has emerged as a major public health problem worldwide. The adhesion of pathogenic Leptospira to host cells, and to extracellular matrix (ECM) components, is likely to be necessary for the ability of leptospires to penetrate, disseminate and persist in mammalian host tissues. Previous work demonstrated that pathogenic L. interrogans binds to host cells more efficiently than to ECM. Using two independent screening methods, mass spectrometry and protein arrays, members of the cadherin family were identified as potential L. interrogans receptors on mammalian host surfaces. We focused our investigation on vascular endothelial (VE)-cadherin, which is widely expressed on endothelia and is primarily responsible for endothelial cell-cell adhesion. Monolayers of EA.hy926 and HMEC-1 endothelial cells produce VE-cadherin, bind L. interrogans in vitro, and are disrupted upon incubation with the bacteria, which may reflect the endothelial damage seen in vivo. Dose-dependent and saturable binding of L. interrogans to the purified VE-cadherin receptor was demonstrated and pretreatment of purified receptor or endothelial cells with function-blocking antibody against VE-cadherin significantly inhibited bacterial attachment. The contribution of VE-cadherin to leptospiral adherence to host endothelial cell surfaces is biologically significant because VE-cadherin plays an important role in maintaining the barrier properties of the vasculature. Attachment of L. interrogans to the vasculature via VE-cadherin may result in vascular damage, facilitating the escape of the pathogen from the bloodstream into different tissues during disseminated infection, and may contribute to the hemorrhagic manifestations of leptospirosis. This work is first to describe a mammalian cell surface protein as a receptor for L. interrogans.
Collapse
Affiliation(s)
- Karen Evangelista
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ricardo Franco
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrew Schwab
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jenifer Coburn
- Graduate Program in Microbiology, Immunology, and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
32
|
Peng Z, Krey V, Wei H, Tan Q, Vogelmann R, Ehrmann MA, Vogel RF. Impact of actin on adhesion and translocation of Enterococcus faecalis. Arch Microbiol 2013; 196:109-17. [DOI: 10.1007/s00203-013-0943-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/15/2013] [Accepted: 11/23/2013] [Indexed: 01/13/2023]
|
33
|
Vieira ML, Fernandes LG, Domingos RF, Oliveira R, Siqueira GH, Souza NM, Teixeira ARF, Atzingen MV, Nascimento ALTO. Leptospiral extracellular matrix adhesins as mediators of pathogen-host interactions. FEMS Microbiol Lett 2013; 352:129-39. [PMID: 24289724 DOI: 10.1111/1574-6968.12349] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 01/21/2023] Open
Abstract
Leptospirosis is been considered an important infectious disease that affects humans and animals worldwide. This review summarizes our current knowledge of bacterial attachment to extracellular matrix (ECM) components and discusses the possible role of these interactions for leptospiral pathogenesis. Leptospiral proteins show different binding specificity for ECM molecules: some are exclusive laminin-binding proteins (Lsa24/LfhA/LenA, Lsa27), while others have broader spectrum binding profiles (LigB, Lsa21, LipL53). These proteins may play a primary role in the colonization of host tissues. Moreover, there are multifunctional proteins that exhibit binding activities toward a number of target proteins including plasminogen/plasmin and regulators of the complement system, and as such, might also act in bacterial dissemination and immune evasion processes. Many ECM-interacting proteins are recognized by human leptospirosis serum samples indicating their expression during infection. This compilation of data should enhance our understanding of the molecular mechanisms of leptospiral pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rinttilä T, Apajalahti J. Intestinal microbiota and metabolites—Implications for broiler chicken health and performance. J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2013-00742] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Yeh YC, Cheng HC, Yang HB, Chang WL, Sheu BS. H. pylori CagL-Y58/E59 prime higher integrin α5β1 in adverse pH condition to enhance hypochlorhydria vicious cycle for gastric carcinogenesis. PLoS One 2013; 8:e72735. [PMID: 24009701 PMCID: PMC3757014 DOI: 10.1371/journal.pone.0072735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 07/12/2013] [Indexed: 01/26/2023] Open
Abstract
Background/Aims H. pylori CagL amino acid polymorphisms such as Y58/E59 can increase integrin α5β1 expression and gastric cancer risk. Hypochlorhydria during chronic H. pylori infection promotes gastric carcinogenesis. The study test whether CagL-Y58/E59 isolates may regulate integrin α5β1 to translocate CagA via the type IV secretory system even under adverse pH conditions, and whether the integrin α5β1 expression primed by H. pylori is a pH-dependent process involving hypochlorhydria in a vicious cycle to promote gastric carcinogenesis. Methods The expressions of integrin α5 and β1, CagA phosphorylation, IL-8, FAK, EGFR, and AKT activation of AGS cells exposed to CagL-Y58/E59 H. pylori, isogenic mutants, and different H. pylori CagL amino acid replacement mutants under different pH values were determined. Differences in the pepsinogen I/II ratio (indirectly indicating gastric acidity) and gastric integrin α5β1 expression were compared among the 172 H. pylori-infected patients with different cancer risks. Results Even under adversely low pH condition, H. pylori CagL-Y58/E59 still keep active integrin β1 with stronger binding affinity, CagA translocation, IL-8, FAK, EGFR, and AKT activation than the other mutants (p<0.05). The in vitro assay revealed higher priming of integrin α5β1 by H. pylori under elevated pH as hypochlorhydria (p<0.05). In the H. pylori-infected patients, the gastric integrin α5β1 expressions were higher in those with pepsinogen I/II ratio <6 than in those without (p<0.05). Conclusions H. pylori CagL-Y58/E59 prime higher integrin under adverse pH and may involve to enhance hypochlorhydria vicious cycle for gastric carcinogenesis, and thus require an early eradication.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Chi Cheng
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Bai Yang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pathology, Ton-Yen General Hospital, Hsinchu, Taiwan
| | - Wei-Lun Chang
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bor-Shyang Sheu
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Shaffer TL, Balder R, Buskirk SW, Hogan RJ, Lafontaine ER. Use of the Chinchilla model to evaluate the vaccinogenic potential of the Moraxella catarrhalis filamentous hemagglutinin-like proteins MhaB1 and MhaB2. PLoS One 2013; 8:e67881. [PMID: 23844117 PMCID: PMC3699455 DOI: 10.1371/journal.pone.0067881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/23/2013] [Indexed: 11/19/2022] Open
Abstract
Moraxella catarrhalis causes significant health problems, including 15–20% of otitis media cases in children and ∼10% of respiratory infections in adults with chronic obstructive pulmonary disease. The lack of an efficacious vaccine, the rapid emergence of antibiotic resistance in clinical isolates, and high carriage rates reported in children are cause for concern. In addition, the effectiveness of conjugate vaccines at reducing the incidence of otitis media caused by Streptococcus pneumoniae and nontypeable Haemophilus influenzae suggest that M. catarrhalis infections may become even more prevalent. Hence, M. catarrhalis is an important and emerging cause of infectious disease for which the development of a vaccine is highly desirable. Studying the pathogenesis of M. catarrhalis and the testing of vaccine candidates have both been hindered by the lack of an animal model that mimics human colonization and infection. To address this, we intranasally infected chinchilla with M. catarrhalis to investigate colonization and examine the efficacy of a protein-based vaccine. The data reveal that infected chinchillas produce antibodies against antigens known to be major targets of the immune response in humans, thus establishing immune parallels between chinchillas and humans during M. catarrhalis infection. Our data also demonstrate that a mutant lacking expression of the adherence proteins MhaB1 and MhaB2 is impaired in its ability to colonize the chinchilla nasopharynx, and that immunization with a polypeptide shared by MhaB1 and MhaB2 elicits antibodies interfering with colonization. These findings underscore the importance of adherence proteins in colonization and emphasize the relevance of the chinchilla model to study M. catarrhalis–host interactions.
Collapse
Affiliation(s)
- Teresa L. Shaffer
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Rachel Balder
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Sean W. Buskirk
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia, United States of America
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Mapping the ligand-binding region of Borrelia hermsii fibronectin-binding protein. PLoS One 2013; 8:e63437. [PMID: 23658828 PMCID: PMC3642150 DOI: 10.1371/journal.pone.0063437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/02/2013] [Indexed: 12/23/2022] Open
Abstract
Many pathogenic microorganisms express fibronectin-binding molecules that facilitate their adherence to the extracellular matrix and/or entry into mammalian cells. We have previously described a Borrelia recurrentis gene, cihC that encodes a 40-kDa surface receptor for both, fibronectin and the complement inhibitors C4bp and C1-Inh. We now provide evidence for the expression of a group of highly homologues surface proteins, termed FbpA, in three B. hermsii isolates and two tick-borne relapsing fever spirochetes, B. parkeri and B. turicatae. When expressed in Escherichia coli or B. burgdorferi, four out of five proteins were shown to selectively bind fibronectin, whereas none of five proteins were able to bind the human complement regulators, C4bp and C1-Inh. By applying deletion mutants of the B. hermsii fibronectin-binding proteins a putative high-affinity binding site for fibronectin was mapped to its central region. In addition, the fibronectin-binding proteins of B. hermsii were found to share sequence homology with BBK32 of the Lyme disease spirochete B. burgdorferi with similar function suggesting its involvement in persistence and/or virulence of relapsing fever spirochetes.
Collapse
|
38
|
Minnaard J, Rolny IS, Pérez PF. Interaction between Bacillus cereus and cultured human enterocytes: effect of calcium, cell differentiation, and bacterial extracellular factors. J Food Prot 2013; 76:820-6. [PMID: 23643123 DOI: 10.4315/0362-028x.jfp-12-294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacillus cereus interaction with cultured human enterocytes and the signaling pathways responsible for the biological effects of the infection were investigated. Results demonstrate that calcium depletion increases the ability of strains T1 and 2 to invade cells. Bacteria associated in greater extent to undifferentiated enterocytes and extracellular factors from strain 2 increased its own association and invasion. Inhibitors of signaling pathways related to phosphorylated lipids (U73122 and wortmannin) were able to significantly reduce cytoskeleton disruption induced by B. cereus infection. Adhesion of strain T1 decreased in the presence of U73122 and of wortmannin, as well as when those inhibitors were used together. In contrast, invasion values were diminished only by U73122. Results show that different factors are involved in the interaction between B. cereus and cultured human enterocytes. Following infection, disruption of the cytoskeleton could facilitate invasion of the eukaryotic cells.
Collapse
Affiliation(s)
- Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Consejo Nacional de Investigaciones Científicas y Técnicas [CONICET], La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina.
| | | | | |
Collapse
|
39
|
Menanteau-Ledouble S, Lawrence ML. Use of bioluminescence mutant screening for identification of Edwardsiella ictaluri genes involved in channel catfish (Ictalurus punctatus) skin colonization. Vet Microbiol 2013; 162:724-730. [DOI: 10.1016/j.vetmic.2012.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/05/2012] [Accepted: 09/28/2012] [Indexed: 01/02/2023]
|
40
|
Characterization of LIC11207, a novel leptospiral protein that is recognized by human convalescent sera and prevents apoptosis of polymorphonuclear leukocytes. Microb Pathog 2012; 56:21-8. [PMID: 23092690 DOI: 10.1016/j.micpath.2012.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/09/2012] [Accepted: 10/15/2012] [Indexed: 01/01/2023]
Abstract
We report the study of a predicted outer-membrane leptospiral protein encoded by the gene lic11207. This protein is conserved in several pathogenic leptospiral strains but is absent in the saprophyte Leptospira biflexa. This putative outer-membrane protein has a domain of unknown function (DUF) 1565 found in several phylogenetically diverse bacteria and in the archaeon Methanosarcina acetivorans. The gene was cloned and expressed in Escherichia coli BL21 (SI) strain using the expression vector pDEST17. The 34 kDa recombinant protein was tagged with N-terminal hexahistidine and purified by metal-charged chromatography. The purified protein was used to assess: reactivity with human convalescent sera; in vivo expression; ability to activate endothelial cells (EC); and ability to modulate the apoptosis of polymorphonuclear cells (PMNs). The LIC11207 coding sequence was identified in vivo in the hamster renal tubules during experimental infection with Leptospira interrogans. The rLIC11207 showed significant antigenicity against human convalescent sera when compared with sera from healthy donors. The recombinant protein did not alter the surface expression of E-selectin or intercellular adhesion molecule 1 (ICAM-1) in EC and failed to induce the release of von Willebrand factor (vWF). Interestingly, rLIC11207 delayed apoptosis of PMNs suggesting a possible role of this protein during the infection.
Collapse
|
41
|
Plasminogen binding proteins and plasmin generation on the surface of Leptospira spp.: the contribution to the bacteria-host interactions. J Biomed Biotechnol 2012; 2012:758513. [PMID: 23118516 PMCID: PMC3481863 DOI: 10.1155/2012/758513] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 11/23/2022] Open
Abstract
Leptospirosis is considered a neglected infectious disease of human and veterinary concern. Although extensive investigations on host-pathogen interactions have been pursued by several research groups, mechanisms of infection, invasion and persistence of pathogenic Leptospira spp. remain to be elucidated. We have reported the ability of leptospires to bind human plasminogen (PLG) and to generate enzimatically active plasmin (PLA) on the bacteria surface. PLA-coated Leptospira can degrade immobilized ECM molecules, an activity with implications in host tissue penetration. Moreover, we have identified and characterized several proteins that may act as PLG-binding receptors, each of them competent to generate active plasmin. The PLA activity associated to the outer surface of Leptospira could hamper the host immune attack by conferring the bacteria some benefit during infection. The PLA-coated leptospires obstruct complement C3b and IgG depositions on the bacterial surface, most probably through degradation. The decrease of leptospiral opsonization might be an important aspect of the immune evasion strategy. We believe that the presence of PLA on the leptospiral surface may (i) facilitate host tissue penetration, (ii) help the bacteria to evade the immune system and, as a consequence, (iii) permit Leptospira to reach secondary sites of infection.
Collapse
|
42
|
Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. Proc Natl Acad Sci U S A 2012; 109:13046-51. [PMID: 22837400 DOI: 10.1073/pnas.1120685109] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of cadherins, which are essential for metazoan multicellularity and restricted to metazoans and their closest relatives, has special relevance for understanding metazoan origins. To reconstruct the ancestry and evolution of cadherin gene families, we analyzed the genomes of the choanoflagellate Salpingoeca rosetta, the unicellular outgroup of choanoflagellates and metazoans Capsaspora owczarzaki, and a draft genome assembly from the homoscleromorph sponge Oscarella carmela. Our finding of a cadherin gene in C. owczarzaki reveals that cadherins predate the divergence of the C. owczarzaki, choanoflagellate, and metazoan lineages. Data from these analyses also suggest that the last common ancestor of metazoans and choanoflagellates contained representatives of at least three cadherin families, lefftyrin, coherin, and hedgling. Additionally, we find that an O. carmela classical cadherin has predicted structural features that, in bilaterian classical cadherins, facilitate binding to the cytoplasmic protein β-catenin and, thereby, promote cadherin-mediated cell adhesion. In contrast with premetazoan cadherin families (i.e., those conserved between choanoflagellates and metazoans), the later appearance of classical cadherins coincides with metazoan origins.
Collapse
|
43
|
Zhang L, Zhang C, Ojcius DM, Sun D, Zhao J, Lin X, Li L, Li L, Yan J. The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals. Mol Microbiol 2012; 83:1006-23. [DOI: 10.1111/j.1365-2958.2012.07985.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
van Schaik EJ, Samuel JE. Phylogenetic diversity, virulence and comparative genomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:13-38. [PMID: 22711625 DOI: 10.1007/978-94-007-4315-1_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Coxiella burnetii, the causative agent of Q fever, has remained a public health concern since the identification of this organism in 1935 by E. H. Derrick in Australia and at the Rocky Mountain Laboratory in the USA by H.R. Cox and G. Davis. Human Q fever has been described in most countries where C. burnetii is ubiquitous in the environment except in New Zealand where no cases have been described. Most human infections are acquired through inhalation of contaminated aerosols that can lead to acute self-limiting febrile illness or more severe chronic cases of hepatitis or endocarditis. It is estimated that the actual incidence of human infection is under-reported as a result of imprecise tools for differential diagnosis. An intracellular lifestyle, low infectious dose, and ease of transmission have resulted in the classification of C. burnetii as a category B bio-warfare agent. The recent outbreaks in Europe are a reminder that there is much to learn about this unique intracellular pathogen, especially with the speculation of a hyper-virulent strain contributing to an outbreak in the Netherlands where over 4,000 human cases were reported. A new era in C. burnetii research has begun with the recent description of an axenic media making this an exciting time to study this bacterial pathogen.
Collapse
Affiliation(s)
- Erin J van Schaik
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, 3112 Medical Research and Education Building, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
45
|
Abstract
Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap among a diverse group of bacteria. The molecular organization within these structures act in concert to internalize the invading pathogen. This dynamic process could be subdivided into three acts - actin recruitment, engulfment, and finally, actin disassembly/internalization. This review will present the current state of knowledge of the molecular processes involved in each stage of bacterial invasion, and provide a perspective that highlights the temporal and spatial control of actin remodelling that occurs during bacterial invasion.
Collapse
Affiliation(s)
- Rey Carabeo
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, UK.
| |
Collapse
|
46
|
Humen MA, Pérez PF, Liévin-Le Moal V. Lipid raft-dependent adhesion of Giardia intestinalis trophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries. Cell Microbiol 2011; 13:1683-702. [PMID: 21790940 DOI: 10.1111/j.1462-5822.2011.01647.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gardia intestinalis, the aetiological agent of giardiasis, one of the most common intestinal diseases in both developing and developed countries, induces a loss of epithelial barrier function and functional injuries of the enterocyte by mechanisms that remain unknown. Three possible mechanisms have been proposed: (i) Giardia may directly alter the epithelial barrier after a close interaction between the trophozoite and polarized intestinal cells, (ii) intestinal functions may be altered by factors secreted by Giardia including an 'enterotoxin', proteinases and lectins, and (iii) based on mouse studies, a mechanism involving the intervention of activated T lymphocytes. We used fully differentiated cultured human intestinal Caco-2/TC7 cells forming a monolayer and expressing several polarized functions of enterocytes of small intestine to investigate the mechanisms by which G. intestinalis induces structural and functional alterations in the host intestinal epithelium. We first report that adhesion of G. intestinalis at the brush border of enterocyte-like cells involves the lipid raft membrane microdomains of the trophozoite. We report an adhesion-dependent disorganization of the apical F-actin cytoskeleton that, in turn, results in a dramatic loss of distribution of functional brush border-associated proteins, including sucrase-isomaltase (SI), dipeptidylpeptidase IV (DPP IV) and fructose transporter, GLUT5, and a decrease in sucrose enzyme activity in G. intestinalis-infected enterocyte-like cells. We observed that the G. intestinalis trophozoite promotes an adhesion-dependent decrease in transepithelial electrical resistance (TER) accompanied by a rearrangement of functional tight junction (TJ)-associated occludin, and delocalization of claudin-1. Finally, we found that whereas the occludin rearrangement induced by G. intestinalis was related to apical F-actin disorganization, the delocalization of claudin-1 was not.
Collapse
|
47
|
Lcl of Legionella pneumophila is an immunogenic GAG binding adhesin that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect Immun 2011; 79:2168-81. [PMID: 21422183 DOI: 10.1128/iai.01304-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Legionellosis is mostly caused by Legionella pneumophila and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In vitro and in vivo, interactions of L. pneumophila with lung epithelial cells are mediated by the sulfated glycosaminoglycans (GAGs) of the host extracellular matrix. In this study, we have identified several Legionella heparin binding proteins. We have shown that one of these proteins, designated Lcl, is a polymorphic adhesin of L. pneumophila that is produced during legionellosis. Homologues of Lcl are ubiquitous in L. pneumophila serogroups but are undetected in other Legionella species. Recombinant Lcl binds to GAGs, and a Δlpg2644 mutant demonstrated reduced binding to GAGs and human lung epithelial cells. Importantly, we showed that the Δlpg2644 strain is dramatically impaired in biofilm formation. These data delineate the role of Lcl in the GAG binding properties of L. pneumophila and provide molecular evidence regarding its role in L. pneumophila adherence and biofilm formation.
Collapse
|
48
|
Yeh YC, Chang WL, Yang HB, Cheng HC, Wu JJ, Sheu BS. H. pylori cagL amino acid sequence polymorphism Y58E59 induces a corpus shift of gastric integrin α5β1 related with gastric carcinogenesis. Mol Carcinog 2011; 50:751-9. [PMID: 21374738 DOI: 10.1002/mc.20753] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 01/27/2011] [Indexed: 02/01/2023]
Abstract
We tested whether cagL amino acid sequence polymorphisms of Helicobacter pylori correlated to clinico-histological outcomes and gastric α5β1 integrin expressions. One hundred forty five patients with H. pylori infection and 47 noninfected controls were enrolled to check gastric integrin α5β1 intensities topographically. The collected isolates were screened for cagL-genotype by polymerase chain reaction (PCR), and assessed for amino acid sequence polymorphisms using sequence translation. Our H. pylori isolates were predominantly (98.6%) cagL-genopositive, 95.8% of which had the RGD motif in their amino acid sequences. The isolates from the gastric cancer (GCA) patients indicated a higher rate of amino acid sequence polymorphisms-Y58 and E59-than those of the non-GCA patients (P < 0.05). The polymorphisms as Y58E59 noted with increased risk of GCA up to 4.6-fold (95%CI: 1.8-11.9). H. pylori-infected patients had higher integrin α5β1 than noninfected patients (P < 0.05). Furthermore, cagL-Y58E59 H. pylori infection predisposed an upward shift in integrin α5β1 (P = 0.007) in the corpus, leading to more severe corpus chronic inflammation (P < 0.05). H. pylori CagL amino acid polymorphisms like Y58E59 correlate with a higher risk of GCA, and may regulate a corpus shift of gastric integrin α5β1 to lead to severe corpus gastritis during gastric carcinogenesis.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Internal Medicine, National Cheng Kung University Medical Center, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Invasion of eukaryotic cells by Borrelia burgdorferi requires β(1) integrins and Src kinase activity. Infect Immun 2010; 79:1338-48. [PMID: 21173306 DOI: 10.1128/iai.01188-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most widespread tick-borne infection in the northern hemisphere that results in a multistage disorder with concomitant pathology, including arthritis. During late-stage experimental infection in mice, B. burgdorferi evades the adaptive immune response despite the presence of borrelia-specific bactericidal antibodies. In this study we asked whether B. burgdorferi could invade fibroblasts or endothelial cells as a mechanism to model the avoidance from humorally based clearance. A variation of the gentamicin protection assay, coupled with the detection of borrelial transcripts following gentamicin treatment, indicated that a portion of B. burgdorferi cells were protected in the short term from antibiotic killing due to their ability to invade cultured mammalian cells. Long-term coculture of B. burgdorferi with primary human fibroblasts provided additional support for intracellular protection. Furthermore, decreased invasion of B. burgdorferi in murine fibroblasts that do not synthesize the β(1) integrin subunit was observed, indicating that β(1)-containing integrins are required for optimal borrelial invasion. However, β(1)-dependent invasion did not require either the α(5)β(1) integrin or the borrelial fibronectin-binding protein BBK32. The internalization of B. burgdorferi was inhibited by cytochalasin D and PP2, suggesting that B. burgdorferi invasion required the reorganization of actin filaments and Src family kinases (SFK), respectively. Taken together, these results suggest that B. burgdorferi can invade and retain viability in nonphagocytic cells in a process that may, in part, help to explain the phenotype observed in untreated experimental infection.
Collapse
|
50
|
Hoffmann C, Berking A, Agerer F, Buntru A, Neske F, Chhatwal GS, Ohlsen K, Hauck CR. Caveolin limits membrane microdomain mobility and integrin-mediated uptake of fibronectin-binding pathogens. J Cell Sci 2010; 123:4280-91. [PMID: 21098633 DOI: 10.1242/jcs.064006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus, which is a leading cause of hospital-acquired infections, binds via fibronectin to integrin α5β1, a process that can promote host colonization in vivo. Integrin engagement induces actin cytoskeleton rearrangements that result in the uptake of S. aureus by non-professional phagocytic cells. Interestingly, we found that fibronectin-binding S. aureus trigger the redistribution of membrane microdomain components. In particular, ganglioside GM1 and GPI-linked proteins were recruited upon integrin β1 engagement, and disruption of membrane microdomains blocked bacterial internalization. Several membrane-microdomain-associated proteins, such as flotillin-1 and flotillin-2, as well as caveolin, were recruited to sites of bacterial attachment. Whereas dominant-negative versions of flotillin-2 did not affect bacterial attachment or internalization, cells deficient for caveolin-1 (Cav1(-/-)) showed increased uptake of S. aureus and other Fn-binding pathogens. Recruitment of membrane microdomains to cell-associated bacteria was unaltered in Cav1(-/-) cells. However, fluorescence recovery after photobleaching (FRAP) revealed an enhanced mobility of membrane-microdomain-associated proteins in the absence of caveolin-1. Enhanced membrane microdomain mobility and increased uptake of S. aureus was repressed by expression of wild-type caveolin-1, but not caveolin-1 G83S, which harbors a point mutation in the caveolin scaffolding domain. Similarly, chemical or physical stimulation of membrane fluidity led to increased uptake of S. aureus. These results highlight a crucial role for caveolin-1 in negative regulation of membrane microdomain mobility, thereby affecting endocytosis of bacteria-engaged integrins. This process might not only limit host cell invasion by integrin-binding bacterial pathogens, but might also be physiologically relevant for integrin-mediated cell adhesion.
Collapse
Affiliation(s)
- Christine Hoffmann
- Lehrstuhl Zellbiologie X908, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | | | | | | | | | | | | | | |
Collapse
|