1
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
2
|
Ansari M, Bhattacharjee S, Pantazis DA. Correlating Structure with Spectroscopy in Ascorbate Peroxidase Compound II. J Am Chem Soc 2024; 146:9640-9656. [PMID: 38530124 PMCID: PMC11009960 DOI: 10.1021/jacs.3c13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
Structural and spectroscopic investigations of compound II in ascorbate peroxidase (APX) have yielded conflicting conclusions regarding the protonation state of the crucial Fe(IV) intermediate. Neutron diffraction and crystallographic data support an iron(IV)-hydroxo formulation, whereas Mössbauer, X-ray absorption (XAS), and nuclear resonance vibrational spectroscopy (NRVS) studies appear consistent with an iron(IV)-oxo species. Here we examine APX with spectroscopy-oriented QM/MM calculations and extensive exploration of the conformational space for both possible formulations of compound II. We establish that irrespective of variations in the orientation of a vicinal arginine residue and potential reorganization of proximal water molecules and hydrogen bonding, the Fe-O distances for the oxo and hydroxo forms consistently fall within distinct, narrow, and nonoverlapping ranges. The accuracy of geometric parameters is validated by coupled-cluster calculations with the domain-based local pair natural orbital approach, DLPNO-CCSD(T). QM/MM calculations of spectroscopic properties are conducted for all structural variants, encompassing Mössbauer, optical, X-ray absorption, and X-ray emission spectroscopies and NRVS. All spectroscopic observations can be assigned uniquely to an Fe(IV)═O form. A terminal hydroxy group cannot be reconciled with the spectroscopic data. Under no conditions can the Fe(IV)═O distance be sufficiently elongated to approach the crystallographically reported Fe-O distance. The latter is consistent only with a hydroxo species, either Fe(IV) or Fe(III). Our findings strongly support the Fe(IV)═O formulation of APX-II and highlight unresolved discrepancies in the nature of samples used across different experimental studies.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Sinjini Bhattacharjee
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
3
|
Li H, Shen Q, Zhou X, Duan P, Hollmann F, Huang Y, Zhang W. Peroxygenase-Catalysed Sulfoxidations in Non-Aqueous Media. CHEMSUSCHEM 2024; 17:e202301321. [PMID: 37948039 DOI: 10.1002/cssc.202301321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Chiral sulfoxides are valuable building blocks in asymmetric synthesis. However, the biocatalytic synthesis of chiral sulfoxides is still challenged by low product titres. Herein, we report the use of peroxygenase as a catalyst for asymmetric sulfoxidation under non-aqueous conditions. Upon covalent immobilisation, the peroxygenase showed stability and activity under neat reaction conditions. A large variety of sulfides was converted into chiral sulfoxides in very high product concentration with moderate to satisfactory optical purity (e. g. 626 mM of (R)-methyl phenyl sulfoxide in approx. 89 % ee in 48 h). Further polishing of the ee value via cascading methionine reductase A (MsrA) gave>99 % ee of the sulfoxide. The robustness of the enzymes and high product titer is superior to the state-of-the-art methodologies. Gram-scale synthesis has been demonstrated. Overall, we demonstrated a practical and facile catalytic method to synthesize chiral sulfoxides.
Collapse
Affiliation(s)
- Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Qianqian Shen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaoying Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
4
|
Uchida T. Development of Catalytic Site-Selective C-H Oxidation. CHEM REC 2023; 23:e202300156. [PMID: 37350373 DOI: 10.1002/tcr.202300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Direct C-H bond oxygenation is a strong and useful tool for the construction of oxygen functional groups. After Chen and White's pioneering works, various non-heme-type iron and manganese complexes were introduced, leading to strong development in this area. However, for this method to become a truly useful tool for synthetic organic chemistry, it is necessary to make further efforts to improve site-selectivity, and catalyst durability. Recently, we found that non-heme-type ruthenium complex cis-1 presents efficient catalysis in C(sp3 )-H oxygenation under acidic conditions. cis-1-catalysed C-H oxygenation can oxidize various substrates including highly complex natural compounds using hypervalent iodine reagents as a terminal oxidant. Moreover, the catalyst system can use almost stoichiometric water molecules as the oxygen source through reversible hydrolysis of PhI(OCOR)2 . It is a strong tool for producing isotopic-oxygen-labelled compounds. Moreover, the environmentally friendly hydrogen peroxide can be used as a terminal oxidant under acidic conditions.
Collapse
Affiliation(s)
- Tatsuya Uchida
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
5
|
Abstract
Enzymes fold into three-dimensional structures to distribute amino acid residues for catalysis, which inspired the supramolecular approach to construct enzyme-mimicking catalysts. A key concern in the development of supramolecular strategies is the ability to confine and orient functional groups to form enzyme-like active sites in artificial materials. This review introduces the design principles and construction of supramolecular nanomaterials exhibiting catalytic functions of heme-dependent enzymes, a large class of metalloproteins, which rely on a heme cofactor and spatially configured residues to catalyze diverse reactions via a complex multistep mechanism. We focus on the structure-activity relationship of the supramolecular catalysts and their applications in materials synthesis/degradation, biosensing, and therapeutics. The heme-free catalysts that catalyze reactions achieved by hemeproteins are also briefly discussed. Towards the end of the review, we discuss the outlook on the challenges related to catalyst design and future prospective, including the development of structure-resolving techniques and design concepts, with the aim of creating enzyme-mimicking materials that possess catalytic power rivaling that of natural enzymes..
Collapse
Affiliation(s)
- Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Discovery and Heterologous Expression of Unspecific Peroxygenases. Catalysts 2023. [DOI: 10.3390/catal13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Since 2004, unspecific peroxygenases, in short UPOs (EC. 1.11.2.1), have been explored. UPOs are closing a gap between P450 monooxygenases and chloroperoxidases. These enzymes are highly active biocatalysts for the selective oxyfunctionalisation of C–H, C=C and C-C bonds. UPOs are secreted fungal proteins and Komagataella phaffii (Pichia pastoris) is an ideal host for high throughput screening approaches and UPO production. Heterologous overexpression of 26 new UPOs by K. phaffii was performed in deep well plate cultivation and shake flask cultivation up to 50 mL volume. Enzymes were screened using colorimetric assays with 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (DMP), naphthalene and 5-nitro-1,3-benzodioxole (NBD) as reporter substrates. The PaDa-I (AaeUPO mutant) and HspUPO were used as benchmarks to find interesting new enzymes with complementary activity profiles as well as good producing strains. Herein we show that six UPOs from Psathyrella aberdarensis, Coprinopsis marcescibilis, Aspergillus novoparasiticus, Dendrothele bispora and Aspergillus brasiliensis are particularly active.
Collapse
|
7
|
Asamizu S, Ijichi S, Hoshino S, Jo H, Takahashi H, Itoh Y, Matsumoto S, Onaka H. Stable Isotope-Guided Metabolomics Reveals Polar-Functionalized Fatty-Acylated RiPPs from Streptomyces. ACS Chem Biol 2022; 17:2936-2944. [PMID: 36112882 DOI: 10.1021/acschembio.2c00601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) with polar-functionalized fatty acyl groups are a rarely found untapped class of natural products. Although polar-functionalized fatty-acylated RiPPs (PFARs) have potential as antimicrobial agents, the repertoire is still limited. Therefore, expanding the chemical space is expected to contribute to the development of pharmaceutical agents. In this study, we performed genome mining and stable isotope-guided comparative metabolomics to discover new PFAR natural products. We focused on the feature that PFARs incorporate l-arginine or l-lysine as the starter unit of the fatty acyl group and fed 13C6,15N4-l-arginine or 13C6,15N2-l-lysine to bacterial cultures. Metabolites were extracted and compared with those extracted from nonlabeled l-arginine or l-lysine fed cultures. We identified putative PFARs and successfully isolated solabiomycin A and B from Streptomyces lydicus NBRC 13 058 and albopeptin B from Streptomyces nigrescens HEK616, which contained a sulfoxide group in the labionin moiety. The gene disruption experiment indicated that solS, which encodes a putative flavin adenine dinucleotide (FAD)-nicotinamide adenine dinucleotide (phosphate) (NAD(P))-binding protein, is involved in the sulfoxidation of aryl sulfides. The solabiomycins showed antibacterial activity against Gram-positive bacteria, including Mycobacterium tuberculosis H37Rv with a minimum 95% inhibitory concentration (MIC95) of 3.125 μg/mL, suggesting their potential as antituberculosis agents.
Collapse
Affiliation(s)
- Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shinta Ijichi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shotaro Hoshino
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Hansaem Jo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Hidenori Takahashi
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Yuko Itoh
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-9510, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-9510, Japan.,Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl., Mulyorejo, Surabaya 60115, Indonesia
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Field MJ, Oyala PH, Green MT. 17O Electron Nuclear Double Resonance Analysis of Compound I: Inverse Correlation between Oxygen Spin Population and Electron Donation. J Am Chem Soc 2022; 144:19272-19283. [PMID: 36240444 DOI: 10.1021/jacs.2c05459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the activation of inert C-H bonds by metal-oxo complexes has been widely studied, important questions remain, particularly regarding the role of oxygen spin population (i.e., unpaired electrons on the oxo ligand) in facilitating C-H bond cleavage. In order to shed light on this issue, we have utilized 17O electron nuclear double resonance spectroscopy to measure the oxygen spin populations of three compound I intermediates in heme enzymes with different reactivities toward C-H bonds: chloroperoxidase, cytochrome P450, and a selenolate (selenocysteinyl)-ligated cytochrome P450. The experimental data suggest an inverse correlation between oxygen spin population and electron donation from the axial ligand. We have explored the implications of this result using a Hückel-type molecular orbital model and constrained density functional theory calculations. These investigations have allowed us to examine the relationship between oxygen spin population, oxygen charge, electron donation from the axial ligand, and reactivity.
Collapse
Affiliation(s)
- Mackenzie J Field
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| |
Collapse
|
9
|
Geeraerts Z, Stiller OR, Lukat-Rodgers GS, Rodgers KR. Roles of High-Valent Hemes and pH Dependence in Halite Decomposition Catalyzed by Chlorite Dismutase from Dechloromonas aromatica. ACS Catal 2022; 12:8641-8657. [DOI: 10.1021/acscatal.2c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zachary Geeraerts
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Olivia R. Stiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
10
|
Li H, Younes SHH, Chen S, Duan P, Cui C, Wever R, Zhang W, Hollmann F. Chemoenzymatic Hunsdiecker-Type Decarboxylative Bromination of Cinnamic Acids. ACS Catal 2022; 12:4554-4559. [PMID: 35465241 PMCID: PMC9016706 DOI: 10.1021/acscatal.2c00485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Indexed: 11/28/2022]
Abstract
![]()
In this contribution,
we report chemoenzymatic bromodecarboxylation
(Hunsdiecker-type) of α,ß-unsaturated carboxylic acids.
The extraordinarily robust chloroperoxidase from Curvularia
inaequalis (CiVCPO) generated hypobromite
from H2O2 and bromide, which then spontaneously
reacted with a broad range of unsaturated carboxylic acids and yielded
the corresponding vinyl bromide products. Selectivity issues arising
from the (here undesired) addition of water to the intermediate bromonium
ion could be solved by reaction medium engineering. The vinyl bromides
so obtained could be used as starting materials for a range of cross-coupling
and pericyclic reactions.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, China
| | - Sabry H. H. Younes
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
- Department of Chemistry, Faculty of Sciences, Sohag University, Sohag 82524, Egypt
| | - Shaohang Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chengsen Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin 300308, China
| | - Ron Wever
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin 300308, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629HZ, The Netherlands
| |
Collapse
|
11
|
Hobisch M, Holtmann D, Gomez de Santos P, Alcalde M, Hollmann F, Kara S. Recent developments in the use of peroxygenases - Exploring their high potential in selective oxyfunctionalisations. Biotechnol Adv 2021; 51:107615. [PMID: 32827669 PMCID: PMC8444091 DOI: 10.1016/j.biotechadv.2020.107615] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Peroxygenases are an emerging new class of enzymes allowing selective oxyfunctionalisation reactions in a cofactor-independent way different from well-known P450 monooxygenases. Herein, we focused on recent developments from organic synthesis, molecular biotechnology and reaction engineering viewpoints that are devoted to bring these enzymes in industrial applications. This covers natural diversity from different sources, protein engineering strategies for expression, substrate scope, activity and selectivity, stabilisation of enzymes via immobilisation, and the use of peroxygenases in low water media. We believe that peroxygenases have much to offer for selective oxyfunctionalisations and we have much to study to explore the full potential of these versatile biocatalysts in organic synthesis.
Collapse
Affiliation(s)
- Markus Hobisch
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, Gießen 35390, Germany
| | | | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, Madrid 28049, Spain; EvoEnzyme S.L, C/ Marie Curie 2, Madrid 28049, Spain
| | - Frank Hollmann
- Department of Biotechnology, Biocatalysis Group, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Selin Kara
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark.
| |
Collapse
|
12
|
Sharma A, Thatai KS, Kuthiala T, Singh G, Arya SK. Employment of polysaccharides in enzyme immobilization. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Ledray AP, Mittra K, Green MT. NRVS investigation of ascorbate peroxidase compound II: Observation of Iron(IV)oxo stretching. J Inorg Biochem 2021; 224:111548. [PMID: 34481347 DOI: 10.1016/j.jinorgbio.2021.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
The protonation state of ascorbate peroxidase compound II (APX-II) has been a subject of debate. A combined X-ray/neutron crystallographic study reported that APX-II is best described as an iron(IV)hydroxide species with an FeO distance of 1.88 Å (Kwon, et al. Nat Commun2016, 7, 13,445), while X-ray absorption spectroscopy (XAS) experiments (utilizing extended X-ray absorption fine structure (EXAFS) and pre-edge analyses) indicate APX-II is an authentic iron(IV)oxo species with an FeO distance 1.68 Å (Ledray, et al. Journal of the American Chemical Society2020,142, 20,419). Previous debates concerning ferryl protonation states have been resolved through the application of Badger's rule, which correlates FeO bond distances with FeO vibrational frequencies. To obtain the required vibrational data, we have collected Nuclear Resonance Vibrational Spectroscopy (NRVS) data for APX-II. We observe a broad vibrational feature in the range associated with iron(IV)oxo stretching (700-800 cm-1). This feature appears to have two peaks at 732 cm-1 and 770 cm-1, corresponding to FeO distances of 1.69 and 1.67 Å, respectively. The broad vibrational envelope and the presence of multiple resonances could reflect a distribution of hydrogen bonding interactions within the active-site pocket.
Collapse
Affiliation(s)
- Aaron P Ledray
- Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Kaustuv Mittra
- Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Michael T Green
- Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
15
|
Özgen FF, Runda ME, Schmidt S. Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light. Chembiochem 2021; 22:790-806. [PMID: 32961020 PMCID: PMC7983893 DOI: 10.1002/cbic.202000587] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
In the field of green chemistry, light - an attractive natural agent - has received particular attention for driving biocatalytic reactions. Moreover, the implementation of light to drive (chemo)enzymatic cascade reactions opens up a golden window of opportunities. However, there are limitations to many current examples, mostly associated with incompatibility between the enzyme and the photocatalyst. Additionally, the formation of reactive radicals upon illumination and the loss of catalytic activities in the presence of required additives are common observations. As outlined in this review, the main question is how to overcome current challenges to the exploitation of light to drive (chemo)enzymatic transformations. First, we highlight general concepts in photo-biocatalysis, then give various examples of photo-chemoenzymatic (PCE) cascades, further summarize current synthetic examples of PCE cascades and discuss strategies to address the limitations.
Collapse
Affiliation(s)
- Fatma Feyza Özgen
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Michael E. Runda
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| | - Sandy Schmidt
- Groningen Research Institute of PharmacyDepartment of Chemical and Pharmaceutical BiologyAntonius Deusinglaan 19713 AVGroningen (TheNetherlands
| |
Collapse
|
16
|
Zhang W, Liu H, van Schie MMCH, Hagedoorn PL, Alcalde M, Denkova AG, Djanashvili K, Hollmann F. Nuclear Waste and Biocatalysis: A Sustainable Liaison? ACS Catal 2020; 10:14195-14200. [PMID: 33312749 PMCID: PMC7723303 DOI: 10.1021/acscatal.0c03059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/27/2020] [Indexed: 12/14/2022]
Abstract
![]()
It
is well-known that energy-rich radiation induces water splitting,
eventually yielding hydrogen peroxide. Synthetic applications, however,
are scarce and to the best of our knowledge, the combination of radioactivity
with enzyme-catalysis has not been considered yet. Peroxygenases utilize
H2O2 as an oxidant to promote highly selective
oxyfunctionalization reactions but are also irreversibly inactivated
in the presence of too high H2O2 concentrations.
Therefore, there is a need for efficient in situ H2O2 generation methods. Here, we show that radiolytic water splitting
can be used to promote specific biocatalytic oxyfunctionalization
reactions. Parameters influencing the efficiency of the reaction and
current limitations are shown. Particularly, oxidative inactivation
of the biocatalyst by hydroxyl radicals influences the robustness
of the overall reaction. Radical scavengers can alleviate this issue,
but eventually, physical separation of the enzymes from the ionizing
radiation will be necessary to achieve robust reaction schemes. We
demonstrate that nuclear waste can also be used to drive selective,
peroxygenase-catalyzed oxyfunctionalization reactions, challenging
our view on nuclear waste in terms of sustainability.
Collapse
Affiliation(s)
- Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308 Tianjin, China
| | - Huanhuan Liu
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Morten M. C. H. van Schie
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Antonia G. Denkova
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Kristina Djanashvili
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
17
|
Liu S, Du P, Sun H, Yu HY, Wang ZG. Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Peidong Du
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai-Yin Yu
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Ledray AP, Krest CM, Yosca TH, Mittra K, Green MT. Ascorbate Peroxidase Compound II Is an Iron(IV) Oxo Species. J Am Chem Soc 2020; 142:10.1021/jacs.0c09108. [PMID: 33170000 PMCID: PMC8107191 DOI: 10.1021/jacs.0c09108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The protonation state of the iron(IV) oxo (or ferryl) form of ascorbate peroxidase compound II (APX-II) is a subject of debate. It has been reported that this intermediate is best described as an iron(IV) hydroxide species. Neutron diffraction data obtained from putative APX-II crystals indicate a protonated oxygenic ligand at 1.88 Å from the heme iron. This finding, if correct, would be unprecedented. A basic iron(IV) oxo species has yet to be spectroscopically observed in a histidine-ligated heme enzyme. The importance of ferryl basicity lies in its connection to our fundamental understanding of C-H bond activation. Basic ferryl species have been proposed to facilitate the oxidation of inert C-H bonds, reactions that are unknown for histidine-ligated hemes enzymes. To provide further insight into the protonation status of APX-II, we examined the intermediate using a combination of Mössbauer and X-ray absorption spectroscopies. Our data indicate that APX-II is an iron(IV) oxo species with an Fe-O bond distance of 1.68 Å, a K-edge pre-edge absorption of 18 units, and Mössbauer parameters of ΔEq = 1.65 mm/s and δ = 0.03 mm/s.
Collapse
Affiliation(s)
- Aaron P Ledray
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Courtney M Krest
- Roach & Associates, Limited Liability Company, Seymour, Wisconsin 54942, United States
| | - Timothy H Yosca
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Kaustuv Mittra
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Michael T Green
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
19
|
Enzymatic epoxidation of cyclohexene by peroxidase immobilization on a textile and an adapted reactor design. Enzyme Microb Technol 2020; 136:109512. [PMID: 32331717 DOI: 10.1016/j.enzmictec.2020.109512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
Abstract
A textile-based reaction system for new peroxidase reactions in non-native media was implemented. The epoxidation of cyclohexene by the commercial peroxidase MaxiBright® was realized with the textile-immobilized enzyme in an adapted liquid-liquid two-phase reactor. A commercially available polyester felt was used as low-price carrier and functionalized with polyvinyl amine. The covalent immobilization with glutardialdehyde lead to an enzyme loading of 0.10 genzyme/gtextile. The textile-based peroxidase shows a high activity retention in the presence of organic media. This catalyst is shown to enable the epoxidation of cyclohexene in various solvents as well as under neat conditions. A model reactor was produced by 3D printing which places the textile catalyst at the interphase between the liquid reaction phase and the product extracting solvent.
Collapse
|
20
|
Hayashi H, Uchida T. Nitrene Transfer Reactions for Asymmetric C-H Amination: Recent Development. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901562] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hiroki Hayashi
- Department of Arts and Science; Kyushu University; 744, Motooka, Nishi-ku 819-0395 Fukuoka Japan
| | - Tatsuya Uchida
- Department of Arts and Science; Kyushu University; 744, Motooka, Nishi-ku 819-0395 Fukuoka Japan
- International Institute for Carbon-Neutral Energy Research; Kyushu University; 744, Motooka, Nishi-ku 819-0395 Fukuoka Japan
| |
Collapse
|
21
|
Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019). Catalysts 2019. [DOI: 10.3390/catal9100802] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The broad interdisciplinary nature of biocatalysis fosters innovation, as different technical fields are interconnected and synergized. A way to depict that innovation is by conducting a survey on patent activities. This paper analyses the intellectual property activities of the last five years (2014–2019) with a specific focus on biocatalysis applied to asymmetric synthesis. Furthermore, to reflect the inventive and innovative steps, only patents that were granted during that period are considered. Patent searches using several keywords (e.g., enzyme names) have been conducted by using several patent engine servers (e.g., Espacenet, SciFinder, Google Patents), with focus on granted patents during the period 2014–2019. Around 200 granted patents have been identified, covering all enzyme types. The inventive pattern focuses on the protection of novel protein sequences, as well as on new substrates. In some other cases, combined processes, multi-step enzymatic reactions, as well as process conditions are the innovative basis. Both industries and academic groups are active in patenting. As a conclusion of this survey, we can assert that biocatalysis is increasingly recognized as a useful tool for asymmetric synthesis and being considered as an innovative option to build IP and protect synthetic routes.
Collapse
|
22
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H 2 O 2 -Dependent Biocatalytic Oxidation Reactions. Angew Chem Int Ed Engl 2019; 58:7873-7877. [PMID: 30945422 PMCID: PMC6563469 DOI: 10.1002/anie.201902380] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/29/2022]
Abstract
An increasing number of biocatalytic oxidation reactions rely on H2 O2 as a clean oxidant. The poor robustness of most enzymes towards H2 O2 , however, necessitates more efficient systems for in situ H2 O2 generation. In analogy to the well-known formate dehydrogenase to promote NADH-dependent reactions, we here propose employing formate oxidase (FOx) to promote H2 O2 -dependent enzymatic oxidation reactions. Even under non-optimised conditions, high turnover numbers for coupled FOx/peroxygenase catalysis were achieved.
Collapse
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
- Chemistry DepartmentFaculty of ScienceSohag UniversitySohag82524Egypt
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC28049MadridSpain
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology311 Ferst Drive, N.W.AtlantaGA30332USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology901 Atlantic Drive, N.W.AtlantaGA30332USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delftvan der Massweg 92629HZDelftThe Netherlands
| |
Collapse
|
23
|
Aptitude of Oxidative Enzymes for Treatment of Wastewater Pollutants: A Laccase Perspective. Molecules 2019; 24:molecules24112064. [PMID: 31151229 PMCID: PMC6600482 DOI: 10.3390/molecules24112064] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 01/28/2023] Open
Abstract
Natural water sources are very often contaminated by municipal wastewater discharges which contain either of xenobiotic pollutants and their sometimes more toxic degradation products, or both, which frustrates the universal millenium development goal of provision of the relatively scarce pristine freshwater to water-scarce and -stressed communities, in order to augment their socioeconomic well-being. Seeing that both regulatory measures, as regards the discharge limits of wastewater, and the query for efficient treatment methods remain unanswered, partially, the prospects of enzymatic treatment of wastewater is advisable. Therefore, a reconsideration was assigned to the possible capacity of oxidative enzymes and the respective challenges encountered during their applications in wastewater treatment, and ultimately, the prospects of laccase, a polyphenol oxidase that oxidizes aromatic and inorganic substrates with electron-donating groups in treatment aromatic contaminants of wastewater, in real wastewater situations, since it is assumed to be a vehicle for a greener community. Furthermore, the importance of laccase-driven catalysis toward maintaining mass-energy balance, hence minimizing environmental waste, was comprehensibly elucidated, as well the strategic positioning of laccase in a model wastewater treatment facility for effective treatment of wastewater contaminants.
Collapse
|
24
|
Yang J, Gao T, Zhang Y, Wang S, Li H, Li S, Wang S. Degradation of the phenolic β-ether lignin model dimer and dyes by dye-decolorizing peroxidase from Bacillus amyloliquefaciens. Biotechnol Lett 2019; 41:1015-1021. [PMID: 31134460 DOI: 10.1007/s10529-019-02696-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/21/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The dye-decolorizing peroxidase from Bacillus amyloliquefaciens, BaDyP, was identified to be an efficient catalyst for the degradation of phenolic β-ether lignin model dimer guaiacylglycerol-β-guaiacyl ether (GGE) and dyes. RESULTS Efeb gene encoding BaDyP from B. amyloliquefaciens MN-13 consisted of 1257 bp and the open reading frame encoded 418 amino acids. The efeb gene was expressed in Escherichia coli BL21 and a recombinant BaDyP of 50 kDa was achieved. The BaDyP exhibited activity in oxidizing GGE and decolorizing azo and triphenylmethane dyes. At pH 4.5 and 30 °C the BaDyP not only completely degraded GGE by the cleavage of β-O-4 ether bond and Cα-Cβ bond, and Cα oxidation without any oxidative mediator, but also decolorized four synthetic dyes, including congo red, bromine cresol green, eriochrome black T and crystal violet. This was achieved with decolorization rates of 65.7%, 70.62%, 80.06% and 62.09%, respectively, after 72 h of incubation. CONCLUSIONS BaDyP was identified as a bacteria peroxidase with great potential for the degradation of lignin and bioremediation of dye-contamination.
Collapse
Affiliation(s)
- Juan Yang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Tongguo Gao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Yaru Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Shuo Wang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Hongya Li
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Shuna Li
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Shuxiang Wang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
| |
Collapse
|
25
|
Tieves F, Willot SJ, van Schie MMCH, Rauch MCR, Younes SHH, Zhang W, Dong J, Gomez de Santos P, Robbins JM, Bommarius B, Alcalde M, Bommarius AS, Hollmann F. Formiat‐Oxidase (FOx) aus
Aspergillus oryzae
: ein Katalysator für verschiedene H
2
O
2
‐abhängige biokatalytische Oxidationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Florian Tieves
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | | | | | - Sabry Hamdy Hamed Younes
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
- Chemistry DepartmentFaculty of ScienceSohag University Sohag 82524 Ägypten
| | - Wuyuan Zhang
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | - JiaJia Dong
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| | | | - John Mick Robbins
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of CatalysisCSIC 28049 Madrid Spanien
| | - Andreas Sebastian Bommarius
- School of Chemical and Biomolecular EngineeringGeorgia Institute of Technology 311 Ferst Drive, N.W. Atlanta GA 30332 USA
- School of Chemistry and BiochemistryGeorgia Institute of Technology 901 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Frank Hollmann
- Department of BiotechnologyUniversity of Technology Delft van der Massweg 9 2629HZ Delft Niederlande
| |
Collapse
|
26
|
Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nat Commun 2019; 10:240. [PMID: 30651559 PMCID: PMC6335431 DOI: 10.1038/s41467-018-08234-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/17/2018] [Indexed: 12/24/2022] Open
Abstract
As the first line of innate immune cells to migrate towards tumour tissue, neutrophils, can immediately kill abnormal cells and activate long-term specific adaptive immune responses. Therefore, the enzymes mediated elevation of reactive oxygen species (ROS) bioinspired by neutrophils can be a promising strategy in cancer immunotherapy. Here, we design a core-shell supramolecular hybrid nanogel via the surface phosphatase triggered self-assembly of oligopeptides around iron oxide nanoparticles to simulate productive neutrophil lysosomes. The cascade reaction of superoxide dismutase (SOD) and chloroperoxidase (CPO) within the bioinspired nanogel can convert ROS in tumour tissue to hypochlorous acid (HOCl) and the subsequent singlet oxygen (1O2) species. Studies on both cells and animals demonstrate successful 1O2-mediated cell/tumour proliferation inhibition, making this enzyme therapy capable for treating tumours without external energy activation.
Collapse
|
27
|
Dong J, Fernández‐Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew Chem Int Ed Engl 2018; 57:9238-9261. [PMID: 29573076 PMCID: PMC6099261 DOI: 10.1002/anie.201800343] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/25/2023]
Abstract
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non-activated C-H bonds. For many of these reactions, no "classical" chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
Collapse
Affiliation(s)
- JiaJia Dong
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Elena Fernández‐Fueyo
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Milja Pesic
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Sandy Schmidt
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sabry Younes
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
28
|
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800343] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- JiaJia Dong
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Elena Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Sandy Schmidt
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Sabry Younes
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| |
Collapse
|
29
|
Thiel D, Blume F, Jäger C, Deska J. Chloroperoxidase-Catalyzed Achmatowicz Rearrangements. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Daniel Thiel
- Department of Chemistry and Materials Science; Aalto-yliopisto; Kemistintie 1 02150 Espoo Finland
| | - Fabian Blume
- Department of Chemistry and Materials Science; Aalto-yliopisto; Kemistintie 1 02150 Espoo Finland
| | - Christina Jäger
- Department of Chemistry and Materials Science; Aalto-yliopisto; Kemistintie 1 02150 Espoo Finland
| | - Jan Deska
- Department of Chemistry and Materials Science; Aalto-yliopisto; Kemistintie 1 02150 Espoo Finland
| |
Collapse
|
30
|
Dong JJ, Fernández-Fueyo E, Li J, Guo Z, Renirie R, Wever R, Hollmann F. Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis. Chem Commun (Camb) 2018; 53:6207-6210. [PMID: 28548142 DOI: 10.1039/c7cc03368k] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vanadium-dependent chloroperoxidase from Curvularia inaequalis is a stable and efficient biocatalyst for the hydroxyhalogenation of a broad range of alkenes into halohydrins. Up to 1 200 000 TON with 69 s-1 TOF were observed for the biocatalyst. A bienzymatic cascade to yield epoxides as reaction products is presented.
Collapse
Affiliation(s)
- Jia Jia Dong
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 622] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
32
|
Pott M, Hayashi T, Mori T, Mittl PRE, Green AP, Hilvert D. A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold. J Am Chem Soc 2018; 140:1535-1543. [DOI: 10.1021/jacs.7b12621] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moritz Pott
- Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Takahiro Mori
- Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Anthony P. Green
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
33
|
Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalisations. Nat Catal 2017; 1:55-62. [PMID: 29430568 PMCID: PMC5798593 DOI: 10.1038/s41929-017-0001-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Peroxygenases offer attractive means to address challenges in selective oxyfunctionalisation chemistry. Despite their attractiveness, the application of peroxygenases in synthetic chemistry remains challenging due to their facile inactivation by the stoichiometric oxidant (H2O2). Often atom inefficient peroxide generation systems are required, which show little potential for large scale implementation. Here we show that visible light-driven, catalytic water oxidation can be used for in situ generation of H2O2 from water, rendering the peroxygenase catalytically active. In this way the stereoselective oxyfunctionalisation of hydrocarbons can be achieved by simply using the catalytic system, water and visible light.
Collapse
|
34
|
Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJ. Microbial antioxidant defense enzymes. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Enzymatic Mechanisms Involved in Evasion of Fungi to the Oxidative Stress: Focus on Scedosporium apiospermum. Mycopathologia 2017. [DOI: 10.1007/s11046-017-0160-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Shen LQ, Kundu S, Collins TJ, Bominaar EL. Analysis of Hydrogen Atom Abstraction from Ethylbenzene by an FeVO(TAML) Complex. Inorg Chem 2017; 56:4347-4356. [DOI: 10.1021/acs.inorgchem.6b02796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Longzhu Q. Shen
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Soumen Kundu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Terrence J. Collins
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Emile L. Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
37
|
Huang X, Groves JT. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. J Biol Inorg Chem 2016; 22:185-207. [PMID: 27909920 PMCID: PMC5350257 DOI: 10.1007/s00775-016-1414-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C-H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R-H) by high-valent iron-oxo species (Fen=O) generates a substrate radical and a reduced iron hydroxide, [Fen-1-OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R-OH, rebound to a non-oxygen atom affording R-X, electron transfer of the incipient radical to yield a carbocation, R+, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C-H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C-H transformations are selected to illustrate how the behaviors of the radical pair [Fen-1-OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of "radical rebound" processes as a general paradigm for developing novel C-H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic "radical rebound" with synthetic organic chemistry.
Collapse
|
38
|
Fernández-Fueyo E, Ni Y, Gomez Baraibar A, Alcalde M, van Langen LM, Hollmann F. Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Electro-enzymatic hydroxylation of ethylbenzene by the evolved unspecific peroxygenase of Agrocybe aegerita. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Green AP, Hayashi T, Mittl PRE, Hilvert D. A Chemically Programmed Proximal Ligand Enhances the Catalytic Properties of a Heme Enzyme. J Am Chem Soc 2016; 138:11344-52. [DOI: 10.1021/jacs.6b07029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anthony P. Green
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Takahiro Hayashi
- Laboratory
of Organic Chemistry, ETH Zurich, 8093 Zürich, Switzerland
| | - Peer R. E. Mittl
- Department
of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Donald Hilvert
- Laboratory
of Organic Chemistry, ETH Zurich, 8093 Zürich, Switzerland
| |
Collapse
|
41
|
Pan ST, Xue D, Li ZL, Zhou ZW, He ZX, Yang Y, Yang T, Qiu JX, Zhou SF. Computational Identification of the Paralogs and Orthologs of Human Cytochrome P450 Superfamily and the Implication in Drug Discovery. Int J Mol Sci 2016; 17:E1020. [PMID: 27367670 PMCID: PMC4964396 DOI: 10.3390/ijms17071020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/02/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA ("Orthologous MAtrix") Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery.
Collapse
Affiliation(s)
- Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330003, China.
| | - Danfeng Xue
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330003, China.
| | - Zhi-Ling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Yinxue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT 84132, USA.
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330003, China.
| | - Shu-Feng Zhou
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
42
|
Linde D, Cañellas M, Coscolín C, Davó-Siguero I, Romero A, Lucas F, Ruiz-Dueñas FJ, Guallar V, Martínez AT. Asymmetric sulfoxidation by engineering the heme pocket of a dye-decolorizing peroxidase. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00539j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By enlarging the active site of DyP, F359G stereoselectively converting methyl-phenyl sulfide (MPS) into S methyl-phenyl sulfoxide (MPSO) was obtained, while the parent DyP has no activity, and L357G yields racemic mixtures.
Collapse
Affiliation(s)
- Dolores Linde
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | - Marina Cañellas
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
- Anaxomics Biotech
| | | | | | - Antonio Romero
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | - Fátima Lucas
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
- Anaxomics Biotech
| | | | - Victor Guallar
- Joint BSC-CRG-IRB Research Program in Computational Biology
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
- ICREA
| | | |
Collapse
|
43
|
Yamamoto D, Soga M, Ansai H, Makino K. Manganese-catalysed hydroperoxidation of carbon–carbon double bonds using molecular oxygen present in air and hydroxylamine under ambient conditions. Org Chem Front 2016. [DOI: 10.1039/c6qo00318d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly efficient manganese-catalysed hydroperoxidation of carbon–carbon double bonds of enynes as well as styrene derivatives using N-hydroxyphthalimide, N-hydroxybenzotriazole or N-hydroxysuccinimide was developed.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Pharmaceutical Sciences
- Kitasato University
- Tokyo 108-8641
- Japan
| | - Masayuki Soga
- Department of Pharmaceutical Sciences
- Kitasato University
- Tokyo 108-8641
- Japan
| | - Hiromasa Ansai
- Department of Pharmaceutical Sciences
- Kitasato University
- Tokyo 108-8641
- Japan
| | - Kazuishi Makino
- Department of Pharmaceutical Sciences
- Kitasato University
- Tokyo 108-8641
- Japan
| |
Collapse
|
44
|
Oszajca M, Franke A, Brindell M, Stochel G, van Eldik R. Redox cycling in the activation of peroxides by iron porphyrin and manganese complexes. ‘Catching’ catalytic active intermediates. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Ni Y, Fernández-Fueyo E, Baraibar AG, Ullrich R, Hofrichter M, Yanase H, Alcalde M, van Berkel WJH, Hollmann F. Peroxygenase-katalysierte Oxyfunktionalisierung angetrieben durch Methanoloxidation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507881] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Ni Y, Fernández-Fueyo E, Baraibar AG, Ullrich R, Hofrichter M, Yanase H, Alcalde M, van Berkel WJH, Hollmann F. Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol. Angew Chem Int Ed Engl 2015; 55:798-801. [DOI: 10.1002/anie.201507881] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 11/05/2022]
|
47
|
Significantly shorter Fe-S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase. Nat Chem 2015; 7:696-702. [PMID: 26291940 PMCID: PMC4580274 DOI: 10.1038/nchem.2306] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/19/2015] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate ligated heme proteins that catalyze the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I, which only cleaves activated C-H bonds. To provide insight into the differing reactivities of these intermediates, we examined CPO-I and P450-I with variable temperature Mössbauer and X-ray absorption spectroscopies. These measurements indicate that the Fe-S bond is significantly shorter in P450-I than in CPO-I. This difference in Fe-S bond lengths can be understood in terms of variations in hydrogen bonding patterns within the “cys-pocket” (a portion of the proximal helix that encircles the thiolate ligand). Weaker hydrogen bonding in P450-I results in a shorter Fe-S bond, which enables greater electron donation from the axial-thiolate ligand. This observation may in part explain P450's greater propensity for C-H bond activation.
Collapse
|
48
|
Holtmann D, Fraaije MW, Arends IWCE, Opperman DJ, Hollmann F. The taming of oxygen: biocatalytic oxyfunctionalisations. Chem Commun (Camb) 2015; 50:13180-200. [PMID: 24902635 DOI: 10.1039/c3cc49747j] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope and limitations of oxygenases as catalysts for preparative organic synthesis is discussed.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
49
|
Pereira PC, Arends IW, Sheldon RA. Optimizing the chloroperoxidase–glucose oxidase system: The effect of glucose oxidase on activity and enantioselectivity. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Apolar distal pocket mutants of yeast cytochrome c peroxidase: Binding of imidazole, 1-methylimidazole and 4-nitroimidazole to the triAla, triVal, and triLeu variants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:919-29. [PMID: 25900360 DOI: 10.1016/j.bbapap.2015.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/04/2015] [Accepted: 04/14/2015] [Indexed: 11/23/2022]
Abstract
Imidazole binding to three apolar distal heme pocket mutants of yeast cytochrome c peroxidase (CcP) has been investigated between pH4 and 8. The three CcP variants have Arg-48, Trp-51, and His-52 mutated to either all alanine, CcP(triAla), all valine, CcP(triVal), or all leucine residues, CcP(triLeu). The imidazole binding curves for all three mutants are biphasic indicating that each of the mutants exists in at least two conformational states with different affinities for imidazole. At pH7, the high-affinity conformations of the three CcP mutants bind imidazole between 3.8 and 4.7 orders of magnitude stronger than that of wild-type CcP while the low-affinity conformations have binding affinities about 2.5 orders of magnitude larger than wild-type CcP. Imidazole binding to the three CcP mutants is pH dependent with the strongest binding observed at high pH. Apparent pK(a) values for the transition in binding vary between 5.6 and 7.5 for the high-affinity conformations and between 6.2 and 6.8 for the low-affinity conformations of the CcP triple mutants. The kinetics of imidazole binding are also biphasic. The fast phase of imidazole binding to CcP(triAla) and CcP(triLeu) is linearly dependent on the imidazole concentration while the slow phase is independent of imidazole concentration. Both phases of imidazole binding to CcP(triVal) have a hyperbolic dependence on the imidazole concentration. The apparent association rate constants vary between 30 and 170 M(-1)s(-1) while the apparent dissociation rate constants vary between 0.05 and 0.43 s(-1). The CcP triple mutants have higher binding affinities for 1-methylimidazole and 4-nitroimidazole than does wild-type CcP.
Collapse
|