1
|
Jain GK, Raina V, Grover R, Sharma J, Warsi MH, Aggarwal G, Kesharwani P. Revisiting the significance of nano-vitamin D for food fortification and therapeutic application. Drug Dev Ind Pharm 2024; 50:89-101. [PMID: 38175566 DOI: 10.1080/03639045.2023.2301478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Vitamin D (a prohormone) is an important micronutrient required by the body for skeletal homeostasis and a range of non-skeletal actions. Calcitriol, the active form of vitamin D, regulates a variety of cellular and metabolic processes through both genomic and nongenomic pathways. Often prescribed for treating rickets and osteoporosis, vitamin D deficiency can exacerbate various other medical conditions. SIGNIFICANCE, METHODS, AND RESULTS Despite its multifunctional uses, the sensitivity of vitamin D makes formulating an efficient drug delivery system a challenging task, which is further complicated by its poor aqueous solubility. Enhancing the oral absorption of vitamin D is vital in utilizing its full efficacy. Recent developments in encapsulation and nanotechnology have shown promising results in overcoming these constraints. CONCLUSION This review thus offers an insight to adequately comprehend the mechanistic pharmacology of vitamin D, its pathophysiological role, and justification of its medical indications, along with the benefits of utilizing nanotechnology for vitamin D delivery.
Collapse
Affiliation(s)
- Gaurav K Jain
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Vidya Raina
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Rakshita Grover
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Jagriti Sharma
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Geeta Aggarwal
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
3
|
Maurya VK, Shakya A, Bashir K, Jan K, McClements DJ. Fortification by design: A rational approach to designing vitamin D delivery systems for foods and beverages. Compr Rev Food Sci Food Saf 2023; 22:135-186. [PMID: 36468215 DOI: 10.1111/1541-4337.13066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/09/2022]
Abstract
Over the past few decades, vitamin D deficiency has been recognized as a serious global public health challenge. The World Health Organization has recommended fortification of foods with vitamin D, but this is often challenging because of its low water solubility, poor chemical stability, and low bioavailability. Studies have shown that these challenges can be overcome by encapsulating vitamin D within well-designed delivery systems containing nanoscale or microscale particles. The characteristics of these particles, such as their composition, size, structure, interfacial properties, and charge, can be controlled to attain desired functionality for specific applications. Recently, there has been great interest in the design, production, and application of vitamin-D loaded delivery systems. Many of the delivery systems reported in the literature are unsuitable for widespread application due to the complexity and high costs of the processing operations required to fabricate them, or because they are incompatible with food matrices. In this article, the concept of "fortification by design" is introduced, which involves a systematic approach to the design, production, and testing of colloidal delivery systems for the encapsulation and fortification of oil-soluble vitamins, using vitamin D as a model. Initially, the challenges associated with the incorporation of vitamin D into foods and beverages are reviewed. The fortification by design concept is then described, which involves several steps: (i) selection of appropriate vitamin D form; (ii) selection of appropriate food matrix; (iii) identification of appropriate delivery system; (iv) identification of appropriate production method; (vii) establishment of appropriate testing procedures; and (viii) system optimization.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Sonepat, India
| | - Amita Shakya
- Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
4
|
Janoušek J, Pilařová V, Macáková K, Nomura A, Veiga-Matos J, Silva DDD, Remião F, Saso L, Malá-Ládová K, Malý J, Nováková L, Mladěnka P. Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Crit Rev Clin Lab Sci 2022; 59:517-554. [PMID: 35575431 DOI: 10.1080/10408363.2022.2070595] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin D has a well-known role in the calcium homeostasis associated with the maintenance of healthy bones. It increases the efficiency of the intestinal absorption of dietary calcium, reduces calcium losses in urine, and mobilizes calcium stored in the skeleton. However, vitamin D receptors are present ubiquitously in the human body and indeed, vitamin D has a plethora of non-calcemic functions. In contrast to most vitamins, sufficient vitamin D can be synthesized in human skin. However, its production can be markedly decreased due to factors such as clothing, sunscreens, intentional avoidance of the direct sunlight, or the high latitude of the residence. Indeed, more than one billion people worldwide are vitamin D deficient, and the deficiency is frequently undiagnosed. The chronic deficiency is not only associated with rickets/osteomalacia/osteoporosis but it is also linked to a higher risk of hypertension, type 1 diabetes, multiple sclerosis, or cancer. Supplementation of vitamin D may be hence beneficial, but the intake of vitamin D should be under the supervision of health professionals because overdosing leads to intoxication with severe health consequences. For monitoring vitamin D, several analytical methods are employed, and their advantages and disadvantages are discussed in detail in this review.
Collapse
Affiliation(s)
- Jiří Janoušek
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Anderson Nomura
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jéssica Veiga-Matos
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Diana Dias da Silva
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Gandra, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Kateřina Malá-Ládová
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Josef Malý
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Tchuenbou-Magaia FL, Tolve R, Anyadike U, Giarola M, Favati F. Co-encapsulation of vitamin D and rutin in chitosan-zein microparticles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [PMCID: PMC8853056 DOI: 10.1007/s11694-022-01340-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractThere is a growing interest in co-encapsulating multiple species to harness potential synergy between them, enhance their stability and efficacy in various products. The aim of this work was to co-encapsulate vitamin D3 and rutin inside chitosan-zein microparticles using a simple and easily scalable process for food fortification. This was achieved via anti-solvent precipitation coupled with spray-drying. Free-flowing powders of spherical microparticles with wrinkled surface and particle size < 10 μm were obtained. The encapsulation efficiency was 75% for vitamin D3 and 44% for rutin and this could be attributed to their different molecular size and affinity to the aqueous phase. The physicochemical properties were characterized by X-Ray powder diffraction and Fourier transform infrared spectroscopy. The two crystalline bioactive compounds were present in the microparticles in amorphous form, which would allow for better bioavailability when compared to non-encapsulated crystalline solid. Therefore, the obtained microparticles would be suitable for use as food ingredient for vitamin D3 fortification, with the co-encapsulated rutin acting as stability and activity enhancer.
Collapse
|
6
|
Characterization of fortified compound milk chocolate with microcapsulated chia seed oil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Vitamin D Incorporation in Foods: Formulation Strategies, Stability, and Bioaccessibility as Affected by the Food Matrix. Foods 2021; 10:foods10091989. [PMID: 34574096 PMCID: PMC8467460 DOI: 10.3390/foods10091989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Inadequate intake of vitamin D is a global health issue related to severe diseases, mainly involving subjects with dark skin pigmentation, patients affected by malnutrition, malabsorption syndromes, or obesity, and elderly people. Some foods fortified with vitamin D have been tested in vivo, but fortification strategies with a global outreach are still lacking. This review is focused on food fortification with vitamin D, with the aim to collect information on (a) formulation strategies; (b) stability during processing and storage; and (c) in vitro bioaccessibility. Approaches to add vitamin D to various foods were analyzed, including the use of free vitamin D, vitamin D loaded in simple and double nanoemulsions, liposomes, casein micelles, and protein nanocapsules. Numerous studies were reviewed to elucidate the impact of food technologies on vitamin D’s stability, and mechanisms that lead to degradation were identified—namely, acid-catalyzed isomerization, radical-induced oxidation, and photo-oxidation. There is, however, a lack of kinetic data that allow for the prediction of vitamin D’s stability under industrial processing conditions. The roles that lipids, proteins, fibers, and antioxidants play in vitamin bioaccessibility have been clarified in various studies, while future needs include the design of specific food matrices that simultaneously achieve a balance between the long-term stability, bioaccessibility and, ultimately, in vivo functionality of vitamin D.
Collapse
|
8
|
Microencapsulation of Bioactive Ingredients for Their Delivery into Fermented Milk Products: A Review. Molecules 2021; 26:molecules26154601. [PMID: 34361753 PMCID: PMC8347884 DOI: 10.3390/molecules26154601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
The popularity and consumption of fermented milk products are growing. On the other hand, consumers are interested in health-promoting and functional foods. Fermented milk products are an excellent matrix for the incorporation of bioactive ingredients, making them functional foods. To overcome the instability or low solubility of many bioactive ingredients under various environmental conditions, the encapsulation approach was developed. This review analyzes the fortification of three fermented milk products, i.e., yogurt, cheese, and kefir with bioactive ingredients. The encapsulation methods and techniques alongside the encapsulant materials for carotenoids, phenolic compounds, omega-3, probiotics, and other micronutrients are discussed. The effect of encapsulation on the properties of bioactive ingredients themselves and on textural and sensory properties of fermented milk products is also presented.
Collapse
|
9
|
Ikram A, Nadeem M, Imran M. Impact of vitamin A supplementation on composition, lipolysis, stability, and sensory of refrigerated stored Cheddar cheese. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ayesha Ikram
- Department of Dairy Technology University of Veterinary and Animal Sciences Lahore Pakistan
| | - Muhammad Nadeem
- Department of Dairy Technology University of Veterinary and Animal Sciences Lahore Pakistan
| | - Muhammad Imran
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| |
Collapse
|
10
|
Phospholipids from marine source: Extractions and forthcoming industrial applications. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
11
|
Picciotti U, Massaro A, Galiano A, Garganese F. Cheese Fortification: Review and Possible Improvements. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1874411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ugo Picciotti
- Dyrecta Lab s.r.l., MIUR Research Institute, Conversano (Ba), Italy
- Dipartimento Di Scienze Del Suolo, Della Pianta E Degli Alimenti (Di.S.S.P.A.), University of Bari “Aldo Moro“ (Ba), Italy
| | | | - Angelo Galiano
- Dyrecta Lab s.r.l., MIUR Research Institute, Conversano (Ba), Italy
| | - Francesca Garganese
- Dipartimento Di Scienze Del Suolo, Della Pianta E Degli Alimenti (Di.S.S.P.A.), University of Bari “Aldo Moro“ (Ba), Italy
| |
Collapse
|
12
|
Mehmood T, Ahmed A. Tween 80 and Soya-Lecithin-Based Food-Grade Nanoemulsions for the Effective Delivery of Vitamin D. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2886-2892. [PMID: 32118445 DOI: 10.1021/acs.langmuir.9b03944] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fortification of food and beverages with vitamin D is demanding due to its poor water solubility and oxidation, due to exposure to light and high temperature. The purpose of this research work was to formulate an effective food-grade delivery system for the incorporation of vitamin D into food products and beverages. Food-grade vitamin D nanoemulsions were successfully prepared using mixed surfactant (Tween 80 and soya lecithin) and ultrasonic homogenization techniques. Significant effects (p < 0.05) of temperatures (4 and 25 °C) and storage intervals (1 month) were observed on the turbidity and vitamin D retention. At the end of a 2 month storage, the droplet sizes of the nanoemulsion were 140.15 nm at 4 °C and 155.5 nm at 25 °C. p-Anisidine value of canola oil significantly reduced (p < 0.05) after its incorporation into nanoemulsions. The turbidity values of nanoemulsions increased with the increase in storage duration and temperature. These nanoemulsions remain stable against a wide range of temperatures (30-90 °C), pH values (2-8), ionic strengths (50-400 mM), and freeze-thaw cycles (4 cycles). At the end of 30 days of storage, vitamin D retentions were 74.4 ± 1.2 and 55.3 ± 2.1% in nanoemulsions stored at 4 and 25 °C, respectively. These results suggest that mixed-surfactant-based nanoemulsions are an effective delivery system for the incorporation of vitamin D into food and beverages to overcome the worldwide deficiency of vitamin D.
Collapse
Affiliation(s)
- Tahir Mehmood
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Anwaar Ahmed
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| |
Collapse
|
13
|
Maurya VK, Bashir K, Aggarwal M. Vitamin D microencapsulation and fortification: Trends and technologies. J Steroid Biochem Mol Biol 2020; 196:105489. [PMID: 31586474 DOI: 10.1016/j.jsbmb.2019.105489] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/31/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Today, as per the latest medical reports available, majority of the population throughout globe is facing vitamin D (Vit D) deficiency. Even in sub-tropical countries like India and many others Vit D deficiency is highly prevalent despite the exuberant available sunshine (a major source of Vit D) throughtout the year. The reason could be attributed to an array of factors including socioeconomical, cultural and religious. Further, other than the sunlight, there are very limited sources of Vit D to fulfil the recommended dietary allowance of Vit D (RDA: 400-800 IU per day). A large proportion of Vit D is lost during food processing and storage due to environmental stress conditions such as temperature, pH, salt, oxygen and light. Vita D, an important micronutrient, is essentially required for the prevention of disorders such as neurodegenerative diseases, cardiovascular diseases, cancer etc. in addition to its traditional role in bone metabolism. Therefore, in order to meet the daily requirements of Vit D for human body, WHO has recognized fortification as the most efficient and safest method to address malnutrition. But there are innumerable chellenges involved during food fortification using Vit D as fortificants such as homogeneity into the food matrix, physico-chemical/photochemical degradation, loss during processing and storage, interactions with other components of food matrix resulting into change in taste, texture and appearance thus affecting acceptability, palatability and marketability. Fortification of Vit D into food products especially the ones which have an aqueous portion, is not simple for food technologist. Recent advances in nanotechnology offer various microencapsulation techniques such as liposome, solid-lipid particles, nanostructured lipid carriers, emulsion, spray drying etc. which have been used to design efficient nanomaterials with desired functionality and have great potential for fortification of fortificants like Vit D. The present review is an undate on Vit D, in light of its fortification level, RDA, factors affecting its bioavailability and various microencapsulation techniques adopted to develop Vit D-nanomaterials and their fate in food fortification.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Sonepat, 131028, Haryana, India
| | - Khalid Bashir
- Department of Food Technology, JamiaHamdard University, New Delhi, 110062, India
| | - Manjeet Aggarwal
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Sonepat, 131028, Haryana, India.
| |
Collapse
|
14
|
Nanoliposomes and Tocosomes as Multifunctional Nanocarriers for the Encapsulation of Nutraceutical and Dietary Molecules. Molecules 2020; 25:molecules25030638. [PMID: 32024189 PMCID: PMC7037994 DOI: 10.3390/molecules25030638] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
Nanoscale lipid bilayers, or nanoliposomes, are generally spherical vesicles formed by the dispersion of phospholipid molecules in a water-based medium by energy input. The other nanoscale object discussed in this entry, i.e., tocosome, is a recently introduced bioactive carrier made mainly from tocopheryl phosphates. Due to their bi-compartmental structure, which consists of lipidic and aqueous compartments, these nanocarriers are capable of carrying hydrophilic and hydrophobic material separately or simultaneously. Nanoliposomes and tocosomes are able to provide protection and release of sensitive food-grade bioactive materials in a sustained manner. They are being utilized for the encapsulation of different types of bioactive materials (such as drugs, vaccines, antimicrobials, antioxidants, minerals and preservatives), for the enrichment and fortification of different food and nutraceutical formulations and manufacturing of functional products. However, a number of issues unique to the nutraceutical and food industry must first be resolved before these applications can completely become a reality. Considering the potentials and promises of these colloidal carrier systems, the present article reviews various aspects of nanoliposomes, in comparison with tocosomes, including the ingredients used in their manufacture, formation mechanisms and issues pertaining to their application in the formulation of health promoting dietary supplements and functional food products.
Collapse
|
15
|
Gulzar S, Benjakul S, Hozzein WN. Impact of β‐glucan on debittering, bioaccessibility and storage stability of skim milk fortified with shrimp oil nanoliposomes. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saqib Gulzar
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90112Thailand
| | - Soottawat Benjakul
- Department of Food Technology Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla90112Thailand
| | - Wael N. Hozzein
- Bioproducts Research Chair (BRC) Zoology Department College of Science King Saud University Riyadh Saudi Arabia
- Botany and Microbiology Department Faculty of Science Beni-Suef University Beni-Suef Egypt
| |
Collapse
|
16
|
|
17
|
Syama M, Arora S, Gupta C, Sharma A, Sharma V. Enhancement of vitamin D2 stability in fortified milk during light exposure and commercial heat treatments by complexation with milk proteins. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Talbot-Walsh G, Kannar D, Selomulya C. A review on technological parameters and recent advances in the fortification of processed cheese. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Mahmoodani F, Perera CO, Abernethy G, Fedrizzi B, Chen H. Lipid oxidation and vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage. Food Chem 2018; 261:149-156. [DOI: 10.1016/j.foodchem.2018.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/16/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
20
|
Guldiken B, Gibis M, Boyacioglu D, Capanoglu E, Weiss J. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food Res Int 2018; 108:491-497. [DOI: 10.1016/j.foodres.2018.03.071] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 12/24/2022]
|
21
|
Akhavan S, Assadpour E, Katouzian I, Jafari SM. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Shukla S, Haldorai Y, Hwang SK, Bajpai VK, Huh YS, Han YK. Current Demands for Food-Approved Liposome Nanoparticles in Food and Safety Sector. Front Microbiol 2017; 8:2398. [PMID: 29259595 PMCID: PMC5723299 DOI: 10.3389/fmicb.2017.02398] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/20/2017] [Indexed: 02/01/2023] Open
Abstract
Safety of food is a noteworthy issue for consumers and the food industry. A number of complex challenges associated with food engineering and food industries, including quality food production and safety of the food through effective and feasible means can be explained by nanotechnology. However, nanoparticles have unique physicochemical properties compared to normal macroparticles of the same composition and thus could interact with living system in surprising ways to induce toxicity. Further, few toxicological/safety assessments have been performed on nanoparticles, thereby necessitating further research on oral exposure risk prior to their application to food. Liposome nanoparticles are viewed as attractive novel materials by the food and medical industries. For example, nanoencapsulation of bioactive food compounds is an emerging application of nanotechnology. In several food industrial practices, liposome nanoparticles have been utilized to improve flavoring and nutritional properties of food, and they have been examined for their capacity to encapsulate natural metabolites that may help to protect the food from spoilage and degradation. This review focuses on ongoing advancements in the application of liposomes for food and pharma sector.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, India
| | - Seung Kyu Hwang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), World Class Smart Lab (WCSL), Inha University, Incheon, South Korea
| | - Vivek K. Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), World Class Smart Lab (WCSL), Inha University, Incheon, South Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| |
Collapse
|
23
|
Crevier B, Bélanger G, Vuillemard JC, St-Gelais D. Short communication: Production of cottage cheese fortified with vitamin D. J Dairy Sci 2017; 100:5212-5216. [PMID: 28478001 DOI: 10.3168/jds.2016-12308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/24/2017] [Indexed: 11/19/2022]
Abstract
The availability of alternative food products fortified with vitamin D could help decrease the percentage of the population with vitamin D deficiency. The objective of this study was to fortify cheese with vitamin D. Cottage cheese was selected because its manufacture allows for the addition of vitamin D after the draining step without any loss of the vitamin in whey. Cream containing vitamin D (145 IU/g of cream) was mixed with the fresh cheese curds, resulting in a final concentration of 51 IU/g of cheese. Unfortified cottage cheese was used as a control. As expected, the cottage cheese was fortified without any loss of vitamin D in the cheese whey. The vitamin D added to cream was not affected by homogenization or pasteurization treatments. In cottage cheese, the vitamin D concentration remained stable during 3 weeks of storage at 4°C. Compared with the control cheese, the cheese fortified with vitamin D showed no effects of fortification on cheese characteristics or sensory properties. Cottage cheese could be a new source of vitamin D or an alternative to fortified drinking milk.
Collapse
Affiliation(s)
- Benoît Crevier
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, St-Hyacinthe, QC, J2S 8E2, Canada; Institut sur la Nutrition et les Aliments Fonctionnels, Centre de Recherche en Sciences et Technologie du Lait, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Gaétan Bélanger
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, St-Hyacinthe, QC, J2S 8E2, Canada
| | - Jean-Christophe Vuillemard
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre de Recherche en Sciences et Technologie du Lait, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Daniel St-Gelais
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, St-Hyacinthe, QC, J2S 8E2, Canada; Institut sur la Nutrition et les Aliments Fonctionnels, Centre de Recherche en Sciences et Technologie du Lait, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
24
|
Yeh EB, Schiano AN, Jo Y, Barbano DM, Drake MA. The effect of vitamin concentrates on the flavor of pasteurized fluid milk. J Dairy Sci 2017; 100:4335-4348. [PMID: 28434730 DOI: 10.3168/jds.2017-12613] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 11/19/2022]
Abstract
Fluid milk consumption in the United States continues to decline. As a result, the level of dietary vitamin D provided by fluid milk in the United States diet has also declined. Undesirable flavor(s)/off flavor(s) in fluid milk can negatively affect milk consumption and consumer product acceptability. The objectives of this study were to identify aroma-active compounds in vitamin concentrates used to fortify fluid milk, and to determine the influence of vitamin A and D fortification on the flavor of milk. The aroma profiles of 14 commercial vitamin concentrates (vitamins A and D), in both oil-soluble and water-dispersible forms, were evaluated by sensory and instrumental volatile compound analyses. Orthonasal thresholds were determined for 8 key aroma-active compounds in skim and whole milk. Six representative vitamin concentrates were selected to fortify skim and 2% fat pasteurized milks (vitamin A at 1,500-3,000 IU/qt, vitamin D at 200-1,200 IU/qt, vitamin A and D at 1,000/200-6,000/1,200 IU/qt). Pasteurized milks were evaluated by sensory and instrumental volatile compound analyses and by consumers. Fat content, vitamin content, and fat globule particle size were also determined. The entire experiment was done in duplicate. Water-dispersible vitamin concentrates had overall higher aroma intensities and more detected aroma-active compounds than oil-soluble vitamin concentrates. Trained panelists and consumers were able to detect flavor differences between skim milks fortified with water-dispersible vitamin A or vitamin A and D, and unfortified skim milks. Consumers were unable to detect flavor differences in oil-soluble fortified milks, but trained panelists documented a faint carrot flavor in oil-soluble fortified skim milks at higher vitamin A concentrations (3,000-6,000 IU). No differences were detected in skim milks fortified with vitamin D, and no differences were detected in any 2% milk. These results demonstrate that vitamin concentrates may contribute to off flavor(s) in fluid milk, especially in skim milk fortified with water-dispersible vitamin concentrates.
Collapse
Affiliation(s)
- E B Yeh
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - A N Schiano
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - Y Jo
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - D M Barbano
- Department of Food Science, Northeast Dairy Foods Research Center, Cornell University, Ithaca, NY 14853
| | - M A Drake
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695.
| |
Collapse
|
25
|
Mohammadi M, Pezeshki A, Mesgari Abbasi M, Ghanbarzadeh B, Hamishehkar H. Vitamin D 3-Loaded Nanostructured Lipid Carriers as a Potential Approach for Fortifying Food Beverages; in Vitro and in Vivo Evaluation. Adv Pharm Bull 2017; 7:61-71. [PMID: 28507938 PMCID: PMC5426735 DOI: 10.15171/apb.2017.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/16/2016] [Accepted: 12/28/2017] [Indexed: 01/08/2023] Open
Abstract
Purpose: Nanostructured lipid carriers (NLCs) composed of solid lipid and oil are a new generation of lipid nanoparticles which have exhibited some merits over traditional used lipid nanoparticles in fortifying food and beverages and nutraceuticals delivery systems such as liposomes and solid lipid nanoparticles. Methods: In this study, Precirol and Compritol as solid lipids, Miglyol and Octyloctanoat as liquid lipids, Tween80, Tween20 and Poloxamer407 as surfactants were used to prepare vitamin D3-loaded NLC dispersion using hot homogenization method. The particle size and size distribution for all formulations were evaluated by immediately after production and during a storage period of 60 days. Results: The Precirol-based NLC showed superiority over Compritol-based NLC in the point of physical stability. Results clearly suggested that an optimum concentration of 3% of Poloxamer407 or 2% of Tween20 was sufficient to cover the surface of nanoparticles effectively and prevent agglomeration during the homogenization process. Octyloctanoat was introduced for the first time as a good substituent for Miglyol in the preparation of NLC formulations. The vitamin D3 Intestinal absorption enhanced by the incorporating in NLCs. Conclusion: It was concluded that NLC showed a promising approach for fortifying beverages by lipophilic nutraceuticals such as vitamin D.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Biotechnology Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz,Tabriz, Iran
| | - Akram Pezeshki
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences,Tabriz, Iran.,Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz,Tabriz, Iran
| | | | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz,Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
The Influence of Drying Process Conditions on the Physical Properties, Bioactive Compounds and Stability of Encapsulated Pumpkin Seed Oil. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1898-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Yeh EB, Barbano DM, Drake M. Vitamin Fortification of Fluid Milk. J Food Sci 2017; 82:856-864. [PMID: 28253423 DOI: 10.1111/1750-3841.13648] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 11/30/2022]
Abstract
Vitamin concentrates with vitamins A and D are used for fortification of fluid milk. Although many of the degradation components of vitamins A and D have an important role in flavor/fragrance applications, they may also be source(s) of off-flavor(s) in vitamin fortified milk due to their heat, oxygen, and the light sensitivity. It is very important for the dairy industry to understand how vitamin concentrates can impact flavor and flavor stability of fluid milk. Currently, little research on vitamin degradation products can be found with respect to flavor contributions. In this review, the history, regulations, processing, and storage stability of vitamins in fluid milk are addressed along with some hypotheses for the role of vitamin A and D fortification on flavor and stability of fluid milk.
Collapse
Affiliation(s)
- Eileen B Yeh
- Southeast Dairy Foods Research Center, Dept. of Food, Bioprocessing and Nutrition Sciences, North Carolina State Univ., Raleigh, NC, 27695, U.S.A
| | - David M Barbano
- Northeast Dairy Foods Research Center, Dept. of Food Science, Cornell Univ., Ithaca, NY, 14853, U.S.A
| | - MaryAnne Drake
- Southeast Dairy Foods Research Center, Dept. of Food, Bioprocessing and Nutrition Sciences, North Carolina State Univ., Raleigh, NC, 27695, U.S.A
| |
Collapse
|
28
|
Nanomaterial Impact, Toxicity and Regulation in Agriculture, Food and Environment. SUSTAINABLE AGRICULTURE REVIEWS 2017. [DOI: 10.1007/978-3-319-58496-6_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
McAuliffe LN, Kilcawley KN, Sheehan JJ, McSweeney PLH. Manufacture and Incorporation of Liposome-Entrapped Ethylenediaminetetraacetic Acid into Model Miniature Gouda-Type Cheese and Subsequent Effect on Starter Viability, pH, and Moisture Content. J Food Sci 2016; 81:C2708-C2717. [PMID: 27780298 DOI: 10.1111/1750-3841.13519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/25/2016] [Accepted: 09/03/2016] [Indexed: 01/02/2023]
Abstract
Liposome-encapsulated ethylenediaminetetraacetic acid (EDTA) was incorporated into a model miniature Gouda-type cheese (20 g) in order to assess its effect on rennet gelation, starter viability, pH, and moisture content. EDTA was encapsulated within 2 different food-grade proliposome preparations, Pro-Lipo Duo and Pro-Lipo C (50% and 40% unsaturated soybean phospholipids and 50% and 60% aqueous medium, respectively), using the following high-shear technologies: Ultra-Turrax (5000 rpm), 2-stage homogenization (345 bar), or microfluidization (690 bar). Liposome size distribution was affected by the high-shear technology employed with the proportion of large vesicles (>100 nm) decreasing in the order microfluidization < 2-stage homogenization < Ultra-Turrax. All EDTA-containing liposomes were stable during 28 d refrigerated storage, with no significant (P ≤ 0.05) change in size distribution or EDTA entrapment efficiency (%EE). Liposome composition affected the entrapment of EDTA, with Pro-Lipo C having a significantly greater %EE than Pro-Lipo Duo, 63% and 54%, respectively. For this reason, Pro-Lipo C EDTA liposomes, with and without EDTA, were incorporated into model miniature Gouda-type cheese. Addition of liposome-encapsulated EDTA to milk during cheese making did not impact pH or rennet gel formation. No differences in composition or pH were evident in liposome-treated cheeses. The results of this study show that the incorporation of liposome-encapsulated EDTA into milk during cheese manufacture did not affect milk fermentation, moisture content, or pH, suggesting that this approach may be suitable for studying the effects of calcium equilibrium on the texture of brine-salted cheeses.
Collapse
Affiliation(s)
- Lisa N McAuliffe
- the School of Food and Nutritional Science, Univ. College Cork, Cork, T12 Y337, Ireland
| | | | | | - Paul L H McSweeney
- the School of Food and Nutritional Science, Univ. College Cork, Cork, T12 Y337, Ireland
| |
Collapse
|
30
|
Tolve R, Galgano F, Caruso MC, Tchuenbou-Magaia FL, Condelli N, Favati F, Zhang Z. Encapsulation of health-promoting ingredients: applications in foodstuffs. Int J Food Sci Nutr 2016; 67:888-918. [DOI: 10.1080/09637486.2016.1205552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Boivin-Piché J, Vuillemard JC, St-Gelais D. Technical note: Vitamin D-fortified Cheddar type cheese produced from concentrated milk. J Dairy Sci 2016; 99:4140-4145. [DOI: 10.3168/jds.2015-10567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/17/2016] [Indexed: 11/19/2022]
|
32
|
Wagner ME, Spoth KA, Kourkoutis LF, Rizvi SSH. Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method. J Liposome Res 2015; 26:261-8. [DOI: 10.3109/08982104.2015.1088868] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Katherine A. Spoth
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA, and
| | - Lena F. Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA, and
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| | - Syed S. H. Rizvi
- Department of Food Science, Cornell University, Ithaca, NY, USA,
| |
Collapse
|
33
|
Leskauskaite D, Jasutiene I, Malinauskyte E, Kersiene M, Matusevicius P. Fortification of dairy products with vitamin D3. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Daiva Leskauskaite
- Department of Food Science and Technology; Kaunas University of Technology; Radvilenų str. 19 Kaunas LT-50254 Lithuania
| | - Ina Jasutiene
- Department of Food Science and Technology; Kaunas University of Technology; Radvilenų str. 19 Kaunas LT-50254 Lithuania
| | - Ernesta Malinauskyte
- Department of Food Science and Technology; Kaunas University of Technology; Radvilenų str. 19 Kaunas LT-50254 Lithuania
| | - Milda Kersiene
- Department of Food Science and Technology; Kaunas University of Technology; Radvilenų str. 19 Kaunas LT-50254 Lithuania
| | - Paulius Matusevicius
- Department of Animal Nutrition; The Lithuanian University of Health Sciences; Tilzes str. 18 Kaunas LT-47181 Lithuania
| |
Collapse
|
34
|
|
35
|
Stratulat I, Britten M, Salmieri S, Fustier P, St-Gelais D, Champagne CP, Lacroix M. Enrichment of cheese with vitamin D3 and vegetable omega-3. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
36
|
|
37
|
Mastrogiacomo D, Lenucci MS, Bonfrate V, Di Carolo M, Piro G, Valli L, Rescio L, Milano F, Comparelli R, De Leo V, Giotta L. Lipid/detergent mixed micelles as a tool for transferring antioxidant power from hydrophobic natural extracts into bio-deliverable liposome carriers: the case of lycopene rich oleoresins. RSC Adv 2015. [DOI: 10.1039/c4ra12254b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lipid/detergent mixed micelles promote and modulate the incorporation of carotenoids from natural oleoresins into bio-deliverable liposome carriers.
Collapse
Affiliation(s)
- Disma Mastrogiacomo
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | | | - Valentina Bonfrate
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | - Marialuisa Di Carolo
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | - Ludovico Valli
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | | | - Francesco Milano
- CNR – Istituto per i Processi Chimico-Fisici
- Sezione di Bari
- I–70126 Bari
- Italy
| | - Roberto Comparelli
- CNR – Istituto per i Processi Chimico-Fisici
- Sezione di Bari
- I–70126 Bari
- Italy
| | - Vincenzo De Leo
- CNR – Istituto per i Processi Chimico-Fisici
- Sezione di Bari
- I–70126 Bari
- Italy
- Dipartimento di Chimica
| | - Livia Giotta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| |
Collapse
|
38
|
Mohammadi R, Mahmoudzadeh M, Atefi M, Khosravi‐Darani K, Mozafari MR. Applications of nanoliposomes in cheese technology. INT J DAIRY TECHNOL 2014. [DOI: 10.1111/1471-0307.12174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Reza Mohammadi
- Department of Food Sciences and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical SciencesP. O. Box 19395‐4741 Tehran Iran
| | - Maryam Mahmoudzadeh
- Department of Food Sciences and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical SciencesP. O. Box 19395‐4741 Tehran Iran
| | - Mohsen Atefi
- Department of Food Sciences and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical SciencesP. O. Box 19395‐4741 Tehran Iran
| | - Kianoush Khosravi‐Darani
- Research Department of Food Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences P. O. Box 19395‐4741 Tehran Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative Monash University LPO P.O. Box 8052, Wellington Road Clayton Vic. 3800 Australia
| |
Collapse
|
39
|
|
40
|
|
41
|
|
42
|
Nongonierma AB, Abrlova M, Kilcawley KN. Encapsulation of a Lactic Acid Bacteria Cell-Free Extract in Liposomes and Use in Cheddar Cheese Ripening. Foods 2013; 2:100-119. [PMID: 28239101 PMCID: PMC5302231 DOI: 10.3390/foods2010100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/16/2022] Open
Abstract
A concentrated form of cell free extract (CFE) derived from attenuated Lactococcus lactis supsb. lactis 303 CFE was encapsulated in liposomes prepared from two different proliposome preparations (Prolipo Duo and Prolipo S) using microfluidization. Entrapment efficiencies of 19.7 % (Prolipo S) and 14.0 % (Prolipo Duo) were achieved and the preparations mixed in the ratio 4 (Prolipo Duo):1 (Prolipo S). Cheddar cheese trials were undertaken evaluating the performance of CFE entrapped in liposomes, empty liposomes and free CFE in comparison to a control cheese without any CFE or liposomes. Identical volumes of liposome and amounts of CFE were used in triplicate trials. The inclusion of liposomes did not adversely impact on cheese composition water activity, or microbiology. Entrapment of CFE in liposomes reduced loss of CFE to the whey. No significant differences were evident in proteolysis or expressed PepX activity during ripening in comparison to the cheeses containing free CFE, empty liposomes or the control, as the liposomes did not degrade during ripening. This result highlights the potential of liposomes to minimize losses of encapsulated enzymes into the whey during cheese production but also highlights the need to optimize the hydrophobicity, zeta potential, size and composition of the liposomes to maximize their use as vectors for enzyme addition in cheese to augment ripening.
Collapse
Affiliation(s)
| | - Magdalena Abrlova
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
- Department of Dairy and Fat Technology, Institute of Chemical Technology, Prague Technika5, Prague 6, 16628, Czech Republic.
| | | |
Collapse
|
43
|
Tippetts M, Martini S, Brothersen C, McMahon DJ. Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems. J Dairy Sci 2013; 95:4768-4774. [PMID: 22916880 DOI: 10.3168/jds.2011-5134] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/09/2012] [Indexed: 11/19/2022]
Abstract
Vitamin D is an essential vitamin that is synthesized when the body is exposed to sunlight or after the consumption of fortified foods and supplements. The purpose of this research was to increase the retention of vitamin D(3) in Cheddar cheese by incorporating it as part of an oil-in-water emulsion using a milk protein emulsifier to obtain a fortification level of 280 IU/serving. Four oil-in-water vitamin D emulsions were made using sodium caseinate, calcium caseinate, nonfat dry milk (NDM), or whey protein. These emulsions were used to fortify milk, and the retention of vitamin D(3) in cheese curd in a model cheesemaking system was calculated. A nonemulsified vitamin D(3) oil was used as a control to fortify milk. Significantly more vitamin D(3) was retained in the curd when using the emulsified vitamin D(3) than the nonemulsified vitamin D(3) oil (control). No significant differences were observed in the retention of vitamin D(3) when emulsions were formulated with different emulsifiers. Mean vitamin D(3) retention in the model system cheese curd was 96% when the emulsions were added to either whole or skim milk compared with using the nonemulsified oil, which gave mean retentions of only 71% and 64% when added to whole and skim milk, respectively. A similar improvement in retention was achieved when cheese was made from whole and reduced-fat milk using standard manufacturing procedures on a small scale. When sufficient vitamin D(3) was added to produce cheese containing a target level of approximately 280 IU per 28-g serving, retention was greater when the vitamin D(3) was emulsified with NDM than when using nonemulsified vitamin D(3) oil. Only 58±3% of the nonemulsified vitamin D(3) oil was retained in full-fat Cheddar cheese, whereas 78±8% and 74±1% were retained when using the vitamin D(3) emulsion in full-fat and reduced-fat Cheddar cheese, respectively.
Collapse
Affiliation(s)
- M Tippetts
- Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, 8700 Old Main Hill, Logan 84322-8700
| | - S Martini
- Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, 8700 Old Main Hill, Logan 84322-8700.
| | - C Brothersen
- Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, 8700 Old Main Hill, Logan 84322-8700
| | - D J McMahon
- Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, 8700 Old Main Hill, Logan 84322-8700
| |
Collapse
|
44
|
Better Nutrients and Therapeutics Delivery in Food Through Nanotechnology. FOOD ENGINEERING REVIEWS 2012. [DOI: 10.1007/s12393-012-9050-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Haham M, Ish-Shalom S, Nodelman M, Duek I, Segal E, Kustanovich M, Livney YD. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct 2012; 3:737-44. [DOI: 10.1039/c2fo10249h] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Rashidi L, Khosravi-Darani K. The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 2011; 51:723-30. [PMID: 21838555 DOI: 10.1080/10408391003785417] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanotechnology has the potential of application in the food industry and processing as new tools for pathogen detection, disease treatment delivery systems, food packaging, and delivery of bioactive compounds to target sites. The application of nanotechnology in food systems will provide new methods to improve safety and the nutritional value of food products. This article will review the current advances of applications of nanotechnology in food science and technology. Also, it describes new current food laws for nanofood and novel articles in the field of risk assessment of using nanotechnology in the food industry.
Collapse
Affiliation(s)
- Ladan Rashidi
- Institute of Standard and Industrial Research of Iran, Department of Food & Agriculture Research, Karaj
| | | |
Collapse
|
47
|
Ganesan B, Brothersen C, McMahon DJ. Fortification of Cheddar cheese with vitamin D does not alter cheese flavor perception. J Dairy Sci 2011; 94:3708-14. [PMID: 21700061 DOI: 10.3168/jds.2010-4020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022]
Abstract
Currently, dietary guidelines for vitamin D consumption are under review, considering new information that >50% of the US population is vitamin D deficient, and may lead to a recommendation of a higher dietary intake of this vitamin. Vitamin D fortification of cheese aims to improve the current availability of fortified dairy foods beyond liquid milk. However, cheese is susceptible to undesirable flavor changes during long-term cheese ripening, and cheese bacteria and enzymes may degrade added vitamins. To test the retention of vitamin D(3) in Cheddar cheese curd, cheese milk was fortified initially during manufacture at a level of 150 IU/serving, using commercial sources that contained vitamin D(3) in powder, oil, or emulsion form, with and without homogenization of the fortified milk. When fortification was done directly to the cheese milk, we found that more than 80% vitamin D(3) was retained in cheese curd, irrespective of homogenization or form of fortification. Further, Cheddar cheese was fortified with the emulsion form of vitamin D(3) directly in cheese milk at 200 and 400 IU/serving to test stability and flavor changes. Vitamin D(3) fortified in this manner was stable for up to 9 mo in Cheddar cheese. Consumer acceptance and descriptive analysis of flavor profiles of cheese were also conducted and showed that vitamin D(3) fortified cheeses were equally liked by consumers, and cheese taste and flavor remained unaltered with vitamin D(3) addition even after aging for 9 mo.
Collapse
Affiliation(s)
- B Ganesan
- Western Dairy Center, Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, USA.
| | | | | |
Collapse
|
48
|
Lu FSH, Nielsen NS, Timm-Heinrich M, Jacobsen C. Oxidative stability of marine phospholipids in the liposomal form and their applications. Lipids 2010; 46:3-23. [PMID: 21088919 DOI: 10.1007/s11745-010-3496-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 10/26/2010] [Indexed: 12/15/2022]
Abstract
Marine phospholipids (MPL) have attracted a great deal of attention recently as they are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil) from the same source. Due to their tight intermolecular packing conformation at the sn-2 position and their synergism with α-tocopherol present in MPL extracts, they can form stable liposomes which are attractive ingredients for food or feed applications. However, MPL are still susceptible to oxidation as they contain large amounts polyunsaturated fatty acids and application of MPL in food and aquaculture industries is therefore a great challenge for researchers. Hence, knowledge on the oxidative stability of MPL and the behavior of MPL in food and feed systems is an important issue. For this reason, this review was undertaken to provide the industry and academia with an overview of (1) the stability of MPL in different forms and their potential as liposomal material, and (2) the current applications and future prospects of MPL in both food and aquaculture industries with special emphasis on MPL in the liposomal form.
Collapse
Affiliation(s)
- F S Henna Lu
- Division of Seafood Research, National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | |
Collapse
|
49
|
Nongonierma AB, Abrlova M, Fenelon MA, Kilcawley KN. Evaluation of two food grade proliposomes to encapsulate an extract of a commercial enzyme preparation by microfluidization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3291-3297. [PMID: 19290637 DOI: 10.1021/jf803367b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The entrapment by microfluidization of a commercial enzyme extract (Debitrase DBP20) in liposomes using two food grade proliposome (C and S) preparations was studied. Liposomes obtained at a low microfluidization pressure (4000 psi) were distributed in a bimodal population of small (30-40 nm) and large vesicles (300-700 nm). The composition of the proliposome influenced entrapment efficiency and the repartition of the enzyme between the core and the surface of the liposome. More enzyme was associated with the liposomal surface and greater entrapment efficiencies (64%) were obtained for liposomes with the highest negative zeta potential (proliposome C). Increasing microfluidization pressure and increasing the number of passes through the microfluidizer resulted in losses in entrapment efficiency and enzyme activity, due to decreasing liposome size and enzyme denaturation. Entrapment efficiency was not influenced by external pH and enzyme activity was not adversely affected over storage for 18 days under the conditions evaluated.
Collapse
Affiliation(s)
- Alice B Nongonierma
- Moorepark Food Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | |
Collapse
|
50
|
Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C. Nanoliposomes and their applications in food nanotechnology. J Liposome Res 2009; 18:309-27. [PMID: 18951288 DOI: 10.1080/08982100802465941] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Food nanotechnology involves the utilization of nanocarrier systems to stabilize the bioactive materials against a range of environmental and chemical changes as well as to improve their bioavailability. Nanoliposome technology presents exciting opportunities for food technologists in areas such as encapsulation and controlled release of food materials, as well as the enhanced bioavailability, stability, and shelf-life of sensitive ingredients. Liposomes and nanoliposomes have been used in the food industry to deliver flavors and nutrients and, more recently, have been investigated for their abilityto incorporate antimicrobials that could aid in the protection of food products against microbial contamination. In this paper, the main physicochemical properties of liposomes and nanoliposomes are described and some of the industrially applicable methods for their manufacture are reviewed. A summary of the application of nanoliposomes as carrier vehicles of nutrients, nutraceuticals, enzymes, food additives, and food antimicrobials is also presented.
Collapse
Affiliation(s)
- M Reza Mozafari
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|