1
|
Albano GA, Hackam AS. Repurposing development genes for axonal regeneration following injury: Examining the roles of Wnt signaling. Front Cell Dev Biol 2024; 12:1417928. [PMID: 38882059 PMCID: PMC11176474 DOI: 10.3389/fcell.2024.1417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
In this review, we explore the connections between developmental embryology and axonal regeneration. Genes that regulate embryogenesis and central nervous system (CNS) development are discussed for their therapeutic potential to induce axonal and cellular regeneration in adult tissues after neuronal injury. Despite substantial differences in the tissue environment in the developing CNS compared with the injured CNS, recent studies have identified multiple molecular pathways that promote axonal growth in both scenarios. We describe various molecular cues and signaling pathways involved in neural development, with an emphasis on the versatile Wnt signaling pathway. We discuss the capacity of developmental factors to initiate axonal regrowth in adult neural tissue within the challenging environment of the injured CNS. Our discussion explores the roles of Wnt signaling and also examines the potential of other embryonic genes including Pax, BMP, Ephrin, SOX, CNTF, PTEN, mTOR and STAT3 to contribute to axonal regeneration in various CNS injury model systems, including spinal cord and optic crush injuries in mice, Xenopus and zebrafish. Additionally, we describe potential contributions of Müller glia redifferentiation to neuronal regeneration after injury. Therefore, this review provides a comprehensive summary of the state of the field, and highlights promising research directions for the potential therapeutic applications of specific embryologic molecular pathways in axonal regeneration in adults.
Collapse
Affiliation(s)
- Gabrielle A Albano
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
2
|
Jarosz ŁS, Socała K, Michalak K, Wiater A, Ciszewski A, Majewska M, Marek A, Grądzki Z, Wlaź P. The effect of psychoactive bacteria, Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1, on brain proteome profiles in mice. Psychopharmacology (Berl) 2024; 241:925-945. [PMID: 38156998 PMCID: PMC11031467 DOI: 10.1007/s00213-023-06519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
RATIONALE The gut microbiota may play an important role in the development and functioning of the mammalian central nervous system. The assumption of the experiment was to prove that the use of probiotic bacterial strains in the diet of mice modifies the expression of brain proteins involved in metabolic and immunological processes. OBJECTIVES AND RESULTS Albino Swiss mice were administered with Bifidobacterium longum Rosell®-175 or Lactobacillus rhamnosus JB-1 every 24 h for 28 days. Protein maps were prepared from hippocampal homogenates of euthanized mice. Selected proteins that were statistically significant were purified and concentrated and identified using MALDI-TOF mass spectrometry. Among the analysed samples, 13 proteins were identified. The mean volumes of calcyon, secreted frizzled-associated protein 3, and catalase in the hippocampus of mice from both experimental groups were statistically significantly higher than in the control group. In mice supplemented with Lactobacillus rhamnosus JB-1, a lower mean volume of fragrance binding protein 2, shadow of prion protein, and glycine receptor α4 subunit was observed compared to the control. CONCLUSION The psychobiotics Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1enhances expression of proteins involved in the activation and maturation of nerve cells, as well as myelination and homeostatic regulation of neurogenesis in mice. The tested psychobiotics cause a decrease in the expression of proteins associated with CNS development and in synaptic transmission, thereby reducing the capacity for communication between nerve cells. The results of the study indicate that psychobiotic bacteria can be used in auxiliary treatment of neurological disorders.
Collapse
Affiliation(s)
- Łukasz S Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
3
|
Martinez JL, Piciw JG, Crockett M, Sorci IA, Makwana N, Sirois CL, Giffin-Rao Y, Bhattacharyya A. Transcriptional consequences of trisomy 21 on neural induction. Front Cell Neurosci 2024; 18:1341141. [PMID: 38357436 PMCID: PMC10865501 DOI: 10.3389/fncel.2024.1341141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Down syndrome, caused by trisomy 21, is a complex developmental disorder associated with intellectual disability and reduced growth of multiple organs. Structural pathologies are present at birth, reflecting embryonic origins. A fundamental unanswered question is how an extra copy of human chromosome 21 contributes to organ-specific pathologies that characterize individuals with Down syndrome, and, relevant to the hallmark intellectual disability in Down syndrome, how trisomy 21 affects neural development. We tested the hypothesis that trisomy 21 exerts effects on human neural development as early as neural induction. Methods Bulk RNA sequencing was performed on isogenic trisomy 21 and euploid human induced pluripotent stem cells (iPSCs) at successive stages of neural induction: embryoid bodies at Day 6, early neuroectoderm at Day 10, and differentiated neuroectoderm at Day 17. Results Gene expression analysis revealed over 1,300 differentially expressed genes in trisomy 21 cells along the differentiation pathway compared to euploid controls. Less than 5% of the gene expression changes included upregulated chromosome 21 encoded genes at every timepoint. Genes involved in specific growth factor signaling pathways (WNT and Notch), metabolism (including oxidative stress), and extracellular matrix were altered in trisomy 21 cells. Further analysis uncovered heterochronic expression of genes. Conclusion Trisomy 21 impacts discrete developmental pathways at the earliest stages of neural development. The results suggest that metabolic dysfunction arises early in embryogenesis in trisomy 21 and may affect development and function more broadly.
Collapse
Affiliation(s)
- José L. Martinez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jennifer G. Piciw
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Madeline Crockett
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Isabella A. Sorci
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nikunj Makwana
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Carissa L. Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Kwon W, Choi DJ, Yu K, Williamson MR, Murali S, Ko Y, Woo J, Deneen B. Comparative Transcriptomic Analysis of Cerebellar Astrocytes across Developmental Stages and Brain Regions. Int J Mol Sci 2024; 25:1021. [PMID: 38256095 PMCID: PMC10816327 DOI: 10.3390/ijms25021021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system, and they play a crucial role in normal brain function. While gliogenesis and glial differentiation occur during perinatal cerebellar development, the processes that occur during early postnatal development remain obscure. In this study, we conducted transcriptomic profiling of postnatal cerebellar astrocytes at postnatal days 1, 7, 14, and 28 (P1, P7, P14, and P28), identifying temporal-specific gene signatures at each specific time point. Comparing these profiles with region-specific astrocyte differentially expressed genes (DEGs) published for the cortex, hippocampus, and olfactory bulb revealed cerebellar-specific gene signature across these developmental timepoints. Moreover, we conducted a comparative analysis of cerebellar astrocyte gene signatures with gene lists from pediatric brain tumors of cerebellar origin, including ependymoma and medulloblastoma. Notably, genes downregulated at P14, such as Kif11 and HMGB2, exhibited significant enrichment across all pediatric brain tumor groups, suggesting the importance of astrocytic gene repression during cerebellar development to these tumor subtypes. Collectively, our studies describe gene expression patterns during cerebellar astrocyte development, with potential implications for pediatric tumors originating in the cerebellum.
Collapse
Affiliation(s)
- Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael R. Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjana Murali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Regulatory role of apelin receptor signaling in migration and differentiation of mouse embryonic stem cell-derived mesoderm cells and mesenchymal stem/stromal cells. Hum Cell 2023; 36:612-630. [PMID: 36692671 DOI: 10.1007/s13577-023-00861-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Mesoderm-derived cells, including bone, muscle, and mesenchymal stem/stromal cells (MSCs), constitute various parts of vertebrate body. Cell therapy with mesoderm specification in vitro may be a promising treatment for diseases affecting organs of mesodermal origin. Repair and regeneration of damaged organs with in vitro generation of mesoderm-derived tissues and MSCs hold a great potential for regenerative therapy. Therefore, understanding the signaling pathways involving mesoderm and mesoderm-derived cellular differentiation is important. Previous findings indicated the importance of Apelin receptor (Aplnr) signaling, during embryonic development, in gastrulation, cell migration, and differentiation. Nevertheless, regulatory role of Aplnr pathway in differentiation of mesoderm and mesoderm-derived MSCs remains unclear. In the current study, we tried to elucidate the role of Aplnr signaling during mesoderm cell migration and differentiation from mouse embryonic stem cells (mESCs). By activating and suppressing Aplnr signaling pathway via peptide, small molecule, and genetic modifications including siRNA- and shRNA-mediated knockdown and CRISPR-Cas9-mediated knockout (KO), we revealed that Aplnr signaling not only induces migration of cells during germ layer formation but also enhances mesoderm differentiation through FGF/MAPK pathway. Antibody array and LC/MS protein profiling data demonstrated that Apelin-13 treatment enhanced cell cycle, EGFR, FGF, Wnt, and Integrin signaling pathway proteins. Furthermore, Aplelin-13 treatment improved MSC characteristics, with mesenchymal phenotype and high expression of MSC markers, and silencing Aplnr signaling components resulted in significantly reduced expression of MSC markers. Also, Aplnr signaling activity enhanced proliferation and survival of the cells during MSC derivation from mesoderm.
Collapse
|
6
|
Gone with the Wnt(less): a mechanistic perspective on the journey of Wnt. Biochem Soc Trans 2022; 50:1763-1772. [PMID: 36416660 DOI: 10.1042/bst20220634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Wnts are short-range signaling proteins, expressed in all metazoans from sponges to humans, critical for cell development and fate. There are 19 different Wnts in the human genome with varying expression levels and patterns, and post-translational modifications. Common to essentially all Wnts is the palmitoleation of a conserved serine by the O-acyltransferase PORCN in the endoplasmic reticulum (ER). All lipidated Wnts then bind a dedicated carrier Wntless (WLS), endowed with the task of transporting them from the ER to the plasma membrane, and ultimately facilitating their release to receptors on the Wnt-receiving cell to initiate signaling. Here, we will focus on the WLS-mediated transport step. There are currently two published structures, both obtained by single-particle cryo-electron microscopy of the Wnt/WLS complex: human Wnt8A-bound and human Wnt3A-bound WLS. We analyze the two Wnt/WLS structures - remarkably similar despite the sequence similarity between Wnt8A and Wnt3A being only ∼39% - to begin to understand the conserved nature of this binding mechanism, and ultimately how one carrier can accommodate a family of 19 different Wnts. By comparing how Wnt associates with WLS with how it binds to PORCN and FZD receptors, we can begin to speculate on mechanisms of Wnt transfer from PORCN to WLS, and from WLS to FZD, thus providing molecular-level insight into these essential steps of the Wnt signaling pathway.
Collapse
|
7
|
Schmidt AF, Schnell DJ, Eaton KP, Chetal K, Kannan PS, Miller LA, Chougnet CA, Swarr DT, Jobe AH, Salomonis N, Kamath-Rayne BD. Fetal maturation revealed by amniotic fluid cell-free transcriptome in rhesus macaques. JCI Insight 2022; 7:162101. [PMID: 35980752 PMCID: PMC9675452 DOI: 10.1172/jci.insight.162101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
Accurate estimate of fetal maturity could provide individualized guidance for delivery of complicated pregnancies. However, current methods are invasive, have low accuracy, and are limited to fetal lung maturation. To identify diagnostic gestational biomarkers, we performed transcriptomic profiling of lung and brain, as well as cell-free RNA from amniotic fluid of preterm and term rhesus macaque fetuses. These data identify potentially new and prior-associated gestational age differences in distinct lung and neuronal cell populations when compared with existing single-cell and bulk RNA-Seq data. Comparative analyses found hundreds of genes coincidently induced in lung and amniotic fluid, along with dozens in brain and amniotic fluid. These data enable creation of computational models that accurately predict lung compliance from amniotic fluid and lung transcriptome of preterm fetuses treated with antenatal corticosteroids. Importantly, antenatal steroids induced off-target gene expression changes in the brain, impinging upon synaptic transmission and neuronal and glial maturation, as this could have long-term consequences on brain development. Cell-free RNA in amniotic fluid may provide a substrate of global fetal maturation markers for personalized management of at-risk pregnancies.
Collapse
Affiliation(s)
- Augusto F. Schmidt
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel J. Schnell
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth P. Eaton
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paranthaman S. Kannan
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa A. Miller
- California National Primate Research Center, UCD, Davis, California, USA
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Daniel T. Swarr
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Alan H. Jobe
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Bioinformatics, University of Cincinnati School of Medicine, Cincinnati Ohio, USA
| | - Beena D. Kamath-Rayne
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.,Global Child Health and Life Support, American Academy of Pediatrics, Itasca, Illinois, USA
| |
Collapse
|
8
|
Luttik K, Tejwani L, Ju H, Driessen T, Smeets CJLM, Edamakanti CR, Khan A, Yun J, Opal P, Lim J. Differential effects of Wnt-β-catenin signaling in Purkinje cells and Bergmann glia in spinocerebellar ataxia type 1. Proc Natl Acad Sci U S A 2022; 119:e2208513119. [PMID: 35969780 PMCID: PMC9407543 DOI: 10.1073/pnas.2208513119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia and degeneration of specific neuronal populations, including Purkinje cells (PCs) in the cerebellum. Previous studies have demonstrated a critical role for various evolutionarily conserved signaling pathways in cerebellar patterning, such as the Wnt-β-catenin pathway; however, the roles of these pathways in adult cerebellar function and cerebellar neurodegeneration are largely unknown. In this study, we found that Wnt-β-catenin signaling activity was progressively enhanced in multiple cell types in the adult SCA1 mouse cerebellum, and that activation of this signaling occurs in an ataxin-1 polyglutamine (polyQ) expansion-dependent manner. Genetic manipulation of the Wnt-β-catenin signaling pathway in specific cerebellar cell populations revealed that activation of Wnt-β-catenin signaling in PCs alone was not sufficient to induce SCA1-like phenotypes, while its activation in astrocytes, including Bergmann glia (BG), resulted in gliosis and disrupted BG localization, which was replicated in SCA1 mouse models. Our studies identify a mechanism in which polyQ-expanded ataxin-1 positively regulates Wnt-β-catenin signaling and demonstrate that different cell types have distinct responses to the enhanced Wnt-β-catenin signaling in the SCA1 cerebellum, underscoring an important role of BG in SCA1 pathogenesis.
Collapse
Affiliation(s)
- Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Hyoungseok Ju
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | - Terri Driessen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | | | | | | | - Joy Yun
- Yale College, New Haven, CT 06510
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
9
|
Pizzollo J, Zintel TM, Babbitt CC. Differentially Active and Conserved Neural Enhancers Define Two Forms of Adaptive Noncoding Evolution in Humans. Genome Biol Evol 2022; 14:evac108. [PMID: 35866592 PMCID: PMC9348619 DOI: 10.1093/gbe/evac108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
The human and chimpanzee genomes are strikingly similar, but our neural phenotypes are very different. Many of these differences are likely driven by changes in gene expression, and some of those changes may have been adaptive during human evolution. Yet, the relative contributions of positive selection on regulatory regions or other functional regulatory changes are unclear. Where are these changes located throughout the human genome? Are functional regulatory changes near genes or are they in distal enhancer regions? In this study, we experimentally combined both human and chimpanzee cis-regulatory elements (CREs) that showed either (1) signs of accelerated evolution in humans or (2) that have been shown to be active in the human brain. Using a massively parallel reporter assay, we tested the ability of orthologous human and chimpanzee CREs to activate transcription in induced pluripotent stem-cell-derived neural progenitor cells and neurons. With this assay, we identified 179 CREs with differential activity between human and chimpanzee; in contrast, we found 722 CREs with signs of positive selection in humans. Selection and differentially expressed CREs strikingly differ in level of expression, size, and genomic location. We found a subset of 69 CREs in loci with genetic variants associated with neuropsychiatric diseases, which underscores the consequence of regulatory activity in these loci for proper neural development and function. By combining CREs that either experienced recent selection in humans or CREs that are functional brain enhancers, presents a novel way of studying the evolution of noncoding elements that contribute to human neural phenotypes.
Collapse
Affiliation(s)
- Jason Pizzollo
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Trisha M Zintel
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Neural Stem Cells Secretome Increased Neurogenesis and Behavioral Performance and the Activation of Wnt/β-Catenin Signaling Pathway in Mouse Model of Alzheimer’s Disease. Neuromolecular Med 2022; 24:424-436. [DOI: 10.1007/s12017-022-08708-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/02/2022] [Indexed: 01/13/2023]
|
11
|
Evaluating the Effects of Low Carbohydrate and High Protein Diet on Erectile Function in Rats. Sex Med 2022; 10:100500. [PMID: 35259652 PMCID: PMC9023248 DOI: 10.1016/j.esxm.2022.100500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/28/2022] Open
Abstract
Introduction Carbohydrate restriction in diet is becoming a popular means of losing weight nowadays, although it has been reported that excessive intake of low-carbohydrate and high-protein (LCHP) diet causes an adverse effect on cardiovascular function. Aim To investigate the influence of LCHP on erectile function in rats. Methods A total of 48, 12-week-old rats were divided into 2 groups and either fed a LCHP diet (LCHP group) or a normal diet (Control group). Hematological examination, blood pressure evaluation, erectile function assessments as well as evaluations of the relaxation and contractile responses of corpus cavernosum were carried out in these rats by using standardized methods. Statistical analysis using 2-way ANOVA and Welch's t-test was conducted to examine the obtained data. Main Outcome Measure At the end of the study period, the evaluated outcomes to assess erectile function were intracavernosal pressure , mean arterial pressure , endothelial functions, nitric oxide (NO)-operated nerve functions and the expressions of endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), and sphingosine-1-phosphate receptor 1 (S1P1). Results The intracavernosal pressure / mean arterial pressure ratio was significantly lower in the LCHP group (P < .05) at 4 weeks. Compared to the Control group, the LCHP group exhibited significantly lower responses to ACh and EFS and a decreased nNOS mRNA expression. The results based on this animal model indicate that extreme carbohydrate restricted diet may affect erectile function. Our study identified that LCHP decreased erectile function in rats. A major limitation of this study is, due to the extreme condition of completely replacing carbohydrates with protein, that carbohydrate intake will be gradually increased in the future. Conclusion Extreme carbohydrate restriction and high protein in diet may cause ED with vascular endothelial dysfunction and a decrease in the relaxation response of the corpus cavernosum smooth muscle via NO-operated nerves. Kataoka T, Hidaka J, Suzuki J, et al. Evaluating the Effects of Low Carbohydrate and High Protein Diet on Erectile Function in Rats. Sex Med 2021;10:100500.
Collapse
|
12
|
Wnt/β-Catenin Pathway in Experimental Model of Fibromyalgia: Role of Hidrox ®. Biomedicines 2021; 9:biomedicines9111683. [PMID: 34829912 PMCID: PMC8615925 DOI: 10.3390/biomedicines9111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023] Open
Abstract
Fibromyalgia (FM) is a chronic condition characterized by persistent widespread pain that negatively affects the quality of life of patients. The WNT/β-catenin signaling pathway seems to be involved in central sensitization and different pain states. The objective of this study was to investigate the beneficial effects of a new compound called Hidrox® (HD), containing 40-50% hydroxytyrosol, in counteracting the pain associated with FM. An FM-like model was induced in rats by subcutaneous injections of reserpine (1 mg/kg) for three consecutive days. Later, HD (10 mg/kg) was administered orally to the animals for seven days. Reserpine injections induced WNT/β-catenin pathway activation, release of pro-inflammatory mediators as well as a significant increase in oxidative stress. Daily treatment with HD was able to modulate the WNT/β-catenin and Nrf2 pathways and consequently attenuate the behavioral deficits and microglia activation induced by reserpine injection. These results indicate that nutritional consumption of HD can be considered as a new therapeutic approach for human FM.
Collapse
|
13
|
Islam B, Stephenson J, Young B, Manca M, Buckley DA, Radford H, Zis P, Johnson MI, Finn DP, McHugh PC. The Identification of Blood Biomarkers of Chronic Neuropathic Pain by Comparative Transcriptomics. Neuromolecular Med 2021; 24:320-338. [PMID: 34741226 PMCID: PMC9402512 DOI: 10.1007/s12017-021-08694-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022]
Abstract
In this study, we recruited 50 chronic pain (neuropathic and nociceptive) and 43 pain-free controls to identify specific blood biomarkers of chronic neuropathic pain (CNP). Affymetrix microarray was carried out on a subset of samples selected 10 CNP and 10 pain-free control participants. The most significant genes were cross-validated using the entire dataset by quantitative real-time PCR (qRT-PCR). In comparative analysis of controls and CNP patients, WLS (P = 4.80 × 10–7), CHPT1 (P = 7.74 × 10–7) and CASP5 (P = 2.30 × 10–5) were highly significant, whilst FGFBP2 (P = 0.00162), STAT1 (P = 0.00223), FCRL6 (P = 0.00335), MYC (P = 0.00335), XCL2 (P = 0.0144) and GZMA (P = 0.0168) were significant in all CNP patients. A three-arm comparative analysis was also carried out with control as the reference group and CNP samples differentiated into two groups of high and low S-LANSS score using a cut-off of 12. STAT1, XCL2 and GZMA were not significant but KIR3DL2 (P = 0.00838), SH2D1B (P = 0.00295) and CXCR31 (P = 0.0136) were significant in CNP high S-LANSS group (S-LANSS score > 12), along with WLS (P = 8.40 × 10–5), CHPT1 (P = 7.89 × 10–4), CASP5 (P = 0.00393), FGFBP2 (P = 8.70 × 10–4) and FCRL6 (P = 0.00199), suggesting involvement of immune pathways in CNP mechanisms. None of the genes was significant in CNP samples with low (< 12) S-LANSS score. The area under the receiver operating characteristic (AUROC) analysis showed that combination of MYC, STAT1, TLR4, CASP5 and WLS gene expression could be potentially used as a biomarker signature of CNP (AUROC − 0.852, (0.773, 0.931 95% CI)).
Collapse
Affiliation(s)
- Barira Islam
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, HD1 3DH, UK.,School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - John Stephenson
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, HD1 3DH, UK.,School of Human and Health Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Bethan Young
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, HD1 3DH, UK.,School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Maurizio Manca
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, HD1 3DH, UK.,School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - David A Buckley
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, HD1 3DH, UK.,School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | | | | | - Mark I Johnson
- Centre for Pain Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - David P Finn
- Pharmacology & Therapeutics, School of Medicine, Galway, Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland
| | - Patrick C McHugh
- Centre for Biomarker Research, University of Huddersfield, Huddersfield, HD1 3DH, UK. .,School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
14
|
Zhao B, Pan Y, Xu H, Song X. Wnt10a/β-catenin signalling is involved in kindlin-1-mediated astrocyte activation in a chronic construction injury rat model. Eur J Neurosci 2021; 54:7409-7421. [PMID: 34618385 DOI: 10.1111/ejn.15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
The activation of spinal astrocytes and release of neuroinflammatory mediators are important events in neuropathic pain (NP) pathogenesis. In this study, we investigated the role of Wnt10a/β-catenin signalling in kindlin-1-mediated astrocyte activation using a chronic constriction injury (CCI) NP rat model. Using kindlin-1 overexpression and knockdown plasmids, we assessed hyperalgesia, changes in spinal astrocyte activation and the release of inflammatory mediators in a NP rat model. We also performed coimmunoprecipitation, Western blotting and real-time polymerase chain reaction (PCR) to characterize the underlying mechanisms of kindlin-1 in astrocyte cultures in vitro. Kindlin-1 was significantly upregulated in CCI rats and promoted hyperalgesia. Moreover, we observed increased kindlin-1, Wnt10a and glial fibrillary acidic protein (GFAP; biomarker for astroglial injury) levels and the release of inflammatory mediators in NP rats (p < 0.05). Inhibiting GFAP in vitro led to decreased kindlin-1 levels, prevented astrocyte activation, decreased Wnt10a level and the release of inflammatory mediators (p < 0.05). Coimmunoprecipitation showed that kindlin-1 can interact with Wnt10a. We showed that kindlin-1-mediated astrocyte activation was associated with Wnt10a/β-catenin signalling and the downstream release of inflammatory mediators in a CCI NP rat model. Our findings provide novel insights into the molecular mechanisms of kindlin-1-mediated astrocyte activation after CCI.
Collapse
Affiliation(s)
- Baisong Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongying Pan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haiping Xu
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
16
|
Strawn M, Moraes JGN, Safranski TJ, Behura SK. Sexually Dimorphic Transcriptomic Changes of Developing Fetal Brain Reveal Signaling Pathways and Marker Genes of Brain Cells in Domestic Pigs. Cells 2021; 10:2439. [PMID: 34572090 PMCID: PMC8466205 DOI: 10.3390/cells10092439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, transcriptomic changes of the developing brain of pig fetuses of both sexes were investigated on gestation days (GD) 45, 60 and 90. Pig fetal brain grows rapidly around GD60. Consequently, gene expression of the fetal brain was distinctly different on GD90 compared to that of GD45 and GD60. In addition, varying numbers of differentially expressed genes (DEGs) were identified in the male brain compared to the female brain during development. The sex of adjacent fetuses also influenced gene expression of the fetal brain. Extensive changes in gene expression at the exon-level were observed during brain development. Pathway enrichment analysis showed that the ionotropic glutamate receptor pathway and p53 pathway were enriched in the female brain, whereas specific receptor-mediated signaling pathways were enriched in the male brain. Marker genes of neurons and astrocytes were significantly differentially expressed between male and female brains during development. Furthermore, comparative analysis of gene expression patterns between fetal brain and placenta suggested that genes related to ion transportation may play a key role in the regulation of the brain-placental axis in pig. Collectively, the study suggests potential application of pig models to better understand influence of fetal sex on brain development.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
| | - Joao G. N. Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Timothy J. Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Rijlaarsdam J, Barker ED, Caserini C, Koopman-Verhoeff ME, Mulder RH, Felix JF, Cecil CA. Genome-wide DNA methylation patterns associated with general psychopathology in children. J Psychiatr Res 2021; 140:214-220. [PMID: 34118639 PMCID: PMC8578013 DOI: 10.1016/j.jpsychires.2021.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022]
Abstract
Psychiatric symptoms are interrelated and found to be largely captured by a general psychopathology factor (GPF). Although epigenetic mechanisms, such as DNA methylation (DNAm), have been linked to individual psychiatric outcomes, associations with GPF remain unclear. Using data from 440 children aged 10 years participating in the Generation R Study, we examined the associations of DNAm with both general and specific (internalizing, externalizing) factors of psychopathology. Genome-wide DNAm levels, measured in peripheral blood using the Illumina 450K array, were clustered into wider co-methylation networks ('modules') using a weighted gene co-expression network analysis. One co-methylated module associated with GPF after multiple testing correction, while none associated with the specific factors. This module comprised of 218 CpG probes, of which 198 mapped onto different genes. The CpG most strongly driving the association with GPF was annotated to FZD1, a gene that has been implicated in schizophrenia and wider neurological processes. Associations between the probes contained in the co-methylated module and GPF were supported in an independent sample of children from the Avon Longitudinal Study of Parents and Children (ALSPAC), as evidenced by significant correlations in effect sizes. These findings might contribute to improving our understanding of dynamic molecular processes underlying complex psychiatric phenotypes.
Collapse
Affiliation(s)
- Jolien Rijlaarsdam
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Edward D. Barker
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Chiara Caserini
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - M. Elisabeth Koopman-Verhoeff
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rosa H. Mulder
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F. Felix
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Charlotte A.M. Cecil
- Department of Child and Adolescent Psychiatry/ Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands,Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
18
|
Mahjoum S, Rufino-Ramos D, Pereira de Almeida L, Broekman MLD, Breakefield XO, van Solinge TS. Living Proof of Activity of Extracellular Vesicles in the Central Nervous System. Int J Mol Sci 2021; 22:ijms22147294. [PMID: 34298912 PMCID: PMC8303915 DOI: 10.3390/ijms22147294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
The central nervous system (CNS) consists of a heterogeneous population of cells with highly specialized functions. For optimal functioning of the CNS, in disease and in health, intricate communication between these cells is vital. One important mechanism of cellular communication is the release and uptake of extracellular vesicles (EVs). EVs are membrane enclosed particles actively released by cells, containing a wide array of proteins, lipids, RNA, and DNA. These EVs can be taken up by neighboring or distant cells, and influence a wide range of processes. Due to the complexity and relative inaccessibility of the CNS, our current understanding of the role of EVs is mainly derived in vitro work. However, recently new methods and techniques have opened the ability to study the role of EVs in the CNS in vivo. In this review, we discuss the current developments in our understanding of the role of EVs in the CNS in vivo.
Collapse
Affiliation(s)
- Shadi Mahjoum
- Program in Neuroscience, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02119, USA; (S.M.); (M.L.D.B.); (X.O.B.)
| | - David Rufino-Ramos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.R.-R.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.R.-R.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Marike L. D. Broekman
- Program in Neuroscience, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02119, USA; (S.M.); (M.L.D.B.); (X.O.B.)
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| | - Xandra O. Breakefield
- Program in Neuroscience, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02119, USA; (S.M.); (M.L.D.B.); (X.O.B.)
| | - Thomas S. van Solinge
- Program in Neuroscience, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02119, USA; (S.M.); (M.L.D.B.); (X.O.B.)
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
19
|
Yoon HH, Lee HJ, Min J, Kim JH, Park JH, Kim JH, Kim SW, Lee H, Jeon SR. Optimal Ratio of Wnt3a Expression in Human Mesenchymal Stem Cells Promotes Axonal Regeneration in Spinal Cord Injured Rat Model. J Korean Neurosurg Soc 2021; 64:705-715. [PMID: 34044494 PMCID: PMC8435649 DOI: 10.3340/jkns.2021.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Through our previous clinical trials, the demonstrated therapeutic effects of MSC in chronic spinal cord injury (SCI) were found to be not sufficient. Therefore, the need to develop stem cell agent with enhanced efficacy is increased. We transplanted enhanced Wnt3asecreting human mesenchymal stem cells (hMSC) into injured spines at 6 weeks after SCI to improve axonal regeneration in a rat model of chronic SCI. We hypothesized that enhanced Wnt3a protein expression could augment neuro-regeneration after SCI. Methods Thirty-six Sprague-Dawley rats were injured using an Infinite Horizon (IH) impactor at the T9-10 vertebrae and separated into five groups : 1) phosphate-buffered saline injection (injury only group, n=7); 2) hMSC transplantation (MSC, n=7); 3) hMSC transfected with pLenti vector (without Wnt3a gene) transplantation (pLenti-MSC, n=7); 4) hMSC transfected with Wnt3a gene transplantation (Wnt3a-MSC, n=7); and 5) hMSC transfected with enhanced Wnt3a gene (1.7 fold Wnt3a mRNA expression) transplantation (1.7 Wnt3a-MSC, n=8). Six weeks after SCI, each 5×105 cells/15 µL at 2 points were injected using stereotactic and microsyringe pump. To evaluate functional recovery from SCI, rats underwent Basso-Beattie-Bresnahan (BBB) locomotor test on the first, second, and third days post-injury and then weekly for 14 weeks. Axonal regeneration was assessed using growth-associated protein 43 (GAP43), microtubule-associated protein 2 (MAP2), and neurofilament (NF) immunostaining. Results Fourteen weeks after injury (8 weeks after transplantation), BBB score of the 1.7 Wnt3a-MSC group (15.0±0.28) was significantly higher than that of the injury only (10.0±0.48), MSC (12.57±0.48), pLenti-MSC (12.42±0.48), and Wnt3a-MSC (13.71±0.61) groups (p<0.05). Immunostaining revealed increased expression of axonal regeneration markers GAP43, MAP2, and NF in the Wnt3a-MSC and 1.7 Wnt3a-MSC groups. Conclusion Our results showed that enhanced gene expression of Wnt3a in hMSC can potentiate axonal regeneration and improve functional recovery in a rat model of chronic SCI.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyang Ju Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Joongkee Min
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Hoon Park
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Bejaoui M, Ferdousi F, Zheng YW, Oda T, Isoda H. Regulating cell fate of human amnion epithelial cells using natural compounds: an example of enhanced neural and pigment differentiation by 3,4,5-tri-O-caffeoylquinic acid. Cell Commun Signal 2021; 19:26. [PMID: 33627134 PMCID: PMC7903623 DOI: 10.1186/s12964-020-00697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Over the past years, Human Amnion Epithelial Cells (hAECs), a placental stem cell, are gaining higher attention from the scientific community as they showed several advantages over other types of stem cells, including availability, easy accessibility, reduced rejection rate, non-tumorigenicity, and minimal legal constraint. Recently, natural compounds are used to stimulate stem cell differentiation and proliferation and to enhance their disease-treating potential. A polyphenolic compound 3,4,5-Tri-O-Caffeoylquinic Acid (TCQA) has been previously reported to induce human neural stem cell differentiation and may affect melanocyte stem cell differentiation as well. In this study, TCQA was tested on 3D cultured hAECs after seven days of treatment, and then, microarray gene expression profiling was conducted of TCQA-treated and untreated control cells on day 0 and day 7. Analyses revealed that TCQA treatment significantly enriched pigment and neural cells sets; besides, genes linked with neurogenesis, oxidation-reduction process, epidermal development, and metabolism were positively regulated. Interestingly, TCQA stimulated cell cycle arrest-related pathways and differentiation signaling. On the other hand, TCQA decreased interleukins and cytokines expression and this due to its anti-inflammatory properties as a polyphenolic compound. Results were validated to highlight the main activities of TCQA on hAECs, including differentiation, cell cycle arrest, and anti-inflammatory. This study highlights the important role of hAECs in regenerative medicine and the use of natural compounds to regulate their fate. Video abstract.
Collapse
Affiliation(s)
- Meriem Bejaoui
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yun-Wen Zheng
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
21
|
Klein JA, Li Z, Rampam S, Cardini J, Ayoub A, Shaw P, Rachubinski AL, Espinosa JM, Zeldich E, Haydar TF. Sonic Hedgehog Pathway Modulation Normalizes Expression of Olig2 in Rostrally Patterned NPCs With Trisomy 21. Front Cell Neurosci 2021; 15:794675. [PMID: 35058753 PMCID: PMC8763807 DOI: 10.3389/fncel.2021.794675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The intellectual disability found in people with Down syndrome is associated with numerous changes in early brain development, including the proliferation and differentiation of neural progenitor cells (NPCs) and the formation and maintenance of myelin in the brain. To study how early neural precursors are affected by trisomy 21, we differentiated two isogenic lines of induced pluripotent stem cells derived from people with Down syndrome into brain-like and spinal cord-like NPCs and promoted a transition towards oligodendroglial fate by activating the Sonic hedgehog (SHH) pathway. In the spinal cord-like trisomic cells, we found no difference in expression of OLIG2 or NKX2.2, two transcription factors essential for commitment to the oligodendrocyte lineage. However, in the brain-like trisomic NPCs, OLIG2 is significantly upregulated and is associated with reduced expression of NKX2.2. We found that this gene dysregulation and block in NPC transition can be normalized by increasing the concentration of a SHH pathway agonist (SAG) during differentiation. These results underscore the importance of regional and cell type differences in gene expression in Down syndrome and demonstrate that modulation of SHH signaling in trisomic cells can rescue an early perturbed step in neural lineage specification.
Collapse
Affiliation(s)
- Jenny A. Klein
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
| | - Zhen Li
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
| | - Sanjeev Rampam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jack Cardini
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Amara Ayoub
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
| | - Patricia Shaw
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmocology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
- *Correspondence: Tarik F. Haydar Ella Zeldich
| | - Tarik F. Haydar
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
- *Correspondence: Tarik F. Haydar Ella Zeldich
| |
Collapse
|
22
|
Neurodevelopmental signatures of narcotic and neuropsychiatric risk factors in 3D human-derived forebrain organoids. Mol Psychiatry 2021; 26:7760-7783. [PMID: 34158620 PMCID: PMC8873021 DOI: 10.1038/s41380-021-01189-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that narcotic use during pregnancy and specific environmental factors (e.g., maternal immune activation and chronic stress) may increase risk of neuropsychiatric illness in offspring. However, little progress has been made in defining human-specific in utero neurodevelopmental pathology due to ethical and technical challenges associated with accessing human prenatal brain tissue. Here we utilized human induced pluripotent stem cells (hiPSCs) to generate reproducible organoids that recapitulate dorsal forebrain development including early corticogenesis. We systemically exposed organoid samples to chemically defined "enviromimetic" compounds to examine the developmental effects of various narcotic and neuropsychiatric-related risk factors within tissue of human origin. In tandem experiments conducted in parallel, we modeled exposure to opiates (μ-opioid agonist endomorphin), cannabinoids (WIN 55,212-2), alcohol (ethanol), smoking (nicotine), chronic stress (human cortisol), and maternal immune activation (human Interleukin-17a; IL17a). Human-derived dorsal forebrain organoids were consequently analyzed via an array of unbiased and high-throughput analytical approaches, including state-of-the-art TMT-16plex liquid chromatography/mass-spectrometry (LC/MS) proteomics, hybrid MS metabolomics, and flow cytometry panels to determine cell-cycle dynamics and rates of cell death. This pipeline subsequently revealed both common and unique proteome, reactome, and metabolome alterations as a consequence of enviromimetic modeling of narcotic use and neuropsychiatric-related risk factors in tissue of human origin. However, of our 6 treatment groups, human-derived organoids treated with the cannabinoid agonist WIN 55,212-2 exhibited the least convergence of all groups. Single-cell analysis revealed that WIN 55,212-2 increased DNA fragmentation, an indicator of apoptosis, in human-derived dorsal forebrain organoids. We subsequently confirmed induction of DNA damage and apoptosis by WIN 55,212-2 within 3D human-derived dorsal forebrain organoids. Lastly, in a BrdU pulse-chase neocortical neurogenesis paradigm, we identified that WIN 55,212-2 was the only enviromimetic treatment to disrupt newborn neuron numbers within human-derived dorsal forebrain organoids. Cumulatively this study serves as both a resource and foundation from which human 3D biologics can be used to resolve the non-genomic effects of neuropsychiatric risk factors under controlled laboratory conditions. While synthetic cannabinoids can differ from naturally occurring compounds in their effects, our data nonetheless suggests that exposure to WIN 55,212-2 elicits neurotoxicity within human-derived developing forebrain tissue. These human-derived data therefore support the long-standing belief that maternal use of cannabinoids may require caution so to avoid any potential neurodevelopmental effects upon developing offspring in utero.
Collapse
|
23
|
Asmar AJ, Beck DB, Werner A. Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics. Exp Cell Res 2020; 396:112300. [PMID: 32986984 PMCID: PMC10627151 DOI: 10.1016/j.yexcr.2020.112300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
Metazoan development relies on intricate cell differentiation, communication, and migration pathways, which ensure proper formation of specialized cell types, tissues, and organs. These pathways are crucially controlled by ubiquitylation, a reversible post-translational modification that regulates the stability, activity, localization, or interaction landscape of substrate proteins. Specificity of ubiquitylation is ensured by E3 ligases, which bind substrates and co-operate with E1 and E2 enzymes to mediate ubiquitin transfer. Cullin3-RING ligases (CRL3s) are a large class of multi-subunit E3s that have emerged as important regulators of cell differentiation and development. In particular, recent evidence from human disease genetics, animal models, and mechanistic studies have established their involvement in the control of craniofacial and brain development. Here, we summarize regulatory principles of CRL3 assembly, substrate recruitment, and ubiquitylation that allow this class of E3s to fulfill their manifold functions in development. We further review our current mechanistic understanding of how specific CRL3 complexes orchestrate neuroectodermal differentiation and highlight diseases associated with their dysregulation. Based on evidence from human disease genetics, we propose that other unknown CRL3 complexes must help coordinate craniofacial and brain development and discuss how combining emerging strategies from the field of disease gene discovery with biochemical and human pluripotent stem cell approaches will likely facilitate their identification.
Collapse
Affiliation(s)
- Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA; Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Chikhirzhina E, Starkova T, Beljajev A, Polyanichko A, Tomilin A. Functional Diversity of Non-Histone Chromosomal Protein HmgB1. Int J Mol Sci 2020; 21:E7948. [PMID: 33114717 PMCID: PMC7662367 DOI: 10.3390/ijms21217948] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
The functioning of DNA in the cell nucleus is ensured by a multitude of proteins, whose interactions with DNA as well as with other proteins lead to the formation of a complicated, organized, and quite dynamic system known as chromatin. This review is devoted to the description of properties and structure of the progenitors of the most abundant non-histone protein of the HMGB family-the HmgB1 protein. The proteins of the HMGB family are also known as "architectural factors" of chromatin, which play an important role in gene expression, transcription, DNA replication, and repair. However, as soon as HmgB1 goes outside the nucleus, it acquires completely different functions, post-translational modifications, and change of its redox state. Despite a lot of evidence of the functional activity of HmgB1, there are still many issues to be solved related to the mechanisms of the influence of HmgB1 on the development and treatment of different diseases-from oncological and cardiovascular diseases to pathologies during pregnancy and childbirth. Here, we describe molecular structure of the HmgB1 protein and discuss general mechanisms of its interactions with other proteins and DNA in cell.
Collapse
Affiliation(s)
| | | | | | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Tikhoretsky Av. 4, Russia; (T.S.); (A.B.); (A.T.)
| | | |
Collapse
|
25
|
Devi K, Moharana B. Cigarette smoke extract triggers neoplastic change in lungs and impairs locomotor activity through wnt3a-β-catenin signaling in aged COPD rodent model. Exp Lung Res 2020; 46:283-296. [PMID: 32729343 DOI: 10.1080/01902148.2020.1800139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Chronic cigarette smoking primes immense decline in lung functions and retardation of motor functions with increase in age. This raise the question of whether age status overwhelm the susceptibility to smoking induced lung inflammatory diseases and neuro-motor dysfunctions. METHODS To study the hypothesis 11-12 month old aged wistar rats (n = 6) were administered cigarette smoke extract (CSE) through intraperitoneal route (0.5 ml/rat) twice a week for 2 months. Respiratory lung functions were measured through whole body plethysmography. Lung histopathological evaluation and neuronal degeneration were observed by using H&E, picrosirius red and nissl staining respectively. Motor function tests were done through panel of neuro-behavioral tests and protein expressions were performed in lung and brain tissue homogenates through western blotting. RESULTS Sub-chronic CSE exposure worsened the lung functions including decreased tidal volume (p < 0.05), peak inspiratory flow (p < 0.05) and enhanced pause (p < 0.05). Grossly, solid neoplastic lesions were visible on the supra-lateral surface of the lungs of the CSE treated animals. Histopathological examination revealed immune cell infiltration, dominated with macrophages and alveolar type II cells stained positive for PCNA. Increased expression of BAX, PCNA, Wnt-3a, p-β-catenin (p < 0.05) was seen in the lungs of CSE treated aged animals. Elevated expression of inflammatory markers including NF-ϏB, TNF-α, TNF-R1, p-AKT was found in CSE treated lung tissues. Moreover, our result showed increased MCP-1, VEGF and IL-6 levels in BALF and plasma (p < 0.01) which might lead to neo-vascularization and excessive cell proliferation in lungs of CSE induced rats. Sub-chronic cigarette smoke exposure retarded the motor activity with suppression of D1 and D2 receptor expression in brain tissues. Brain tissue revealed the abundance of hyperchromatic and pyknotic nuclei suggesting neuronal degeneration. CONCLUSION So in conclusion, chronic cigarette smoking in old age creates susceptibility to fast onset of lung inflammatory diseases and neuro-motor retardation than their nonsmoker counterparts.
Collapse
Affiliation(s)
- Kusum Devi
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Baisakhi Moharana
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
26
|
Kazemi T, Huang S, Avci NG, Waits CMK, Akay YM, Akay M. Investigating the influence of perinatal nicotine and alcohol exposure on the genetic profiles of dopaminergic neurons in the VTA using miRNA-mRNA analysis. Sci Rep 2020; 10:15016. [PMID: 32929144 PMCID: PMC7490691 DOI: 10.1038/s41598-020-71875-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nicotine and alcohol are two of the most commonly used and abused recreational drugs, are often used simultaneously, and have been linked to significant health hazards. Furthermore, patients diagnosed with dependence on one drug are highly likely to be dependent on the other. Several studies have shown the effects of each drug independently on gene expression within many brain regions, including the ventral tegmental area (VTA). Dopaminergic (DA) neurons of the dopamine reward pathway originate from the VTA, which is believed to be central to the mechanism of addiction and drug reinforcement. Using a well-established rat model for both nicotine and alcohol perinatal exposure, we investigated miRNA and mRNA expression of dopaminergic (DA) neurons of the VTA in rat pups following perinatal alcohol and joint nicotine-alcohol exposure. Microarray analysis was then used to profile the differential expression of both miRNAs and mRNAs from DA neurons of each treatment group to further explore the altered genes and related biological pathways modulated. Predicted and validated miRNA-gene target pairs were analyzed to further understand the roles of miRNAs within these networks following each treatment, along with their post transcription regulation points affecting gene expression throughout development. This study suggested that glutamatergic synapse and axon guidance pathways were specifically enriched and many miRNAs and genes were significantly altered following alcohol or nicotine-alcohol perinatal exposure when compared to saline control. These results provide more detailed insight into the cell proliferation, neuronal migration, neuronal axon guidance during the infancy in rats in response to perinatal alcohol/ or nicotine-alcohol exposure.
Collapse
Affiliation(s)
- Tina Kazemi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shuyan Huang
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Naze G Avci
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Charlotte Mae K Waits
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
27
|
Liu X, Low SK, Atkins JR, Wu JQ, Reay WR, Cairns HM, Green MJ, Schall U, Jablensky A, Mowry B, Michie PT, Catts SV, Henskens F, Pantelis C, Loughland C, Boddy AV, Tooney PA, Scott RJ, Carr VJ, Cairns MJ. Wnt receptor gene FZD1 was associated with schizophrenia in genome-wide SNP analysis of the Australian Schizophrenia Research Bank cohort. Aust N Z J Psychiatry 2020; 54:902-908. [PMID: 31735061 DOI: 10.1177/0004867419885443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Large-scale genetic analysis of common variation in schizophrenia has been a powerful approach to understanding this complex but highly heritable psychotic disorder. To further investigate loci, genes and pathways associated more specifically in the well-characterized Australian Schizophrenia Research Bank cohort, we applied genome-wide single-nucleotide polymorphism analysis in these three annotation categories. METHODS We performed a case-control genome-wide association study in 429 schizophrenia samples and 255 controls. Post-genome-wide association study analyses were then integrated with genomic annotations to explore the enrichment of variation at the gene and pathway level. We also examine candidate single-nucleotide polymorphisms with potential function within expression quantitative trait loci and investigate overall enrichment of variation within tissue-specific functional regulatory domains of the genome. RESULTS The strongest finding (p = 2.01 × 10-6, odds ratio = 1.82, 95% confidence interval = [1.42, 2.33]) in genome-wide association study was with rs10252923 at 7q21.13, downstream of FZD1 (frizzled class receptor 1). While this did not stand alone after correction, the involvement of FZD1 was supported by gene-based analysis, which exceeded the threshold for genome-wide significance (p = 2.78 × 10-6). CONCLUSION The identification of FZD1, as an independent association signal at the gene level, supports the hypothesis that the Wnt signalling pathway is altered in the pathogenesis of schizophrenia and may be an important target for therapeutic development.
Collapse
Affiliation(s)
- Xiaoman Liu
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Siew-Kee Low
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia.,Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Heath M Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Ulrich Schall
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Assen Jablensky
- Centre for Clinical Research in Neuropsychiatry, The University of Western Australia, Perth, WA, Australia
| | - Bryan Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, QLD, Australia
| | - Patricia T Michie
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Stan V Catts
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,School of Medicine, University of Queensland, Herston, QLD Australia
| | - Frans Henskens
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Health Behaviour and Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,NorthWestern Mental Health, Sunshine Hospital, St Albans, VIC, Australia.,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton, VIC, Australia
| | - Carmel Loughland
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,School of Psychology, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,Hunter New England Health, Newcastle, NSW, Australia
| | - Alan V Boddy
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia.,School of Pharmacy and Medical Sciences, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NSW Health Pathology, Newcastle, Australia
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,Department of Psychiatry, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Centre for Brain & Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
28
|
Deep Transcriptomic Analysis Reveals the Dynamic Developmental Progression during Early Development of Channel Catfish ( Ictalurus punctatus). Int J Mol Sci 2020; 21:ijms21155535. [PMID: 32748829 PMCID: PMC7432863 DOI: 10.3390/ijms21155535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
The transition from fertilized egg to larva in fish is accompanied with various biological processes. We selected seven early developmental stages in channel catfish, Ictalurus punctatus, for transcriptome analysis, and covered 22,635 genes with 590 million high-quality RNA-sequencing (seq) reads. Differential expression analysis between neighboring developmental timepoints revealed significantly enriched biological categories associated with growth, development and morphogenesis, which was most evident at 2 vs. 5 days post fertilization (dpf) and 5 vs. 6 dpf. A gene co-expression network was constructed using the Weighted Gene Co-expression Network Analysis (WGCNA) approach and four critical modules were identified. Among candidate hub genes, GDF10, FOXA2, HCEA and SYCE3 were involved in head formation, egg development and the transverse central element of synaptonemal complexes. CK1, OAZ2, DARS1 and UBE2V2 were mainly associated with regulation of cell cycle, growth, brain development, differentiation and proliferation of enterocytes. IFI44L and ZIP10 were critical for the regulation of immune activity and ion transport. Additionally, TCK1 and TGFB1 were related to phosphate transport and regulating cell proliferation. All these genes play vital roles in embryogenesis and regulation of early development. These results serve as a rich dataset for functional genomic studies. Our work reveals new insights of the underlying mechanisms in channel catfish early development.
Collapse
|
29
|
Regulation of Neurogenesis in Mouse Brain by HMGB1. Cells 2020; 9:cells9071714. [PMID: 32708917 PMCID: PMC7407245 DOI: 10.3390/cells9071714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The High Mobility Group Box 1 (HMGB1) is the most abundant nuclear nonhistone protein that is involved in transcription regulation. In addition, HMGB1 has previously been found as an extracellularly acting protein enhancing neurite outgrowth in cultured neurons. Although HMGB1 is widely expressed in the developing central nervous system of vertebrates and invertebrates, its function in the developing mouse brain is poorly understood. Here, we have analyzed developmental defects of the HMGB1 null mouse forebrain, and further examined our findings in ex vivo brain cell cultures. We find that HMGB1 is required for the proliferation and differentiation of neuronal stem cells/progenitor cells. Enhanced apoptosis is also found in the neuronal cells lacking HMGB1. Moreover, HMGB1 depletion disrupts Wnt/β-catenin signaling and the expression of transcription factors in the developing cortex, including Foxg1, Tbr2, Emx2, and Lhx6. Finally, HMGB1 null mice display aberrant expression of CXCL12/CXCR4 and reduced RAGE signaling. In conclusion, HMGB1 plays a critical role in mammalian neurogenesis and brain development.
Collapse
|
30
|
Spinal Wnt5a Plays a Key Role in Spinal Dendritic Spine Remodeling in Neuropathic and Inflammatory Pain Models and in the Proalgesic Effects of Peripheral Wnt3a. J Neurosci 2020; 40:6664-6677. [PMID: 32616667 DOI: 10.1523/jneurosci.2942-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
Wnt signaling represents a highly versatile signaling system, which plays critical roles in developmental morphogenesis as well as synaptic physiology in adult life and is implicated in a variety of neural disorders. Recently, we demonstrated that Wnt3a is able to recruit multiple noncanonical signaling pathways to alter peripheral sensory neuron function in a nociceptive modality-specific manner. Furthermore, several studies recently reported an important role for Wnt5a acting via canonical and noncanonical signaling in spinal processing of nociception in a number of pathologic pain disorders. Here, using diverse molecular, genetic, and behavioral approaches in mouse models of pain in vivo, we report a novel role for Wnt5a signaling in nociceptive modulation at the structural level. In models of chronic pain, using male and female mice, we found that Wnt5a is released spinally from peripheral sensory neurons, where it recruits the tyrosine kinase receptors Ror2 and Ryk to modulate dendritic spine rearrangement. Blocking the Wnt5a-Ryk/Ror2 axis in spinal dorsal horn neurons prevented activity-dependent dendritic spine remodeling and significantly reduced mechanical hypersensitivity induced by peripheral injury as well as inflammation. Moreover, we observed that peripheral Wnt3a signaling triggers the release of Wnt5a in the spinal cord, and inhibition of spinal Wnt5a signaling attenuates the functional impact of peripheral Wnt3a on nociceptive sensitivity. In conclusion, this study reports a novel role for the Wnt signaling axis in coordinating peripheral and spinal sensitization and shows that targeting Wnt5a-Ryk/ROR2 signaling alleviates both structural and functional mechanisms of nociceptive hypersensitivity in models of chronic pain in vivo SIGNIFICANCE STATEMENT There is a major need to elucidate molecular mechanisms underlying chronic pain disorders to develop novel therapeutic approaches. Wnt signaling represents a highly versatile signaling system, which plays critical roles during development and adult physiology, and it was implicated in several diseases, including chronic pain conditions. Using mouse models, our study identifies a novel role for Wnt5a signaling in nociceptive modulation at the spinal cord level. We observed that Wnt5a recruits Ror2 and Ryk receptors to enhance dendritic spine density, leading to nociceptive sensitization. Blocking the Wnt5a-Ryk/Ror2 interaction in the spinal dorsal horn prevented spine remodeling and significantly reduced inflammatory and neuropathic hypersensitivity. These findings provide proof-of-concept for targeting spinal Wnt signaling for alleviating nociceptive hypersensitivity in vivo.
Collapse
|
31
|
Dziedzic A, Miller E, Saluk-Bijak J, Bijak M. The GPR17 Receptor-A Promising Goal for Therapy and a Potential Marker of the Neurodegenerative Process in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21051852. [PMID: 32182666 PMCID: PMC7084627 DOI: 10.3390/ijms21051852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
One of the most important goals in the treatment of demyelinating diseases such as multiple sclerosis (MS) is, in addition to immunomodulation, reconstruction of the lost myelin sheath. The modulator of the central nervous system myelination is the metabotropic receptor coupled to the G-protein: GPR17. GPR17 receptors are considered to be sensors of local damage to the myelin sheath, and play a role in the reconstruction and repair of demyelinating plaques caused by ongoing inflammatory processes. GPR17 receptors are present on nerve cells and precursor oligodendrocyte cells. Under physiological conditions, they are responsible for the differentiation and subsequent maturation of oligodendrocytes, while under pathological conditions (during damage to nerve cells), their expression increases to become mediators in the demyelinating processes. Moreover, they are essential not only in both the processes of inducing damage and the death of neurons, but also in the local repair of the damaged myelin sheath. Therefore, GPR17 receptors may be recognized as the potential goal in creating innovative therapies for the treatment of the neurodegenerative process in MS, based on the acceleration of the remyelination processes. This review examines the role of GRP17 in pathomechanisms of MS development.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-42-635-4336
| |
Collapse
|
32
|
Telomerase increasing compound protects hippocampal neurons from amyloid beta toxicity by enhancing the expression of neurotrophins and plasticity related genes. Sci Rep 2019; 9:18118. [PMID: 31792359 PMCID: PMC6889131 DOI: 10.1038/s41598-019-54741-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022] Open
Abstract
The telomerase reverse transcriptase protein, TERT, is expressed in the adult brain and its exogenic expression protects neurons from oxidative stress and from the cytotoxicity of amyloid beta (Aβ). We previously showed that telomerase increasing compounds (AGS) protected neurons from oxidative stress. Therefore, we suggest that increasing TERT by AGS may protect neurons from the Aβ-induced neurotoxicity by influencing genes and factors that participate in neuronal survival and plasticity. Here we used a primary hippocampal cell culture exposed to aggregated Aβ and hippocampi from adult mice. AGS treatment transiently increased TERT gene expression in hippocampal primary cell cultures in the presence or absence of Aβ and protected neurons from Aβ induced neuronal degradation. An increase in the expression of Growth associated protein 43 (GAP43), and Feminizing locus on X-3 genes (NeuN), in the presence or absence of Aβ, and Synaptophysin (SYP) in the presence of Aβ was observed. GAP43, NeuN, SYP, Neurotrophic factors (NGF, BDNF), beta-catenin and cyclin-D1 expression were increased in the hippocampus of AGS treated mice. This data suggests that increasing TERT by pharmaceutical compounds partially exerts its neuroprotective effect by enhancing the expression of neurotrophic factors and neuronal plasticity genes in a mechanism that involved Wnt/beta-catenin pathway.
Collapse
|
33
|
Jiao R, Chen H, Wan Q, Zhang X, Dai J, Li X, Yan L, Sun Y. Apigenin inhibits fibroblast proliferation and reduces epidural fibrosis by regulating Wnt3a/β-catenin signaling pathway. J Orthop Surg Res 2019; 14:258. [PMID: 31412883 PMCID: PMC6694561 DOI: 10.1186/s13018-019-1305-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Failed back surgery syndrome (FBSS) is a common complication after the laminectomy. Epidural fibrosis is the major cause of lower back pain and other complications. Numerous studies have shown that apigenin (API) could treat various fibrotic diseases by regulating various signaling pathways, whereas no study has discussed whether API can inhibit fibroblast proliferation and reduce epidural fibrosis after the laminectomy by regulating Wnt3a/β-catenin signaling pathway. METHODS Human fibroblasts were cultured and treated with API in different concentrations for 24 h. CCK-8 detection and EdU incorporation assay were performed to detect cell viability and cell proliferation. Western blotting analysis was applied to detect expressions of proliferative proteins, Wnt3a, and its downstream proteins. Moreover, the Wnt3a gene was overexpressed in fibroblasts to define the relationship between Wnt3a/β-catenin signaling pathway and fibroblast proliferation. Wnt3a overexpressed fibroblasts were treated with API to verify if it could reverse the effects of API treatment. Twenty-four Sprague-Dawley rats were randomly divided into four groups. Laminectomy was performed and the rats were gavaged with different doses of API or 5% sodium carboxyl methyl cellulose (CMC-Na) solution for 1 month. The abilities of API to inhibit fibroblast proliferation and to reduce epidural fibrosis were evaluated using histological and immunohistochemical analysis. RESULTS CCK-8 detection and EdU incorporation assay demonstrated that API could inhibit the viability and proliferation rate of fibroblasts in a concentration-dependent manner. The Western blotting analysis revealed that API could inhibit the expressions of PCNA, cyclinD1, Wnt3a, and its downstream proteins. The overexpression of Wnt3a in fibroblasts could upregulate the expressions of proliferative proteins such as PCNA and cyclinD1. The inhibitory effect of API on PCNA, Wnt3a, and its downstream proteins was partially reversed by overexpression of Wnt3a. Moreover, the results of the histological and immunohistochemical analysis revealed that API could reduce the epidural fibrosis in rats by inhibiting fibroblast proliferation in a dose-dependent manner. CONCLUSIONS API can inhibit fibroblast proliferation and reduce epidural fibrosis by suppressing Wnt3a/β-catenin signaling pathway, which can be adopted as a new option to prevent epidural fibrosis after the laminectomy.
Collapse
Affiliation(s)
- Rui Jiao
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Hui Chen
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qi Wan
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xiaobo Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Jihang Dai
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xiaolei Li
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Lianqi Yan
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yu Sun
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
34
|
Norwitz NG, Mota AS, Norwitz SG, Clarke K. Multi-Loop Model of Alzheimer Disease: An Integrated Perspective on the Wnt/GSK3β, α-Synuclein, and Type 3 Diabetes Hypotheses. Front Aging Neurosci 2019; 11:184. [PMID: 31417394 PMCID: PMC6685392 DOI: 10.3389/fnagi.2019.00184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
As the prevalence of Alzheimer disease (AD) continues to rise unabated, new models have been put forth to improve our understanding of this devastating condition. Although individual models may have their merits, integrated models may prove more valuable. Indeed, the reliable failures of monotherapies for AD, and the ensuing surrender of major drug companies, suggests that an integrated perspective may be necessary if we are to invent multifaceted treatments that could ultimately prove more successful. In this review article, we discuss the Wnt/Glycogen Synthase Kinase 3β (GSK3β), α-synuclein, and type 3 diabetes hypotheses of AD, and their deep interconnection, in order to foster the integrative thinking that may be required to reach a solution for the coming neurological epidemic.
Collapse
Affiliation(s)
- Nicholas G Norwitz
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adrian Soto Mota
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sam G Norwitz
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Discovery of Transcription Factors Novel to Mouse Cerebellar Granule Cell Development Through Laser-Capture Microdissection. THE CEREBELLUM 2019; 17:308-325. [PMID: 29307116 DOI: 10.1007/s12311-017-0912-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells-the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.
Collapse
|
36
|
Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Front Cell Neurosci 2019; 13:128. [PMID: 31024258 PMCID: PMC6460947 DOI: 10.3389/fncel.2019.00128] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 01/19/2023] Open
Abstract
Injuries and diseases of the peripheral nervous system (PNS) are common but frequently irreversible. It is often but mistakenly assumed that peripheral neuron regeneration is robust without a need to be improved or supported. However, axonal lesions, especially those involving proximal nerves rarely recover fully and injuries generally are complicated by slow and incomplete regeneration. Strategies to enhance the intrinsic growth properties of reluctant adult neurons offer an alternative approach to consider during regeneration. Since axons rarely regrow without an intimately partnered Schwann cell (SC), approaches to enhance SC plasticity carry along benefits to their axon partners. Direct targeting of molecules that inhibit growth cone plasticity can inform important regenerative strategies. A newer approach, a focus of our laboratory, exploits tumor suppressor molecules that normally dampen unconstrained growth. However several are also prominently expressed in stable adult neurons. During regeneration their ongoing expression “brakes” growth, whereas their inhibition and knockdown may enhance regrowth. Examples have included phosphatase and tensin homolog deleted on chromosome ten (PTEN), a tumor suppressor that inhibits PI3K/pAkt signaling, Rb1, the protein involved in retinoblastoma development, and adenomatous polyposis coli (APC), a tumor suppressor that inhibits β-Catenin transcriptional signaling and its translocation to the nucleus. The identification of several new targets to manipulate the plasticity of regenerating adult peripheral neurons is exciting. How they fit with canonical regeneration strategies and their feasibility require additional work. Newer forms of nonviral siRNA delivery may be approaches for molecular manipulation to improve regeneration.
Collapse
Affiliation(s)
- Arul Duraikannu
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anand Krishnan
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
37
|
Dai W, Ryu T, Kim H, Jin YH, Cho YC, Kim K. Effects of δ-Catenin on APP by Its Interaction with Presenilin-1. Mol Cells 2019; 42:36-44. [PMID: 30622228 PMCID: PMC6354058 DOI: 10.14348/molcells.2018.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent age-related human neurological disorder. The characteristics of AD include senile plaques, neurofibrillary tangles, and loss of synapses and neurons in the brain. β-Amyloid (Aβ) peptide is the predominant proteinaceous component of senile plaques. The amyloid hypothesis states that Aβ initiates the cascade of events that result in AD. Amyloid precursor protein (APP) processing plays an important role in Aβ production, which initiates synaptic and neuronal damage. δ-Catenin is known to be bound to presenilin-1 (PS-1), which is the main component of the γ-secretase complex that regulates APP cleavage. Because PS-1 interacts with both APP and δ-catenin, it is worth studying their interactive mechanism and/or effects on each other. Our immunoprecipitation data showed that there was no physical association between δ-catenin and APP. However, we observed that δ-catenin could reduce the binding between PS-1 and APP, thus decreasing the PS-1 mediated APP processing activity. Furthermore, δ-catenin reduced PS-1-mediated stabilization of APP. The results suggest that δ-catenin can influence the APP processing and its level by interacting with PS-1, which may eventually play a protective role in the degeneration of an Alzheimer's disease patient.
Collapse
Affiliation(s)
- Weiye Dai
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Taeyong Ryu
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922,
Korea
| | - Yun Hye Jin
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
38
|
Fullard JF, Charney AW, Voloudakis G, Uzilov AV, Haroutunian V, Roussos P. Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia. Transl Psychiatry 2019; 9:21. [PMID: 30655504 PMCID: PMC6336839 DOI: 10.1038/s41398-018-0342-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/15/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
The genetic architecture of schizophrenia (SCZ) includes numerous risk loci across a range of frequencies and sizes, including common and rare single-nucleotide variants and insertions/deletions (indels), as well as rare copy number variants (CNVs). Despite the clear heritability of the disease, monozygotic twins are discordant for SCZ at a significant rate. Somatic variants-genetic changes that arise after fertilization rather than through germline inheritance-are widespread in the human brain and known to contribute to risk for both rare and common neuropsychiatric conditions. The contribution of somatic variants in the brain to risk of SCZ remains to be determined. In this study, we surveyed somatic single-nucleotide variants (sSNVs) in the brains of controls and individuals with SCZ (n = 10 and n = 9, respectively). From each individual, whole-exome sequencing (WES) was performed on DNA from neuronal and non-neuronal nuclei isolated by fluorescence activated nuclear sorting (FANS) from frozen postmortem prefrontal cortex (PFC) samples, as well as DNA extracted from temporal muscle as a reference. We identified an increased burden of sSNVs in cases compared to controls (SCZ rate = 2.78, control rate = 0.70; P = 0.0092, linear mixed effects model), that included a higher rate of non-synonymous and loss-of-function variants (SCZ rate = 1.33, control rate = 0.50; P = 0.047, linear mixed effects model). Our findings suggest sSNVs in the brain may constitute an additional component of the complex genetic architecture of SCZ. This perspective argues for the need to further investigate somatic variation in the brain as an explanation of the discordance in monozygotic twins and a potential guide to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- John F. Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Alexander W. Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Georgios Voloudakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Andrew V. Uzilov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, One Gustave L. Levy Place, New York, NY 10029 USA ,Sema4, 333 Ludlow Street, Stamford, CT 06902 USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,0000 0004 0420 1184grid.274295.fMental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468 USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
39
|
Expression and Manipulation of the APC-β-Catenin Pathway During Peripheral Neuron Regeneration. Sci Rep 2018; 8:13197. [PMID: 30181617 PMCID: PMC6123411 DOI: 10.1038/s41598-018-31167-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Molecules and pathways that suppress growth are expressed in postmitotic neurons, a potential advantage in mature neural networks, but a liability during regeneration. In this work, we probed the APC (adenomatous polyposis coli)-β-catenin partner pathway in adult peripheral sensory neurons during regeneration. APC had robust expression in the cytoplasm and perinuclear region of adult DRG sensory neurons both before and after axotomy injury. β-catenin was expressed in neuronal nuclei, neuronal cytoplasm and also in perineuronal satellite cells. In injured dorsal root ganglia (DRG) sensory neurons and their axons, we observed paradoxical APC upregulation, despite its role as an inhibitor of growth whereas β-catenin was downregulated. Inhibition of APC in adult sensory neurons and activation of β-catenin, LEF/TCF transcriptional factors were associated with increased neuronal plasticity in vitro. Local knockdown of APC, at the site of sciatic nerve crush injury enhanced evidence for electrophysiological, behavioural and structural regeneration in vivo. This was accompanied by upregulation of β-catenin. Collectively, the APC-β-catenin-LEF/TCF transcriptional pathway impacts intrinsic mechanisms of axonal regeneration and neuronal plasticity after injury, offering new options for addressing axon regeneration.
Collapse
|
40
|
Soleimani M, Ghasemi N, Chamnari FM. BIO (6-bromoindirubin-3'-oxime) GSK3 inhibitor induces dopaminergic differentiation of human immortalized RenVm cells. ACTA ACUST UNITED AC 2018; 27:1023-1028. [PMID: 30008636 PMCID: PMC6018606 DOI: 10.1007/s00580-018-2696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/07/2018] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is one of the most neurodegenerative disorders which can lead to severe neural disability and neurological defects. Cell-based therapy using fully differentiated cells is a new method for the treatment of this abnormal condition. In the present study, we investigated the effects of 6-bromoindirubin-3'-oxime (BIO) on dopaminergic differentiation of human immortalized RenVm cells in order to obtain a set of fully differentiated cells for transplantation in Parkinson's disease. To this end, the immortalized RenVm cells were induced to dopaminergic differentiation using a neuro basal medium supplemented with N2 and different concentrations (75, 150, 300, 600, and 1200 nM) of BIO for 4, 8, and 12 days. The efficiency of dopaminergic differentiation was determined using immunocytochemistry for tyrosine hydroxylase expressions. In addition, the expression of a β-catenin marker was measured using the western blot technique. The results of immunocytochemistry revealed that the mean percentage of Tuj1- and TH-positive sells in 150- and 300-nM-BIO-treated groups was significantly increased compared to that of other groups (p ≤ 0.01). In addition, the expression of the β-catenin marker was higher in these groups as compared with that of other groups. Overall, BIO through its effect on the Wnt-Frizzled signaling pathway can promote dopaminergic differentiation of RenVm cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Mitra Soleimani
- Department of Anatomical Science and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazem Ghasemi
- Department of Anatomical Science and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
41
|
Shi Y, Li Q, Shao Z. Wnts Promote Synaptic Assembly Through T-Cell Specific Transcription Factors in Caenorhabditis elegans. Front Mol Neurosci 2018; 11:194. [PMID: 29962933 PMCID: PMC6013564 DOI: 10.3389/fnmol.2018.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
Synapses are specialized neuronal connections essential for neuronal function. Defects in synaptic assembly or maintenance usually lead to various neurological disorders. Synaptic assembly is regulated by secreted molecules such as Wnts. Wnts are a large family of conserved glycosylated signaling molecules involved in many aspects of neural development and maintenance. However, the molecular mechanisms by which Wnts regulate synaptic assembly remain elusive due to the large number of ligands/receptors, the diversity of signaling cascades and the complexity of the nervous system. In this study, through genetic manipulation, we uncover that C. elegans Wnt-2 (CWN-2) is required for synaptic development. The CWN-2 signal is required during both embryonic and postembryonic development, in the nervous system and intestine, for promoting synaptic assembly. Furthermore, we provide genetic evidence for CWN-2 promoting synaptogenesis through the Frizzled receptor (FZD) CFZ-2, the Dishevelled (DVL) DSH-2, the β-catenin SYS-1 and the only T-cell specific transcription factor POP-1/TCF. Importantly, it is the first time to report the requirement of a TCF for presynaptic assembly. These findings expand our understanding of the synaptogenic mechanisms and may provide therapeutic insights into Wnt-related neurological disorders.
Collapse
Affiliation(s)
- Yanjun Shi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Huang M, Liang Y, Chen H, Xu B, Chai C, Xing P. The Role of Fluoxetine in Activating Wnt/β-Catenin Signaling and Repressing β-Amyloid Production in an Alzheimer Mouse Model. Front Aging Neurosci 2018; 10:164. [PMID: 29910725 PMCID: PMC5992518 DOI: 10.3389/fnagi.2018.00164] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
Fluoxetine (FLX) is one of the selective serotonin reuptake inhibitors (SSRIs) antidepressants, which could be used to relieve depression and anxiety among AD patients. This study was designed to search for new mechanisms by which fluoxetine could activate Wnt/β-catenin signaling pathway and reduce amyloidosis in AD brain. Fluoxetine was administered via intragastric injection to APP/tau/PS1 mouse model of Alzheimer’s disease (3×Tg-AD) mice for 4 months. In the hippocampus of AD mouse model, there could be observed neuronal apoptosis, as well as an increase in Aβ (amyloid-β) production. Moreover, there is a strong association between down-regulation of Wnt/β-catenin signaling and the alteration of AD pathology. The activity of protein phosphatases of type 2A (PP2A) could be significantly enhanced by the treatment of fluoxetine. The activation of PP2A, caused by fluoxetine, could then play a positive role in raising the level of active β-catenin, and deliver a negative impact in GSK3β activity in the hippocampal tissue. Both the changes mentioned above would lead to the activation of Wnt/β-catenin signaling. Meanwhile, fluoxetine treatment would reduce APP cleavage and Aβ generation. It could also prevent apoptosis in 3×Tg-AD primary neuronal cell, and have protective effects on neuron synapse. These findings imply that Wnt/β-catenin signaling could be a potential target outcome for AD prevention, and fluoxetine has the potential to be a promising drug in both AD prevention and treatment.
Collapse
Affiliation(s)
- Min Huang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yubin Liang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongda Chen
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Binchu Xu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Cuicui Chai
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Pengfei Xing
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
43
|
Fernandes V, Sharma D, Vaidya S, P A S, Guan Y, Kalia K, Tiwari V. Cellular and molecular mechanisms driving neuropathic pain: recent advancements and challenges. Expert Opin Ther Targets 2018; 22:131-142. [PMID: 29285962 DOI: 10.1080/14728222.2018.1420781] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Current pharmacotherapeutics for neuropathic pain offer only symptomatic relief without treating the underlying pathophysiology. Additionally, they are associated with various dose-limiting side effects. Pain research in the past few decades has revolved around the role of oxidative-nitrosative stress, protein kinases, glial cell activation, and inflammatory signaling cascades but has failed to produce specific and effective therapies. Areas covered: This review focuses on recent advances in cellular and molecular mechanisms of neuropathic pain that may be translated into future therapies. We discuss emerging targets such as WNT signaling mechanisms, the tetrahydrobiopterin pathway, Mrg receptors, endogenous lipid mediators, micro-RNAs and their roles in pain regulation. Recent evidence is also presented regarding genetic and epigenetic mechanisms of pain modulation. Expert opinion: During chronic neuropathic pain, maladaptation occurs in the peripheral and central nervous systems, including a shift in microglial phenotype from a surveillance state to an activated state. Microglial activation leads to an altered expression of cell surface proteins, growth factors, and intracellular signaling molecules that contribute to development of a neuroinflammatory cascade and chronic pain sensitization. Specific targeting of these cellular and molecular mechanisms may provide the key to development of effective neuropathic pain therapies that have minimal side effects.
Collapse
Affiliation(s)
- Valencia Fernandes
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Dilip Sharma
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Shivani Vaidya
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Shantanu P A
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Yun Guan
- b Department of Anesthesiology and Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Kiran Kalia
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India
| | - Vinod Tiwari
- a Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Gandhinagar , India.,b Department of Anesthesiology and Critical Care Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
44
|
Soleimani M, Ghasemi N. Lithium Chloride can Induce Differentiation of Human Immortalized RenVm Cells into Dopaminergic Neurons. Avicenna J Med Biotechnol 2017; 9:176-180. [PMID: 29090066 PMCID: PMC5650734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/31/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Stem cell-based therapy is a novel strategy for the treatment of neurodegenerative diseases. The transplantation of fully differentiated cells instead of stem cells in order to decrease serious adverse complications of stem cell therapy is a new idea. In this study, the effect of lithium chloride on dopaminergic differentiation of human immortalized RenVm cells was investigated in order to access a population of fully differentiated cells for transplantation in Parkinson disease. METHODS The immortalized RenVm cells were induced to dopaminergic differentiation using a neurobasal medium supplemented with N2 and different concentrations (1, 3, 6 mM) of Lithium Chloride (LiCl) for 4, 8 and 12 days. The efficiency of dopaminergic differentiation was evaluated using immunocytochemistry and western blot techniques for tyrosine hydroxylase and β-catenin marker expression. RESULTS Our results indicated that LiCl can promote dopaminergic differentiation of RenVm cells in a dose-dependent manner. CONCLUSION It can be concluded that LiCl is able to facilitate dopaminergic differentiation of cultured cells by affecting Wnt-frizzled signaling pathway.
Collapse
Affiliation(s)
- Mitra Soleimani
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazem Ghasemi
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Jagadeesan M, Khetan V, Mallipatna A. Genetic perspective of retinoblastoma: From present to future. Indian J Ophthalmol 2017; 64:332-6. [PMID: 27380971 PMCID: PMC4966369 DOI: 10.4103/0301-4738.185585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Retinoblastoma (RB) is the most common malignant intraocular tumor in children. In the last decade, basic research has led to a better understanding of events after two hits in RB susceptibility gene (RB1), molecular mechanism of tumor growth, the cell of origin of RB, etc. This would pave way to identify biomarkers and molecular targeted therapy for better treatment option in the future. Furthermore, improvement in molecular techniques has led to enhanced diagnostic methods for early diagnosis, genetic counseling, and prevention of the disease. This review will help to understand the essence of basic research work conducted in recent times and its implication in the management of RB in the future.
Collapse
Affiliation(s)
- Madhavan Jagadeesan
- Department of Genetics and Molecular Biology, Vasan Medical Research Trust, Chennai, Tamil Nadu; Dual Helix Genetic Diagnostics Private Limited, Chennai, Tamil Nadu, India
| | - Vikas Khetan
- Sri Bhagavan Mahavir Vitreo-Retinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | | |
Collapse
|
46
|
Hudac CM, Stessman HAF, DesChamps TD, Kresse A, Faja S, Neuhaus E, Webb SJ, Eichler EE, Bernier RA. Exploring the heterogeneity of neural social indices for genetically distinct etiologies of autism. J Neurodev Disord 2017; 9:24. [PMID: 28559932 PMCID: PMC5446693 DOI: 10.1186/s11689-017-9199-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/10/2017] [Indexed: 11/21/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a genetically and phenotypically heterogeneous disorder. Promising initiatives utilizing interdisciplinary characterization of ASD suggest phenotypic subtypes related to specific likely gene-disrupting mutations (LGDMs). However, the role of functionally associated LGDMs in the neural social phenotype is unknown. Methods In this study of 26 children with ASD (n = 13 with an LGDM) and 13 control children, we characterized patterns of mu attenuation and habituation as children watched videos containing social and nonsocial motions during electroencephalography acquisition. Results Diagnostic comparisons were consistent with prior work suggesting aberrant mu attenuation in ASD within the upper mu band (10–12 Hz), but typical patterns within the lower mu band (8–10 Hz). Preliminary exploration indicated distinct social sensitization patterns (i.e., increasing mu attenuation for social motion) for children with an LGDM that is primarily expressed during embryonic development. In contrast, children with an LGDM primarily expressed post-embryonic development exhibited stable typical patterns of lower mu attenuation. Neural social indices were associated with social responsiveness, but not cognition. Conclusions These findings suggest unique neurophysiological profiles for certain genetic etiologies of ASD, further clarifying possible genetic functional subtypes of ASD and providing insight into mechanisms for targeted treatment approaches. Electronic supplementary material The online version of this article (doi:10.1186/s11689-017-9199-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caitlin M Hudac
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD Box 357920, Seattle, WA 98195 USA
| | - Holly A F Stessman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Trent D DesChamps
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD Box 357920, Seattle, WA 98195 USA
| | - Anna Kresse
- Center for Child Health, Behavior, and Disabilities, Seattle Children's Research Institute, Seattle, WA 98145 USA
| | - Susan Faja
- Boston Children's Hospital and Division of Developmental Medicine, Harvard School of Medicine, Boston, MA 02215 USA
| | - Emily Neuhaus
- Center for Child Health, Behavior, and Disabilities, Seattle Children's Research Institute, Seattle, WA 98145 USA
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD Box 357920, Seattle, WA 98195 USA.,Center for Child Health, Behavior, and Disabilities, Seattle Children's Research Institute, Seattle, WA 98145 USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA.,Howard Hughes Medical Institute, Seattle, WA 98195 USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD Box 357920, Seattle, WA 98195 USA.,Center for Child Health, Behavior, and Disabilities, Seattle Children's Research Institute, Seattle, WA 98145 USA
| |
Collapse
|
47
|
Prenatal high sucrose intake affected learning and memory of aged rat offspring with abnormal oxidative stress and NMDARs/Wnt signaling in the hippocampus. Brain Res 2017; 1669:114-121. [PMID: 28532855 DOI: 10.1016/j.brainres.2017.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/29/2017] [Accepted: 05/19/2017] [Indexed: 01/07/2023]
Abstract
Maternal over-nutrition may predispose offspring to obesity, type 2 diabetes and other adult diseases. The present study investigated long-term impact of prenatal high sucrose (HS) diets on cognitive capabilities in aged rat offspring. The fasting plasma glucose concentration did not differ between the control and HS groups. However, the fasting plasma insulin and insulin resistance index values were significantly increased in HS offspring that showed abnormal glucose tolerance test. HS offspring exhibited increased escape latency and swimming path length to the platform, and reduced time in the target quadrant and the number of crossing the platform, as compared with the control group. The expression of Grin2b/NR2B, Wnt2, Wnt3a and active form of β-catenin protein were decreased, and Dickkopf-related protein 1 was increased in the HS group. In addition, the levels of lipid peroxidation biomarker thiobarbituricacid reactive substance, nicotinamide adenine dinucleotide phosphate oxidases 2 and superoxide dismutase 1 were significantly increased, and the activity of catalase was decreased in the hippocampus in the HS group. The results demonstrate that prenatal HS-induced metabolic changes cause cognitive deficits in aged rat offspring, probably due to altered N-methyl-d-aspartate receptors/Wnt signaling and oxidative stress in the hippocampus.
Collapse
|
48
|
Islam F, Xu K, Beninger RJ. Inhibition of Wnt signalling dose-dependently impairs the acquisition and expression of amphetamine-induced conditioned place preference. Behav Brain Res 2017; 326:217-225. [DOI: 10.1016/j.bbr.2017.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
|
49
|
Ortega JA, Memi F, Radonjic N, Filipovic R, Bagasrawala I, Zecevic N, Jakovcevski I. The Subventricular Zone: A Key Player in Human Neocortical Development. Neuroscientist 2017; 24:156-170. [PMID: 29254416 DOI: 10.1177/1073858417691009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the main characteristics of the developing brain is that all neurons and the majority of macroglia originate first in the ventricular zone (VZ), next to the lumen of the cerebral ventricles, and later on in a secondary germinal area above the VZ, the subventricular zone (SVZ). The SVZ is a transient compartment mitotically active in humans for several gestational months. It serves as a major source of cortical projection neurons as well as an additional source of glial cells and potentially some interneuron subpopulations. The SVZ is subdivided into the smaller inner (iSVZ) and the expanded outer SVZ (oSVZ). The enlargement of the SVZ and, in particular, the emergence of the oSVZ are evolutionary adaptations that were critical to the expansion and unique cellular composition of the primate cerebral cortex. In this review, we discuss the cell types and organization of the human SVZ during the first half of the 40 weeks of gestation that comprise intrauterine development. We focus on this period as it is when the bulk of neurogenesis in the human cerebral cortex takes place. We consider how the survival and fate of SVZ cells depend on environmental influences, by analyzing the results from in vitro experiments with human cortical progenitor cells. This in vitro model is a powerful tool to better understand human neocortex formation and the etiology of neurodevelopmental disorders, which in turn will facilitate the design of targeted preventive and/or therapeutic strategies.
Collapse
Affiliation(s)
- J Alberto Ortega
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Fani Memi
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nevena Radonjic
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.,2 Psychiatry Department, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Radmila Filipovic
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Inseyah Bagasrawala
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nada Zecevic
- 1 Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Igor Jakovcevski
- 3 Institute for Molecular and Behavioral Neuroscience, University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany.,4 Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
50
|
Giacoppo S, Soundara Rajan T, De Nicola GR, Iori R, Bramanti P, Mazzon E. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis. Drug Des Devel Ther 2016; 10:3291-3304. [PMID: 27784989 PMCID: PMC5063603 DOI: 10.2147/dddt.s110514] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aberrant canonical Wnt-β-catenin signaling has been reported in multiple sclerosis (MS), although the results are controversial. The present study aimed to examine the role of the Wnt-β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate), resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy)-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin-PPARγ axis. Experimental autoimmune encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35-55. Released moringin (10 mg/kg glucomoringin +5 μL myrosinase/mouse) was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt-β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt-β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3), suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2), through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt-β-catenin signaling cascade and as a new potential therapeutic target for MS treatment.
Collapse
Affiliation(s)
| | | | - Gina Rosalinda De Nicola
- Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN), Bologna, Italy
| | - Renato Iori
- Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN), Bologna, Italy
| | | | | |
Collapse
|