1
|
Vashishth A, Tehri N, Tehri P, Sharma A, Sharma AK, Kumar V. Unraveling the potential of bacterial phytases for sustainable management of phosphorous. Biotechnol Appl Biochem 2023; 70:1690-1706. [PMID: 37042496 DOI: 10.1002/bab.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
Phosphorous actively participates in numerous metabolic and regulatory activities of almost all living organisms including animals and humans. Therefore, it is considered as an essential macronutrient required supporting their proper growth. On contrary, phytic acid (PA), an antinutritional substance, is widely known for its strong affinity to chelate essential mineral ions including PO4 3- , Ca2+ , Fe2+ , Mg2+ , and Zn2+ . Being one the major reservoir of PO4 3- ions, PA has great potential to bind PO4 3- ions in diverse range of foods. Once combined with P, PA transforms into an undigested and insoluble complex namely phytate. Produced phytate leads to a notable reduction in the bioavailability of P due to negligible activity of phytases in monogastric animals and humans. This highlights the importance and consequent need of enhancement of phytase level in these life forms. Interestingly, phytases, catalyzing the breakdown of phytate complex and recycling the phosphate into ecosystem to its available form, have naturally been reported in a variety of plants and microorganisms over past few decades. In pursuit of a reliable solution, the focus of this review is to explore the keynote potential of bacterial phytases for sustainable management of phosphorous via efficient utilization of soil phytate. The core of the review covers detailed discussion on bacterial phytases along with their widely reported applications viz. biofertilizers, phosphorus acquisition, and plant growth promotion. Moreover, meticulous description on fermentation-based strategies and future trends on bacterial phytases have also been included.
Collapse
Affiliation(s)
- Amit Vashishth
- Department of Science and Humanities, SRM Institute of Science & Technology, Ghaziabad, Uttar Pradesh, India
| | - Nimisha Tehri
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Piyush Tehri
- Department of Applied Sciences, MIET, Meerut, Uttar Pradesh, India
| | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan, India
| |
Collapse
|
2
|
Senguttuvel P, G P, C J, D SR, CN N, V J, P B, R G, J AK, SV SP, LV SR, AS H, K S, D S, RM S, Govindaraj M. Rice biofortification: breeding and genomic approaches for genetic enhancement of grain zinc and iron contents. FRONTIERS IN PLANT SCIENCE 2023; 14:1138408. [PMID: 37332714 PMCID: PMC10272457 DOI: 10.3389/fpls.2023.1138408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/25/2023] [Indexed: 06/20/2023]
Abstract
Rice is a highly consumed staple cereal cultivated predominantly in Asian countries, which share 90% of global rice production. Rice is a primary calorie provider for more than 3.5 billion people across the world. Preference and consumption of polished rice have increased manifold, which resulted in the loss of inherent nutrition. The prevalence of micronutrient deficiencies (Zn and Fe) are major human health challenges in the 21st century. Biofortification of staples is a sustainable approach to alleviating malnutrition. Globally, significant progress has been made in rice for enhancing grain Zn, Fe, and protein. To date, 37 biofortified Fe, Zn, Protein and Provitamin A rich rice varieties are available for commercial cultivation (16 from India and 21 from the rest of the world; Fe > 10 mg/kg, Zn > 24 mg/kg, protein > 10% in polished rice as India target while Zn > 28 mg/kg in polished rice as international target). However, understanding the micronutrient genetics, mechanisms of uptake, translocation, and bioavailability are the prime areas that need to be strengthened. The successful development of these lines through integrated-genomic technologies can accelerate deployment and scaling in future breeding programs to address the key challenges of malnutrition and hidden hunger.
Collapse
Affiliation(s)
- P. Senguttuvel
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Padmavathi G
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Jasmine C
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
- Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Sanjeeva Rao D
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Neeraja CN
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Jaldhani V
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Beulah P
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Gobinath R
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Aravind Kumar J
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Sai Prasad SV
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Subba Rao LV
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Hariprasad AS
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Sruthi K
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Shivani D
- Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Sundaram RM
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Mahalingam Govindaraj
- HarvestPlus, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
3
|
Areche FO, López JMM, Mamani CMC, Alberto MNM, Araujo VGS, Pastrana PAP, Camayo-Lapa BF, Quispe-Solano MA, Saldarriaga JY, Ayre CPE, Carrasco SM, Roman AV, Flores DDC, Cruz Nieto DD. Photosynthetic modification of plants through recent technologies: a valuable way to ensure crop fortification. BRAZ J BIOL 2023; 83:e271809. [PMID: 37222373 DOI: 10.1590/1519-6984.271809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 05/25/2023] Open
Abstract
The 2030 Sustainable Development Goals of the United Nations include a strong emphasis on ending hunger worldwide. According to the 2019 Global Food Security Index, while 88% of countries claim there is sufficient food supply in their country, the sad reality is that 1 in 3 countries is facing insufficient availability of food supply, which means that in those countries, more than 10% of the population is malnourished. Since nutrition is crucial to leading a healthy life and satisfying food security needs, several governments have turned to national nutrition surveys to gauge the extent of malnutrition in their populations. Plants are able to grow, develop, and store nutrients by photosynthesis, which convert light into chemical energy through cell redox regulatory networks. A photosynthesis system's electron flow may be adjusted to accommodate varying light and environmental circumstances. Many techniques exist for controlling the flow of electrons emitted during light processes in order to save or waste energy. The two protein molecules TROL and flavoenzyme ferredoxin (oxidoreductase+NADP) (FNR) interact dynamically to form an excellent molecular switch capable of splitting electrons from the photosystem. The TROL-FNR bifurcation may be limited by either generating NADPH or preventing reactive oxygen species from propagating. TROL-based genome editing is an experimental method for enhancing plant stress and defensive responses, efficiency, and ultimately agricultural production.
Collapse
Affiliation(s)
- F O Areche
- National University of Huancavelica, Huancavelica, Peru
| | - J M M López
- Santiago Antúnez of Mayolo National University, Huaraz, Peru
| | | | | | - V G S Araujo
- National University of Huancavelica, Huancavelica, Peru
| | | | | | | | - J Y Saldarriaga
- Santiago Antunez of Mayolo National University, Huaraz, Peru
| | - C P E Ayre
- National University of Huancavelica, Huancavelica, Peru
| | - S M Carrasco
- Micaela Bastidas National University of Apurimac, Abancay, Peru
| | - A V Roman
- Micaela Bastidas National University of Apurimac, Abancay, Peru
| | - D D C Flores
- National University of Huancavelica, Huancavelica, Peru
| | - D D Cruz Nieto
- José Faustino Sánchez Carrión National University, Huacho, Peru
| |
Collapse
|
4
|
New insight into the pigmented rice of northeast India revealed high antioxidant and mineral compositions for better human health. Heliyon 2022; 8:e10464. [PMID: 36090216 PMCID: PMC9449748 DOI: 10.1016/j.heliyon.2022.e10464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/09/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Northeast (NE) India possesses a rich diversity of rice cultivars including pigmented and non pigmented varieties. The pigmented rice is reported to possess a considerable amount of antioxidant compounds, free radical scavengers etc. In this study, eleven (black, red and white) rice cultivars of NE India were analyzed for antioxidant potentials, mineral and protein contents. Total phenolic content ranged from 94.8 (Idaw) to 900.90 mg GAE/100 g (Lumre). Total flavonoid content varied from 3.46 (Idaw) to 286.76 mg QE/100 g (Menil mibabaret). Total anthocyanin content varied from 0.23 (Farel) to 93.52 mg/100 g (Chakhao poireiton). The pigmented rice is also good sources of Catalase (CAT), Ascorbate peroxidase (APX) and Superoxide Dismutase (SOD) that can significantly reduce stress oxidative reactions. Chakhao poireiton possessed the highest Ni and Mn content, Tsulu tsuk had the highest Zn content, while Fazu and Tasung contained the highest Fe and Ca. The highest total protein was found in Chakhao poireiton (11.06%). And all the cultivars were found to be aromatic. Fourier Transformed Infra-Red spectroscopy (FTIR) identified various signature peaks and could discriminate the cultivars into pigmented and non pigmented. Principle Component Analysis (PCA) revealed the grouping of the cultivars based on the functional groups present. The present study could provide a better understanding of choosable rice lines for human consumption and also as germplasm resources for future rice improvement programs.
Collapse
|
5
|
Ali MK, Sun ZH, Yang XM, Pu XY, Duan CL, Li X, Wang LX, Yang JZ, Zeng YW. NILs of Cold Tolerant Japonica Cultivar Exhibited New QTLs for Mineral Elements in Rice. Front Genet 2021; 12:789645. [PMID: 34868277 PMCID: PMC8637755 DOI: 10.3389/fgene.2021.789645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Chilling stress at booting stage can cause floret deterioration and sterility by limiting the supply of food chain and the accumulation of essential mineral elements resulting in reduction of yield and grain quality attributes in rice. Genomic selection of chilling tolerant rice with reference to the accumulation of mineral elements will have great potential to cope with malnutrition and food security in times of climate change. Therefore, a study was conducted to explore the genomic determinants of cold tolerance and mineral elements content in near-isogenic lines (NILs) of japonica rice subjected to chilling stress at flowering stage. Detailed morphological analysis followed by quantitative analysis of 17 mineral elements revealed that the content of phosphorus (P, 3,253 mg/kg) and potassium (K, 2,485 mg/kg) were highest while strontium (Sr, 0.26 mg/kg) and boron (B, 0.34 mg/kg) were lowest among the mineral elements. The correlation analysis revealed extremely positive correlation of phosphorus (P) and copper (Cu) with most of the cold tolerance traits. Among all the effective ear and the second leaf length correlation was significant with half of the mineral elements. As a result of comparative analysis, some QTLs (qBRCC-1, qBRCIC-2, qBRZC-6, qBRCHC-6, qBRMC-6, qBRCIC-6a, qBRCIC-6b, qBRCHC-6, and qBRMC-6) identified for calcium (Ca), zinc (Zn), chromium (Cr) and magnesium (Mg) on chromosome number 1, 2, and 6 while, a novel QTL (qBCPC-1) was identified on chromosome number 1 for P element only. These findings provided bases for the identification of candidate genes involved in mineral accumulation and cold tolerance in rice at booting stage.
Collapse
Affiliation(s)
- Muhammad Kazim Ali
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Zheng-Hai Sun
- School of Horticulture and Gardening, Southwest Forestry University, Kunming, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xiao-Meng Yang
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiao-Ying Pu
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Cheng-Li Duan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xia Li
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lu-Xiang Wang
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jia-Zhen Yang
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ya-Wen Zeng
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
6
|
New insight into iron biogeochemical cycling in soil-rice plant system using iron isotope fractionation. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
7
|
|
8
|
Kruger J, Stuetz W, Frank J. Iron, Catechin, and Ferulic Acid Inhibit Cellular Uptake of β-Carotene by Reducing Micellization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5792-5800. [PMID: 31056903 DOI: 10.1021/acs.jafc.9b01417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Green leafy vegetables have low β-carotene bioavailability, which we hypothesized to be, at least in part, due to high contents of fiber, minerals, and phenolics. We investigated the effects of pectin (40-120 μg/mL), iron (50-150 μg/mL), ferulic acid (30-90 μg/mL), and catechin (50-150 μg/mL), in a model system, on β-carotene micellization (in vitro digestion) and intestinal absorption (Caco-2 cell model). Iron, pectin, ferulic acid, and catechin on average reduced ( p < 0.05) β-carotene micellization (1.49 ± 0.05 μmol/L) by 66.9, 59.3, 43.2, and 51.7%, respectively. Iron reduced micellization by precipitating bile salts from solution and ferulic acid and catechin by inhibition of pancreatic lipase. β-Carotene uptake by Caco-2 cells (2.63 ± 0.22%) was reduced ( p < 0.05) by 37.4, 70.1, 77.0, and 75.1%, respectively, when it was digested with pectin, iron, ferulic acid, or catechin. However, when individual test compounds were added to already micellized β-carotene, they did not inhibit β-carotene uptake. The large reductions in β-carotene micellization observed in vitro warrant further investigation in humans using model green leafy vegetable systems to elucidate their relevance under real-life conditions.
Collapse
Affiliation(s)
- Johanita Kruger
- Institute of Nutritional Sciences , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
- Department of Food Science and Institute for Food, Nutrition and Well-being , University of Pretoria , Private Bag X20 , Hatfield 0028 , South Africa
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
| | - Jan Frank
- Institute of Nutritional Sciences , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
| |
Collapse
|
9
|
Pradhan SK, Pandit E, Pawar S, Bharati B, Chatopadhyay K, Singh S, Dash P, Reddy JN. Association mapping reveals multiple QTLs for grain protein content in rice useful for biofortification. Mol Genet Genomics 2019; 294:963-983. [PMID: 30963249 DOI: 10.1007/s00438-019-01556-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/26/2019] [Indexed: 11/30/2022]
Abstract
Rice is the staple food for majority of the global population. But, rice grain has low protein content (PC). Mapping of QTLs controlling grain PC is essential for enhancement of the trait through breeding programs. A shortlisted panel population for grain protein content was studied for genetic diversity, population structure and association mapping for grain PC. Phenotyping results showed a wide variation for grain PC. The panel population showed a moderate level of genetic diversity estimated through 98 molecular markers. AMOVA and structure analysis indicated linkage disequilibrium for grain PC and deviation of Hardy-Weinberg's expectation. The analysis showed 15% of the variation among populations and 73% among individuals in the panel population. STRUCTURE analysis categorized the panel population into three subpopulations. The analysis also revealed a common primary ancestor for each subpopulation with few admix individuals. Marker-trait association using 98 molecular markers detected 7 strongly associated QTLs for grain PC by both MLM and GLM analysis. Three novel QTLs qPC3.1, qPC5.1 and qPC9.1 were detected for controlling the grain PC. Four reported QTLs viz., qPC3, QPC8, qPC6.1 and qPC12.1 were validated for use in breeding programs. Reported QTLs, qPC6, qPC6.1 and qPC6.2 may be same QTL controlling PC in rice. A very close marker RM407 near to protein controlling QTL, qProt8 and qPC8, was detected. The study provided clue for simultaneous improvement of PC with high grain yield in rice. The strongly associated markers with grain PC, namely qPC3, qPC3.1, qPC5.1, qPC6.1, qPC8, qPC9.1 and qPC12.1, will be useful for their pyramiding for developing protein rich high yielding rice.
Collapse
Affiliation(s)
- S K Pradhan
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - E Pandit
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - S Pawar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Barsha Bharati
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - K Chatopadhyay
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - S Singh
- ICAR-National Research Center for Plant Biotechnology, Pusa, New Delhi, India
| | - P Dash
- ICAR-National Research Center for Plant Biotechnology, Pusa, New Delhi, India
| | - J N Reddy
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|
10
|
Mahender A, Anandan A, Pradhan SK, Pandit E. Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches. SPRINGERPLUS 2016; 5:2086. [PMID: 28018794 PMCID: PMC5148756 DOI: 10.1186/s40064-016-3744-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 11/25/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rice breeding program needs to focus on development of nutrient dense rice for value addition and helping in reducing malnutrition. Mineral and vitamin deficiency related problems are common in the majority of the population and more specific to developing countries as their staple food is rice. RESULTS Genes and QTLs are recently known for the nutritional quality of rice. By comprehensive literature survey and public domain database, we provided a critical review on nutritional aspects like grain protein and amino acid content, vitamins and minerals, glycemic index value, phenolic and flavonoid compounds, phytic acid, zinc and iron content along with QTLs linked to these traits. In addition, achievements through transgenic and advanced genomic approaches have been discussed. The information available on genes and/or QTLs involved in enhancement of micronutrient element and amino acids are summarized with graphical representation. CONCLUSION Compatible QTLs/genes may be combined together to design a desirable genotype with superior in multiple grain quality traits. The comprehensive review will be helpful to develop nutrient dense rice cultivars by integrating molecular markers and transgenic assisted breeding approaches with classical breeding.
Collapse
Affiliation(s)
- Anumalla Mahender
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly, Central Rice Research Institute), Cuttack, Odisha 753006 India
| | - Annamalai Anandan
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly, Central Rice Research Institute), Cuttack, Odisha 753006 India
| | - Sharat Kumar Pradhan
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly, Central Rice Research Institute), Cuttack, Odisha 753006 India
| | - Elssa Pandit
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly, Central Rice Research Institute), Cuttack, Odisha 753006 India
| |
Collapse
|
11
|
Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R. Suppression Subtractive Hybridization Versus Next-Generation Sequencing in Plant Genetic Engineering: Challenges and Perspectives. Mol Biotechnol 2016; 57:880-903. [PMID: 26271955 DOI: 10.1007/s12033-015-9884-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Plantation Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia,
| | | | | | | | | | | |
Collapse
|
12
|
Huang Y, Sun C, Min J, Chen Y, Tong C, Bao J. Association Mapping of Quantitative Trait Loci for Mineral Element Contents in Whole Grain Rice (Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10885-92. [PMID: 26641542 DOI: 10.1021/acs.jafc.5b04932] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mineral elements in brown rice grain play an important role in human health. In this study, variations in the content of iron (Fe), zinc (Zn), selenium (Se), cadmium (Cd), and lead (Pb) in 378 accessions of brown rice were investigated, and association mapping was used to detect the quantitative trait loci (QTLs) responsible for the variation. Among seven subpopulations, the mean values of Zn and Cd in the japonica group were significantly higher than in the indica groups. The population structure accounted for from 5.7% (Se) to 22.1% (Pb) of the total variation. Correlation analyses showed that Pb was positively correlated with the other minerals (P < 0.001) except for Se. For the five mineral elements investigated, 20 QTLs, including some previously reported and new candidate loci, were identified. Particularly, three cases of QTL colocalization, i.e. Cd and Pb on chromosome 5, Zn and Pb on chromosome 7, and Se and Pb on chromosome 11, were observed. This study suggested that the identified markers could feasibly be used to enhance desired micronutrients while reducing the heavy metal content in whole rice grain by marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Yan Huang
- Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University , Huajiachi Campus, Hangzhou 310029, China
| | - Chengxiao Sun
- Rice Product Quality Inspection and Supervision Center, China National Rice Research Institute , Hangzhou 310006, China
| | - Jie Min
- Rice Product Quality Inspection and Supervision Center, China National Rice Research Institute , Hangzhou 310006, China
| | - Yaling Chen
- Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University , Huajiachi Campus, Hangzhou 310029, China
| | - Chuan Tong
- Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University , Huajiachi Campus, Hangzhou 310029, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University , Huajiachi Campus, Hangzhou 310029, China
| |
Collapse
|
13
|
Narayanan N, Beyene G, Chauhan RD, Gaitán-Solis E, Grusak MA, Taylor N, Anderson P. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:170-81. [PMID: 26475197 DOI: 10.1016/j.plantsci.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 05/21/2023]
Abstract
Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.
Collapse
Affiliation(s)
- Narayanan Narayanan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA.
| | - Getu Beyene
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Raj Deepika Chauhan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Eliana Gaitán-Solis
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Nigel Taylor
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Paul Anderson
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
14
|
Yoneyama T, Ishikawa S, Fujimaki S. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification. Int J Mol Sci 2015; 16:19111-29. [PMID: 26287170 PMCID: PMC4581289 DOI: 10.3390/ijms160819111] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022] Open
Abstract
Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.
Collapse
Affiliation(s)
- Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan.
| | - Satoru Ishikawa
- Soil Environment Division, National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan.
| | - Shu Fujimaki
- Quantum, Beam Science Center, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292, Japan.
| |
Collapse
|
15
|
Abstract
Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field.
Collapse
|
16
|
Agarwal S, Tripura Venkata VGN, Kotla A, Mangrauthia SK, Neelamraju S. Expression patterns of QTL based and other candidate genes in Madhukar × Swarna RILs with contrasting levels of iron and zinc in unpolished rice grains. Gene 2014; 546:430-6. [PMID: 24887487 DOI: 10.1016/j.gene.2014.05.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/17/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Identifying QTLs/genes for iron and zinc in rice grains can help in biofortification programs. Genome wide mapping showed 14 QTLs for iron and zinc concentration in unpolished rice grains of F7 RILs derived from Madhukar × Swarna. One line (HL) with high Fe and Zn and one line (LL) with low Fe and Zn in unpolished rice were compared with each other for gene expression using qPCR. 7 day old seedlings were grown in Fe+ and Fe- medium for 10 days and RNA extracted from roots and shoots to determine the response of 15 genes in Fe- conditions. RESULTS HL showed higher upregulation than LL in shoots but LL showed higher upregulation than HL in roots. YSL2 was upregulated only in HL roots and YSL15 only in HL shoots and both up to 60 fold under Fe- condition. IRT2 and DMAS1 were upregulated 100 fold and NAS2 1000 fold in HL shoot. NAS2, IRT1, IRT2 and DMAS1 were upregulated 40 to 100 fold in LL roots. OsZIP8, OsNAS3, OsYSL1 and OsNRAMP1 which underlie major Fe QTL showed clear allelic differences between HL and LL for markers flanking QTL. The presence of iron increasing QTL allele in HL was clearly correlated with high expression of the underlying gene. OsZIP8 and OsNAS3 which were within major QTL with increasing effect from Madhukar were 8 fold and 4 fold more expressed in HL shoot than in LL shoot. OsNAS1, OsNAS2, OsNAS3, OsYSL2 and OsYSL15 showed 1.5 to 2.5 fold upregulation in flag leaf of HL when compared with flag leaf of Swarna. CONCLUSION HL and LL differed in root length, Fe concentration and expression of several genes under Fe deficiency. The major distinguishing genes were NAS2, IRT2, DMAS1, and YSL15 in shoot and NAS2, IRT1, IRT2, YSL2, and ZIP8 in roots. The presence of iron increasing QTL allele in HL at marker locus close to genes also increased upregulation in HL.
Collapse
|
17
|
Khalid N, Ahmed A, Bhatti MS, Randhawa MA, Ahmad A, Rafaqat R. A Question Mark on Zinc Deficiency in 185 Million People in Pakistan—Possible Way Out. Crit Rev Food Sci Nutr 2014; 54:1222-40. [DOI: 10.1080/10408398.2011.630541] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Amin L, Azad MAK, Gausmian MH, Zulkifli F. Determinants of public attitudes to genetically modified salmon. PLoS One 2014; 9:e86174. [PMID: 24489695 PMCID: PMC3906022 DOI: 10.1371/journal.pone.0086174] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 12/06/2013] [Indexed: 11/18/2022] Open
Abstract
The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country.
Collapse
Affiliation(s)
- Latifah Amin
- Centre for General Studies, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Md. Abul Kalam Azad
- Centre for General Studies, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Department of Agricultural Extension, Khamarbari, Farmgate, Dhaka, Bangladesh
| | - Mohd Hanafy Gausmian
- Faculty of Science and Technology Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Faizah Zulkifli
- Centre for General Studies, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
19
|
Santos CS, Silva AI, Serrão I, Carvalho AL, Vasconcelos MW. Transcriptomic analysis of iron deficiency related genes in the legumes. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Talsma EF, Melse-Boonstra A, de Kok BPH, Mbera GNK, Mwangi AM, Brouwer ID. Biofortified cassava with pro-vitamin A is sensory and culturally acceptable for consumption by primary school children in Kenya. PLoS One 2013; 8:e73433. [PMID: 24023681 PMCID: PMC3758265 DOI: 10.1371/journal.pone.0073433] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022] Open
Abstract
Background Biofortification of cassava with pro-vitamin A can potentially reduce vitamin A deficiency in low-income countries. However, little is known about consumer acceptance of this deep yellow variety of cassava compared to the commonly available white varieties. We aimed to determine the sensory and cultural acceptability of the consumption of pro-vitamin A rich cassava in order to identify key factors predicting the intention to consume pro-vitamin A rich cassava by families with school-aged children in Eastern Kenya. Methods Sensory acceptability was measured by replicated discrimination tests and paired preference tests among 30 children (7–12 yr) and 30 caretakers (18–45 yr) in three primary schools. Cultural acceptability was assessed with a questionnaire based on the combined model of The Theory of Planned Behavior and The Health Belief Model in one primary school among 140 caretakers of children aged 6 to 12 years. Correlations and multivariate analyses were used to determine associations between summed scores for model constructs. Results Caretakers and children perceived a significant difference in taste between white and pro-vitamin A rich cassava. Both preferred pro-vitamin A rich cassava over white cassava because of its soft texture, sweet taste and attractive color. Knowledge about pro-vitamin A rich cassava and it's relation to health (‘Knowledge’ ((β = 0.29, P = <.01)) was a strong predictor of ‘Health behavior identity’. Worries related to bitter taste and color (‘Perceived barriers 1’ (β = −0.21, P = .02)), the belief of the caretaker about having control to prepare cassava (‘Control beliefs’ (β = 0.18, P = .02)) and activities like information sessions about pro-vitamin A rich cassava and recommendations from health workers (‘Cues to action’(β = 0.51, P = <.01)) were the best predictors of intention to consume pro-vitamin A rich cassava. Conclusions Pro-vitamin A rich cassava is well accepted by school children in our study population.
Collapse
Affiliation(s)
- Elise F. Talsma
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| | | | - Brenda P. H. de Kok
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Gloria N. K. Mbera
- Applied Nutrition Program, Department of Food Technology and Nutrition, University of Nairobi, Nairobi, Kenya
| | - Alice M. Mwangi
- Applied Nutrition Program, Department of Food Technology and Nutrition, University of Nairobi, Nairobi, Kenya
| | - Inge D. Brouwer
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
21
|
Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol Adv 2013; 31:1292-307. [PMID: 23680191 DOI: 10.1016/j.biotechadv.2013.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/18/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022]
Abstract
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.
Collapse
|
22
|
Yuan L, Wu L, Yang C, Lv Q. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:254-61. [PMID: 22740351 DOI: 10.1002/jsfa.5749] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/29/2012] [Accepted: 04/28/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Foliar sprays of iron (Fe) and zinc (Zn) fertilisers are known to be an effective way to improve Fe and Zn concentrations in rice grain. However, results can differ significantly among different rice cultivars and/or types of foliar fertiliser. In this study, several Fe-rich rice cultivars were used to identify an effective foliar fertiliser for optimal Fe and Zn enrichment of rice grain. RESULTS Foliar Fe amino acid (Fe-AA) fertiliser significantly improved the Fe concentration in brown rice of most cultivars. Compared with the control, the average Fe concentration in all tested cultivars was increased by 14.5%. The average Fe concentration was increased by 32.5% when 1% (w/v) nicotianamine (NA) was added to Fe-AA, while the average Zn concentration was increased by 42.4% when 0.5% (w/v) ZnSO₄ · 7H₂O was added to Fe-AA. CONCLUSION The results suggested that NA at a suitable concentration added to Fe-AA fertiliser could accelerate Fe accumulation in rice grain. A relatively low concentration of ZnSO₄ · 7H₂O added to Fe-AA significantly increased Fe and Zn accumulation in rice grain. The study identified some useful foliar fertilisers for enhancing the levels of Fe and Zn in selected Fe-rich rice cultivars.
Collapse
Affiliation(s)
- Ling Yuan
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|
23
|
Sharma A, Patni B, Shankhdhar D, Shankhdhar SC. Zinc - an indispensable micronutrient. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:11-20. [PMID: 24381434 PMCID: PMC3550680 DOI: 10.1007/s12298-012-0139-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Availability of Zn to plant is hampered by its immobile nature and adverse soil conditions. Thus, Zn deficiency is observed even though high amount is available in soil. Root-shoot barrier, a major controller of zinc transport in plant is highly affected by changes in the anatomical structure of conducting tissue and adverse soil conditions like pH, clay content, calcium carbonate content, etc. Zn deficiency results in severe yield losses and in acute cases plant death. Zn deficiency in edible plant parts results in micronutrient malnutrition leading to stunted growth and improper sexual development in humans. To overcome this problem several strategies have been used to enrich Zn availability in edible plant parts, including nutrient management, biotechnological tools, and classical and molecular breeding approaches.
Collapse
Affiliation(s)
- Ashish Sharma
- Department of Plant Physiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 (U. S. Nagar) Uttarakhand India
| | - Babita Patni
- Department of Plant Physiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 (U. S. Nagar) Uttarakhand India
| | - Deepti Shankhdhar
- Department of Plant Physiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 (U. S. Nagar) Uttarakhand India
| | - S. C. Shankhdhar
- Department of Plant Physiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 (U. S. Nagar) Uttarakhand India
| |
Collapse
|
24
|
Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar×Swarna RILs. Gene 2012; 508:233-40. [PMID: 22964359 DOI: 10.1016/j.gene.2012.07.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/30/2012] [Indexed: 01/22/2023]
Abstract
Identifying QTLs/genes for iron and zinc in rice grains can help in biofortification programs. 168 F(7) RILs derived from Madhukar×Swarna were used to map QTLs for iron and zinc concentrations in unpolished rice grains. Iron ranged from 0.2 to 224 ppm and zinc ranged from 0.4 to 104ppm. Genome wide mapping using 101 SSRs and 9 gene specific markers showed 5 QTLs on chromosomes 1, 3, 5, 7 and 12 significantly linked to iron, zinc or both. In all, 14 QTLs were identified for these two traits. QTLs for iron were co-located with QTLs for zinc on chromosomes 7 and 12. In all, ten candidate genes known for iron and zinc homeostasis underlie 12 of the 14 QTLs. Another 6 candidate genes were close to QTLs on chromosomes 3, 5 and 7. Thus the high priority candidate genes for high Fe and Zn in seeds are OsYSL1 and OsMTP1 for iron, OsARD2, OsIRT1, OsNAS1, OsNAS2 for zinc and OsNAS3, OsNRAMP1, Heavy metal ion transport and APRT for both iron and zinc together based on our genetic mapping studies as these genes strictly underlie QTLs. Several elite lines with high Fe, high Zn and both were identified.
Collapse
|
25
|
Wei Y, Shohag MJI, Wang Y, Lu L, Wu C, Yang X. Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1871-9. [PMID: 22273463 DOI: 10.1021/jf205025b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice is the staple food for more than half of the world's population and, hence, the main source of a vital micronutrient, zinc (Zn). Unfortunately, the bioavailability of Zn from rice is very low not only due to low content but also due to the presence of some antinutrients such as phytic acid. We investigated the effect of germination and Zn fortification treatment on Zn bioavailability of brown rice from three widely grown cultivars using the Caco-2 cell model to find a suitable fortification level for producing germinated brown rice. The results of this study showed that Zn content in brown rice increased significantly (p < 0.05) as the external Zn concentrations increased from 25 to 250 mg/L. In contrast, no significant influence (p > 0.05) on germination percentage of rice was observed when the Zn supply was lower than 150 mg/L. Zn fortification during the germination process has a significant impact on the Zn content and finally Zn bioavailability. These findings may result from the lower molar ratio of phytic acid to Zn and higher Zn content in Zn fortified germinated brown rice, leading to more bioavailable Zn. Likewise, a significant difference (p < 0.05) was found among cultivars with respect to the capacity for Zn accumulation and Zn bioavailability; these results might be attributed to the difference in the molar ratio of phytic acid to Zn and the concentration of Zn among the cultivars evaluated. Based on global intake of Zn among the world population, we recommend germinated brown rice fortified with 100 mg/L ZnSO(4) as a suitable concentration to use in the germination process, which contains high Zn concentration and Zn bioavailability. In the current study, the cultivar Bing91185 fortified with Zn through the germination process contained a high amount as well as bioavailable Zn, which was identified as the most promising cultivar for further evaluation to determine its efficiency as an improved source of Zn for target populations.
Collapse
Affiliation(s)
- Yanyan Wei
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Li B, Wang X, Qi X, Huang L, Ye Z. Identification of rice cultivars with low brown rice mixed cadmium and lead contents and their interactions with the micronutrients iron, zinc, nickel and manganese. J Environ Sci (China) 2012; 24:1790-1798. [PMID: 23520849 DOI: 10.1016/s1001-0742(11)60972-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Paddy fields in mining areas are usually co-contaminated by a cocktail of mixed toxic heavy metals (e.g., Cd and Pb in Pb/Zn mines). However, previous studies on rice cultivars screened for effective metal exclusion have mostly focused on individual metals, and have been conducted under pot-trial or hydroponic solution conditions. This study identified rice cultivars with both low Cd and Pb accumulation under Cd- and Pb-contaminated field conditions, and the interactions of the toxic elements Cd and Pb with the micronutrient elements Fe, Zn, Mn and Ni were also studied. Among 32 rice cultivars tested, there were significant differences in Cd (0.06-0.59 mg/kg) and Pb (0.25-3.15 mg/kg) levels in their brown rice, and similar results were also found for the micronutrient elements. Significant decreases in concentrations of Fe and Mn were detected with increasing Cd concentrations and a significant elevation in Fe, Mn and Ni with increasing Pb concentrations. A similar result was also shown by Cd and Ni. Three cultivars were identified with a combination of low brown rice Cd and Pb, high micronutrient and grain yield (Wufengyou 2168, Tianyou 196 and Guinongzhan). Present results suggest that it is possible to breed rice cultivars with low mixed toxic element (Cd, Pb) and high micronutrient contents along with high grain yields, thus ensuring food safety and quality.
Collapse
Affiliation(s)
- Bing Li
- State Key Laboratory for Bio-control and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
27
|
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 2011; 30:524-40. [PMID: 21959304 DOI: 10.1016/j.biotechadv.2011.09.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, A.S. College, 190008, University of Kashmir, Srinagar, India.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang KM, Wu JG, Li G, Zhang DP, Yang ZW, Shi CH. Distribution of phytic acid and mineral elements in three indica rice (Oryza sativa L.) cultivars. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2011.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Wu CY, Feng Y, Shohag MJI, Lu LL, Wei YY, Gao C, Yang XE. Characterization of (68)Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype. J Zhejiang Univ Sci B 2011; 12:408-18. [PMID: 21528496 DOI: 10.1631/jzus.b1000291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Zinc (Zn) is an essential micronutrient for humans, but Zn deficiency has become serious as equally as iron (Fe) and vitamin A deficiencies nowadays. Selection and breeding of high Zn-density crops is a suitable, cost-effective, and sustainable way to improve human health. However, the mechanism of high Zn density in rice grain is not fully understood, especially how Zn transports from soil to grains. Hydroponics experiments were carried out to compare Zn uptake and distribution in two different Zn-density rice genotypes using stable isotope technique. At seedling stage, IR68144 showed higher (68)Zn uptake and transport rate to the shoot for the short-term, but no significant difference was observed in both genotypes for the long-term. Zn in xylem sap of IR68144 was consistently higher, and IR68144 exhibited higher Zn absorption ratio than IR64 at sufficient (2.0 µmol/L) or surplus (8.0 µmol/L) Zn supply level. IR64 and IR68144 showed similar patterns of (68)Zn accumulation in new leaves at seedling stage and in developing grains at ripening stage, whereas (68)Zn in new leaves and grains of IR68144 was consistently higher. These results suggested that a rapid root-to-shoot translocation and enhanced xylem loading capacity may be the crucial processes for high Zn density in rice grains.
Collapse
Affiliation(s)
- Chun-yong Wu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Shao Y, Jin L, Zhang G, Lu Y, Shen Y, Bao J. Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1005-16. [PMID: 21161500 DOI: 10.1007/s00122-010-1505-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/22/2010] [Indexed: 05/20/2023]
Abstract
Phytochemicals such as phenolics and flavonoids in rice grain are antioxidants that are associated with reduced risk of developing chronic diseases including cardiovascular disease, type-2 diabetes and some cancers. Understanding the genetic basis of these traits is necessary for the improvement of nutritional quality by breeding. Association mapping based on linkage disequilibrium has emerged as a powerful strategy for identifying genes or quantitative trait loci (QTL) underlying complex traits in plants. In this study, genome-wide association mapping using models controlling both population structure (Q) and relative kinship (K) were performed to identify the marker loci/QTLs underlying the naturally occurring variations of grain color and nutritional quality traits in 416 rice germplasm accessions including red and black rice. A total of 41 marker loci were identified for all the traits, and it was confirmed that Ra (i.e., Prp-b for purple pericarp) and Rc (brown pericarp and seed coat) genes were main-effect loci for rice grain color and nutritional quality traits. RM228, RM339, fgr (fragrance gene) and RM316 were important markers associated with most of the traits. Association mapping for the traits of the 361 white or non-pigmented rice accessions (i.e., excluding the red and black rice) revealed a total of 11 markers for four color parameters, and one marker (RM346) for phenolic content. Among them, Wx gene locus was identified for the color parameters of lightness (L*), redness (a*) and hue angle (H (o)). Our study suggested that the markers identified in this study can feasibly be used to improve nutritional quality or health benefit properties of rice by marker-assisted selection if the co-segregations of the marker-trait associations are validated in segregating populations.
Collapse
Affiliation(s)
- Yafang Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Zhejiang Province and Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Sperotto RA, Boff T, Duarte GL, Santos LS, Grusak MA, Fett JP. Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1500-6. [PMID: 20580124 DOI: 10.1016/j.jplph.2010.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/26/2010] [Accepted: 05/20/2010] [Indexed: 05/20/2023]
Abstract
Rice is the staple food of half of the world's population; however, it is a poor source of essential micronutrients such as Fe and Zn. Since flag leaves are one of the sources of remobilized metals for developing seeds, the identification of the molecular players that might contribute to the process of metal transport from flag leaves to the seeds may be useful for biofortification purposes. We analyzed the expression of 25 metal-related genes from rice, including rice homologues for YSLs, NRAMPs, ZIPs, IRT1, VIT1 (coding for known or potential metal transporters), as well as NASs, FROs and NAC5 (involved in metal homeostasis) in flag leaves of eight rice cultivars (showing contrasting levels of seed Fe and Zn) during panicle emergence (R3) and grain filling stage (R5). The expression level of nine of these genes (OsYSL6, OsYSL8, OsYSL14, OsNRAMP1, OsNRAMP7, OsNRAMP8, OsNAS1, OsFRO1 and OsNAC5) in flag leaves exhibited significant correlations with Fe and/or Zn concentrations in the seeds. In this way, our study has provided a short list of putative target genes to manipulate Fe and Zn concentrations in rice grains.
Collapse
Affiliation(s)
- Raul A Sperotto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, P.O. Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Wu CY, Lu LL, Yang XE, Feng Y, Wei YY, Hao HL, Stoffella PJ, He ZL. Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:6767-73. [PMID: 20481473 DOI: 10.1021/jf100017e] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Zinc (Zn) is an essential micronutrient for humans, and increasing Zn density in rice ( Oryza sativa L.) grains is important for improving human nutrition. The characteristics of Zn translocation and remobilization were investigated in high Zn density genotype IR68144, in comparison with the low Zn density genotype IR64. Stable isotope tracer (68)Zn was supplied at various growth stages, either to the roots in nutrient solution or to the flag leaves to investigate the contribution of (68)Zn absorbed at different growth stages to grain accumulation and the remobilization ability of (68)Zn within plants. Significant differences in (68)Zn allocation were observed between the two rice genotypes. Much higher (68)Zn concentrations were found in grains, stems, and leaves of IR68144 than in IR64, but higher (68)Zn was found in roots of IR64. More than half of the Zn accumulated in the grains was remobilized before anthesis, accounting for 63 and 52% of the total Zn uptake for IR68144 and IR64, respectively. Without supply of external Zn, at vegetative or reproductive stages, more (68)Zn was retranslocated from "old tissues" to "new tissues" in IR68144 than in IR64. Retranslocation of (68)Zn from flag leaves to grains was twice as high in the former when (68)Zn was applied to the flag leaves during booting or anthesis. These results indicate that Zn density in rice grains is closely associated with the ability to translocate Zn from old tissues to new tissues at both early and late growth stages and with phloem remobilization of Zn from leaves and stems to grains.
Collapse
Affiliation(s)
- Chun-yong Wu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Figlas D, Oddera M, Curvetto N. Bioaccumulation and Bioavailability of Copper and Zinc on Mineral-Enriched Mycelium of Grifola frondosa. J Med Food 2010; 13:469-75. [DOI: 10.1089/jmf.2008.0284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Débora Figlas
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, CERZOS (CONICET), Universidad Nacional del Sur, Bahía Blanca, Argentina
- Comisión de Investigaciones Científicas, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Micaela Oddera
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Néstor Curvetto
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, CERZOS (CONICET), Universidad Nacional del Sur, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
34
|
Henley EC, Taylor JRN, Obukosia SD. The importance of dietary protein in human health: combating protein deficiency in sub-Saharan Africa through transgenic biofortified sorghum. ADVANCES IN FOOD AND NUTRITION RESEARCH 2010; 60:21-52. [PMID: 20691952 DOI: 10.1016/s1043-4526(10)60002-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Child malnutrition is increasing in Africa. Protein deficiency is an important cause since protein is essential for both growth and maintenance of muscle mass. Sorghum is a major staple food in Africa on account of its hardiness as a crop. However, sorghum protein is very deficient in the indispensable amino acid lysine and on cooking has poor protein digestibility. This results in sorghum having a very low Protein Digestibility Corrected Amino Acid Score (PDCAAS). The Africa Biofortified Sorghum project, a Grand Challenges in Global Heath project, is undertaking research to biofortify sorghum in terms of protein and micronutrient quality using genetic engineering. Lysine and protein digestibility have been improved by suppression of synthesis of the kafirin storage proteins. Transgenic biofortified sorghum has double the PDCAAS of conventional sorghum. This improvement should enable a young child to meet most of its protein and energy requirements from biofortified sorghum porridge. This together with the improvement in micronutrients could provide the basis of a sustainable and broadly comprehensive solution to child malnutrition in many African countries.
Collapse
Affiliation(s)
- E C Henley
- EC Henley Consulting, Athens, Georgia, USA
| | | | | |
Collapse
|
35
|
Jin L, Xiao P, Lu Y, Shao Y, Shen Y, Bao J. Quantitative Trait Loci for Brown Rice Color, Phenolics, Flavonoid Contents, and Antioxidant Capacity in Rice Grain. Cereal Chem 2009. [DOI: 10.1094/cchem-86-6-0609] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Liang Jin
- Key Laboratory of Zhejiang Province and Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hua Jiachi Campus, Hangzhou 310029, People's Republic of China
| | - Peng Xiao
- Key Laboratory of Zhejiang Province and Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hua Jiachi Campus, Hangzhou 310029, People's Republic of China
| | - Yan Lu
- Key Laboratory of Zhejiang Province and Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hua Jiachi Campus, Hangzhou 310029, People's Republic of China
| | - Yafang Shao
- Key Laboratory of Zhejiang Province and Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hua Jiachi Campus, Hangzhou 310029, People's Republic of China
| | - Yun Shen
- Key Laboratory of Zhejiang Province and Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hua Jiachi Campus, Hangzhou 310029, People's Republic of China
| | - Jinsong Bao
- Key Laboratory of Zhejiang Province and Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hua Jiachi Campus, Hangzhou 310029, People's Republic of China
- Corresponding author. E-mail:
| |
Collapse
|
36
|
|
37
|
Sharma AK, Sharma MK. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27:811-832. [PMID: 19576278 PMCID: PMC7125752 DOI: 10.1016/j.biotechadv.2009.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/18/2022]
Abstract
In recent years, the use of plants as bioreactors has emerged as an exciting area of research and significant advances have created new opportunities. The driving forces behind the rapid growth of plant bioreactors include low production cost, product safety and easy scale up. As the yield and concentration of a product is crucial for commercial viability, several strategies have been developed to boost up protein expression in transgenic plants. Augmenting tissue-specific transcription, elevating transcript stability, tissue-specific targeting, translation optimization and sub-cellular accumulation are some of the strategies employed. Various kinds of products that are currently being produced in plants include vaccine antigens, medical diagnostics proteins, industrial and pharmaceutical proteins, nutritional supplements like minerals, vitamins, carbohydrates and biopolymers. A large number of plant-derived recombinant proteins have reached advanced clinical trials. A few of these products have already been introduced in the market.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Manoj K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
38
|
Saha S, Singh G, Mahajan V, Gupta HS. Variability of nutritional and cooking quality in bean (Phaseolus vulgaris L) as a function of genotype. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2009; 64:174-180. [PMID: 19462242 DOI: 10.1007/s11130-009-0121-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
Screening of natural biodiversity for the better quality traits are of prime importance for quality breeding programs. The objective of this investigation was to select candidate accession of bean having high concentrations of protein as well as macro and micro minerals with good cooking quality for use as parents in breeding programme for these compounds. Thirty-five accessions of bean (Phaseolus vulgaris L) were field grown and their seeds were analyzed for their cooking quality and nutritional composition. Wide variations were observed in most of the measurements e.g. protein (18.7-26.2%), iron (79.4-137.6 ppm) and hardness after cooking (4.65-9.88 Kg) suggesting that there are considerable levels of genetic diversity. Across all accessions the concentration of potassium was negatively correlated with protein (r = -0.43, P < 0.05). Concentrations of protein was significantly greater in accessions VIII, XIII and XIX compared to other accessions analyzed. Iron concentrations were greatest (137 ppm) in XIX and lowest (79 ppm) in XXVII. Lines with less cooking time were line III, X, XXVI, XXX and XXXI. Bean line XIX contains high protein (24.9%) with high zinc (33.3 ppm) and highest iron (137.6 ppm), but it has high hardness after cooking (7.32 kg). Four clusters were computed by cluster analysis that explained quite a good variation in the traits. The great variability for these attributes suggests that these selected accessions may be useful as parents in hybridization programs to produce bean with value-added traits. This information was also potentially useful for pulse breeders working on the development of new varieties.
Collapse
Affiliation(s)
- Supradip Saha
- Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India.
| | | | | | | |
Collapse
|
39
|
Bohn L, Meyer AS, Rasmussen SK. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 2008; 9:165-91. [PMID: 18357620 DOI: 10.1631/jzus.b0710640] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phytic acid (PA) is the primary storage compound of phosphorus in seeds accounting for up to 80% of the total seed phosphorus and contributing as much as 1.5% to the seed dry weight. The negatively charged phosphate in PA strongly binds to metallic cations of Ca, Fe, K, Mg, Mn and Zn making them insoluble and thus unavailable as nutritional factors. Phytate mainly accumulates in protein storage vacuoles as globoids, predominantly located in the aleurone layer (wheat, barley and rice) or in the embryo (maize). During germination, phytate is hydrolysed by endogenous phytase(s) and other phosphatases to release phosphate, inositol and micronutrients to support the emerging seedling. PA and its derivatives are also implicated in RNA export, DNA repair, signalling, endocytosis and cell vesicular trafficking. Our recent studies on purification of phytate globoids, their mineral composition and dephytinization by wheat phytase will be discussed. Biochemical data for purified and characterized phytases isolated from more than 23 plant species are presented, the dephosphorylation pathways of phytic acid by different classes of phytases are compared, and the application of phytase in food and feed is discussed.
Collapse
Affiliation(s)
- Lisbeth Bohn
- Department of Agricultural Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | | | | |
Collapse
|
40
|
Abstract
Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming monotonous plant-based diets. The high prevalence of iron deficiency in the developing world has substantial health and economic costs, including poor pregnancy outcome, impaired school performance, and decreased productivity. Recent studies have reported how the body regulates iron absorption and metabolism in response to changing iron status by upregulation or downregulation of key intestinal and hepatic proteins. Targeted iron supplementation, iron fortification of foods, or both, can control iron deficiency in populations. Although technical challenges limit the amount of bioavailable iron compounds that can be used in food fortification, studies show that iron fortification can be an effective strategy against nutritional iron deficiency. Specific laboratory measures of iron status should be used to assess the need for fortification and to monitor these interventions. Selective plant breeding and genetic engineering are promising new approaches to improve dietary iron nutritional quality.
Collapse
Affiliation(s)
- Michael B Zimmermann
- Laboratory for Human Nutrition, Swiss Federal Institute of Technology, Zürich, Switzerland.
| | | |
Collapse
|
41
|
Davey MW, Stals E, Ngoh-Newilah G, Tomekpe K, Lusty C, Markham R, Swennen R, Keulemans J. Sampling strategies and variability in fruit pulp micronutrient contents of west and central african bananas and plantains (Musa species). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:2633-44. [PMID: 17346062 DOI: 10.1021/jf063119l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The variability in fruit micronutrient contents in a selection of Central and West African Musa varieties cultivated under standardized field conditions was studied. Analysis of the within-fruit, within-hand, and within-plant as well as the between-plant variations demonstrated that both provitamin A carotenoids (pVACs) and mineral micronutrient (Fe, Zn) contents vary significantly across all sample groups. The variations in pVACs contents appear to be at least partly related to differences in the developmental status of the fruit, but the observed trends were genotype-specific. The mean pVACs concentrations per genotype indicated that there is substantial genetic variation in the fruit pVACs contents between Musa cultivars, with orange-fleshed plantain varieties (AAB) having generally higher fruit pVACs contents than dessert bananas (AAA). It was not possible to identify consistent trends between the sampling position and fruit Fe/Zn contents. Once the within-bunch micronutrient variability has been accounted for, the mean variations in fruit micronutrient contents between individual plants of a variety generally fell to within acceptable limits. Results are discussed within the framework of standardizing sampling and developing strategies to screen for the nutritional values of new and existing Musa varieties.
Collapse
Affiliation(s)
- Mark W Davey
- Laboratory for Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Catholic University of Leuven, De Croylaan 42, Heverlee, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Puig S, Andrés-Colás N, García-Molina A, Peñarrubia L. Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. PLANT, CELL & ENVIRONMENT 2007; 30:271-290. [PMID: 17263774 DOI: 10.1111/j.1365-3040.2007.01642.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants have developed sophisticated mechanisms to tightly control the acquisition and distribution of copper and iron in response to environmental fluctuations. Recent studies with Arabidopsis thaliana are allowing the characterization of the diverse families and components involved in metal uptake, such as metal-chelate reductases and plasma membrane transporters. In parallel, emerging data on both intra- and intercellular metal distribution, as well as on long-distance transport, are contributing to the understanding of metal homeostatic networks in plants. Furthermore, gene expression analyses are deciphering coordinated mechanisms of regulation and response to copper and iron limitation. Prioritizing the use of metals in essential versus dispensable processes, and substituting specific metalloproteins by other metal counterparts, are examples of plant strategies to optimize copper and iron utilization. The metabolic links between copper and iron homeostasis are well documented in yeast, algae and mammals. In contrast, interactions between both metals in vascular plants remain controversial, mainly owing to the absence of copper-dependent iron acquisition. This review describes putative interactions between both metals at different levels in plants. The characterization of plant copper and iron homeostasis should lead to biotechnological applications aimed at the alleviation of iron deficiency and copper contamination and, thus, have a beneficial impact on agricultural and human health problems.
Collapse
Affiliation(s)
- Sergi Puig
- Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor Moliner, 50 E-46100 Burjassot, Valencia, Spain
| | - Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor Moliner, 50 E-46100 Burjassot, Valencia, Spain
| | - Antoni García-Molina
- Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor Moliner, 50 E-46100 Burjassot, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor Moliner, 50 E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
43
|
Sautter C, Poletti S, Zhang P, Gruissem W. Biofortification of essential nutritional compounds and trace elements in rice and cassava. Proc Nutr Soc 2006; 65:153-9. [PMID: 16672076 DOI: 10.1079/pns2006488] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plant biotechnology can make important contributions to food security and nutritional improvement. For example, the development of 'Golden Rice' by Professor Ingo Potrykus was a milestone in the application of gene technology to deliver both increased nutritional qualities and health improvement to wide sections of the human population. Mineral nutrient and protein deficiency as well as food security remain the most important challenges for developing countries. Current projects are addressing these issues in two major staple crops, cassava (Manihot esculenta Crantz) and rice. The tropical root crop cassava is a major source of food for approximately 600 million of the population worldwide. In sub-Saharan Africa >200 million of the population rely on cassava as their major source of dietary energy. The nutritional quality of the cassava root is not sufficient to meet all dietary needs. Rice is the staple food for half the world population, providing approximately 20% of the per capita energy and 13% of the protein for human consumption worldwide. In many developing countries the dietary contributions of rice are substantially greater (29.3% dietary energy and 29.1% dietary protein). The current six most popular 'mega' rice varieties (in terms of popularity and acreage), including Chinese hybrid rice, have an incomplete amino acid profile and contain limited amounts of essential micronutrients. Rice lines with improved Fe contents have been developed using genes that have functions in Fe absorption, translocation and accumulation in the plant, as well as improved Fe bioavailability in the human intestine. Current developments in biotechnology-assisted plant improvement are reviewed and the potential of the technology in addressing human nutrition and health are discussed.
Collapse
Affiliation(s)
- C Sautter
- Institute of Plant Science, Swiss Federal Institute of Technology Zurich, Universitaetsstr. 2, CH-8092 Zurich, Switzerland.
| | | | | | | |
Collapse
|
44
|
Gargari BP, Razavieh SV, Mahboob S, Niknafs B, Kooshavar H. Effect of retinol on iron bioavailability from Iranian bread in a Caco-2 cell culture model. Nutrition 2006; 22:638-44. [PMID: 16635564 DOI: 10.1016/j.nut.2006.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 02/23/2006] [Accepted: 02/28/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Iron and vitamin A deficiencies are among the most prevalent nutritional problems. There are no data on iron bioavailability in Iran. In addition, interaction of vitamin A with iron bioavailability is not well documented, so we determined iron bioavailability from the most widely consumed food in Iran, lavash bread, and the effect of vitamin A on this bioavailability. METHODS In vivo human studies for determining iron bioavailability are cumbersome, time consuming, and costly to perform, so we used an in vitro model in Caco-2 cells. Bread samples were digested with or without vitamin A (10 microg/1.0 g of dried bread). We used an iron solution containing vitamin C as a positive control. Iron absorption was measured using 59FeCl3. Bioavailability was defined as the percentage of radiolabeled iron taken up and transferred by Caco-2 cells after 1.5 h of incubation. Experiments were carried out two to four times. RESULTS Mean +/- standard deviations for iron bioavailability in bread samples digested without or with additional vitamin A and in controls were 2.53 +/- 1.55%, 6.62 +/- 3.40%, and 20.80 +/- 2.30%, respectively (P < 0.001). Vitamin A caused a 2.62-fold increase in iron absorption from bread samples. CONCLUSIONS Iranian lavash bread has low iron bioavailability, but this can be increased by vitamin A supplementation. Increasing vitamin A intake can be considered as a method for increasing iron bioavailability, thus combating iron and vitamin A deficiencies simultaneously.
Collapse
Affiliation(s)
- Bahram Pourghassem Gargari
- Department of Nutrition and Biochemistry, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | |
Collapse
|
45
|
Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. PLANT MOLECULAR BIOLOGY 2005; 59:869-80. [PMID: 16307363 DOI: 10.1007/s11103-005-1537-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 08/01/2005] [Indexed: 05/05/2023]
Abstract
We have generated transgenic maize plants expressing Aspergillus phytase either alone or in combination with the iron-binding protein ferritin. Our aim was to produce grains with increased amounts of bioavailable iron in the endosperm. Maize seeds expressing recombinant phytase showed enzymatic activities of up to 3 IU per gram of seed. In flour paste prepared from these seeds, up to 95% of the endogenous phytic acid was degraded, with a concomitant increase in the amount of available phosphate. In seeds expressing ferritin in addition to phytase, the total iron content was significantly increased. To evaluate the impact of the recombinant proteins on iron absorption in the human gut, we used an in vitro digestion/Caco-2 cell model. We found that phytase in the maize seeds was associated with increased cellular iron uptake, and that the rate of iron uptake correlated with the level of phytase expression regardless of the total iron content of the seeds. We also investigated iron bioavailability under more complex meal conditions by adding ascorbic acid, which promotes iron uptake, to all samples. This resulted in a further increase in iron absorption, but the effects of phytase and ascorbic acid were not additive. We conclude that the expression of recombinant ferritin and phytase could help to increase iron availability and enhance the absorption of iron, particularly in cereal-based diets that lack other nutritional components.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Institute of Molecular Biotechnology, Biology VII, Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bajaj S, Mohanty A. Recent advances in rice biotechnology--towards genetically superior transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:275-307. [PMID: 17129312 DOI: 10.1111/j.1467-7652.2005.00130.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice biotechnology has made rapid advances since the first transgenic rice plants were produced 15 years ago. Over the past decade, this progress has resulted in the development of high frequency, routine and reproducible genetic transformation protocols for rice. This technology has been applied to produce rice plants that withstand several abiotic stresses, as well as to gain tolerance against various pests and diseases. In addition, quality improving and increased nutritional value traits have also been introduced into rice. Most of these gains were not possible through conventional breeding technologies. Transgenic rice system has been used to understand the process of transformation itself, the integration pattern of transgene as well as to modulate gene expression. Field trials of transgenic rice, especially insect-resistant rice, have recently been performed and several other studies that are prerequisite for safe release of transgenic crops have been initiated. New molecular improvisations such as inducible expression of transgene and selectable marker-free technology will help in producing superior transgenic product. It is also a step towards alleviating public concerns relating to issues of transgenic technology and to gain regulatory approval. Knowledge gained from rice can also be applied to improve other cereals. The completion of the rice genome sequencing together with a rich collection of full-length cDNA resources has opened up a plethora of opportunities, paving the way to integrate data from the large-scale projects to solve specific biological problems.
Collapse
Affiliation(s)
- Shavindra Bajaj
- Gene Technology, The Horticulture and Food Research Institute of New Zealand Limited (HortResearch) 120 Mt. Albert Road, Private Bag 92169, Auckland, New Zealand.
| | | |
Collapse
|
47
|
Abstract
Zinc is an essential micronutrient for human growth, development, and immune function. Zinc deficiency impairs overall immune function and resistance to infection. Mild to moderate zinc deficiency can be best detected through a positive response to supplementation trials. Zinc supplementation has been shown to have a positive effect on the incidence of diarrhea (18% reduction, 95% CI: 7-28%) and pneumonia (41% reduction, 95% CI: 17-59%), and might lead to a decrease in the incidence of malaria. Zinc has also proven to decrease the duration of diarrhea by 15% (95% CI: 5-24%). Maternal zinc supplementation may lead to a decrease in infant infections. Studies assessing the role of zinc supplementation among persons with HIV, tuberculosis, and the common cold have not been conclusive. Two studies have shown zinc supplementation to decrease child mortality by more than 50%. Zinc clearly has an important role in infant and childhood infectious diseases; programs to increase the intake of zinc among deficient populations are needed.
Collapse
Affiliation(s)
- Christa Fischer Walker
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
48
|
Abstract
The low micronutrient content of cereals requires the fortification of food and biofortification of plants. Many laboratories are currently pursuing biofortification using breeding and genetic modification, but progress is challenged by technical hurdles and our understanding of physiological processes. Recent studies have largely been confined to the improvement of levels of iron, zinc, some vitamins and a variety of essential amino acids. Progress has been made in the accumulation of iron, zinc, and vitamins A and E in genetically modified plants. For future success in this area, many more studies will be required on the physiology of ion uptake and on the transport of vitamin precursors.
Collapse
Affiliation(s)
- Susanna Poletti
- Institute of Plant Sciences, Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland
| | | | | |
Collapse
|
49
|
Abstract
Plants can provide most of the nutrients required in the human diet; however, the major staple crops are often deficient in some of these nutrients. Thus, malnutrition, with respect to micronutrients like vitamin A, iron and zinc, affects >40% of the world's population. Advances in molecular biology are being exploited to produce crops enhanced in these key nutrients. Other nutritional targets include the modification of fatty acid composition and the enhancement of antioxidant levels, particularly carotenoids, such as lycopene, and flavonoids. However, the benefit of these 'biofortified' crops to human nutrition remains to be elucidated.
Collapse
Affiliation(s)
- Greg Tucker
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicester, LE12 5RD, UK.
| |
Collapse
|
50
|
Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, Rai M, Rehana S, Al-Babili S, Beyer P, Potrykus I, Datta SK. Bioengineered 'golden' indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:81-90. [PMID: 17147745 DOI: 10.1046/j.1467-7652.2003.00015.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene beta-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition.
Collapse
Affiliation(s)
- Karabi Datta
- International Rice Research Institute, Plant Breeding, Genetics, and Biochemistry Division, DAPO Box 7777, Metro Manila, Philippines
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|