1
|
Leite DJ, Schönauer A, Blakeley G, Harper A, Garcia-Castro H, Baudouin-Gonzalez L, Wang R, Sarkis N, Nikola AG, Koka VSP, Kenny NJ, Turetzek N, Pechmann M, Solana J, McGregor AP. An atlas of spider development at single-cell resolution provides new insights into arthropod embryogenesis. EvoDevo 2024; 15:5. [PMID: 38730509 PMCID: PMC11083766 DOI: 10.1186/s13227-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Amber Harper
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Helena Garcia-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Ruixun Wang
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Naïra Sarkis
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Alexander Günther Nikola
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Venkata Sai Poojitha Koka
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Department of Biochemistry Te Tari Matū Koiora, University of Otago, Dunedin, New Zealand
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
2
|
Goutam RS, Kumar V, Lee U, Kim J. Cdx1 and Gsc distinctly regulate the transcription of BMP4 target gene ventx3.2 by directly binding to the proximal promoter region in Xenopus gastrulae. Mol Cells 2024; 47:100058. [PMID: 38522664 PMCID: PMC11031840 DOI: 10.1016/j.mocell.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
A comprehensive regulatory network of transcription factors controls the dorsoventral patterning of the body axis in developing vertebrate embryos. Bone morphogenetic protein signaling is essential for activating the Ventx family of homeodomain transcription factors, which regulates embryonic patterning and germ layer identity during Xenopus gastrulation. Although Ventx1.1 and Ventx2.1 of the Xenopus Ventx family have been extensively investigated, Ventx3.2 remains largely understudied. Therefore, this study aimed to investigate the transcriptional regulation of ventx3.2 during the embryonic development of Xenopus. We used goosecoid (Gsc) genome-wide chromatin immunoprecipitation-sequencing data to isolate and replicate the promoter region of ventx3.2. Serial deletion and site-directed mutagenesis were used to identify the cis-acting elements for Gsc and caudal type homeobox 1 (Cdx1) within the ventx3.2 promoter. Cdx1 and Gsc differentially regulated ventx3.2 transcription in this study. Additionally, positive cis-acting and negative response elements were observed for Cdx1 and Gsc, respectively, within the 5' flanking region of the ventx3.2 promoter. This result was corroborated by mapping the active Cdx1 response element (CRE) and Gsc response element (GRE). Moreover, a point mutation within the CRE and GRE completely abolished the activator and repressive activities of Cdx1 and Gsc, respectively. Furthermore, the chromatin immunoprecipitation-polymerase chain reaction confirmed the direct binding of Cdx1 and Gsc to the CRE and GRE, respectively. Inhibition of Cdx1 and Gsc activities at their respective functional regions, namely, the ventral marginal zone and dorsal marginal zone, reversed their effects on ventx3.2 transcription. These results indicate that Cdx1 and Gsc modulate ventx3.2 transcription in the ventral marginal zone and dorsal marginal zone by directly binding to the promoter region during Xenopus gastrulation.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
- Laboratory of Regenerative Medicine, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| |
Collapse
|
3
|
Regionalization of the Early Nervous System. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Seaver EC. Sifting through the mud: A tale of building the annelid Capitella teleta for EvoDevo studies. Curr Top Dev Biol 2022; 147:401-432. [PMID: 35337457 DOI: 10.1016/bs.ctdb.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last few decades, the annelid Capitella teleta has been used increasingly as a study system for investigations of development and regeneration. Its favorable properties include an ability to continuously maintain a laboratory culture, availability of a sequenced genome, a stereotypic cleavage program of early development, substantial regeneration abilities, and established experimental and functional genomics techniques. With this review I tell of my adventure of establishing the Capitella teleta as an emerging model and share examples of a few of the contributions our work has made to the fields of evo-devo and developmental biology. I highlight examples of conservation in developmental programs as well as surprising deviations from existing paradigms that highlight the importance of leveraging biological diversity to shift thinking in the field. The story for each study system is unique, and every animal has its own advantages and disadvantages as an experimental system. Just like most progress in science, it takes strategy, hard work and determination to develop tools and resources for a less studied animal, but luck and serendipity also play a role. I include a few narratives to personalize the science, share details of the story that are not included in typical publications, and provide perspective for investigators who are interested in developing their own study organism.
Collapse
Affiliation(s)
- Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States.
| |
Collapse
|
5
|
Funk E, Lencer E, McCune A. Dorsoventral inversion of the air-filled organ (lungs, gas bladder) in vertebrates: RNAsequencing of laser capture microdissected embryonic tissue. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:325-338. [PMID: 32864827 PMCID: PMC8094346 DOI: 10.1002/jez.b.22998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
How modification of gene expression generates novel traits is key to understanding the evolutionary process. We investigated the genetic basis for the origin of the piscine gas bladder from lungs of ancestral bony vertebrates. Distinguishing these homologous organs is the direction of budding from the foregut during development; lungs bud ventrally and the gas bladder buds dorsally.
Collapse
Affiliation(s)
- Emily Funk
- Cornell University, Department of Ecology and Evolutionary Biology, 215 Tower Rd, Ithaca, NY 14853
- University of California Davis, Genomic Variation Lab, Animal Science Department, 2235 Meyer Hall, Davis, CA 95616
| | - Ezra Lencer
- University of Colorado Denver - Anschutz Medical Campus, Department of Craniofacial Biology, 12081 East 17 Ave, RC 1 South, Campus Box 8120, Aurora, CO 80045
| | - Amy McCune
- Cornell University, Department of Ecology and Evolutionary Biology, 215 Tower Rd, Ithaca, NY 14853
| |
Collapse
|
6
|
Wanninger A, Wollesen T. The evolution of molluscs. Biol Rev Camb Philos Soc 2019; 94:102-115. [PMID: 29931833 PMCID: PMC6378612 DOI: 10.1111/brv.12439] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 01/24/2023]
Abstract
Molluscs are extremely diverse invertebrate animals with a rich fossil record, highly divergent life cycles, and considerable economical and ecological importance. Key representatives include worm-like aplacophorans, armoured groups (e.g. polyplacophorans, gastropods, bivalves) and the highly complex cephalopods. Molluscan origins and evolution of their different phenotypes have largely remained unresolved, but significant progress has been made over recent years. Phylogenomic studies revealed a dichotomy of the phylum, resulting in Aculifera (shell-less aplacophorans and multi-shelled polyplacophorans) and Conchifera (all other, primarily uni-shelled groups). This challenged traditional hypotheses that proposed that molluscs gradually evolved complex phenotypes from simple, worm-like animals, a view that is corroborated by developmental studies that showed that aplacophorans are secondarily simplified. Gene expression data indicate that key regulators involved in anterior-posterior patterning (the homeobox-containing Hox genes) lost this function and were co-opted into the evolution of taxon-specific novelties in conchiferans. While the bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signalling pathway, that mediates dorso-ventral axis formation, and molecular components that establish chirality appear to be more conserved between molluscs and other metazoans, variations from the common scheme occur within molluscan sublineages. The deviation of various molluscs from developmental pathways that otherwise appear widely conserved among metazoans provides novel hypotheses on molluscan evolution that can be tested with genome editing tools such as the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein9) system.
Collapse
Affiliation(s)
- Andreas Wanninger
- Department of Integrative ZoologyUniversity of ViennaAlthanstrasse 14, 1090 ViennaAustria
| | - Tim Wollesen
- Department of Integrative ZoologyUniversity of ViennaAlthanstrasse 14, 1090 ViennaAustria
| |
Collapse
|
7
|
Shinji J, Gotoh H, Miyanishi H, Lavine MD, Lavine LC. The activin signaling transcription factor Smox is an essential regulator of appendage size during regeneration after autotomy in the crayfish. Evol Dev 2018; 21:44-55. [DOI: 10.1111/ede.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junpei Shinji
- Department of Entomology; Washington State University; Pullman Washington
| | - Hiroki Gotoh
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho, Chikusa-ku; Nagoya Japan
| | - Hiroshi Miyanishi
- Faculty of Agriculture; University of Miyazaki, Gakuen-kibanadai-nishi; Miyazaki Japan
| | - Mark D. Lavine
- Department of Entomology; Washington State University; Pullman Washington
| | | |
Collapse
|
8
|
Yoshimura K, Morino Y, Wada H. Regeneration of the acorn worm pygochord with the implication for its convergent evolution with the notochord. Dev Growth Differ 2018; 61:158-165. [PMID: 30561008 DOI: 10.1111/dgd.12581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
The origin of the notochord is a central issue in chordate evolution. This study examined the development of the acorn worm pygochord, a putative homologue of the notochord. Because the pygochord differentiates only after metamorphosis, the developmental was followed process by inducing regeneration after artificial amputation in Ptychodera flava. It was found that although the regeneration of the posterior part of the body did not proceed via formation of an obvious regeneration bud, pygochord regeneration was observed within a few weeks, possibly via trans-differentiation of endoderm cells. The expression of the fibrillary collagen gene (Fcol) and elav in the pygochord during regeneration was detected. This indicates that pygochord cells are not part of gut epithelial cells, but that they differentiated as a distinct cell type. Our gene expression analyses do not provide supporting evidence for the homology between the pygochord and notochord, but rather favored the convergent evolution between them.
Collapse
Affiliation(s)
- Koji Yoshimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Boilly B, Boilly‐Marer Y, Bely AE. Regulation of dorso-ventral polarity by the nerve cord during annelid regeneration: A review of experimental evidence. REGENERATION (OXFORD, ENGLAND) 2017; 4:54-68. [PMID: 28616245 PMCID: PMC5469730 DOI: 10.1002/reg2.78] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
An important goal for understanding regeneration is determining how polarity is conferred to the regenerate. Here we review findings in two groups of polychaete annelids that implicate the ventral nerve cord in assigning dorso-ventral polarity, and specifically ventral identity, to the regenerate. In nereids, surgical manipulations indicate that parapodia develop where dorsal and ventral body wall territories contact. Without a nerve cord at the wound site, the regenerate differentiates no evident polarity (with no parapodia) and only dorsal identity, while with two nerve cords the regenerate develops a twinned dorso-ventral axis (with four parapodia per segment instead of the normal two). In sabellids, a striking natural dorso-ventral inversion in parapodial morphology occurs along the body axis and this inversion is morphologically correlated with the position of the nerve cord. Parapodial inversion also occurs in segments in which the nerve cord has been removed, even without any segment amputation. Together, these data strongly support a role for the nerve cord in annelid dorso-ventral pattern regulation, with the nerve cord conferring ventral identity.
Collapse
Affiliation(s)
- Bénoni Boilly
- UFR de BiologieUniversité de Lille59655 Villeneuve d'AscqFrance
| | | | | |
Collapse
|
10
|
Dpp/BMP2-4 Mediates Signaling from the D-Quadrant Organizer in a Spiralian Embryo. Curr Biol 2016; 26:2003-2010. [DOI: 10.1016/j.cub.2016.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
|
11
|
Bier E, De Robertis EM. BMP gradients: A paradigm for morphogen-mediated developmental patterning. Science 2015; 348:aaa5838. [DOI: 10.1126/science.aaa5838] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Wilson MJ, Kenny NJ, Dearden PK. Components of the dorsal-ventral pathway also contribute to anterior-posterior patterning in honeybee embryos (Apis mellifera). EvoDevo 2014; 5:11. [PMID: 24620747 PMCID: PMC3995682 DOI: 10.1186/2041-9139-5-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/20/2014] [Indexed: 01/27/2023] Open
Abstract
Background A key early step in embryogenesis is the establishment of the major body axes; the dorsal-ventral (DV) and anterior-posterior (AP) axes. Determination of these axes in some insects requires the function of different sets of signalling pathways for each axis. Patterning across the DV axis requires interaction between the Toll and Dpp/TGF-β pathways, whereas patterning across the AP axis requires gradients of bicoid/orthodenticle proteins and the actions of a hierarchy of gene transcription factors. We examined the expression and function of Toll and Dpp signalling during honeybee embryogenesis to assess to the role of these genes in DV patterning. Results Pathway components that are required for dorsal specification in Drosophila are expressed in an AP-restricted pattern in the honeybee embryo, including Dpp and its receptor Tkv. Components of the Toll pathway are expressed in a more conserved pattern along the ventral axis of the embryo. Late-stage embryos from RNA interference (RNAi) knockdown of Toll and Dpp pathways had both DV and AP patterning defects, confirmed by staining with Am-sna, Am-zen, Am-eve, and Am-twi at earlier stages. We also identified two orthologues of dorsal in the honeybee genome, with one being expressed during embryogenesis and having a minor role in axis patterning, as determined by RNAi and the other expressed during oogenesis. Conclusions We found that early acting pathways (Toll and Dpp) are involved not only in DV patterning but also AP patterning in honeybee embryogenesis. Changes to the expression patterns and function of these genes may reflect evolutionary changes in the placement of the extra-embryonic membranes during embryogenesis with respect to the AP and DV axes.
Collapse
Affiliation(s)
- Megan J Wilson
- Developmental Biology Laboratory, Department of Anatomy, University of Otago, P,O, Box 56, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|
13
|
|
14
|
Kuo DH, Weisblat DA. A new molecular logic for BMP-mediated dorsoventral patterning in the leech Helobdella. Curr Biol 2011; 21:1282-8. [PMID: 21782437 PMCID: PMC3152669 DOI: 10.1016/j.cub.2011.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is broadly implicated in dorsoventral (DV) patterning of bilaterally symmetric animals [1-3], and its role in axial patterning apparently predates the birth of Bilateria [4-7]. In fly and vertebrate embryos, BMPs and their antagonists (primarily Sog/chordin) diffuse and interact to generate signaling gradients that pattern fields of cells [8-10]. Work in other species reveals diversity in essential facets of this ancient patterning process, however. Here, we report that BMP signaling patterns the DV axis of segmental ectoderm in the leech Helobdella, a clitellate annelid (superphylum Lophotrochozoa) featuring stereotyped developmental cell lineages, but the detailed mechanisms of DV patterning in Helobdella differ markedly from fly and vertebrates. In Helobdella, BMP2/4s are expressed broadly, rather than in dorsal territory, whereas a dorsally expressed BMP5-8 specifies dorsal fate by short-range signaling. A BMP antagonist, gremlin, is upregulated by BMP5-8 in dorsolateral, rather than ventral territory, and yet the BMP-antagonizing activity of gremlin is required for normal ventral cell fates. Gremlin promotes ventral fates without disrupting dorsal fates by selectively inhibiting BMP2/4s, not BMP5-8. Thus, DV patterning in the development of the leech revealed unexpected evolutionary plasticity of the conserved BMP patterning system, presumably reflecting its adaptation to different modes of embryogenesis.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Molecular & Cell Biology, 385 LSA, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
15
|
Mizutani CM, Bier E. EvoD/Vo: the origins of BMP signalling in the neuroectoderm. Nat Rev Genet 2011; 9:663-77. [PMID: 18679435 DOI: 10.1038/nrg2417] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic systems controlling body axis formation trace back as far as the ancestor of diploblasts (corals, hydra, and jellyfish) and triploblasts (bilaterians). Comparative molecular studies, often referred to as evo-devo, provide powerful tools for elucidating the origins of mechanisms for establishing the dorsal-ventral and anterior-posterior axes in bilaterians and reveal differences in the evolutionary pressures acting upon tissue patterning. In this Review, we focus on the origins of nervous system patterning and discuss recent comparative genetic studies; these indicate the existence of an ancient molecular mechanism underlying nervous system organization that was probably already present in the bilaterian ancestor.
Collapse
Affiliation(s)
- Claudia Mieko Mizutani
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, 92093-0349, USA.
| | | |
Collapse
|
16
|
Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 2010; 137:223-35. [PMID: 20040489 DOI: 10.1242/dev.042531] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nodal factors play fundamental roles in induction and patterning of the mesoderm and endoderm in vertebrates, but whether this reflects an ancient role or one that evolved recently in vertebrates is not known. Here, we report that in addition to its primary role in patterning the ectoderm, sea urchin Nodal is crucial for patterning of the endoderm and skeletogenic mesoderm through the regulation of the expression of key transcription factors and signalling molecules, including BMP2/4 and FGFA. In addition, we uncovered an essential role for Nodal and BMP2/4 in the formation and patterning of the non-skeletogenic mesoderm. By comparing the effects of misexpressing Nodal or an activated Nodal receptor in clones of cells, we provide evidence that Nodal acts over a long range in the endomesoderm and that its effects on the blastocoelar cell precursors are likely to be direct. The activity of Nodal and BMP2/4 are antagonistic, and although bmp2/4 is transcribed in the ventral ectoderm downstream of Nodal, the BMP2/4 ligand is translocated to the dorsal side, where it activates signalling in the dorsal primary mesenchyme cells, the dorsal endoderm and in pigment cell precursors. Therefore, correct patterning of the endomesoderm depends on a balance between ventralising Nodal signals and dorsalising BMP2/4 signals. These experiments confirm that Nodal is a key regulator of dorsal-ventral polarity in the sea urchin and support the idea that the ventral ectoderm, like the Spemann organiser in vertebrates, is an organising centre that is required for patterning all three germ layers of the embryo.
Collapse
Affiliation(s)
- Véronique Duboc
- UPMC Univ Paris 06-CNRS, UMR 7009 Biologie du Développement Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 2009; 7:e1000248. [PMID: 19956794 PMCID: PMC2772021 DOI: 10.1371/journal.pbio.1000248] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 10/14/2009] [Indexed: 01/18/2023] Open
Abstract
Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGFbeta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally, we show that Chordin may not be required for long-range diffusion of BMP2/4, describe a striking dorsal-ventral asymmetry in the expression of Glypican 5, a heparin sulphated proteoglycan that regulates BMP mobility, and show that this asymmetry depends on BMP2/4 signaling. Our study provides new insights into the mechanisms by which positional information is established along the dorsal-ventral axis of the sea urchin embryo, and more generally on how a BMP morphogen gradient is established in a multicellular embryo. From an evolutionary point of view, it highlights that although the genes used for dorsal-ventral patterning are highly conserved in bilateria, there are considerable variations, even among deuterostomes, in the manner these genes are used to shape a BMP morphogen gradient.
Collapse
Affiliation(s)
- François Lapraz
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Thierry Lepage
- UPMC (University of Paris 06), CNRS, UMR7009, Biologie du Développement, Observatoire Océanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
18
|
Barkai N, Ben-Zvi D. 'Big frog, small frog'--maintaining proportions in embryonic development: delivered on 2 July 2008 at the 33rd FEBS Congress in Athens, Greece. FEBS J 2009; 276:1196-207. [PMID: 19175672 DOI: 10.1111/j.1742-4658.2008.06854.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We discuss mechanisms that enable the scaling of pattern with size during the development of multicellular organisms. Recently, we analyzed scaling in the context of the early Xenopus embryo, focusing on the determination of the dorsal-ventral axis by a gradient of BMP activation. The ability of this system to withstand extreme perturbation was exemplified in classical experiments performed by Hans Spemann in the early 20th century. Quantitative analysis revealed that patterning is governed by a noncanonical 'shuttling-based' mechanism, and defined the feedback enabling the scaling of pattern with size. Robust scaling is due to molecular implementation of an integral-feedback controller, which adjusts the width of the BMP morphogen gradient with the size of the system. We present an 'expansion-repression' feedback topology which generalizes this concept for a wider range of patterning systems, providing a general, and potentially widely applicable model for the robust scaling of morphogen gradients with size.
Collapse
Affiliation(s)
- Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
19
|
Ben-Zvi D, Shilo BZ, Fainsod A, Barkai N. Scaling of the BMP activation gradient in Xenopus embryos. Nature 2008; 453:1205-11. [DOI: 10.1038/nature07059] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Accepted: 05/08/2008] [Indexed: 11/09/2022]
|
20
|
Lecuit T. "Developmental mechanics": cellular patterns controlled by adhesion, cortical tension and cell division. HFSP JOURNAL 2008; 2:72-8. [PMID: 19404474 PMCID: PMC2645572 DOI: 10.2976/1.2896332] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Indexed: 11/19/2022]
Abstract
How embryos are shaped during development has inspired the work of many, embryologists, geneticists, but also mathematicians such as Turing, and physicists. Despite the inherent complexity of the problems it tackles, developmental biology has produced one of the most spectacular conceptual achievements, demonstrating that embryos are built with conserved molecules that orchestrate pattern and morphogenesis. As the logic of development now emerges, new challenges arise, such as how tissue mechanics is controlled. Quantitative approaches and computational models are essential to predict tissue organization and cell shapes. I review briefly how physical concepts have fueled this research in the past decades.
Collapse
Affiliation(s)
- Thomas Lecuit
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy case 907, 13288 Marseille Cedex 09, France
| |
Collapse
|
21
|
Oda H, Akiyama-Oda Y. Differing strategies for forming the arthropod body plan: Lessons from Dpp, Sog and Delta in the fly Drosophila and spider Achaearanea. Dev Growth Differ 2008; 50:203-14. [DOI: 10.1111/j.1440-169x.2008.00998.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Egger B, Chell JM, Brand AH. Insights into neural stem cell biology from flies. Philos Trans R Soc Lond B Biol Sci 2008; 363:39-56. [PMID: 17309865 PMCID: PMC2213715 DOI: 10.1098/rstb.2006.2011] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drosophila neuroblasts are similar to mammalian neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. In the past two decades, great advances have been made in understanding the molecular mechanisms underlying embryonic neuroblast formation, the establishment of cell polarity and the temporal regulation of cell fate. It is now a challenge to connect, at the molecular level, the different cell biological events underlying the transition from neural stem cell maintenance to differentiation. Progress has also been made in understanding the later stages of development, when neuroblasts become mitotically inactive, or quiescent, and are then reactivated postembryonically to generate the neurons that make up the adult nervous system. The ability to manipulate the steps leading from quiescence to proliferation and from proliferation to differentiation will have a major impact on the treatment of neurological injury and neurodegenerative disease.
Collapse
|
23
|
Lowe CJ, Terasaki M, Wu M, Freeman RM, Runft L, Kwan K, Haigo S, Aronowicz J, Lander E, Gruber C, Smith M, Kirschner M, Gerhart J. Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 2006; 4:e291. [PMID: 16933975 PMCID: PMC1551926 DOI: 10.1371/journal.pbio.0040291] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 06/28/2006] [Indexed: 11/19/2022] Open
Abstract
We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called "dorsal." On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other.
Collapse
Affiliation(s)
- Christopher J Lowe
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Michael Wu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linda Runft
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Kristen Kwan
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saori Haigo
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jochanan Aronowicz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Eric Lander
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Chris Gruber
- Express Genomics, Frederick, Maryland, United States of America
| | - Mark Smith
- Express Genomics, Frederick, Maryland, United States of America
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
24
|
Akiyama-Oda Y, Oda H. Axis specification in the spider embryo:dppis required for radial-to-axial symmetry transformation andsogfor ventral patterning. Development 2006; 133:2347-57. [PMID: 16720876 DOI: 10.1242/dev.02400] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism by which Decapentaplegic (Dpp) and its antagonist Short gastrulation (Sog) specify the dorsoventral pattern in Drosophilaembryos has been proposed to have a common origin with the mechanism that organizes the body axis in the vertebrate embryo. However, DrosophilaSog makes only minor contributions to the development of ventral structures that hypothetically correspond to the vertebrate dorsum where the axial notochord forms. In this study, we isolated a homologue of the Drosophila sog gene in the spider Achaearanea tepidariorum, and characterized its expression and function. Expression of sog mRNA initially appeared in a radially symmetrical pattern and later became confined to the ventral midline area, which runs axially through the germ band. RNA interference-mediated depletion of the spider sog gene led to a nearly complete loss of ventral structures, including the axial ventral midline and the central nervous system. This defect appeared to be the consequence of dorsalization of the ventral region of the germ band. By contrast, the extra-embryonic area formed normally. Furthermore, we showed that embryos depleted for a spider homologue of dpp failed to break the radial symmetry, displaying evenly high levels of sog expression except in the posterior terminal area. These results suggest that dppis required for radial-to-axial symmetry transformation of the spider embryo and sog is required for ventral patterning. We propose that the mechanism of spider ventral specification largely differs from that of the fly. Interestingly, ventral specification in the spider is similar to the process in vertebrates in which the antagonism of Dpp/BMP signaling plays a central role in dorsal specification.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | | |
Collapse
|
25
|
Scuderi A, Simin K, Kazuko SG, Metherall JE, Letsou A. scylla and charybde, homologues of the human apoptotic gene RTP801, are required for head involution in Drosophila. Dev Biol 2006; 291:110-22. [PMID: 16423342 DOI: 10.1016/j.ydbio.2005.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 12/05/2005] [Accepted: 12/08/2005] [Indexed: 11/30/2022]
Abstract
We employed robotic methods and the whole-genome sequence of Drosophila melanogaster to facilitate a large-scale expression screen for spatially restricted transcripts in Drosophila embryos. In this screen, we identified a pair of genes, scylla (scyl) and charybde (chrb), that code for dorsal transcripts in early Drosophila embryos and are homologous to the human apoptotic gene RTP801. In Drosophila, both gene products are transcriptionally regulated targets of Dpp/Zen-mediated signal transduction and appear more generally to be downstream targets of homeobox regulation. Gene disruption studies revealed the functional redundancy of scyl and chrb, as well as their requirement for embryonic head involution. From the perspective of functional genomics, our studies demonstrate that global surveys of gene expression can complement traditional genetic screening methods for the identification of genes essential for development: beginning from their spatio-temporal expression profiles and extending to their downstream placement relative to dpp and zen, our studies reveal roles for the scyl and chrb gene products as links between patterning and cell death.
Collapse
Affiliation(s)
- Anne Scuderi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
26
|
Prothmann C, Armstrong NJ, Roth S, Rupp RAW. Vertebrate rel proteins exhibit dorsal-like activities in earlyDrosophila embryogenesis. Dev Dyn 2006; 235:949-57. [PMID: 16493693 DOI: 10.1002/dvdy.20713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Drosophila, the Toll/Dorsal pathway triggers the nuclear entry of the Rel protein Dorsal, which controls dorsoventral patterning in early embryogenesis and plays an important role in innate immunity of the adult fly. In vertebrates, the homologous Toll/IL-1 receptor signaling pathway directs the nuclear localization of Rel/NF-kappaB complexes, which activate genes involved in proliferation, apoptosis, and immune response. Recently, first evidence has been reported for the activity of vertebrate Rel proteins and a Toll-like signaling pathway in the dorsoventral patterning process of Xenopus laevis embryos. Given the evolutionary divergence of the fly and frog model organisms, these findings raise the question, to what extent the effector functions of this pathway have been conserved? Here, we report the ability of two Xenopus Rel proteins to partially substitute for several, but not all, functions of the Dorsal protein in Drosophila embryos. Our results suggest the interaction between Rel proteins and their cytoplasmic inhibitors as an important interface of evolutionary adaptation.
Collapse
Affiliation(s)
- Christian Prothmann
- Adolf-Butenandt-Institut, Ludwif-Maximilians-Universität München, Schillerstrasse 44, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
27
|
Abstract
The astacin family (M12A) of the metzincin subclan MA(M) of metalloproteinases has been detected in developing and mature individuals of species that range from hydra to humans. Functions of this family of metalloproteinase vary from digestive degradation of polypeptides, to biosynthetic processing of extracellular proteins, to activation of growth factors. This review will focus on a small subgroup of the astacin family; the bone morphogenetic protein 1 (BMP1)/Tolloid (TLD)-like metalloproteinases. In vertebrates, the BMP1/TLD-like metalloproteinases play key roles in regulating formation of the extracellular matrix (ECM) via biosynthetic processing of various precursor proteins into mature functional enzymes, structural proteins, and proteins involved in initiating mineralization of the ECM of hard tissues. Roles in ECM formation include: processing of the C-propeptides of procollagens types I-III, to yield the major fibrous components of vertebrate ECM; proteolytic activation of the enzyme lysyl oxidase, necessary to formation of covalent cross-links in collagen and elastic fibers; processing of NH2-terminal globular domains and C-propeptides of types V and XI procollagen chains to yield monomers that are incorporated into and control the diameters of collagen type I and II fibrils, respectively; processing of precursors for laminin 5 and collagen type VII, both of which are involved in securing epidermis to underlying dermis; and maturation of small leucine-rich proteoglycans. The BMP1/TLD-related metalloproteinases are also capable of activating the vertebrate transforming growth factor-beta (TGF-beta)-like "chalones" growth differentiation factor 8 (GDF8, also known as myostatin), and GDF11 (also known as BMP11), involved in negative feedback inhibition of muscle and neural tissue growth, respectively; by freeing them from noncovalent latent complexes with their cleaved prodomains. BMP1/TLD-like proteinases also liberate the vertebrate TGF-beta-like morphogens BMP2 and 4 and their invertebrate ortholog decapentaplegic, from latent complexes with the vertebrate extracellular antagonist chordin and its invertebrate ortholog short gastrulation (SOG), respectively. The result is formation of the BMP signaling gradients that form the dorsal-ventral axis in embryogenesis. Thus, BMP1/TLD-like proteinases appear to be key to regulating and orchestrating formation of the ECM and signaling by various TGF-beta-like proteins in morphogenetic and homeostatic events.
Collapse
Affiliation(s)
- Gaoxiang Ge
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
28
|
Carvalho JC, Rocha DN, Bruno RV, Vanario-Alonso CE, Abdelhay E. Expression of dorsal-ventral genes during early development of Rhynchosciara americana embryos. Braz J Med Biol Res 2005; 38:27-31. [PMID: 15665985 DOI: 10.1590/s0100-879x2005000100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The establishment of dorsal-ventral polarity in Drosophila is a complex process which involves the action of maternal and zygotically expressed genes. Interspecific differences in the expression pattern of some of these genes have been described in other species. Here we present the expression of dorsal-ventral genes during early embryogenesis in the lower dipteran Rhynchosciara americana. The expression of four genes, the ventralizing genes snail (sna) and twist (twi) and the dorsalizing genes decapentaplegic (dpp) and zerknullt (zen), was investigated by whole-mount in situ hybridization. Sense and antisense mRNA were transcribed in vitro using UTP-digoxigenin and hybridized at 55 degrees C with dechorionated fixed embryos. Staining was obtained with anti-digoxigenin alkaline phosphatase-conjugated antibody revealed with NBT-BCIP solution. The results showed that, in general, the spatial-temporal expression of R. americana dorsal-ventral genes is similar to that observed in Drosophila, where twi and sna are restricted to the ventral region, while dpp and zen are expressed in the dorsal side. The differences encountered were subtle and probably represent a particular aspect of dorsal-ventral axis determination in R. americana. In this lower dipteran sna is expressed slightly later than twi and dpp expression is expanded over the lateral ectoderm during cellular blastoderm stage. These data suggest that the establishment of dorsal-ventral polarity in R. americana embryos follows a program similar to that observed in Drosophila melanogaster.
Collapse
Affiliation(s)
- J C Carvalho
- Laboratório de Biologia Molecular Maury Miranda, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
29
|
Abstract
Since a dozen years, biology is in a state of permanent technical and conceptual excitement. The pendulum is swinging back from the selectionist populationist biology of Darwin--the organism is a black box: viewed from the outside--to the mechanistic embryology of Aristotle--viewed from the inside of the organism--leading to a new interpretation of old concepts. This short text tries to get to the meaning of these events by putting them in historical and epistemological perspectives, through such concepts as teleology and differentiation, on the way describing several paradoxes: experimental results yield a detailed description of purposeless mechanical devices, explaining Nature, which, to us, appears purposeful.
Collapse
Affiliation(s)
- André Weydert
- Department of Developmental Biology, Institut Pasteur, Pavillon Louis-Martin n 10, 25-28, rue du Docteur-Roux, 75724 Paris 15, France.
| |
Collapse
|
30
|
Reinhardt B, Broun M, Blitz IL, Bode HR. HyBMP5-8b, a BMP5-8 orthologue, acts during axial patterning and tentacle formation in hydra. Dev Biol 2004; 267:43-59. [PMID: 14975716 DOI: 10.1016/j.ydbio.2003.10.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 09/18/2003] [Accepted: 10/06/2003] [Indexed: 11/19/2022]
Abstract
Developmental gradients play a central role in axial patterning in hydra. As part of the effort towards elucidating the molecular basis of these gradients as well as investigating the evolution of the mechanisms underlying axial patterning, genes encoding signaling molecules are under investigation. We report the isolation and characterization of HyBMP5-8b, a BMP5-8 orthologue, from hydra. Processes governing axial patterning are continuously active in adult hydra. Expression patterns of HyBMP5-8b in normal animals and during bud formation, hydra's asexual form of reproduction, were examined. These patterns, coupled with changes in patterns of expression in manipulated tissues during head regeneration, foot regeneration as well as under conditions that alter the positional value gradient indicate that the gene is active in two different processes. The gene plays a role in tentacle formation and in patterning the lower end of the body axis.
Collapse
Affiliation(s)
- Beate Reinhardt
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
31
|
Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ. Origins of Bilateral Symmetry: Hox and Dpp Expression in a Sea Anemone. Science 2004; 304:1335-7. [PMID: 15131263 DOI: 10.1126/science.1091946] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Over 99% of modern animals are members of the evolutionary lineage Bilateria. The evolutionary success of Bilateria is credited partly to the origin of bilateral symmetry. Although animals of the phylum Cnidaria are not within the Bilateria, some representatives, such as the sea anemone Nematostella vectensis, exhibit bilateral symmetry. We show that Nematostella uses homologous genes to achieve bilateral symmetry: Multiple Hox genes are expressed in a staggered fashion along its primary body axis, and the transforming growth factor-beta gene decapentaplegic (dpp) is expressed in an asymmetric fashion about its secondary body axis. These data suggest that bilateral symmetry arose before the evolutionary split of Cnidaria and Bilateria.
Collapse
Affiliation(s)
- John R Finnerty
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
32
|
Hamaguchi T, Yabe S, Uchiyama H, Murakami R. Drosophila Tbx6-related gene, Dorsocross, mediates high levels of Dpp and Scw signal required for the development of amnioserosa and wing disc primordium. Dev Biol 2004; 265:355-68. [PMID: 14732398 DOI: 10.1016/j.ydbio.2003.09.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regional differentiation along the dorsoventral (DV) axis of the Drosophila embryo primarily depends on a graded BMP signaling activity generated by Decapentaplegic (Dpp) and Screw (Scw). We have identified triplicated Dpp and Scw target genes Dorsocross1, 2 and 3 (Doc1, 2, 3) that have a conserved T-box domain related to the vertebrate Tbx6 subfamily and act redundantly to induce dorsal structures. Doc genes are expressed in the dorsal region in the early blastoderm. After gastrulation, newly expressed Doc appears in a segmental pattern in the ectoderm. This expression correlates spatially with the second phase of Dpp expression in the ectoderm. Doc expression in the early blastoderm is abolished in either dpp or scw mutant embryos, whereas the ectodermal segmented expression depends only on Dpp. Inactivation of Doc genes with RNAi dramatically affected the development of amnioserosa and wing disc primordia, both of which depend on high levels of BMP signaling, although leg disc primordium, which depends on low levels of BMP, remained intact. Doc1 mRNA expressed in Xenopus embryos induced ventral mesoderm, suppressed activin-induced events and induced Xvent genes, which are analogous to the effects of native Tbx6 and its upstream regulator, BMP-4. These results suggest that the Tbx6 subfamily act in the BMP signaling pathway required for embryonic patterning in both animals.
Collapse
Affiliation(s)
- Takashi Hamaguchi
- Department of Physics, Biology, and Informatics, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | | | | | |
Collapse
|
33
|
Sander K, Schmidt-Ott U. Evo-devo aspects of classical and molecular data in a historical perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:69-91. [PMID: 14760654 DOI: 10.1002/jez.b.20003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We discuss the interplay between evolution and development as reflected in data and concepts since about 1800. Darwin and his "continental apostle" Haeckel put the striking similarity between early vertebrate embryos in an evolutionary context. Haeckel's partly illicit generalizations discredited evolutionary thinking among early experimental embryologists who moreover noted riddles incompatible with contemporary concepts of homology and evolution. Relevant solutions were suggested by the more recent concept of ontogenetic networks that embody complex regulatory properties and genes with partly overlapping functions. Molecular data on development increasingly reveal evolutionary opportunism, for instance when a widespread signaling chain involved in primitive immune defense was apparently recruited later on for dorso-ventral axis determination in some evolutionarily advanced insect groups. Recently, Rickettsia-related bacteria colonizing many arthropod species were found to "manipulate" the first steps of host development to the advantage of their own propagation, but by ways that could also promote host speciation. Molecular genetics can now document evolutionary steps in ontogenetic networks. In the fruit fly for instance, the novel bicoid gene has superseded a crucial patterning function within a pre-existing network--a case of "molecular caenogenesis." The expression patterns of conserved genes that antagonistically determine dorso-ventral polarity support a literal revolution envisioned almost 200 years ago. This is the dorso-ventral inversion of the body plan in some metazoans--ascribed then to the Articulata, now to the Chordata. The final section posits that the opportunistic character of evolutionary innovations is detrimental to parsimony in development.
Collapse
Affiliation(s)
- Klaus Sander
- Institut für Biologie I (Zoologie), D-79104 Freiburg, Germany.
| | | |
Collapse
|
34
|
Roth S. The origin of dorsoventral polarity in Drosophila. Philos Trans R Soc Lond B Biol Sci 2003; 358:1317-29; discussion 1329. [PMID: 14511478 PMCID: PMC1693232 DOI: 10.1098/rstb.2003.1325] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Drosophila dorsoventral (DV) polarity arises during oogenesis when the oocyte nucleus moves from a central posterior to an asymmetrical anterior position. Nuclear movement is a symmetry-breaking step and establishes orthogonality between the anteroposterior and the DV axes. The asymmetrically anchored nucleus defines a cortical region within the oocyte which accumulates high levels of gurken messenger RNA (mRNA) and protein. Gurken is an ovarian-specific member of the transforming growth factor-alpha (TGF-alpha) family of secreted ligands. Secreted Gurken forms a concentration gradient that results in a dorsal-to-ventral gradient of EGF receptor activation in the follicle cells surrounding the oocyte. This leads to concentration-dependent activation or repression of target genes of the EGF pathway in the follicular epithelium. One outcome of this process is the restriction of pipe expression to a ventral domain that comprises 40% of the egg circumference. Pipe presumably modifies extracellular matrix components that are secreted by the follicle cells and are present at the ventral side of embryo after egg deposition. Here, they activate a proteolytic cascade that generates a gradient of the diffusible ligand, Spätzle. Spätzle activates the Toll receptor at the surface of the embryo that stimulates the nuclear uptake of the transcription factor Dorsal. This leads to a nuclear concentration gradient of Dorsal that specifies the cell types along the DV axis of the embryo.
Collapse
Affiliation(s)
- Siegfried Roth
- Institut für Entwicklungsbiologie, Universität Köln, Gyrhofstrasse 17, 50923 Köln, Germany.
| |
Collapse
|
35
|
Akiyama-Oda Y, Oda H. Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 2003; 130:1735-47. [PMID: 12642480 DOI: 10.1242/dev.00390] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In early embryogenesis of spiders, the cumulus is characteristically observed as a cellular thickening that arises from the center of the germ disc and moves centrifugally. This cumulus movement breaks the radial symmetry of the germ disc morphology, correlating with the development of the dorsal region of the embryo. Classical experiments on spider embryos have shown that a cumulus has the capacity to induce a secondary axis when transplanted ectopically. In this study, we have examined the house spider, Achaearanea tepidariorum, on the basis of knowledge from Drosophila to characterize the cumulus at the cellular and molecular level. In the cumulus, a cluster of about 10 mesenchymal cells, designated the cumulus mesenchymal (CM) cells, is situated beneath the epithelium, where the CM cells migrate to the rim of the germ disc. Germ disc epithelial cells near the migrating CM cells extend cytoneme-like projections from their basal side onto the surface of the CM cells. Molecular cloning and whole-mount in situ hybridization showed that the CM cells expressed a spider homolog of Drosophila decapentaplegic (dpp), which encodes a secreted protein that functions as a dorsal morphogen in the Drosophila embryo. Furthermore, the spider Dpp signal appeared to induce graded levels of the phosphorylated Mothers against dpp (Mad) protein in the nuclei of germ disc epithelial cells. Adding data from spider homologs of fork head, orthodenticle and caudal, we suggest that, in contrast to the Drosophila embryo, the progressive mesenchymal-epithelial cell interactions involving the Dpp-Mad signaling cascade generate dorsoventral polarity in accordance with the anteroposterior axis formation in the spider embryo. Our findings support the idea that the cumulus plays a central role in the axial pattern formation of the spider embryo.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | | |
Collapse
|
36
|
Green J. Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment. Dev Dyn 2002; 225:392-408. [PMID: 12454918 DOI: 10.1002/dvdy.10170] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The idea of morphogen gradients has long been an important one in developmental biology. Studies with amphibians and with Xenopus in particular have made significant contributions to demonstrating the existence, identity, and mechanisms of action of morphogens. Mesoderm induction and patterning by activin, nodals, bone morphogenetic proteins, and fibroblast growth factors have been analyzed thoroughly and reveal recurrent and combinatorial roles for these protein growth factor morphogens and their antagonists. The dynamics of nodal-type signaling and the intersection of VegT and beta-catenin intracellular gradients reveal detailed steps in early long-range patterning. Interpretation of gradients requires sophisticated mechanisms for sharpening thresholds, and the activin-Xbra-Gsc system provides an example of this. The understanding of growth factor signal transduction has elucidated growth factor morphogen action and provided tools for dissecting their direct long-range action and distribution. The physical mechanisms of morphogen gradient establishment are the focus of new interest at both the experimental and theoretical level. General themes and emerging trends in morphogen gradient studies are discussed.
Collapse
Affiliation(s)
- Jeremy Green
- Dana Farber Cancer Institute, Harvard Medical School Department of Genetics, Boston, Massachusetts 02115, USA.
| |
Collapse
|
37
|
Stathopoulos A, Levine M. Linear signaling in the Toll-Dorsal pathway of Drosophila: activated Pelle kinase specifies all threshold outputs of gene expression while the bHLH protein Twist specifies a subset. Development 2002; 129:3411-9. [PMID: 12091311 DOI: 10.1242/dev.129.14.3411] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differential activation of the Toll receptor leads to the formation of a broad Dorsal nuclear gradient that specifies at least three patterning thresholds of gene activity along the dorsoventral axis of precellular embryos. We investigate the activities of the Pelle kinase and Twist basic helix-loop-helix (bHLH) transcription factor in transducing Toll signaling. Pelle functions downstream of Toll to release Dorsal from the Cactus inhibitor. Twist is an immediate-early gene that is activated upon entry of Dorsal into nuclei. Transgenes misexpressing Pelle and Twist were introduced into different mutant backgrounds and the patterning activities were visualized using various target genes that respond to different thresholds of Toll-Dorsal signaling. These studies suggest that an anteroposterior gradient of Pelle kinase activity is sufficient to generate all known Toll-Dorsal patterning thresholds and that Twist can function as a gradient morphogen to establish at least two distinct dorsoventral patterning thresholds. We discuss how the Dorsal gradient system can be modified during metazoan evolution and conclude that Dorsal-Twist interactions are distinct from the interplay between Bicoid and Hunchback, which pattern the anteroposterior axis.
Collapse
Affiliation(s)
- Angelike Stathopoulos
- Department of Molecular and Cell Biology, Division of Genetics and Development, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
38
|
James KE, Dorman JB, Berg CA. Mosaic analyses reveal the function ofDrosophila Rasin embryonic dorsoventral patterning and dorsal follicle cell morphogenesis. Development 2002; 129:2209-22. [PMID: 11959829 DOI: 10.1242/dev.129.9.2209] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila melanogaster, the Ras signal transduction pathway is the primary effector of receptor tyrosine kinases, which govern diverse developmental programs. During oogenesis, epidermal growth factor receptor signaling through the Ras pathway patterns the somatic follicular epithelium, establishing the dorsoventral asymmetry of eggshell and embryo. Analysis of follicle cell clones homozygous for a null allele of Ras demonstrates that Ras is required cell-autonomously to repress pipe transcription, the critical first step in embryonic dorsoventral patterning. The effects of aberrant pipe expression in Ras mosaic egg chambers can be ameliorated, however, by post-pipe patterning events, which salvage normal dorsoventral polarity in most embryos derived from egg chambers with dorsal Ras clones. The patterned follicular epithelium also determines the final shape of the eggshell, including the dorsal respiratory appendages, which are formed by the migration of two dorsolateral follicle cell populations. Confocal analyses of mosaic egg chambers demonstrate that Ras is required both cell- and non cell-autonomously for morphogenetic behaviors characteristic of dorsal follicle cell migration, and reveal a novel, Ras-dependent pattern of basal E-cadherin localization in dorsal midline follicle cells.
Collapse
Affiliation(s)
- Karen E James
- Program in Genetics, Department of Genome Sciences, Box 357730, University of Washington, Seattle, WA 98195-7730, USA
| | | | | |
Collapse
|
39
|
Tallafuss A, Bally-Cuif L. Formation of the head-trunk boundary in the animal body plan: an evolutionary perspective. Gene 2002; 287:23-32. [PMID: 11992719 DOI: 10.1016/s0378-1119(01)00829-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gene expression analyses and anatomical studies suggest that the body plans of protostomes and deuterostomes are phylogenetically related. In the central nervous system (CNS), arthropods and vertebrates (as well as their closest related phyla the urochordates and cephalochordates) share a nerve cord with rostral specification: the cerebral neuromeres in Drosophila, cerebral sensory vesicle of ascidians and lancelets and the large brain of craniates. Homologous genes, in particular of the otd/Otx and Hox families, are at play in these species to specify the anterior and posterior CNS territories, respectively. In contrast, homologies in the establishment of boundary regions like those separating head and trunk structures in arthropods or mid- and hindbrain domains in chordates are still unclear. We compare in these species the formation, properties and molecular characteristics of these boundaries during embryonic development. We also discuss recent findings suggesting that insects and vertebrates might have co-opted factors of related families to control the formation of these boundary regions, the evolution of which would then appear dramatically different from that of the anterior and posterior CNS domains.
Collapse
Affiliation(s)
- Alexandra Tallafuss
- Zebrafish Neurogenetics Junior Research Group, Institute of Virology, Technical University-Munich, Trogerstrasse 4b, 81675 Munich, Germany.
| | | |
Collapse
|
40
|
Shih LJ, Chen CA, Chen CP, Hwang SPL. Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus. Comp Biochem Physiol B Biochem Mol Biol 2002; 131:143-51. [PMID: 11818237 DOI: 10.1016/s1096-4959(01)00486-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A bone morphogenetic protein 2/4 (BMP2/4) gene has been cloned from the starfish, Archaster typicus, for the purpose of investigating the expression pattern of the BMP4 gene in echinoderm embryos which do not produce micromeres. The isolated gene (named AtBMP2/4) contained two exons that encoded the entire coding region. The deduced AtBMP2/4 protein sequence contained 509 amino acids. Sequence comparison showed that it shared high amino acid similarity with sea urchin BMP2/4 and Xenopus BMP2 and BMP4. Northern blot analyses indicated that AtBMP2/4 mRNA initially appears at the blastula stage and has a maximal expression level at the gastrula stage. Whole-mount in situ hybridization revealed that AtBMP2/4 mRNA is expressed in the archenteron, coelomic vesicles, and ectodermal cells of gastrula stage embryos. The observed spatial distribution pattern vastly differs from that of sea urchin SpBMP2/4, which is expressed mainly in the oral ectoderm region of the mesenchyme blastula and early gastrula embryos.
Collapse
Affiliation(s)
- L-J Shih
- Institute of Zoology, Academia Sinica, Nankang, Taipei, 11529 Taiwan, ROC
| | | | | | | |
Collapse
|
41
|
Bornstein P, Walsh V, Tullis J, Stainbrook E, Bateman JF, Hormuzdi SG. The globular domain of the proalpha 1(I) N-propeptide is not required for secretion, processing by procollagen N-proteinase, or fibrillogenesis of type I collagen in mice. J Biol Chem 2002; 277:2605-13. [PMID: 11705995 DOI: 10.1074/jbc.m106181200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The globular domain in the NH(2)-terminal propeptide (N-propeptide) of the proalpha1(I) chain is largely encoded by exon 2 of the Col1a1 gene and has been implicated in a number of processes that are involved in the biogenesis, maturation, and function of type I collagen. These include intracellular chain association, transcellular transport and secretion, proteolytic processing of the precursor, feedback regulation of synthesis, and control of fibrillogenesis. However, none of these proposed functions has been firmly established. To evaluate the function of this procollagen domain we have used a targeted mutagenesis approach to generate mice that lack exon 2 in the Col1a1 gene. Mouse lines were established on both a mixed 129 OlaHsd/Sv and C57BL/6 background and a pure 129 OlaHsd/Sv background. Adult mice on the mixed background are normal in appearance and are fertile. To the extent that they have been studied, procollagen synthesis, secretion, and proteolytic processing are normal in these mice, and collagen fibrillogenesis is only slightly altered. However, breeding of heterozygous mutant mice on the 129 background generated homozygous mutants at only 64% of the expected frequency. These findings suggest that although the N-propeptide is not essential for collagen biogenesis in mice it may play some essential role during embryonic development.
Collapse
Affiliation(s)
- Paul Bornstein
- Department of Biochemistry, the University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Younossi-Hartenstein A, Jones M, Hartenstein V. Embryonic development of the nervous system of the temnocephalid flatworm Craspedella pedum. J Comp Neurol 2001; 434:56-68. [PMID: 11329129 DOI: 10.1002/cne.1164] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The nervous system of temnocephalid flatworms consists of the brain and three pairs of longitudinal connectives extending into the trunk and tail. The connectives are crosslinked by an invariant number of regularly spaced commissures. Branches of the connectives innervate the tentacles of the head and the sucker organ in the tail. A set of nerve rings encircling the pharynx and connected to the brain and connectives constitute the pharyngeal nervous system. The nervous system is formed during early embryogenesis when the embryo represents a multilayered mesenchymal mass of cells. Gastrulation and the formation of separate epithelial germ layers that characterize most other animal groups are absent. The brain arises as a bilaterally symmetric condensation of postmitotic cells in the deep layers of the anterior region of the embryonic mesenchyme. The pattern of axon outgrowth, visualized by labeling with anti-acetylated tubulin (acTub) antibody, shows marked differences from the pattern observed in other flatworm taxa in regard to the number of neurons that express the acTub epitope. Acetylated tubulin is only expressed in neurons that form long axon tracts. In other flatworm species, such as the typhloplanoid Mesostoma and the polyclad Imogine, which were investigated by us with the acTub antibody (Hartenstein and Ehlers [2000] Dev. Genes Evol. 210:399-415; Younossi-Hartenstein and Hartenstein [2000] Dev. Genes Evol. 210:383-398), only a small number of "pioneer neurons" become acTub positive during the embryonic period. By contrast, in temnocephalids, most, if not all, neurons express acTub and form long, large-diameter axons. Initially, the brain commissure, pharyngeal nerve ring, and the connectives are laid down. Commissural tracts and tentacle nerves branching off the connectives appear later. We speculate that the precocious differentiation of the nervous system may be related to the fact that temnocephalids move by muscle action, and possess a massive and complex muscular system when they hatch. In addition, they have muscular specializations such as the anterior tentacles and the posterior sucker that are used as soon as they hatch. By contrast, juveniles of Mesostoma and larvae of polyclads move predominantly by ciliary action that may not require a complex neural circuitry for coordination.
Collapse
Affiliation(s)
- A Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
43
|
Affiliation(s)
- C Niehrs
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
44
|
Nakayama T, Berg LK, Christian JL. Dissection of inhibitory Smad proteins: both N- and C-terminal domains are necessary for full activities of Xenopus Smad6 and Smad7. Mech Dev 2001; 100:251-62. [PMID: 11165482 DOI: 10.1016/s0925-4773(00)00533-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smad6 and Smad7 comprise a subclass of vertebrate Smads that antagonize, rather than transduce, TGF-beta family signaling. These Anti-Smads can block BMP signaling, as evidenced by their ability to induce a secondary dorsal axis when misexpressed ventrally in Xenopus embryos. Smad7 inhibits additional TGF-beta related pathways, and causes spina bifida when misexpressed dorsally. We have performed structure-function analyses to identify domains of Anti-Smads that are responsible for their shared and unique activities. We find that the C-terminal domain of Smad7 displays strong axis inducing activity but cannot induce spina bifida. The isolated N-terminal domain of Smad7 is inactive but restores the ability of the C-terminus to cause spina bifida when the two are co-expressed. By contrast, the N- and C-terminal domains of Smad6 have weak axis inducing activity when expressed individually, but show full activity when co-expressed. Chimeric analysis demonstrates that the C-terminal domain of Smad7, but not Smad6, can induce spina bifida when fused to the N-terminal domain of either Smad6 or Smad7. Thus, although the C-terminal domain is the primary determinant of the intrinsic activity of Xenopus Anti-Smads, the N-terminal domain is essential for full activity, is interchangeable between Smad6 and 7, and can function in trans.
Collapse
Affiliation(s)
- T Nakayama
- Department of Cell and Developmental Biology, L215, School of Medicine, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | |
Collapse
|
45
|
Abstract
The members of the Smad protein family are intracellular mediators of transforming growth factor beta (TGF-beta) signaling. Smad1 transduces bone morphogenetic protein signals, inducing formation of ventral mesoderm in Xenopus embryos, whereas Smad2 transduces activin/TGF-beta signals, generating dorsal mesoderm. Calmodulin directly binds to many Smads and was shown to down-regulate Smad2 activity in a cell culture system (Zimmerman, C. M., Kariapper, M. S. T., and Mathews, L. S. (1997) J. Biol. Chem. 273, 677-680). Here, we extend those data and demonstrate that calmodulin alters Smad signaling in living embryos, increasing Smad1 activity while inhibiting Smad2 function. To characterize this regulation, we undertook a structure-function analysis and found that calmodulin binds to two distinct and conserved regions in both Smad1 and Smad2. Receptor tyrosine kinase signaling also modifies Smad activity (Kretzschmar, M., Doody, J., and Massagué, J. (1997) Nature 389, 618-622; Kretzschmar, M., Doody, J., Timokhina, I., and Massagué, J. (1999) Genes Dev. 13, 804-816; de Caestecker, M. P., Parks, W. T., Frank, C. J., Castagnino, P., Bottaro, D. P., Roberts, A. B., and Lechleider, R. J. (1998) Genes Dev. 12, 1587-1592). We show that calmodulin binding to Smads inhibits subsequent Erk2-dependent phosphorylation of Smads and vice versa. These observations suggest the presence of a cross-talk between three major signaling cascades as follows: Ca(2+)/calmodulin, receptor tyrosine kinase, and TGF-beta pathways.
Collapse
Affiliation(s)
- A Scherer
- Center for Developmental Biology, Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA
| | | |
Collapse
|
46
|
Niehrs C, Dosch R, Onichtchouk D. Embryonic patterning of Xenopus mesoderm by Bmp-4. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:165-90. [PMID: 10943310 DOI: 10.1007/978-3-662-04264-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C Niehrs
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|
47
|
Lee KH, Marden JJ, Thompson MS, MacLennan H, Kishimoto Y, Pratt SJ, Schulte-Merker S, Hammerschmidt M, Johnson SL, Postlethwaite JH, Beier DC, Zon LI. Cloning and genetic mapping of zebrafish BMP-2. DEVELOPMENTAL GENETICS 2000; 23:97-103. [PMID: 9770266 DOI: 10.1002/(sici)1520-6408(1998)23:2<97::aid-dvg1>3.0.co;2-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The BMP family of polypeptide growth factors has been shown to play diverse roles in establishing embryonic patterning and tissue fates. We report the cloning of the zebrafish homologue of BMP-2, examine its expression during embryogenesis, and find that it is localized to the distal end of the long arm of zebrafish chromosome 20. A missense mutation of the bmp2 gene has recently been shown to be responsible for the early dorsalized phenotype of the zebrafish swirl mutant [Kishimoto et al., 1997]. Given the dynamic expression of bmp2 in the developing embryo and the complex interactions of BMP signaling response in vertebrates, it is possible that other mutant phenotypes, due to altered bmp2 gene expression, will eventually map to or interact with this genetic locus.
Collapse
Affiliation(s)
- K H Lee
- Department of Cardiology, Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Angerer LM, Oleksyn DW, Logan CY, McClay DR, Dale L, Angerer RC. A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis. Development 2000; 127:1105-14. [PMID: 10662649 DOI: 10.1242/dev.127.5.1105] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To examine whether a BMP signaling pathway functions in specification of cell fates in sea urchin embryos, we have cloned sea urchin BMP2/4, analyzed its expression in time and space in developing embryos and assayed the developmental consequences of changing its concentration through mRNA injection experiments. These studies show that BMP4 mRNAs accumulate transiently during blastula stages, beginning around the 200-cell stage, 14 hours postfertilization. Soon after the hatching blastula stage, BMP2/4 transcripts can be detected in presumptive ectoderm, where they are enriched on the oral side. Injection of BMP2/4 mRNA at the one-cell stage causes a dose-dependent suppression of commitment of cells to vegetal fates and ectoderm differentiates almost exclusively as a squamous epithelial tissue. In contrast, NOGGIN, an antagonist of BMP2/4, enhances differentiation of endoderm, a vegetal tissue, and promotes differentiation of cells characteristic of the ciliated band, which contains neurogenic ectoderm. These findings support a model in which the balance of BMP2/4 signals produced by animal cell progeny and opposing vegetalizing signals sent during cleavage stages regulate the position of the ectoderm/ endoderm boundary. In addition, BMP2/4 levels influence the decision within ectoderm between epidermal and nonepidermal differentiation.
Collapse
Affiliation(s)
- L M Angerer
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Schmid B, Fürthauer M, Connors SA, Trout J, Thisse B, Thisse C, Mullins MC. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 2000; 127:957-67. [PMID: 10662635 DOI: 10.1242/dev.127.5.957] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A bone morphogenetic protein (BMP) signaling pathway acts in the establishment of the dorsoventral axis of the vertebrate embryo. Here we demonstrate the genetic requirement for two different Bmp ligand subclass genes for dorsoventral pattern formation of the zebrafish embryo. From the relative efficiencies observed in Bmp ligand rescue experiments, conserved chromosomal synteny, and isolation of the zebrafish bmp7 gene, we determined that the strongly dorsalized snailhouse mutant phenotype is caused by a mutation in the bmp7 gene. We show that the original snailhouse allele is a hypomorphic mutation and we identify a snailhouse/bmp7 null mutant. We demonstrate that the snailhouse/bmp7 null mutant phenotype is identical to the presumptive null mutant phenotype of the strongest dorsalized zebrafish mutant swirl/bmp2b, revealing equivalent genetic roles for these two Bmp ligands. Double mutant snailhouse/bmp7; swirl/bmp2b embryos do not exhibit additional or stronger dorsalized phenotypes, indicating that these Bmp ligands do not function redundantly in early embryonic development. Furthermore, overexpression experiments reveal that Bmp2b and Bmp7 synergize in the ventralization of wild-type embryos through a cell-autonomous mechanism, suggesting that Bmp2b/Bmp7 heterodimers may act in vivo to specify ventral cell fates in the zebrafish embryo.
Collapse
Affiliation(s)
- B Schmid
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Créton R, Kreiling JA, Jaffe LF. Presence and roles of calcium gradients along the dorsal-ventral axis in Drosophila embryos. Dev Biol 2000; 217:375-85. [PMID: 10625561 DOI: 10.1006/dbio.1999.9542] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dorsal-ventral specification of the Drosophila embryo is mediated by signaling pathways which have been very well described in genetic terms. However, little is known about the physiology of Drosophila development. By imaging patterns of free cytosolic calcium in Drosophila embryos, we found that several calcium gradients are generated along the dorsal-ventral axis. The most pronounced gradient is formed during stage 5, in which calcium levels are high dorsally. Manipulation of the stage 5 calcium gradient affects specification of the amnioserosa, the dorsal-most region of the embryo. We further show that this calcium gradient is inhibited in pipe, Toll, and dorsal mutants, but is unaltered in decapentaplegic (dpp) or punt mutants, suggesting that the stage 5 calcium gradient is formed by a suppression of ventral calcium concentrations. We conclude that calcium plays a role in specification of the dorsal embryonic region.
Collapse
Affiliation(s)
- R Créton
- Marine Biological Laboratory, Woods Hole, Massachusetts, 02543, USA
| | | | | |
Collapse
|