1
|
Jin KC, Seo SO, Kim SK. Animal-free production of hen egg ovalbumin in engineered Saccharomyces cerevisiae via precision fermentation. Int J Biol Macromol 2024; 271:132479. [PMID: 38772474 DOI: 10.1016/j.ijbiomac.2024.132479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
To enable the sustainable production of ovalbumin (OVA) without relying on animal sources, the generally recognized as safe (GRAS) host Saccharomyces cerevisiae was used for the precision fermentation-based production of recombinant OVA. For this purpose, a signal peptide derived from EPX1, the most abundant extracellular protein produced by Pichia pastoris, was identified as a novel signal peptide for the efficient secretion of OVA in S. cerevisiae. To improve OVA secretion and cell growth, three helper proteins (PDI1, KAR2, and HAC1) present in the endoplasmic reticulum were expressed individually or in combination. Notably, the +P1/K2 strain coexpressing PDI1 and KAR2 with OVA produced 2 mg/L of OVA in the medium fraction; this value was 2.6-fold higher than the corresponding value for the control strain without helper proteins. Finally, a glucose-limited fed-batch fermentation process using the +P1/K2 strain yielded 132 mg/L of total OVA with 8 mg/L of extracellular OVA.
Collapse
Affiliation(s)
- Kyoung Chan Jin
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
| |
Collapse
|
2
|
Kormanová Ľ, Levarski Z, Minich A, Varga V, Levarská L, Struhárňanská E, Turňa J, Stuchlík S. Novel expression system based on enhanced permeability of Vibrio natriegens cells induced by D,D- carboxypeptidase overexpression. World J Microbiol Biotechnol 2023; 39:277. [PMID: 37568013 PMCID: PMC10421817 DOI: 10.1007/s11274-023-03723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Vibrio natriegens is a fast-growing, non-pathogenic marine bacterium with promising features for biotechnological applications such as high-level recombinant protein production or fast DNA propagation. A remarkable short generation time (< 10 min), robust proteosynthetic activity and versatile metabolism with abilities to utilise wide range of substrates contribute to its establishment as a future industrial platform for fermentation processes operating with high productivity.D,D-carboxypeptidases are membrane-associated enzymes involved in peptidoglycan biosynthesis and cell wall formation. This study investigates the impact of overexpressed D,D-carboxypeptidases on membrane integrity and the increased leakage of intracellular proteins into the growth medium in V. natriegens. Our findings confirm that co-expression of these enzymes can enhance membrane permeability, thereby facilitating the transport of target proteins into the extracellular environment, without the need for secretion signals, tags, or additional permeabilization methods. Using only a single step IMAC chromatography, we were able to purify AfKatG, MDBP or Taq polymerase in total yields of 117.9 ± 56.0 mg/L, 36.5 ± 12.9 mg/L and 26.5 ± 6.0 mg/L directly from growth medium, respectively. These results demonstrate the feasibility of our V. natriegens based system as a broadly applicable extracellular tag-less recombinant protein producer.
Collapse
Affiliation(s)
- Ľubica Kormanová
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Zdenko Levarski
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
- Science Park, Comenius University in Bratislava, Ilkovičova 8, Bratislava, 811 04 Slovak Republic
| | - Andrej Minich
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Viktor Varga
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Lenka Levarská
- Science Park, Comenius University in Bratislava, Ilkovičova 8, Bratislava, 811 04 Slovak Republic
| | - Eva Struhárňanská
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Ján Turňa
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| | - Stanislav Stuchlík
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava, 811 04 Slovak Republic
| |
Collapse
|
3
|
|
4
|
Li J, Tang L, Wang P, Li G, Jin H, Mo Z. Identification and application of T3SS translocation signal in Edwardsiella piscicida attenuated carrier as a bivalent vaccine. JOURNAL OF FISH DISEASES 2021; 44:513-520. [PMID: 33682163 DOI: 10.1111/jfd.13338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Type III secretion system (T3SS)-dependent translocation has been used to deliver heterologous antigens by vaccine carriers into host cells. In this research, we identified the translocation signal of Edwardsiella piscicida T3SS effector EseG and constructed an antibiotic resistance-free balanced-lethal system as attenuated vaccine carrier to present antigens by T3SS. Edwardsiella piscicida LSE40 asd gene deletion mutant was constructed and complemented with pYA3342 harbouring the asd (aspartate β-semialdehyde dehydrogenase) gene from Salmonella. Fusion proteins composed of EseG N-terminal 1-108 amino acids and the TEM1-β-lactamase reporter were inserted in plasmid pYA3342. The fusion protein could secrete into the cell culture, translocate into HeLa cells, and localize in the membrane fraction. Then, the double gene deletion mutant LSE40ΔasdΔpurA was constructed as an attenuated vaccine carrier, and Aeromonas hydrophila GapA (glyceraldehyde-3-phosphate dehydrogenase) was fused with the translocation signal, instead of the TEM1-β-lactamase reporter. The bivalent vaccine could protect blue gourami (Trichogaster trichopterus) against E. piscicida and A. hydrophila, with the relative per cent survival of 80.77% and 63.83%, respectively. These results indicated that EseG N-terminal 1-108 amino acid peptide was the translocation signal of E. piscicida T3SS, which could be used to construct bivalent vaccines based on an attenuated E. piscicida carrier.
Collapse
Affiliation(s)
- Jie Li
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lei Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pengmei Wang
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Guiyang Li
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Huaiyuan Jin
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Aquaculture, Tianjin Agricultural University, Tianjin, China
| | - Zhaolan Mo
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Karamitros CS, Morvan M, Vigne A, Lim J, Gruner P, Beneyton T, Vrignon J, Baret JC. Bacterial Expression Systems for Enzymatic Activity in Droplet-Based Microfluidics. Anal Chem 2020; 92:4908-4916. [PMID: 31909981 DOI: 10.1021/acs.analchem.9b04969] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Functional screenings in droplet-based microfluidics require the analysis of various types of activities of individual cells. When screening for enzymatic activities, the link between the enzyme of interest and the information-baring molecule, the DNA, must be maintained to relate phenotypes to genotypes. This linkage is crucial in directed evolution experiments or for the screening of natural diversity. Micro-organisms are classically used to express enzymes from nucleic acid sequences. However, little information is available regarding the most suitable expression system for the sensitive detection of enzymatic activity at the single-cell level in droplet-based microfluidics. Here, we compare three different expression systems for l-asparaginase (l-asparagine amidohydrolase, EC 3.5.1.1), an enzyme of therapeutic interest that catalyzes the conversion of l-asparagine to l-aspartic acid and ammonia. We developed three expression vectors to produce and localize l-asparaginase (l-ASNase) in E. coli either in the cytoplasm, on the surface of the inner membrane (display), or in the periplasm. We show that the periplasmic expression is the most optimal strategy combining both a good yield and a good accessibility for the substrate without the need for lysing the cells. We suggest that periplasmic expression may provide a very efficient platform for screening applications at the single-cell level in microfluidics.
Collapse
Affiliation(s)
- Christos S Karamitros
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D37077 Goettingen, Germany.,Aeglea Biotherapeutics, 901 S MoPac Expy #250, Austin, Texas 78746, United States
| | - Mickaël Morvan
- Université de Bordeaux, CNRS, CRPP, UMR5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Aurélie Vigne
- Université de Bordeaux, CNRS, CRPP, UMR5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Jiseok Lim
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Philipp Gruner
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D37077 Goettingen, Germany
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, CRPP, UMR5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Jérémy Vrignon
- Université de Bordeaux, CNRS, CRPP, UMR5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, CRPP, UMR5031, 115 Avenue Albert Schweitzer, 33600 Pessac, France.,Institut Universitaire de France, 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
6
|
Effective Strategies to Overcome the Insolubility of Recombinant ScFv Antibody against EpCAM Extracellular Domain in E. coli. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnol Adv 2020; 40:107504. [PMID: 31926255 DOI: 10.1016/j.biotechadv.2020.107504] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/09/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022]
Abstract
Cytochrome P450s (CYPs) are heme-thiolated enzymes that catalyze the oxidation of CH bonds in a regio and stereoselective manner. Activation of the non-activated carbon atom can be further enhanced by multistep chemo-enzymatic reactions; moreover, several useful chemicals can be synthesized to provide alternative organic synthesis routes. Given their versatile functionality, CYPs show promise in a number of biotechnological fields. Recently, various CYPs, along with their sequences and functionalities, have been identified owing to rapid developments in sequencing technology and molecular biotechnology. In addition to these discoveries, attempts have been made to utilize CYPs to industrially produce biochemicals from available and sustainable bioresources such as oil, amino acids, carbohydrates, and lignin. Here, these accomplishments, particularly those involving the use of CYP enzymes as whole-cell biocatalysts for bioresource biotransformation, will be reviewed. Further, recently developed biotransformation pathways that result in gram-scale yields of fatty acids and fatty alkanes as well as aromatic amino acids, which depend on the hosts used for CYP expression, and the nature of the multistep reactions will be discussed. These pathways are similar regardless of whether the hosts are CYP-producing or non-CYP-producing; the limitations of these methods and the ways to overcome them are reviewed here.
Collapse
|
8
|
Rebelein JG, Cotelle Y, Garabedian B, Ward TR. Chemical Optimization of Whole-Cell Transfer Hydrogenation Using Carbonic Anhydrase as Host Protein. ACS Catal 2019; 9:4173-4178. [PMID: 31080690 PMCID: PMC6503580 DOI: 10.1021/acscatal.9b01006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Indexed: 12/12/2022]
Abstract
![]()
Artificial
metalloenzymes combine a synthetic metallocofactor with
a protein scaffold and can catalyze abiotic reactions in vivo. Herein, we report on our efforts to valorize human carbonic anhydrase
II as a scaffold for whole-cell transfer hydrogenation. Two platforms
were tested: periplasmic compartmentalization and surface display
in Escherichia coli. A chemical optimization of an
IrCp* cofactor was performed. This led to 90 turnovers in the cell,
affording a 69-fold increase in periplasmic product formation over
the previously reported, sulfonamide-bearing IrCp* cofactor. These
findings highlight the versatility of carbonic anhydrase as a promising
scaffold for whole-cell catalysis with artificial metalloenzymes.
Collapse
Affiliation(s)
- Johannes G. Rebelein
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Yoann Cotelle
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Brett Garabedian
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Thomas R. Ward
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Mutagenesis of DsbAss is Crucial for the Signal Recognition Particle Mechanism in Escherichia coli: Insights from Molecular Dynamics Simulations. Biomolecules 2019; 9:biom9040133. [PMID: 30987187 PMCID: PMC6523802 DOI: 10.3390/biom9040133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
The disulfide bond signal sequence (DsbAss) protein is characterized as an important virulence factor in gram-negative bacteria. This study aimed to analyze the "alanine" alteration in the hydrophobic (H) region of DsbAss and to understand the conformational DsbAss alteration(s) inside the fifty-four homolog (Ffh)-binding groove which were revealed to be crucial for translocation of ovine growth hormone (OGH) to the periplasmic space in Escherichia coli via the secretory (Sec) pathway. An experimental design was used to explore the hydrophobicity and alteration of alanine (Ala) to isoleucine (Ile) in the tripartite structure of DsbAss. As a result, two DsbAss mutants (Ala at positions -11 and -13) with same hydrophobicity of 1.539 led to the conflicting translocation of the active OGH gene. We performed molecular dynamics (MD) simulations and molecular mechanics generalized born surface area (MM-GBSA) binding free energy calculations to examine the interaction energetic and dynamic aspects of DsbAss/signal repetition particle 54 (SRP54) binding, which has a principle role in Escherichia coli Sec pathways. Although both DsbAss mutants retained helicity, the MD simulation analysis evidenced that altering Ala-13 changed the orientation of the signal peptide in the Ffh M binding domain groove, favored more stable interaction energies (MM-GBSA ΔGtotal = -140.62 kcal mol-1), and hampered the process of OGH translocation, while Ala-11 pointed outward due to unstable conformation and less binding energy (ΔGtotal = -124.24 kcal mol-1). Here we report the dynamic behavior of change of "alanine" in the H-domain of DsbAss which affects the process of translocation of OGH, where MD simulation and MM-GBSA can be useful initial tools to investigate the virulence of bacteria.
Collapse
|
10
|
Leow HC, Fischer K, Leow YC, Braet K, Cheng Q, McCarthy J. Cytoplasmic and periplasmic expression of recombinant shark VNAR antibody in Escherichia coli. Prep Biochem Biotechnol 2019; 49:315-327. [DOI: 10.1080/10826068.2019.1566145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Herng C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katja Fischer
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yee C. Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Katleen Braet
- Department of Research, BioMARIC, Zwijnaarde, Belgium
| | - Qin Cheng
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Drug Resistance Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - James McCarthy
- Clinical Tropical Medicine Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
Shin HJ, Jung KA, Nam CW, Park JM. A genetic approach for microbial electrosynthesis system as biocommodities production platform. BIORESOURCE TECHNOLOGY 2017; 245:1421-1429. [PMID: 28550992 DOI: 10.1016/j.biortech.2017.05.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Microbial electrosynthesis is a process that can produce biocommodities from the reduction of substrates with microbial catalysts and an external electron supply. This process is expected to become a new application of a cell factory for novel chemical production, wastewater treatment, and carbon capture and utilization. However, microbial electrosynthesis is still subject to several problems that need to be overcome for commercialization, so continuous development such as metabolic engineering is essential. The development of microbial electrosynthesis can open up new opportunities for sustainable biocommodities production platforms. This review provides significant information on the current state of MES development, focusing on extracellularly electron transfer and metabolic engineering.
Collapse
Affiliation(s)
- Hyo Jeong Shin
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Kyung A Jung
- Bioenergy Research Center, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Chul Woo Nam
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea
| | - Jong Moon Park
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea; Bioenergy Research Center, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea; Division of Advanced Nuclear Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, South Korea.
| |
Collapse
|
12
|
Han S, Machhi S, Berge M, Xi G, Linke T, Schoner R. Novel signal peptides improve the secretion of recombinant Staphylococcus aureus Alpha toxin H35L in Escherichia coli. AMB Express 2017; 7:93. [PMID: 28497288 PMCID: PMC5427057 DOI: 10.1186/s13568-017-0394-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
Secretion of heterologous proteins into Escherichia coli cell culture medium offers significant advantages for downstream processing over production as inclusion bodies; including cost and time savings, and reduction of endotoxin. Signal peptides play an important role in targeting proteins for translocation across the cytoplasmic membrane to the periplasmic space and release into culture medium during the secretion process. Alpha toxinH35L (ATH35L) was selected as an antigen for vaccine development against Staphylococcus aureus infections. It was successfully secreted into culture medium of E. coli by using bacterial signal peptides linked to the N-terminus of the protein. In order to improve the level of secreted ATH35L, we designed a series of novel signal peptides by swapping individual domains of modifying dsbA and pelB signal peptides and tested them in a fed-batch fermentation process. The data showed that some of the modified signal peptides improved the secretion efficiency of ATH35L compared with E. coli signal peptides from dsbA, pelB and phoA proteins. Indeed, one of the novel signal peptides improved the yield of secreted ATH35L by 3.5-fold in a fed-batch fermentation process and at the same time maintained processing at the expected site for signal peptide cleavage. Potentially, these new novel signal peptides can be used to improve the secretion efficiency of other heterologous proteins in E. coli. Furthermore, analysis of the synthetic signal peptide amino acid sequences provides some insight into the sequence features within the signal peptide that influence secretion efficiency.
Collapse
|
13
|
Salverda MLM, Meinderts SM, Hamstra HJ, Wagemakers A, Hovius JWR, van der Ark A, Stork M, van der Ley P. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine 2016; 34:1025-33. [PMID: 26801064 DOI: 10.1016/j.vaccine.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
Outer Membrane Vesicles (OMVs) are gaining attention as vaccine candidates. The successful expression of heterologous antigens in OMVs, with the OMV functioning both as adjuvant and delivery vehicle, has greatly enhanced their vaccine potential. Since there are indications that surface exposed antigens might induce a superior immune response, targeting of heterologous antigens to the OMV surface is of special interest. Several systems for surface display of heterologous antigens on OMVs have been developed. However, these systems have not been used to display lipidated membrane-associated proteins known as lipoproteins, which are emerging as key targets for protective immunity. We were therefore interested to see whether we could express a foreign lipoprotein on the outer surface of OMVs. When outer surface protein A (OspA), a borrelial surface-exposed lipoprotein, was expressed in meningococci, it was found that although OspA was present in OMVs, it was no longer surface-exposed. Therefore, a set of fusions of OspA to different regions of factor H binding protein (fHbp), a meningococcal surface-exposed lipoprotein, were designed and tested for their surface-exposure. An N-terminal part of fHbp was found to be necessary for the successful surface display of OspA on meningococcal OMVs. When mice were immunized with this set of OMVs, an OspA-specific antibody response was only elicited by OMVs with clearly surface-exposed OspA, strengthening the idea that the exact positioning of an antigen in the OMV affects the immune response. This method for the surface display of heterologous lipoproteins on OMVs is a step forward in the development of OMVs as a vaccine platform.
Collapse
Affiliation(s)
- Merijn L M Salverda
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| | - Sanne M Meinderts
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Hendrik-Jan Hamstra
- Immunology of Infectious Diseases and Vaccines (IIV), National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Alex Wagemakers
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joppe W R Hovius
- Department of Internal Medicine, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arno van der Ark
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Michiel Stork
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
14
|
Latifi AM, Khajeh K, Farnoosh G, Hassanpour K, Khodi S. The Cytoplasmic and Periplasmic Expression Levels and Folding of Organophosphorus Hydrolase Enzyme in Escherichia coli. Jundishapur J Microbiol 2015; 8:e17790. [PMID: 26870308 PMCID: PMC4746795 DOI: 10.5812/jjm.17790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/06/2014] [Accepted: 07/26/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Organophosphorus hydrolase (OPH) is a type of organophosphate-degrading enzyme which is widely used in the bioremediation process. OBJECTIVES In this study, the periplasmic and cytoplasmic productions and the activity of recombinant OPH in Escherichia coli were investigated and compared using two pET systems (pET21a and pET26b). MATERIALS AND METHODS The sequence encoding the opd gene was synthesized and expressed in the form of inclusion body using pET21a-opd and in the periplasmic space in pET26b-opd. RESULTS Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed a band of about 37 kDa with a maximum expression level at 30°C from pET21a-opd.However, the obtained results of the periplasmic space extraction of OPH (pET26b-opd) showed a very weak band, while the cytoplasmic expression of OPH (pET21a-opd) produced a strong protein band. CONCLUSIONS The activities studied by the production of PNP were determined by following the increase at 410 nm. The maximum PNP was produced at 30°C with an optical density of 10.62 in the presence of cytoplasmic expression of OPH (pET21a-opd). Consequently, our results suggest cytoplasmic expression system as an appropriate candidate with a high amount of OPH in spite of inclusion body formation, which needs an additional refolding step.
Collapse
Affiliation(s)
- Ali Mohammad Latifi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Science, Tarbiat Modares University, Tehran, IR Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Gholamreza Farnoosh, Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-9155437109, E-mail:
| | - Kazem Hassanpour
- Medical School, Sabzevar University of Medical Sciences, Sabzevar, IR Iran
| | - Samaneh Khodi
- Applied Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
15
|
Kim SK, Min WK, Park YC, Seo JH. Application of repeated aspartate tags to improving extracellular production of Escherichia coli l-asparaginase isozyme II. Enzyme Microb Technol 2015; 79-80:49-54. [DOI: 10.1016/j.enzmictec.2015.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/26/2015] [Accepted: 06/26/2015] [Indexed: 01/02/2023]
|
16
|
Tu W, Li T, Wang Q, Cai K, Gao X, Wang H. A simple method for expression and purification of Shiga toxin 1 (Stx1) with biological activities by using a single-promoter vector and native signal peptide. Biotechnol Appl Biochem 2015; 63:539-45. [PMID: 26031547 DOI: 10.1002/bab.1398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022]
Abstract
The entire stx1 region from Escherichia coli O157:H7, containing two open reading frames (stx1a and stx1b), was cloned into pET-32a with a single promoter. This region was transformed into E. coli TransB (DE3), which is a trxB and gor mutation strain. After expression in the E. coli periplasm in a completely soluble form, the rStx1 was purified and verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), ELISA, and Western blot analysis. Our rStx1 have Vero cell median cytotoxic dose (CD50 ) and median lethal dose (LD50 ) values of approximately 30 ng and 1.5 µg, respectively. The final yield of the purified rStx1 ranged from 2 to 3 mg/L by one-step nickel affinity gel column chromatography. This method is an easy approach to the large-scale preparation of Stx1 at a reasonable cost.
Collapse
Affiliation(s)
- Wei Tu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People's Republic of China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People's Republic of China
| | - Qin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People's Republic of China
| | - Kun Cai
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People's Republic of China
| |
Collapse
|
17
|
Extracellular Production of Recombinant l-Asparaginase II in Escherichia coli: Medium Optimization Using Response Surface Methodology. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9476-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Wingfield PT. Overview of the purification of recombinant proteins. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2015; 80:6.1.1-6.1.35. [PMID: 25829302 PMCID: PMC4410719 DOI: 10.1002/0471140864.ps0601s80] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same.
Collapse
Affiliation(s)
- Paul T. Wingfield
- Protein Expression Laboratory, NIAMS - NIH, Building 6B, Room 1B130, 6 Center Drive, Bethesda, MD 20814, Tel: 301-594-1313,
| |
Collapse
|
19
|
Akbari V, Mir Mohammad Sadeghi H, Jafrian-Dehkordi A, Abedi D, Chou CP. Functional expression of a single-chain antibody fragment against human epidermal growth factor receptor 2 (HER2) in Escherichia coli. ACTA ACUST UNITED AC 2014; 41:947-56. [DOI: 10.1007/s10295-014-1437-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/10/2014] [Indexed: 11/30/2022]
Abstract
Abstract
The human epidermal growth factor receptor (HER) family plays an important role in cell growth and signaling and alteration of its function has been demonstrated in many different kinds of cancer. Receptor dimerization is necessary for the HER signal transduction pathway and tyrosine kinase activity. Recently, several monoclonal antibodies have been developed to directly interfere with ligand–HER receptor binding and receptor dimerization. A single chain variable fragment (ScFv) is a valuable alternative to an intact antibody. This report describes the production and purification of an ScFv specific for domain II of the HER2 receptor in Escherichia coli BL21 (DE3) cytoplasm. The majority of expressed of anti-her2his-ScFv protein was produced as inclusion bodies. A Ni-NTA affinity column was used to purify the anti-her2his-ScFv protein. The molecular weight of anti-her2his-ScFv protein was estimated to be approximately 27 kDa, as confirmed by SDS-PAGE and Western blotting assay. The anti-her2his-ScFv showed near 95 % purity and reached a yield of approximately 29 mg/l in flask fermentation. The purified anti-her2his-ScFv showed its biological activity by binding to HER2 receptor on the surface of BT-474 cells. This ScFv may be a potential pharmaceutical candidate for targeting tumour cells overexpressing HER2 receptor.
Collapse
Affiliation(s)
- Vajihe Akbari
- grid.411036.1 000000011498685X Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy Isfahan University of Medical Sciences Hezar Jarib Avenue Isfahan Iran
| | - Hamid Mir Mohammad Sadeghi
- grid.411036.1 000000011498685X Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy Isfahan University of Medical Sciences Hezar Jarib Avenue Isfahan Iran
| | - Abbas Jafrian-Dehkordi
- grid.411036.1 000000011498685X Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy Isfahan University of Medical Sciences Hezar Jarib Avenue Isfahan Iran
| | - Daryoush Abedi
- grid.411036.1 000000011498685X Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy Isfahan University of Medical Sciences Hezar Jarib Avenue Isfahan Iran
| | - C Perry Chou
- grid.46078.3d 0000000086441405 Department of Chemical Engineering University of Waterloo 200 University Avenue N2L 3G1 Waterloo ON Canada
| |
Collapse
|
20
|
Rigi G, Mohammadi SG, Arjomand MR, Ahmadian G, Noghabi KA. Optimization of extracellular truncated staphylococcal protein A expression inEscherichia coliBL21 (DE3). Biotechnol Appl Biochem 2014; 61:217-25. [DOI: 10.1002/bab.1157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/07/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Garshasb Rigi
- Department of Molecular Genetics; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Samira Ghaed Mohammadi
- Department of Molecular Genetics; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Maryam Rezaei Arjomand
- Department of Molecular Genetics; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Gholamreza Ahmadian
- Department of Molecular Genetics; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Kambiz Akbari Noghabi
- Department of Molecular Genetics; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| |
Collapse
|
21
|
Wang Y, Yang W, Wang Q, Qu J, Zhang Y. Presenting a foreign antigen on live attenuated Edwardsiella tarda using twin-arginine translocation signal peptide as a multivalent vaccine. J Biotechnol 2013; 168:710-7. [DOI: 10.1016/j.jbiotec.2013.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 02/05/2023]
|
22
|
Putignani L, Massa O, Alisi A. Engineered Escherichia coli as new source of flavonoids and terpenoids. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Chae YK, Kim SH, Nam YK. Application of Two-Dimensional NMR Spectroscopy to Metabotyping LaboratoryEscherichia coliStrains. Chem Biodivers 2013; 10:1816-27. [DOI: 10.1002/cbdv.201300016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 11/06/2022]
|
24
|
Park TJ, Heo NS, Yim SS, Park JH, Jeong KJ, Lee SY. Surface display of recombinant proteins on Escherichia coli by BclA exosporium of Bacillus anthracis. Microb Cell Fact 2013; 12:81. [PMID: 24053632 PMCID: PMC3850424 DOI: 10.1186/1475-2859-12-81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 09/17/2013] [Indexed: 11/12/2022] Open
Abstract
Background The anchoring motif is one of the most important aspects of cell surface display as well as efficient and stable display of target proteins. Thus, there is currently a need for the identification and isolation of novel anchoring motifs. Results A system for the display of recombinant proteins on the surface of Escherichia coli was developed using the Bacillus anthracis exosporal protein (BclA) as a new anchoring motif. For the surface display of recombinant proteins, the BAN display platform was constructed in which a target protein is linked to the C-terminus of N-terminal domain (21 amino acids) of BclA. The potential application of BAN platform for cell surface display was demonstrated with two model proteins of different size, the Bacillus sp. endoxylanase (XynA) and monooxygenase (P450 BM3m2). Through experimental analysis including outer membrane fractionation, confocal microscopy and activity assay, it was clearly confirmed that both model proteins were successfully displayed with high activities on the E. coli cell surface. Conclusions These results of this study suggest that the strategy employing the B. anthracis BclA as an anchoring motif is suitable for the display of heterologous proteins on the surface of E. coli and consequently for various biocatalytic applications as well as protein engineering.
Collapse
Affiliation(s)
- Tae Jung Park
- BioProcess Engineering Research Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
25
|
Mahmoudi Azar L, Mehdizadeh Aghdam E, Karimi F, Haghshenas B, Barzegari A, Yaghmaei P, Hejazi MS. Influence of Foreign DNA Introduction and Periplasmic Expression of Recombinant Human Interleukin-2 on Hydrogen Peroxide Quantity and Catalase Activity in Escherichia coli. Adv Pharm Bull 2013; 3:395-402. [PMID: 24312866 PMCID: PMC3848214 DOI: 10.5681/apb.2013.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Oxidative stress is generated through imbalance between composing and decomposing of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Effect of cytoplasmic recombinant protein expression on Hydrogen peroxide concentration and catalase activity was previously reported. In comparison with cytoplasm, periplasmic space has different oxidative environment. Therefore, in present study we describe the effect of periplasmic expression of recombinant human interleukin-2 (hIL-2) on H2O2 concentration and catalase activity in Escherichia coli and their correlation with cell growth. METHODS Having constructed pET2hIL2 vector, periplasmic expression of hIL-2 was confirmed. Then, H2O2 concentration and catalase activity were determined at various ODs. Wild type and empty vector transformed cells were used as negative controls. RESULTS It was shown that H2O2 concentration in hIL-2 expressing cells was significantly higher than its concentration in wild type and empty vector transformed cells. Catalase activity and growth rate reduced significantly in hIL-2 expressing cells compared to empty vector transformed and wild type cells. Variation of H2O2 concentration and catalase activity is intensive in periplasmic hIL-2 expressing cells than empty vector containing cells. Correlation between H2O2 concentration elevation and catalase activity reduction with cell growth depletion are also demonstrated. CONCLUSION Periplasmic expression of recombinant hIL-2 elevates the host cell's hydrogen peroxide concentration possibly due to reduced catalase activity which has consequent suppressive effect on growth rate.
Collapse
Affiliation(s)
- Lena Mahmoudi Azar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farrokh Karimi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Faculty of Science, Maragheh University, Maragheh, Iran
| | - Babak Haghshenas
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Institute of Bioscience, University of Putra Malaysia, Kualalumpur, Malaysia
| | - Abolfazl Barzegari
- Research Center of Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Singh GP, Dash D. Electrostatic mis-interactions cause overexpression toxicity of proteins in E. coli. PLoS One 2013; 8:e64893. [PMID: 23734225 PMCID: PMC3667126 DOI: 10.1371/journal.pone.0064893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/19/2013] [Indexed: 01/28/2023] Open
Abstract
A majority of E. coli proteins when overexpressed inhibit its growth, but the reasons behind overexpression toxicity of proteins remain unknown. Understanding the mechanism of overexpression toxicity is important from evolutionary, biotechnological and possibly clinical perspectives. Here we study sequence and functional features of cytosolic proteins of E. coli associated with overexpression toxicity to understand its mechanism. We find that number of positively charged residues is significantly higher in proteins showing overexpression toxicity. Very long proteins also show high overexpression toxicity. Among the functional classes, transcription factors and regulatory proteins are enriched in toxic proteins, while catalytic proteins are depleted. Overexpression toxicity could be predicted with reasonable accuracy using these few properties. The importance of charged residues in overexpression toxicity indicates that nonspecific electrostatic interactions resulting from protein overexpression cause toxicity of these proteins and suggests ways to improve the expression level of native and foreign proteins in E. coli for basic research and biotechnology. These results might also be applicable to other bacterial species.
Collapse
Affiliation(s)
- Gajinder Pal Singh
- G. N. Ramachandran Knowledge Center for Genome Informatics, Institute of Genomics and Integrative Biology (Council of Scientific and Industrial Research), Delhi, India.
| | | |
Collapse
|
27
|
Raftari M, Ghafourian S, Sadeghifard N, Bakar FA. Cloning and Overexpression of Extracellular Elastase from Pseudomonas Aeruginosa. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study was an attempt to overexpress the extracellular elastase from Pseuodomonas aeruginosa in Escherichia coli and characterize the level of purified enzymes of recombinant bacterium. The gene encoding an elastase natively produced by Pseudomonas aeruginosa was cloned and overexpressed in Escherichia coli using pET-32a system and the resultant recombinant elastase was purified and compared with the native elastase gene. The 1497 bp gene was amplified and subcloned in pET-32a and subsequently transformed into E. coli BL21. The media assay, SDS-PAGE and Western blotting were carried out to analyze the results, and the extracellular enzyme was purified to detect enzyme activity of recombinant E. coli. Nucleotide sequencing of the DNA insert from the clone revealed that the protease activity corresponded to an open reading frame consisting of 1497 bp coding for a 53.69-kDa protein. The clear zones around the recombinant colonies on skim milk agar as well as sharp band on 53-kD size on SDS-PAGE and Western blotting confirm the correct expression of elastase enzyme. Bacterial culture containing pET-32a-lasB showed high enzyme activity around 670 μg elastase ml−1. The results showed that elastase has potential to be produced industrially and be applied in medicine, food, etc. divisions.
Collapse
Affiliation(s)
- M. Raftari
- Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - S. Ghafourian
- Clinical Microbiology Research Center, Ham University of Medical Sciences, Ilam, Iran
| | - N. Sadeghifard
- Clinical Microbiology Research Center, Ham University of Medical Sciences, Ilam, Iran
| | - F. Abu Bakar
- Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Mehdizadeh Aghdam E, Mahmoudi Azar L, Barzegari A, Karimi F, Mesbahfar M, Samadi N, Hejazi MS. Effect of periplasmic expression of recombinant mouse interleukin-4 on hydrogen peroxide concentration and catalase activity in Escherichia coli. Gene 2012; 511:455-60. [PMID: 23000065 DOI: 10.1016/j.gene.2012.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 05/10/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022]
Abstract
Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H(2)O(2) concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H(2)O(2) concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H(2)O(2) concentration of the cells. However, the H(2)O(2) concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H(2)O(2) elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H(2)O(2) concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase.
Collapse
Affiliation(s)
- Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | |
Collapse
|
29
|
Choi SI, Son A, Lim KH, Jeong H, Seong BL. Macromolecule-assisted de novo protein folding. Int J Mol Sci 2012; 13:10368-10386. [PMID: 22949867 PMCID: PMC3431865 DOI: 10.3390/ijms130810368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 01/24/2023] Open
Abstract
In the processes of protein synthesis and folding, newly synthesized polypeptides are tightly connected to the macromolecules, such as ribosomes, lipid bilayers, or cotranslationally folded domains in multidomain proteins, representing a hallmark of de novo protein folding environments in vivo. Such linkage effects on the aggregation of endogenous polypeptides have been largely neglected, although all these macromolecules have been known to effectively and robustly solubilize their linked heterologous proteins in fusion or display technology. Thus, their roles in the aggregation of linked endogenous polypeptides need to be elucidated and incorporated into the mechanisms of de novo protein folding in vivo. In the classic hydrophobic interaction-based stabilizing mechanism underlying the molecular chaperone-assisted protein folding, it has been assumed that the macromolecules connected through a simple linkage without hydrophobic interactions and conformational changes would make no effect on the aggregation of their linked polypeptide chains. However, an increasing line of evidence indicates that the intrinsic properties of soluble macromolecules, especially their surface charges and excluded volume, could be important and universal factors for stabilizing their linked polypeptides against aggregation. Taken together, these macromolecules could act as folding helpers by keeping their linked nascent chains in a folding-competent state. The folding assistance provided by these macromolecules in the linkage context would give new insights into de novo protein folding inside the cell.
Collapse
Affiliation(s)
- Seong Il Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| | - Ahyun Son
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
| | - Keo-Heun Lim
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
| | - Hotcherl Jeong
- Vismer Co., Ltd., Ansan, Kyeonggi-do 426-791, Korea
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| | - Baik L. Seong
- Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, Seoul 120-749, Korea; E-Mails: (A.S.); (K.-H.L.)
- Authors to whom correspondence should be addressed; E-Mails: (S.I.C.); (H.J.); (B.L.S.); Tel.: +82-2-393-4631 (S.I.C.)
| |
Collapse
|
30
|
Ravikumar S, Yoo IK, Lee SY, Hong SH. Construction of Copper Removing Bacteria Through the Integration of Two-Component System and Cell Surface Display. Appl Biochem Biotechnol 2011; 165:1674-81. [DOI: 10.1007/s12010-011-9386-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
|
31
|
Linton E, Walsh MK, Sims RC, Miller CD. Translocation of green fluorescent protein by comparative analysis with multiple signal peptides. Biotechnol J 2011; 7:667-76. [PMID: 21834133 DOI: 10.1002/biot.201100158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/17/2011] [Accepted: 08/01/2011] [Indexed: 11/06/2022]
Abstract
Type I and II secretory pathways are used for the translocation of recombinant proteins from the cytoplasm of Escherichia coli. The purpose of this study was to evaluate four signal peptides (HlyA, TorA, GeneIII, and PelB), representing the most common secretion pathways in E. coli, for their ability to target green fluorescent protein (GFP) for membrane translocation. Signal peptide-GFP genetic fusions were designed in accordance with BioFusion standards (BBF RFC 10, BBF RFC 23). The HlyA signal peptide targeted GFP for secretion to the extracellular media via the type I secretory pathway, whereas TAT-dependent signal peptide TorA and Sec-dependent signal peptide GeneIII exported GFP to the periplasm. The PelB signal peptide was inefficient in translocating GFP. The use of biological technical standards simplified the design and construction of functional signal peptide-recombinant protein genetic devices for type I and II secretion in E. coli. The utility of the standardized parts model is further illustrated as constructed biological parts are available for direct application to other studies on recombinant protein translocation.
Collapse
Affiliation(s)
- Elisabeth Linton
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | | | | | | |
Collapse
|
32
|
Sastry M, Xu L, Georgiev IS, Bewley CA, Nabel GJ, Kwong PD. Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2011; 50:197-207. [PMID: 21667299 PMCID: PMC3133704 DOI: 10.1007/s10858-011-9506-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/25/2011] [Indexed: 05/12/2023]
Abstract
NMR spectroscopic characterization of the structure or the dynamics of proteins generally requires the production of samples isotopically enriched in (15)N, (13)C, or (2)H. The bacterial expression systems currently in use to obtain isotopic enrichment, however, cannot produce a number of eukaryotic proteins, especially those that require post-translational modifications such as N-linked glycosylation for proper folding or activity. Here, we report the use of an adenovirus vector-based mammalian expression system to produce isotopically enriched (15)N or (15)N/(13)C samples of an outer domain variant of the HIV-1 gp120 envelope glycoprotein with 15 sites of N-linked glycosylation. Yields for the (15)N- and (15)N/(13)C-labeled gp120s after affinity chromatography were 45 and 44 mg/l, respectively, with an average of over 80% isotope incorporation. Recognition of the labeled gp120 by cognate antibodies that recognize complex epitopes showed affinities comparable to the unlabeled protein. NMR spectra, including (1)H-(15)N and (1)H-(13)C HSQCs, (15)N-edited NOESY-HSQC, and 3D HNCO, were of high quality, with signal-to-noise consistent with an efficient level of isotope incorporation, and with chemical shift dispersion indicative of a well-folded protein. The exceptional protein yields, good isotope incorporation, and ability to obtain well-folded post-translationally modified proteins make this mammalian system attractive for the production of isotopically enriched eukaryotic proteins for NMR spectroscopy.
Collapse
Affiliation(s)
- Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3027 USA
| | - Ling Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3027 USA
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3027 USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Gary J. Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3027 USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3027 USA
| |
Collapse
|
33
|
Alvandi A, Farajzadeh A, Ghaforian Borojerdnia M, Jelodar A, Aryan E, Gholipour A, Masjedizadeh A, Makvandi M. Periplasmic expression and one-step purification of urease subunit B of Helicobacter pylori. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-010-0540-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Foit L, Mueller-Schickert A, Mamathambika BS, Gleiter S, Klaska CL, Ren G, Bardwell JCA. Genetic selection for enhanced folding in vivo targets the Cys14-Cys38 disulfide bond in bovine pancreatic trypsin inhibitor. Antioxid Redox Signal 2011; 14:973-84. [PMID: 21110786 PMCID: PMC3043956 DOI: 10.1089/ars.2010.3712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The periplasm provides a strongly oxidizing environment; however, periplasmic expression of proteins with disulfide bonds is often inefficient. Here, we used two different tripartite fusion systems to perform in vivo selections for mutants of the model protein bovine pancreatic trypsin inhibitor (BPTI) with the aim of enhancing its expression in Escherichia coli. This trypsin inhibitor contains three disulfides that contribute to its extreme stability and protease resistance. The mutants we isolated for increased expression appear to act by eliminating or destabilizing the Cys14-Cys38 disulfide in BPTI. In doing so, they are expected to reduce or eliminate kinetic traps that exist within the well characterized in vitro folding pathway of BPTI. These results suggest that elimination or destabilization of a disulfide bond whose formation is problematic in vitro can enhance in vivo protein folding. The use of these in vivo selections may prove a valuable way to identify and eliminate disulfides and other rate-limiting steps in the folding of proteins, including those proteins whose in vitro folding pathways are unknown.
Collapse
Affiliation(s)
- Linda Foit
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Measuring bacterial growth by refractive index tapered fiber optic biosensor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:313-20. [DOI: 10.1016/j.jphotobiol.2010.07.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/01/2010] [Accepted: 07/30/2010] [Indexed: 11/19/2022]
|
36
|
Abou El-Magd RM, Sasaki C, Kawazoe T, El-Sayed SM, Yorita K, Shishido Y, Sakai T, Nakamura Y, Fukui K. Bioprocess development of the production of the mutant P-219-L human d-amino acid oxidase for high soluble fraction expression in recombinant Escherichia coli. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Wingfield PT. Overview of the purification of recombinant proteins produced in Escherichia coli. ACTA ACUST UNITED AC 2008; Chapter 6:6.1.1-6.1.37. [PMID: 18429246 DOI: 10.1002/0471140864.ps0601s30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The updated version of this unit presents an overview of recombinant protein purification with special emphasis on proteins expressed in E. coli. The first section deals with information pertinent to protein purification that can be derived from translation of the cDNA sequence. This is followed by a discussion of common problems associated with bacterial protein expression. A flow chart summarizes approaches for establishing solubility and localization of bacterially produced proteins. Purification strategies for both soluble and insoluble proteins are also reviewed. A section on glycoproteins produced in bacteria in the nonglycosylated state is included to emphasize that, although they may not be useful for in vivo studies, such proteins are well suited for structural studies. Finally, protein handling, scale and aims of purification, and specialized equipment needed for recombinant protein purification and characterization are discussed. The methodologies and approaches described here are essentially suitable for laboratory-scale operations.
Collapse
|
38
|
Balagurunathan B, Jayaraman G. Cellular response to accumulation of recombinant proteins in the E. coli inner membrane: Implications for proteolysis and productivity of the secretory expression system. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Parrilli E, De Vizio D, Cirulli C, Tutino ML. Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 2008; 7:2. [PMID: 18257924 PMCID: PMC2275215 DOI: 10.1186/1475-2859-7-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In a previous paper, we reported the accomplishment of a cold gene-expression system for the recombinant secretion of heterologous proteins in Pseudoalteromonas haloplanktis TAC125. This system makes use of the psychrophilic alpha-amylase from P. haloplanktis TAB23 as secretion carrier, and allows an effective extra-cellular addressing of recombinant proteins. However, Pseudoalteromonales are reported to secrete a wide range of extra-cellular proteases. This feature works against the efficiency of the cold-adapted secretion system, because of the proteolytic degradation of recombinant products. The aim of this study is the construction of a P. haloplanktis TAC125 mutant strain with reduced extra-cellular proteolytic activity. RESULTS P. haloplanktis TAC125 culture medium resulted to contain multiple and heterogeneous proteases. Since the annotation of the Antarctic bacterium genome highlighted the presence of only one canonical secretion machinery, namely the Type II secretion pathway (T2SS), we have inactivated this secretion system by a gene insertion strategy. A mutant strain of P. haloplanktis TAC125 in which the gspE gene was knocked-out, actually displayed a remarkable reduction of the extra-cellular protease secretion. Quite interestingly this strain still retained the ability to secrete the psychrophilic amylase as efficiently as the wild type. Moreover, the decrease in extra-cellular proteolytic activity resulted in a substantial improvement in the stability of the secreted amylase-beta-lactamase chimera. CONCLUSION Here we report a cell engineering approach to the construction of a P. haloplanktis TAC125 strain with reduced extra-cellular protease activity. The improved strain is able to secrete the psychrophilic alpha-amylase (the carrier of our recombinant secretion system), while it displays a significant reduction of protease content in the culture medium. These features make the gspE mutant an improved host with a remarkable biotechnological potential in recombinant protein secretion at low temperature. Moreover this work demonstrates that P. haloplanktis TAC125 is a versatile psychrophilic host for recombinant protein production since it can be easily improved by a directed engineering approach. To the best of our knowledge, this is the first described example of a strain improvement strategy applied to an Antarctic bacterium.
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Dipartimento di Chimica Organica e Biochimica, Università degli studi di Napoli Federico II - Complesso Universitario M,S, Angelo via Cinthia 4, 80126, Napoli Italia.
| | | | | | | |
Collapse
|
40
|
Chou CP. Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 2007; 76:521-32. [PMID: 17571257 DOI: 10.1007/s00253-007-1039-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/08/2007] [Accepted: 05/21/2007] [Indexed: 11/26/2022]
Abstract
The advent of recombinant DNA technology has revolutionized the strategies for protein production. Due to the well-characterized genome and a variety of mature tools available for genetic manipulation, Escherichia coli is still the most common workhorse for recombinant protein production. However, the culture for industrial applications often presents E. coli cells with a growth condition that is significantly different from their natural inhabiting environment in the gastrointestinal tract, resulting in deterioration in cell physiology and limitation in cell's productivity. It has been recognized that innovative design of genetically engineered strains can highly increase the bioprocess yield with minimum investment on the capital and operating costs. Nevertheless, most of these genetic manipulations, by which traits are implanted into the workhorse through recombinant DNA technology, for enhancing recombinant protein productivity often translate into the challenges that deteriorate cell physiology or even jeopardize cell survival. An in-depth understanding of these challenges and their corresponding cellular response at the molecular level becomes crucial for developing superior strains that are more physiologically adaptive to the production environment to improve culture productivity. With the accumulated knowledge in cell physiology, whose importance to gene overexpression was to some extent undervalued previously, this review is intended to focus on the recent biotechnological advancement in engineering cell physiology to enhance recombinant protein production in E. coli.
Collapse
Affiliation(s)
- C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1.
| |
Collapse
|
41
|
Wu MS, Pan KL, Chou CP. Effect of heat-shock proteins for relieving physiological stress and enhancing the production of penicillin acylase inEscherichia coli. Biotechnol Bioeng 2007; 96:956-66. [PMID: 16977620 DOI: 10.1002/bit.21161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High-level expression of recombinant penicillin acylase (PAC) using the strong trc promoter system in Escherichia coli is frequently limited by the processing and folding of PAC precursors (proPAC) in the periplasm, resulting in physiological stress and inclusion body formation in this compartment. Periplasmic heat-shock proteins with protease or chaperone activity potentially offer a promise for overcoming this technical hurdle. In this study, the effect of the two genes encoding periplasmic heat-shock proteins, that is degP and fkpA, on pac overexpression was investigated and manipulation of the two genes to enhance the production of recombinant PAC was demonstrated. Both DeltadegP and DeltafkpA mutants showed defective culture performance primarily due to growth arrest. However, pac expression level was not seriously affected by the mutations, indicating that the two proteins were not directly involved in the pathway for periplasmic processing of proPAC. The growth defect caused by the two mutations (i.e., DeltadegP and DeltafkpA) was complemented by either one of the wild-type proteins, implying that the function of the two proteins could partially overlap in cells overexpressing pac. The possible role that the two heat-shock proteins played for suppression of physiological stress caused by pac overexpression is discussed.
Collapse
Affiliation(s)
- Ming-Shen Wu
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | | |
Collapse
|
42
|
Kao WC, Chiu YP, Chang CC, Chang JS. Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli. Biotechnol Prog 2007; 22:1256-64. [PMID: 17022662 DOI: 10.1021/bp060067b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we examined the expression of mammalian and fish metallothioneins (MTs) in Escherichia coli as a strategy to enhance metal biosorption efficiency of bacterial biosorbents for lead (Pb), copper (Cu), cadmium (Cd), and zinc (Zn). In addition, MT proteins were expressed in either the cytoplasmic or periplasmic compartment of host cells to explore the localization effect on metal biosorption. The results showed that MT expression led to a significant increase (5-210%) in overall biosorption efficiency (eta(ads)), especially for biosorption of Cd. The MT-driven improvement in metal biosorption relied more on the increase in the biosorption rates (r(2), a kinetic property) than on the equilibrium biosorption capacities (q(max), a thermodynamic property), despite a 10-45% and 30-80% increase in q(max) of Cd and Zn, respectively. Periplasmic expression of MTs appeared to be more effective in facilitating the metal-binding ability than the cytoplasmlic MT expression. Notably, disparity of the impacts on biosorption ability was observed for the origin of MT proteins, as human MT (MT1A) was the most effective biosorption stimulator compared to MTs originating from mouse (MT1) and fish (OmMT). Moreover, the overall biosorption efficiency (eta(ads)) of the MT-expressing recombinant biosorbents was found to be adsorbate-dependent: the eta(ads) values decreased in the order of Cd > Cu > Zn > Pb.
Collapse
Affiliation(s)
- Wei-Chen Kao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
43
|
Kao WC, Chiu YP, Chang CC, Chang JS. Localization Effect on the Metal Biosorption Capability of Recombinant Mammalian and Fish Metallothioneins inEscherichia coli. Biotechnol Prog 2006. [DOI: 10.1002/bp060067b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Gutiérrez J, Criado R, Citti R, Martín M, Herranz C, Nes IF, Cintas LM, Hernández PE. Cloning, production and functional expression of enterocin P, a sec-dependent bacteriocin produced by Enterococcus faecium P13, in Escherichia coli. Int J Food Microbiol 2005; 103:239-50. [PMID: 16099309 DOI: 10.1016/j.ijfoodmicro.2004.11.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 06/23/2004] [Accepted: 11/29/2004] [Indexed: 11/24/2022]
Abstract
The cloning and expression of enterocin P (EntP), a sec-dependent bacteriocin produced by Enterococcus faecium P13, was studied in Escherichia coli. PCR-amplified products of the preenterocin P gene (entP) or entP plus the putative EntP immunity gene (entiP), were cloned in plasmid pETBlue-1 under the control of the inducible T7lac promoter. Although target genes in derivative plasmids pJG01 (entP) and pJG02 (entP plus entiP) did not generate products with antimicrobial activity after an in vitro combined transcription/translation reaction, they were expressed as biologically active products following transformation and induction in the E. coli Tuner(DE3)pLacI host. The use of specific antibodies and an ELISA permitted the detection and quantification of EntP in the supernatant (SN), cellular soluble protein fraction (CSF), and inclusion bodies (IB) of E. coli Tuner(DE3)pLacI cells transformed with either pJG01 or pJG02. Functional EntP from the supernatants of E. coli Tuner(DE3)pLacI (pJG01) cultures grown in a complex medium was recovered, at a high efficiency, by immunoaffinity chromatography in a single step. A purification method based on hydrophobic adsorption and reverse-phase chromatographies also permitted the recovery of active EntP from the supernatants of the same cultures grown in a minimally defined medium. The E. coli Tuner(DE3)pLacI (pJG01) cells would merit consideration as an alternative experimental model for the heterologous production and functional expression of EntP, as well as for the fast and efficient recovery of this bacteriocin from the supernatant of this recombinant producer.
Collapse
Affiliation(s)
- J Gutiérrez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Khushoo A, Pal Y, Singh BN, Mukherjee KJ. Extracellular expression and single step purification of recombinant Escherichia coli L-asparaginase II. Protein Expr Purif 2005; 38:29-36. [PMID: 15477079 DOI: 10.1016/j.pep.2004.07.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 07/14/2004] [Indexed: 11/27/2022]
Abstract
L-Asparaginase (isozyme II) from Escherichia coli is an important therapeutic enzyme used in the treatment of leukemia. Extracellular expression of recombinant asparaginase was obtained by fusing the gene coding for asparaginase to an efficient pelB leader sequence and an N-terminal 6x histidine tag cloned under the T7lac promoter. Media composition and the induction strategy had a major influence on the specificity and efficiency of secretion of recombinant asparaginase. Induction of the cells with 0.1 mM IPTG at late log phase of growth in TB media resulted in fourfold higher extracellular activity in comparison to growing the cells in LB media followed by induction during the mid log phase. Using an optimized expression strategy a yield of 20,950 UI/L of recombinant asparaginase was obtained from the extracellular medium. The recombinant protein was purified from the culture supernatant in a single step using Ni-NTA affinity chromatography which gave an overall yield of 95 mg/L of purified protein, with a recovery of 86%. This is approximately 8-fold higher to the previously reported data in literature. The fluorescence spectra, analytical size exclusion chromatography, and the specific activity of the purified protein were observed to be similar to the native protein which demonstrated that the protein had folded properly and was present in its active tetramer form in the culture supernatant.
Collapse
Affiliation(s)
- Amardeep Khushoo
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
46
|
Mergulhão FJM, Summers DK, Monteiro GA. Recombinant protein secretion in Escherichia coli. Biotechnol Adv 2005; 23:177-202. [PMID: 15763404 DOI: 10.1016/j.biotechadv.2004.11.003] [Citation(s) in RCA: 334] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/23/2004] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
The secretory production of recombinant proteins by the Gram-negative bacterium Escherichia coli has several advantages over intracellular production as inclusion bodies. In most cases, targeting protein to the periplasmic space or to the culture medium facilitates downstream processing, folding, and in vivo stability, enabling the production of soluble and biologically active proteins at a reduced process cost. This review presents several strategies that can be used for recombinant protein secretion in E. coli and discusses their advantages and limitations depending on the characteristics of the target protein to be produced.
Collapse
Affiliation(s)
- F J M Mergulhão
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, Lisbon 1049-001, Portugal.
| | | | | |
Collapse
|
47
|
Ferreira LCS, Ferreira RCC, Schumann W. Bacillus subtilis as a tool for vaccine development: from antigen factories to delivery vectors. AN ACAD BRAS CIENC 2005; 77:113-24. [PMID: 15692682 DOI: 10.1590/s0001-37652005000100009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacillus subtilis and some of its close relatives have a long history of industrial and biotechnological applications. Search for antigen expression systems based on recombinant B. subtilis strains sounds attractive both by the extensive genetic knowledge and the lack of an outer membrane, which simplify the secretion and purification of heterologous proteins. More recently, genetically modified B. subtilis spores have been described as indestructible delivery vehicles for vaccine antigens. Nonetheless both production and delivery of antigens by B. subtilis strains face some inherent obstacles, as unstable gene expression and reduced immunogenicity that, otherwise, can be overcome by already available gene technology approaches. In the present review we present the status of B. subtilis-based vaccine research, either as protein factories or delivery vectors, and discuss some alternatives for a better use of genetically modified strains.
Collapse
Affiliation(s)
- Luís C S Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, 05508-000 São Paulo, SP, Brazil.
| | | | | |
Collapse
|
48
|
|
49
|
Nálezková M, de Groot A, Graf M, Gans P, Blanchard L. Overexpression and purification of Pyrococcus abyssi phosphopantetheine adenylyltransferase from an optimized synthetic gene for NMR studies. Protein Expr Purif 2005; 39:296-306. [PMID: 15642482 DOI: 10.1016/j.pep.2004.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Indexed: 10/26/2022]
Abstract
Phosphopantetheine adenylyltransferase (PPAT) is an essential enzyme that catalyses a rate-limiting step in coenzyme A (CoA) biosynthesis in all organisms. This study was conducted to obtain a high amount of pure, soluble, and stable PPAT from the hyperthermophilic archaeon Pyrococcus abyssi with the aim of investigating its structural characterization by NMR. Production of this enzyme from its natural gene in the Escherichia coli classical expression strain (BL21(DE3)) was not possible, most likely due to the presence of a high number of E. coli rare codons. Only a low amount of P. abyssi PPAT was previously obtained in two E. coli strains encoding tRNAs that recognize these rare E. coli codons and only by using a very rich growth medium. It was not possible to use this strategy to prepare labelled samples for the NMR study, thus another solution had to be found. Therefore, a synthetic gene encoding P. abyssi PPAT was constructed for which not only the rare codons were changed but which was also optimized to avoid other expression-limiting factors such as internal ribosome entry sites, RNA secondary structures, and DNA repeats. Gene optimization strongly increased the yield of P. abyssi PPAT in E. coli BL21(DE3) and allowed us to start the structural characterization of the enzyme. Circular dichroism and 2D NMR experiments indicate the presence of a well-ordered structure for P. abyssi PPAT and also confirm the existence of this enzyme as a monomer in solution.
Collapse
Affiliation(s)
- Monika Nálezková
- Laboratoire de Résonance Magnétique Nucléaire, Institut de Biologie Structurale Jean-Pierre Ebel (CEA-CNRS-UJF), UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble cedex 1, France
| | | | | | | | | |
Collapse
|
50
|
Khushoo A, Pal Y, Mukherjee KJ. Optimization of extracellular production of recombinant asparaginase in Escherichia coli in shake-flask and bioreactor. Appl Microbiol Biotechnol 2005; 68:189-97. [PMID: 15660216 DOI: 10.1007/s00253-004-1867-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 12/03/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
Various host-vector combinations were tested to maximize the extracellular production of recombinant asparaginase in Escherichia coli. Expression of recombinant asparaginase fused to pelB leader sequence under the inducible T7lac promoter in BLR (DE3) host cells resulted in optimum extracellular production in shake-flasks. Fed-batch studies were carried out using this recombinant strain and an exponential feeding strategy was used to maintain a specific growth rate of 0.3 h(-1). To check the effect of the time of induction on expression, cultures were induced with 1 mM isopropyl-beta-D-thiogalactopyranoside at varying cell optical densities (OD(600): 33, 60, 90, 135). Although the specific product formation rates declined with increasing OD of induction, a maximum volumetric activity of 8.7 x 10(5) units l(-1), corresponding to approximately 5.24 g l(-1) of recombinant asparaginase, was obtained when induction was done at an OD(600) of 90. The recombinant protein was purified directly from the culture medium, using a rapid two-step purification strategy, which resulted in a recovery of approximately 70% and a specific activity of approximately 80% of that of the native enzyme.
Collapse
Affiliation(s)
- Amardeep Khushoo
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|