1
|
Schneckenburger H. Lasers in Live Cell Microscopy. Int J Mol Sci 2022; 23:ijms23095015. [PMID: 35563406 PMCID: PMC9102032 DOI: 10.3390/ijms23095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to their unique properties—coherent radiation, diffraction limited focusing, low spectral bandwidth and in many cases short light pulses—lasers play an increasing role in live cell microscopy. Lasers are indispensable tools in 3D microscopy, e.g., confocal, light sheet or total internal reflection microscopy, as well as in super-resolution microscopy using wide-field or confocal methods. Further techniques, e.g., spectral imaging or fluorescence lifetime imaging (FLIM) often depend on the well-defined spectral or temporal properties of lasers. Furthermore, laser microbeams are used increasingly for optical tweezers or micromanipulation of cells. Three exemplary laser applications in live cell biology are outlined. They include fluorescence diagnosis, in particular in combination with Förster Resonance Energy Transfer (FRET), photodynamic therapy as well as laser-assisted optoporation, and demonstrate the potential of lasers in cell biology and—more generally—in biomedicine.
Collapse
|
2
|
Kaneko C, Tsutsui H, Ozeki K, Honda M, Haraya K, Narita Y, Kamata-Sakurai M, Kikuta J, Tabo M, Ishii M. In vivo imaging with two-photon microscopy to assess the tumor-selective binding of an anti-CD137 switch antibody. Sci Rep 2022; 12:4907. [PMID: 35318394 PMCID: PMC8941111 DOI: 10.1038/s41598-022-08951-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 01/01/2023] Open
Abstract
STA551, a novel anti-CD137 switch antibody, binds to CD137 in an extracellular ATP concentration-dependent manner. Although STA551 is assumed to show higher target binding in tumor tissues than in normal tissues, quantitative detection of the target binding of the switch antibody in vivo is technically challenging. In this study, we investigated the target binding of STA551 in vivo using intravital imaging with two-photon microscopy. Tumor-bearing human CD137 knock-in mice were intravenously administered fluorescently labeled antibodies. Flow cytometry analysis of antibody-binding cells and intravital imaging using two-photon microscopy were conducted. Higher CD137 expression in tumor than in spleen tissues was detected by flow cytometry analysis, and T cells and NK cells were the major CD137-expressing cells. In the intravital imaging experiment, conventional and switch anti-CD137 antibodies showed binding in tumors. However, in the spleen, the fluorescence of the switch antibody was much weaker than that of the conventional anti-CD137 antibody and comparable with that of the isotype control. In conclusion, we were able to assess switch antibody biodistribution in vivo through intravital imaging with two-photon microscopy. These results suggest that the tumor-selective binding of STA551 leads to a wide therapeutic window and potent antitumor efficacy without systemic immune activation.
Collapse
Affiliation(s)
- Chisato Kaneko
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Haruka Tsutsui
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kazuhisa Ozeki
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Masaki Honda
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Yoshinori Narita
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07-11 to 16, Synapse, Singapore, 138623, Singapore
| | - Mika Kamata-Sakurai
- Research Division, Chugai Pharmaceutical Co., Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-0570, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mitsuyasu Tabo
- Research Division, Chugai Pharmaceutical Co., Ltd., 1-135, Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| |
Collapse
|
3
|
Abbasi H, Mostafavi SM, Kavehvash Z. Fast wavelet-based photoacoustic microscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:1673-1680. [PMID: 34807029 DOI: 10.1364/josaa.437862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
A novel photoacoustic microscopy (PAM) structure, based on Haar wavelet patterns, is proposed in this paper. Its main goal is to mitigate the PAM imaging resolution and thus the time of its sampling process without compromising the image quality. Owing to the intrinsic nature of wavelet transform, this structure collects spatial and spectral components simultaneously, and this feature speeds up the sampling process by 33%. The selection of these patterns helps in better control of required conditions, such as multi-resolution imaging, to guarantee adequate image quality in comparison to previous microscopic structures. Simulation results prove the superior quality of the proposed approach (about 47% better peak signal-to-noise ratio) compared to the latest structures in this field, achieving a high-resolution and high-quality image.
Collapse
|
4
|
Wirth D, Byrd B, Meng B, Strawbridge RR, Samkoe KS, Davis SC. Hyperspectral imaging and spectral unmixing for improving whole-body fluorescence cryo-imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:395-408. [PMID: 33520389 PMCID: PMC7818953 DOI: 10.1364/boe.410810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 05/06/2023]
Abstract
Whole-animal fluorescence cryo-imaging is an established technique that enables visualization of the biodistribution of labeled drugs, contrast agents, functional reporters and cells in detail. However, many tissues produce endogenous autofluorescence, which can confound interpretation of the cryo-imaging volumes. We describe a multi-channel, hyperspectral cryo-imaging system that acquires densely-sampled spectra at each pixel in the 3-dimensional stack. This information enables the use of spectral unmixing to isolate the fluorophore-of-interest from autofluorescence and/or other fluorescent reporters. In phantoms and a glioma xenograft model, we show that the approach improves detection limits, increases tumor contrast, and can dramatically alter image interpretation.
Collapse
Affiliation(s)
- Dennis Wirth
- Department of Surgery, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
- Indicates equal contributions
| | - Brook Byrd
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, USA
- Indicates equal contributions
| | - Boyu Meng
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, USA
| | | | - Kimberley S. Samkoe
- Department of Surgery, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Scott C. Davis
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, USA
| |
Collapse
|
5
|
Coste A, Oktay MH, Condeelis JS, Entenberg D. Intravital Imaging Techniques for Biomedical and Clinical Research. Cytometry A 2020; 97:448-457. [PMID: 31889408 PMCID: PMC7210060 DOI: 10.1002/cyto.a.23963] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Intravital imaging, the direct visualization of cells and tissues within a living animal, is a technique that has been employed for the better part of a century. The advent of confocal and multiphoton microscopy has dramatically improved the power of intravital imaging, making it possible to obtain optical sections of tissues non-destructively. This review discusses the various techniques used for intravital imaging, describes how intravital imaging provides information about cellular and tissue dynamics not possible to be garnered by other techniques, and details several ways in which intravital imaging is making a direct impact on the clinical care of patients. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Anouchka Coste
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Maja H. Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - John S. Condeelis
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
6
|
A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1371-1380. [DOI: 10.1016/j.nano.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/19/2018] [Accepted: 03/31/2018] [Indexed: 11/17/2022]
|
7
|
Mizuta Y, Kurihara D, Higashiyama T. Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues. PROTOPLASMA 2015; 252:1231-40. [PMID: 25588923 DOI: 10.1007/s00709-014-0754-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/30/2014] [Indexed: 05/08/2023]
Abstract
In vivo imaging of living organisms is an important tool to investigate biological phenomena. Two-photon excitation microscopy (2PEM) is a laser-scanning microscopy that provides noninvasive, deep imaging in living organisms based on the principle of multiphoton excitation. However, application of 2PEM to plant tissues has not been fully developed, as plant-specific autofluorescence, optically dense tissues, and multiple light-scattering structures diminish the clarity of imaging. In this study, the advantages of 2PEM were identified for deep imaging of living and intact Arabidopsis thaliana tissues. When compared to single-photon imaging, near-infrared 2PEM, especially at 1000 nm, reduced chloroplast autofluorescence; autofluorescence also decreased in leaves, roots, pistils, and pollen grains. For clear and deep imaging, longer excitation wavelengths using the orange fluorescent proteins (FPs) TagRFP and tdTomato gave better results than with other colors. 2PEM at 980 nm also provided multicolor imaging by simultaneous excitation, and the combination of suitable FPs and excitation wavelengths allowed deep imaging of intact cells in root tips and pistils. Our results demonstrated the importance of choosing both suitable FPs and excitation wavelengths for clear two-photon imaging. Further advances in in vivo analysis using 2PEM will facilitate more extensive studies in the plant biological sciences.
Collapse
Affiliation(s)
- Yoko Mizuta
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan,
| | | | | |
Collapse
|
8
|
Young MD, Field JJ, Sheetz KE, Bartels RA, Squier J. A pragmatic guide to multiphoton microscope design. ADVANCES IN OPTICS AND PHOTONICS 2015; 7:276-378. [PMID: 27182429 PMCID: PMC4863715 DOI: 10.1364/aop.7.000276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope.
Collapse
Affiliation(s)
- Michael D. Young
- Center for Microintegrated Optics for Advanced Biological Control, Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, USA
| | - Jeffrey J. Field
- W. M. Keck Laboratory for Raman Imaging of Cell-to-Cell Communications, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Kraig E. Sheetz
- Photonics Research Center, Department of Physics and Nuclear Engineering, United States Military Academy, West Point, New York 10996, USA
| | - Randy A. Bartels
- W. M. Keck Laboratory for Raman Imaging of Cell-to-Cell Communications, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jeff Squier
- Center for Microintegrated Optics for Advanced Biological Control, Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, USA
| |
Collapse
|
9
|
Guo L, Wong MS. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5400-5428. [PMID: 24981591 DOI: 10.1002/adma.201400084] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Recent progress in developing various strategies for exploiting efficient MPA fluorophores for two emerging technological MPA applications including frequency upconversion photoluminescence and lasing as well as 2PA fluorescence bioimaging and biosensing are presented. An intriguing application of MPA frequency-upconverted lasing offers opportunity for the fabrication of high-energy coherent light sources in the blue region which could create new advantages and breakthroughs in various laser-based applications. In addition, multiphoton excitation has led to considerable progress in the development of advanced diagnostic and therapeutic treatments; further advancement is anticipated with the emergence of various versatile 2PA fluorescence probes. It is widely appreciated that the two-photon excitation offers significant advantages for the biological fluorescence imaging and sensing which includes higher spatial resolution, less photobleaching and photodamage as well as deeper tissue penetration as compared to the one-photon excited microscopy. To be practically useful, the 2PA fluorescent probes for biological applications are required to have a site-specificity, a high fluorescence quantum yield, proper two-photon excitation and subsequent emission wavelengths, good photodecomposition stability, water solubility, and biocompatibility besides large 2PA action cross-sections.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Molecular Functional Materials+, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | | |
Collapse
|
10
|
Lelkes E, Headley MB, Thornton EE, Looney MR, Krummel MF. The spatiotemporal cellular dynamics of lung immunity. Trends Immunol 2014; 35:379-86. [PMID: 24974157 DOI: 10.1016/j.it.2014.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/08/2023]
Abstract
The lung is a complex structure that is interdigitated with immune cells. Understanding the 4D process of normal and defective lung function and immunity has been a centuries-old problem. Challenges intrinsic to the lung have limited adequate microscopic evaluation of its cellular dynamics in real time, until recently. Because of emerging technologies, we now recognize alveolar-to-airway transport of inhaled antigen. We understand the nature of neutrophil entry during lung injury and are learning more about cellular interactions during inflammatory states. Insights are also accumulating in lung development and the metastatic niche of the lung. Here we assess the developing technology of lung imaging, its merits for studies of pathophysiology and areas where further advances are needed.
Collapse
Affiliation(s)
- Efrat Lelkes
- Department of Pediatrics, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA; Department of Pathology, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA
| | - Mark B Headley
- Department of Pathology, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA
| | - Emily E Thornton
- Department of Pathology, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA
| | - Mark R Looney
- Department of Medicine, University of California-San Francisco, 513 Parnassus Avenue, HSE 1355A, San Francisco, CA 94143-0511, USA
| | - Matthew F Krummel
- Department of Pathology, University of California-San Francisco, 513 Parnassus Avenue, HSW 518, San Francisco, CA 94143-0511, USA.
| |
Collapse
|
11
|
Oshima Y, Horiuch H, Honkura N, Hikita A, Ogata T, Miura H, Imamura T. Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system. Lasers Surg Med 2014; 46:563-72. [PMID: 24912089 DOI: 10.1002/lsm.22266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Near-infrared ultrafast lasers are widely used for multiphoton excited fluorescence microscopy in living animals. Ti:Sapphire lasers are typically used for multiphoton excitation, but their emission wavelength is restricted below 1,000 nm. The aim of this study is to evaluate the performance of a compact Ytterbium-(Yb-) fiber laser at 1,045 nm for multiphoton excited fluorescence microscopy in spinal cord injury. MATERIALS AND METHODS In this study, we employed a custom-designed microscopy system with a compact Yb-fiber laser and evaluated the performance of this system in in vivo imaging of brain cortex and spinal cord in YFP-H transgenic mice. RESULTS For in vivo imaging of brain cortex, sharp images of basal dendrites, and pyramidal cells expressing EYFP were successfully captured using the Yb-fiber laser in our microscopy system. We also performed in vivo imaging of axon fibers of spinal cord in the transgenic mice. The obtained images were almost as sharp as those obtained using a conventional ultrafast laser system. In addition, laser ablation and multi-color imaging could be performed simultaneously using the Yb-fiber laser. CONCLUSION The high-peak pulse Yb-fiber laser is potentially useful for multimodal bioimaging methods based on a multiphoton excited fluorescence microscopy system that incorporates laser ablation techniques. Our results suggest that microscopy systems of this type could be utilized in studies of neuroscience and clinical use in diagnostics and therapeutic tool for spinal cord injury in the future.
Collapse
Affiliation(s)
- Yusuke Oshima
- Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan; Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan; Division of Bio-Imaging Proteo-Scinece Center, Ehime University, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Wu X, Chen G, Lu J, Zhu W, Qiu J, Chen J, Xie S, Zhuo S, Yan J. Label-free detection of breast masses using multiphoton microscopy. PLoS One 2013; 8:e65933. [PMID: 23755295 PMCID: PMC3675049 DOI: 10.1371/journal.pone.0065933] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
Histopathology forms the gold standard for the diagnosis of breast cancer. Multiphoton microscopy (MPM) has been proposed to be a potentially powerful adjunct to current histopathological techniques. A label-free imaging based on two- photon excited fluorescence and second-harmonic generation is developed for differentiating normal breast tissues, benign, as well as breast cancer tissues. Human breast biopsies (including human normal breast tissues, benign as well as breast cancer tissues ) that are first imaged (fresh, unfixed, and unstained) with MPM and are then processed for routine H-E histopathology. Our results suggest that the MPM images, obtained from these unprocessed biopsies, can readily distinguish between benign lesions and breast cancers. In the tissues of breast cancers, MPM showed that the tumor cells displayed marked cellular and nuclear pleomorphism. The tumor cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, infiltrated into disrupted connective tissue, leading to the loss of second-harmonic generation signals. For breast cancer, MPM diagnosis was 100% correct because the tissues of breast cancers did not have second-harmonic generation signals in MPM imaging. On the contrary, in benign breast masses, second-harmonic generation signals could be seen easily in MPM imaging. These observations indicate that MPM could be an important potential tool to provide label-free noninvasive diagnostic impressions that can guide surgeon in biopsy and patient management.
Collapse
Affiliation(s)
- Xiufeng Wu
- Department of Surgery, Fujian Provincial Tumor Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Gang Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Jianping Lu
- Department of Pathology, Fujian Provincial Tumor Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Weifeng Zhu
- Department of Pathology, Fujian Provincial Tumor Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Jingting Qiu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China
| | - Jianxin Chen
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China
| | - Shusen Xie
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China
| | - Shuangmu Zhuo
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China
- * E-mail: (SZ); (JY)
| | - Jun Yan
- Department of Surgery, Fujian Provincial Tumor Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
- * E-mail: (SZ); (JY)
| |
Collapse
|
13
|
Morales AR, Yanez CO, Zhang Y, Wang X, Biswas S, Urakami T, Komatsu M, Belfield KD. Small molecule fluorophore and copolymer RGD peptide conjugates for ex vivo two-photon fluorescence tumor vasculature imaging. Biomaterials 2012; 33:8477-85. [PMID: 22940216 DOI: 10.1016/j.biomaterials.2012.06.082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/27/2012] [Indexed: 01/13/2023]
Abstract
We report the use of small molecule and block copolymer RGD peptide conjugates for deep ex vivo imaging of tumor vasculature in "whole" excised tumors using two-photon fluorescence microscopy (2PFM). The fluorescent probes were administered to mice via tail-vein injection, after which the tumors were excised, fixed, and imaged without further sample preparation. Both RGD conjugates demonstrated specific targeting to tumor blood vessels, and this selectivity imparted excellent contrast in 2PFM micrographs that captured high-resolution 3-D images of the tumor vasculature up to depths of 830 μm in Lewis Lung Carcinoma (LLC) tumors. 2PFM ex vivo fluorescence micrographs clearly revealed tumor vessels, while differences in the sensitivity of tumor vessel imaging were apparent between the small molecule and block copolymer conjugates. Both the small molecule and polymer-based two-photon absorbing probe conjugate are valuable for deep tissue tumor microvasculature imaging.
Collapse
Affiliation(s)
- Alma R Morales
- University of Central Florida, Department of Chemistry, P.O. Box 162366, Orlando, FL 32816-2366, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dhawan AP, D'Alessandro B, Fu X. Optical imaging modalities for biomedical applications. IEEE Rev Biomed Eng 2012; 3:69-92. [PMID: 22275202 DOI: 10.1109/rbme.2010.2081975] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optical photographic imaging is a well known imaging method that has been successfully translated into biomedical applications such as microscopy and endoscopy. Although several advanced medical imaging modalities are used today to acquire anatomical, physiological, metabolic, and functional information from the human body, optical imaging modalities including optical coherence tomography, confocal microscopy, multiphoton microscopy, multispectral endoscopy, and diffuse reflectance imaging have recently emerged with significant potential for non-invasive, portable, and cost-effective imaging for biomedical applications spanning tissue, cellular, and molecular levels. This paper reviews methods for modeling the propagation of light photons in a biological medium, as well as optical imaging from organ to cellular levels using visible and near-infrared wavelengths for biomedical and clinical applications.
Collapse
Affiliation(s)
- Atam P Dhawan
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
15
|
Hayashi Y, Tagawa Y, Yawata S, Nakanishi S, Funabiki K. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy. Eur J Neurosci 2012; 36:2722-32. [PMID: 22780218 DOI: 10.1111/j.1460-9568.2012.08191.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Controlling neural activity with high spatio-temporal resolution is desired for studying how neural circuit dynamics control animal behavior. Conventional methods for manipulating neural activity, such as electrical microstimulation or pharmacological blockade, have poor spatial and/or temporal resolution. Algal protein channelrhodopsin-2 (ChR2) enables millisecond-precision control of neural activity. However, a photostimulation method for high spatial resolution mapping in vivo is yet to be established. Here, we report a novel optical/electrical probe, consisting of optical fiber bundles and metal electrodes. Optical fiber bundles were used as a brain-insertable endoscope for image transfer and stimulating light delivery. Light-induced activity from ChR2-expressing neurons was detected with electrodes bundled to the endoscope, enabling verification of light-evoked action potentials. Photostimulation through optical fiber bundles of transgenic mice expressing ChR2 in layer 5 cortical neurons resulted in single-whisker movement, indicating spatially restricted activation of neurons in vivo. The probe system described here and a combination of various photoactive molecules will facilitate studies on the causal link between specific neural activity patterns and behavior.
Collapse
Affiliation(s)
- Yuichiro Hayashi
- Department of Systems Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan.
| | | | | | | | | |
Collapse
|
16
|
Yan J, Zhuo S, Chen G, Wu X, Zhou D, Xie S, Jiang J, Ying M, Jia F, Chen J, Zhou J. Preclinical study of using multiphoton microscopy to diagnose liver cancer and differentiate benign and malignant liver lesions. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:026004. [PMID: 22463036 DOI: 10.1117/1.jbo.17.2.026004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recently, the miniaturized multiphoton microscopy (MPM) and multiphoton probe allow the clinical use of multiphoton endoscopy for diagnosing cancer via "optical biopsy". The purpose of this study was to establish MPM optical diagnostic features for liver cancer and evaluate the sensitivity, specificity, and accuracy of MPM optical diagnosis. Firstly, we performed a pilot study to establish the MPM diagnostic features by investigating 60 surgical specimens, and found that high-resolution MPM images clearly demonstrated apparent differences between benign and malignant liver lesions in terms of their tissue architecture and cell morphology. Cancer cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-cytoplasmic ratio, were identified by MPM images, which were comparable to hematoxylin-eosin staining images. Secondly, we performed a blinded study to evaluate the sensitivity, specificity, and accuracy of MPM optical diagnosis by investigating another 164 specimens, and found that the sensitivity, specificity, and accuracy of MPM diagnosis was 96.32%, 96.43%, and 96.34%, respectively. In conclusion, it is feasible to use MPM to diagnose liver cancer and differentiate benign and malignant liver lesions. This preclinical study provides the groundwork for further using multiphoton endoscopy to perform real-time noninvasive "optical biopsy" for liver lesions in the near future.
Collapse
Affiliation(s)
- Jun Yan
- Fudan University, Zhongshan Hospital, Liver Cancer Institute, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vaziri A, Emiliani V. Reshaping the optical dimension in optogenetics. Curr Opin Neurobiol 2012; 22:128-37. [DOI: 10.1016/j.conb.2011.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/06/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|
18
|
Maschio MD, Beltramo R, De Stasi AM, Fellin T. Two-Photon Calcium Imaging in the Intact Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:83-102. [DOI: 10.1007/978-94-007-2888-2_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Field JJ, Sheetz KE, Chandler EV, Hoover EE, Young MD, Ding SY, Sylvester AW, Kleinfeld D, Squier JA. Differential Multiphoton Laser Scanning Microscopy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:14-28. [PMID: 27390511 PMCID: PMC4932844 DOI: 10.1109/jstqe.2010.2077622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot.
Collapse
Affiliation(s)
- Jeffrey J. Field
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - Kraig E. Sheetz
- Department of Physics and Nuclear Engineering, United
States Military Academy, West Point, NY 10996, USA
| | - Eric V. Chandler
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - Erich E. Hoover
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - Michael D. Young
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - Shi-you Ding
- National Renewable Energy Laboratory, 1617 Cole Boulevard,
Golden, CO 80401, USA
| | - Anne W. Sylvester
- Department of Molecular Biology, University of Wyoming,
Laramie, WY 82071, USA
| | - David Kleinfeld
- Department of Physics, Graduate Program in Neuroscience,
Center for Neural Circuits and Behavior, University of California at San Diego, La
Jolla, CA 92093, USA
| | - Jeff A. Squier
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| |
Collapse
|
20
|
Luo Z, Volkow ND, Heintz N, Pan Y, Du C. Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+]i imaging. J Neurosci 2011; 31:13180-90. [PMID: 21917801 PMCID: PMC3214624 DOI: 10.1523/jneurosci.2369-11.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 01/04/2023] Open
Abstract
Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca(2+)](i)) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca(2+)](i) in D1R-expressing neurons (10.6 ± 3.2%) in striatum within 8.3 ± 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca(2+)](i) increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca(2+)](i) in D2R-expressing neurons (10.4 ± 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca(2+)](i) decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R-expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation of D1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.
Collapse
Affiliation(s)
| | - Nora D. Volkow
- National Institute of Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, and
| | | | - Congwu Du
- Anesthesiology, Stony Brook University, Stony Brook, New York 11794
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
21
|
Leeder JM, Andrews DL. A molecular theory for two-photon and three-photon fluorescence polarization. J Chem Phys 2011; 134:094503. [PMID: 21384981 DOI: 10.1063/1.3556537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the analysis of molecular structure and local order in heterogeneous samples, multiphoton excitation of fluorescence affords chemically specific information and high-resolution imaging. This report presents the results of an investigation that secures a detailed theoretical representation of the fluorescence polarization produced by one-, two-, and three-photon excitations, with orientational averaging procedures being deployed to deliver the fully disordered limits. The equations determining multiphoton fluorescence response prove to be expressible in a relatively simple, generic form, and graphs exhibit the functional form of the multiphoton fluorescence polarization. Amongst other features, the results lead to the identification of a condition under which the fluorescence produced through the concerted absorption of any number of photons becomes completely unpolarized. It is also shown that the angular variation of fluorescence intensities is reliable indicator of orientational disorder.
Collapse
Affiliation(s)
- J M Leeder
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | |
Collapse
|
22
|
Yan J, Chen G, Chen J, Liu N, Zhuo S, Yu H, Ying M. A pilot study of using multiphoton microscopy to diagnose gastric cancer. Surg Endosc 2010; 25:1425-30. [PMID: 21046158 DOI: 10.1007/s00464-010-1409-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 09/03/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Using a combination of autofluorescence from cells and second-harmonic generation (SHG) signal from collagen, multiphoton microscopy (MPM) imaging can provide detailed real-time information on tissue architecture and cellular morphology in live tissue without administration of exogenous contrast agents. The purpose of this study is to evaluate the feasibility of using MPM to histologically diagnose gastric cancer by using fresh, unfixed, unstained gastric specimens, compared with gold-standard hematoxylin-eosin (H-E)-stained histopathology. METHODS A pilot study was performed between June 2009 and December 2009. Ten cases with gastric carcinoma confirmed by preoperative endoscopic biopsy underwent radical gastrectomy. The fresh specimen was opened, and a piece of cancer tissue and a piece of normal tissue each with a size of 1-1.5 cm across and 0.2 cm in thickness were taken and snap-frozen. A 5-μm slide was sectioned for MPM examination, and the remainder of the tissue went through routine histopathological procedure. MPM images and H-E-stained images were compared by the same attending pathologist. RESULTS MPM images were acquired by two channels: broadband autofluorescence from cells, and SHG from tissue collagen. Peak multiphoton autofluorescence intensity was detected in mucosa excited at 800 nm. Cancer cells, characterized by irregular size and shape, enlarged nuclei, and increased nuclear-to-cytoplasmic ratio, were identified by MPM images, which were confirmed by H-E-stained images. Regular architectures of gastric pits and gastric glands in the normal tissue of the same specimens were clearly revealed by MPM images, which were comparable to H-E-stained images. CONCLUSIONS It is feasible to use MPM to diagnose gastric cancer by "optical biopsy." With miniaturization and integration of endoscopy, MPM has the potential to provide real-time histological diagnosis without invasive biopsy for gastric cancer in the future.
Collapse
Affiliation(s)
- Jun Yan
- Department of Surgery, Fujian Provincial Tumor Hospital, and Ministry of Education, Fujian Normal University, Fuzhou, 350014, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Optical imaging of nanoscale cellular structures. Biophys Rev 2010; 2:147-158. [PMID: 28510037 DOI: 10.1007/s12551-010-0037-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/18/2010] [Indexed: 01/03/2023] Open
Abstract
Visualization of subcellular structures and their temporal evolution is of utmost importance to understand a vast range of biological processes. Optical microscopy is the method of choice for imaging live cells and tissues; it is minimally invasive, so processes can be observed over extended periods of time without generating artifacts due to intense light irradiation. The use of fluorescence microscopy is advantageous because biomolecules or supramolecular structures of interest can be labeled specifically with fluorophores, so the images reveal information on processes involving only the labeled molecules. The key restriction of optical microscopy is its moderate resolution, which is limited to about half the wavelength of light (∼200 nm) due to fundamental physical laws governing wave optics. Consequently, molecular processes taking place at spatial scales between 1 and 100 nm cannot be studied by regular optical microscopy. In recent years, however, a variety of super-resolution fluorescence microscopy techniques have been developed that circumvent the resolution limitation. Here, we present a brief overview of these techniques and their application to cellular biophysics.
Collapse
|
24
|
Fukumura D, Duda DG, Munn LL, Jain RK. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 2010; 17:206-25. [PMID: 20374484 DOI: 10.1111/j.1549-8719.2010.00029.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intravital imaging techniques have provided unprecedented insight into tumor microcirculation and microenvironment. For example, these techniques allowed quantitative evaluations of tumor blood vasculature to uncover its abnormal organization, structure and function (e.g., hyper-permeability, heterogeneous and compromised blood flow). Similarly, imaging of functional lymphatics has documented their absence inside tumors. These abnormalities result in elevated interstitial fluid pressure and hinder the delivery of therapeutic agents to tumors. In addition, they induce a hostile microenvironment characterized by hypoxia and acidosis, as documented by intravital imaging. The abnormal microenvironment further lowers the effectiveness of anti-tumor treatments such as radiation therapy and chemotherapy. In addition to these mechanistic insights, intravital imaging may also offer new opportunities to improve therapy. For example, tumor angiogenesis results in immature, dysfunctional vessels--primarily caused by an imbalance in production of pro- and anti-angiogenic factors by the tumors. Restoring the balance of pro- and anti-angiogenic signaling in tumors can "normalize" tumor vasculature and thus, improve its function, as demonstrated by intravital imaging studies in preclinical models and in cancer patients. Administration of cytotoxic therapy during periods of vascular normalization has the potential to enhance treatment efficacy.
Collapse
Affiliation(s)
- Dai Fukumura
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
25
|
Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy. J Gastroenterol 2010; 45:544-53. [PMID: 20058031 DOI: 10.1007/s00535-009-0187-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 12/03/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Two-photon laser-scanning microscopy (TPLSM) is a powerful diagnostic tool for real-time, high-resolution structural imaging. However, obtaining high-quality in vivo TPLSM images of intra-abdominal organs remains technically challenging. MATERIALS AND METHODS An organ-stabilizing system was applied to high-quality TPLSM imaging. Real-time imaging of visceral organs, such as the liver, spleen, kidney and intestine, of transgenic green fluorescent protein (GFP) mice was performed in vivo using TPLSM. The bacterial translocation model using dextran sodium sulfate (DSS)-induced colitis was also investigated in prepared GFP mice following simple surgery. This allowed the capture of morphological real images using in vivo TPLSM. Immunohistochemical analysis of ZO-1 was performed to support the morphological findings of TPLSM. RESULTS AND CONCLUSIONS We established an organ-stabilizing system to evaluate the real-time imaging of visceral organs in actin-GFP transgenic mice using in vivo TPLSM. DSS-induced colitis showed irregularity of crypt architecture, disappearance of crypts, inflammatory cell infiltration and increased rolling of white blood cells along the vasculature. In addition, the intercellular distance of mucosal cells in the crypt and vascular endothelial cells in the intestinal wall was increased in the intestinal mucosa during DSS colitis. In DSS colitis, there was remarkable loss of mucosal and vascular endothelial ZO-1 expression, as could be seen by a decrease in ZO-1 staining. In conclusion, our observations suggested the possibility that our TPLSM imaging system can be used to clarify the pathophysiological changes in various diseases using longitudinal studies of microscopic changes in the same animal over long periods of time.
Collapse
|
26
|
Cui L, Knox WH. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:026004. [PMID: 20459249 DOI: 10.1117/1.3368995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.
Collapse
Affiliation(s)
- Liping Cui
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627, USA.
| | | |
Collapse
|
27
|
Bhogal N, Jalali F, Bristow RG. Microscopic imaging of DNA repair foci in irradiated normal tissues. Int J Radiat Biol 2009; 85:732-46. [PMID: 19296345 DOI: 10.1080/09553000902785791] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE It is now feasible to detect DNA double strand breaks (DSB) in tissues by measuring the induction and resolution of DNA repair foci, such as gamma-H2AX, using immunofluorescent microscopy and digital image analysis. This review will highlight principal tools and approaches to tissue microscopy and analysis. It will also discuss the practical considerations of using microscopy in vitro and in vivo in measuring intranuclear foci following irradiation. CONCLUSIONS Computer-based image analysis algorithms allow an objective and quantitative analysis of foci and protein-protein interactions using 3D confocal images. Finally, we review the literature in which DNA repair foci have been investigated as a biodosimeter or a biomarker of DNA repair in normal tissues.
Collapse
Affiliation(s)
- Nirmal Bhogal
- Applied Molecular Oncology and Radiation Medicine Program, Ontario Cancer Institute/Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada
| | | | | |
Collapse
|
28
|
Provenzano PP, Eliceiri KW, Keely PJ. Shining new light on 3D cell motility and the metastatic process. Trends Cell Biol 2009; 19:638-48. [PMID: 19819146 DOI: 10.1016/j.tcb.2009.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 01/04/2023]
Abstract
Understanding tissue architecture and physical and chemical reciprocity between cells and their microenvironment provides vital insights into key events in cancer metastasis, such as cell migration through three-dimensional (3D) extracellular matrices. Yet, many mechanistic details associated with metastasis remain elusive due to the difficulty of studying cancer cells in relevant 3D microenvironments. Recently, optical imaging has facilitated the direct observation of single cells as they undertake fundamental steps in the metastatic processes. Optical imaging is also providing novel 'optical biomarkers' with diagnostic potential that are linked to cell-motility pathways associated with metastasis, and these can to help guide new approaches to cancer diagnosis and therapy. Here we present recent advances in one subclass of optical imaging of particular promise for cellular imaging - multiphoton microscopy - that can be used to improve the detection of malignant cells as well as advance our understanding of the cell biology of cancer metastasis.
Collapse
Affiliation(s)
- Paolo P Provenzano
- Laboratory for Optical and Computational Instrumentation, and Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
| | | | | |
Collapse
|
29
|
Swedlow JR, Andrews PD, Platani M. In vivo imaging of mammalian cells: image acquisition and analysis. Cold Spring Harb Protoc 2009; 2009:pdb.ip70. [PMID: 20147261 DOI: 10.1101/pdb.ip70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTIONLive cell imaging provides a powerful technique for the analysis of molecular dynamics within cells. Advances in imaging technology and probe design have established this approach as an important tool in modern biology. It is now possible to obtain commercial turnkey systems for digital imaging using a number of different imaging modalities. Nevertheless, it still requires considerable technical care and expertise to conduct a successful experiment. To perform a successful imaging experiment, it is important to maximize the signal-to-noise ratio (S:N) while minimizing damage to the cells. In this article, we focus on the use of fluorescence microscopy in live cell imaging, although most of the points discussed are relevant to any type of imaging. We describe many of the methods and considerations that are required for performing a successful imaging experiment in living cells. However, we do not provide a single recipe for success: The approach is much too empirical and depends on careful observation of the particular cells under investigation.
Collapse
|
30
|
Kelleher MT, Fruhwirth G, Patel G, Ofo E, Festy F, Barber PR, Ameer-Beg SM, Vojnovic B, Gillett C, Coolen A, Kéri G, Ellis PA, Ng T. The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients. Target Oncol 2009; 4:235-52. [PMID: 19756916 PMCID: PMC2778706 DOI: 10.1007/s11523-009-0116-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/28/2009] [Indexed: 12/21/2022]
Abstract
Genomics and proteomics will improve outcome prediction in cancer and have great potential to help in the discovery of unknown mechanisms of metastasis, ripe for therapeutic exploitation. Current methods of prognosis estimation rely on clinical data, anatomical staging and histopathological features. It is hoped that translational genomic and proteomic research will discriminate more accurately than is possible at present between patients with a good prognosis and those who carry a high risk of recurrence. Rational treatments, targeted to the specific molecular pathways of an individual's high-risk tumor, are at the core of tailored therapy. The aim of targeted oncology is to select the right patient for the right drug at precisely the right point in their cancer journey. Optical proteomics uses advanced optical imaging technologies to quantify the activity states of and associations between signaling proteins by measuring energy transfer between fluorophores attached to specific proteins. Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) assays are suitable for use in cell line models of cancer, fresh human tissues and formalin-fixed paraffin-embedded tissue (FFPE). In animal models, dynamic deep tissue FLIM/FRET imaging of cancer cells in vivo is now also feasible. Analysis of protein expression and post-translational modifications such as phosphorylation and ubiquitination can be performed in cell lines and are remarkably efficiently in cancer tissue samples using tissue microarrays (TMAs). FRET assays can be performed to quantify protein-protein interactions within FFPE tissue, far beyond the spatial resolution conventionally associated with light or confocal laser microscopy. Multivariate optical parameters can be correlated with disease relapse for individual patients. FRET-FLIM assays allow rapid screening of target modifiers using high content drug screens. Specific protein-protein interactions conferring a poor prognosis identified by high content tissue screening will be perturbed with targeted therapeutics. Future targeted drugs will be identified using high content/throughput drug screens that are based on multivariate proteomic assays. Response to therapy at a molecular level can be monitored using these assays while the patient receives treatment: utilizing re-biopsy tumor tissue samples in the neoadjuvant setting or by examining surrogate tissues. These technologies will prove to be both prognostic of risk for individuals when applied to tumor tissue at first diagnosis and predictive of response to specifically selected targeted anticancer drugs. Advanced optical assays have great potential to be translated into real-life benefit for cancer patients.
Collapse
Affiliation(s)
- Muireann T. Kelleher
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
- Department Medical Oncology, Guy’s Hospital, London, SE1 9RT UK
| | - Gilbert Fruhwirth
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| | - Gargi Patel
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| | - Enyinnaya Ofo
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| | - Frederic Festy
- Biomaterial, Biomimetics & Biophotonics Research Group, King’s College London, London, UK
| | - Paul R. Barber
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Simon M. Ameer-Beg
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| | - Borivoj Vojnovic
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Cheryl Gillett
- Guy’s & St Thomas’ Breast Tissue & Data Bank, King’s College London, Guy’s Hospital, London, SE1 9RT UK
| | - Anthony Coolen
- Department of Mathematics, King’s College London, Strand Campus, London, WC2R 2LS UK
| | - György Kéri
- Vichem Chemie Research Ltd., Herman Ottó utca 15, Budapest, Hungary
- Pathobiochemistry Research Group of Hungarian Academy of Science, Semmelweis University, Budapest, 1444 Bp 8. POB 260, Hungary
| | - Paul A. Ellis
- Department Medical Oncology, Guy’s Hospital, London, SE1 9RT UK
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division & Division of Cancer Studies, Kings College London, 2nd Floor, New Hunt House, Guy’s Medical School Campus, London, SE1 1UL UK
| |
Collapse
|
31
|
Carriles R, Schafer DN, Sheetz KE, Field JJ, Cisek R, Barzda V, Sylvester AW, Squier JA. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2009; 80:081101. [PMID: 19725639 PMCID: PMC2736611 DOI: 10.1063/1.3184828] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/14/2009] [Indexed: 05/20/2023]
Abstract
We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences.
Collapse
Affiliation(s)
- Ramón Carriles
- Department of Photonics, Centro de Investigaciones en Optica, León, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pilpel N, Landeck N, Klugmann M, Seeburg PH, Schwarz MK. Rapid, reproducible transduction of select forebrain regions by targeted recombinant virus injection into the neonatal mouse brain. J Neurosci Methods 2009; 182:55-63. [DOI: 10.1016/j.jneumeth.2009.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/13/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
|
33
|
Barhoumi R, Catania JM, Parrish AR, Awooda I, Tiffany-Castiglioni E, Safe S, Burghardt RC. Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in breast epithelial cell lines. J Toxicol Sci 2009; 34:13-25. [PMID: 19182432 PMCID: PMC2739812 DOI: 10.2131/jts.34.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Quantification of polycyclic aromatic hydrocarbons (PAH) and their metabolites within living cells and tissues in real time using fluorescence methods is complicated due to overlaping excitation and/or emission spectra of metabolites. In this study, simultaneous analysis of several metabolites of a prototype carcinogenic PAH, benzo[a]pyrene (BaP) in undifferentiated (MCF10A) and differentiated (MCF10CA1h) breast cancer cells was performed using single-cell multiphoton spectral analysis. The two cell types were selected for this study because they are known to have differences in BaP uptake and metabolism and induction of aryl hydrocarbon receptor-dependent ethoxyresorufin-O-deethylase (EROD) activity. Multiphoton microscopy spectral analysis performed in cells exposed to BaP for 24 hr identified 5 major peaks of fluorescence that were monitored within spectral bands. A comparison of the fluorescence peaks within these bands to those of BaP metabolite standards indicated that a peak in the spectral range of 393-415 nm matched benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide(+/-),(anti) (BPDE), the ultimate carcinogenic BaP metabolite. In addition, the 426-447 nm band matched the major metabolites 3-hydroxybenzo[a]pyrene (3-OH BaP) and 9-hydroxybenzo[a]pyrene (9-OH BaP); the 458-479 nm band corresponded to the secondary metabolite benzo[a]pyrene-3,6-dione (3,6 BPQ); and a peak at 490-530 nm matched the parent compound, BaP. Multiphoton spectral analysis also revealed differences in fluorescence intensities between MCF10A and MCF10CA1h cells within three spectral bands: 393-415 nm, 426-447 nm and 458-479 nm which were partially reversed with cyclosporine A suggesting differences in efflux mechanisms between cell lines. These results demonstrate the feasibility of analyzing BaP metabolism in situ by multiphoton spectral analysis and also identifying cell-type differences in BaP accumulation and metabolism.
Collapse
Affiliation(s)
- Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gunawardana SC, Benninger RKP, Piston DW. Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes. Am J Physiol Endocrinol Metab 2009; 296:E323-32. [PMID: 19066321 PMCID: PMC2645017 DOI: 10.1152/ajpendo.90544.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/04/2008] [Indexed: 01/14/2023]
Abstract
Islet transplantation is a promising therapeutic approach for type 1 diabetes. However, current success rates are low due to progressive graft failure in the long term and inability to monitor graft development in vivo. Other limitations include the necessity of initial invasive surgery and continued immunosuppressive therapy. We report an alternative transplantation strategy with the potential to overcome these problems. This technique involves transplantation of embryonic pancreatic tissue into recipients' subcutaneous space, eliminating the need for invasive surgery and associated risks. Current results in mouse models of type 1 diabetes show that embryonic pancreatic transplants in the subcutaneous space can normalize blood glucose homeostasis and achieve extensive endocrine differentiation and vascularization. Furthermore, modern imaging techniques such as two-photon excitation microscopy (TPEM) can be employed to monitor transplants through the intact skin in a completely noninvasive manner. Thus, this strategy is a convenient alternative to islet transplantation in diabetic mice and has the potential to be translated to human clinical applications with appropriate modifications.
Collapse
Affiliation(s)
- Subhadra C Gunawardana
- Dept. of Molecular Physiology and Biophysics, Vanderbilt Univ. School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
35
|
Bakota L, Brandt R. Chapter 2 Live‐Cell Imaging in the Study of Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:49-103. [DOI: 10.1016/s1937-6448(09)76002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
36
|
Sakadzić S, Demirbas U, Mempel TR, Moore A, Ruvinskaya S, Boas DA, Sennaroglu A, Kaertner FX, Fujimoto JG. Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser. OPTICS EXPRESS 2008; 16:20848-63. [PMID: 19065223 PMCID: PMC2689708 DOI: 10.1364/oe.16.020848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multi-photon microscopy (MPM) is a powerful tool for biomedical imaging, enabling molecular contrast and integrated structural and functional imaging on the cellular and subcellular level. However, the cost and complexity of femtosecond laser sources that are required in MPM are significant hurdles to widespread adoption of this important imaging modality. In this work, we describe femtosecond diode pumped Cr:LiCAF laser technology as a low cost alternative to femtosecond Ti:Sapphire lasers for MPM. Using single mode pump diodes which cost only $150 each, a diode pumped Cr:LiCAF laser generates approximately 70-fs duration, 1.8-nJ pulses at approximately 800 nm wavelengths, with a repetition rate of 100 MHz and average output power of 180 mW. Representative examples of MPM imaging in neuroscience, immunology, endocrinology and cancer research using Cr:LiCAF laser technology are presented. These studies demonstrate the potential of this laser source for use in a broad range of MPM applications.
Collapse
Affiliation(s)
- Sava Sakadzić
- MGH/MIT/HMS Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Provenzano PP, Eliceiri KW, Yan L, Ada-Nguema A, Conklin MW, Inman DR, Keely PJ. Nonlinear optical imaging of cellular processes in breast cancer. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:532-48. [PMID: 18986607 PMCID: PMC5575804 DOI: 10.1017/s1431927608080884] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nonlinear optical imaging techniques such as multiphoton and second harmonic generation (SHG) microscopy used in conjunction with novel signal analysis techniques such as spectroscopic and fluorescence excited state lifetime detection have begun to be used widely for biological studies. This is largely due to their promise to noninvasively monitor the intracellular processes of a cell together with the cell's interaction with its microenvironment. Compared to other optical methods these modalities provide superior depth penetration and viability and have the additional advantage in that they are compatible technologies that can be applied simultaneously. Therefore, application of these nonlinear optical approaches to the study of breast cancer holds particular promise as these techniques can be used to image exogeneous fluorophores such as green fluorescent protein as well as intrinsic signals such as SHG from collagen and endogenous fluorescence from nicotinamide adenine dinucleotide or flavin adenine dinucleotide. In this article the application of multiphoton excitation, SHG, and fluorescence lifetime imaging microscopy to relevant issues regarding the tumor-stromal interaction, cellular metabolism, and cell signaling in breast cancer is described. Furthermore, the ability to record and monitor the intrinsic fluorescence and SHG signals provides a unique tool for researchers to understand key events in cancer progression in its natural context.
Collapse
Affiliation(s)
- Paolo P. Provenzano
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
- Corresponding author.
| | - Long Yan
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
| | - Aude Ada-Nguema
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
| | - Matthew W. Conklin
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
| | - David R. Inman
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
| | - Patricia J. Keely
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI 53706
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792
| |
Collapse
|
38
|
Abstract
Intravital microscopy has provided unprecedented insights into tumor pathophysiology, including angiogenesis and the microenvironment. Tumor vasculature shows an abnormal organization, structure, and function. Tumor vessels are leaky, blood flow is heterogeneous and often compromised. Vascular hyperpermeability and the lack of functional lymphatic vessels inside tumors causes elevation of interstitial fluid pressure in solid tumors. These abnormalities form physiological barriers to the delivery of therapeutic agents to tumors and also lead to a hostile microenvironment characterized by hypoxia and acidosis, which hinders the effectiveness of anti-tumor treatments such as radiation therapy and chemotherapy. In addition, host-tumor interactions regulate expression of pro- and anti-angiogenic factors, resulting in pathophysiological characteristics of the tumor. On the other hand, in a physiological setting, angiogenic vessels become mature and form long-lasting functional units. Restoring the balance of pro- and anti-angiogenic factors in tumors may "normalize" tumor vasculature and thus improve its function. Administration of cytotoxic therapy during the vascular normalization would enhance its efficacy.
Collapse
Affiliation(s)
- Dai Fukumura
- Edwin L Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
39
|
Sheetz KE, Hoover EE, Carriles R, Kleinfeld D, Squier JA. Advancing multifocal nonlinear microscopy: development and application of a novel multibeam Yb:KGd(WO4)2 oscillator. OPTICS EXPRESS 2008; 16:17574-84. [PMID: 18958037 DOI: 10.1364/oe.16.017574] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a novel Yb:KGd(WO(4))(2) oscillator design that generates six beams of temporally delayed, 253 fs, 11 nJ pulses. This allows multifocal nonlinear microscopy to be performed without the need for complicated optical multiplexers. We demonstrate our design with twelve simultaneously acquired two-photon, second-harmonic and/or third-harmonic images generated from six laterally separated foci.
Collapse
Affiliation(s)
- Kraig E Sheetz
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA.
| | | | | | | | | |
Collapse
|
40
|
Provenzano PP, Eliceiri KW, Keely PJ. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 2008; 26:357-70. [PMID: 18766302 DOI: 10.1007/s10585-008-9204-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 08/03/2008] [Indexed: 12/12/2022]
Abstract
Cancer metastasis involves complex cell behavior and interaction with the extracellular matrix by metabolically active cells. To observe invasion and metastasis with sub-cellular resolution in vivo, multiphoton microscopy (MPM) allows imaging more deeply into tissues with less toxicity, compared with other optical imaging methods. MPM can be combined with second harmonic generation (SHG), fluorescent lifetime imaging microscopy (FLIM), and spectral-lifetime imaging microscopy (SLIM). SHG facilitates imaging of stromal collagen and tumor-stroma interactions, including the architecture and remodeling of the tumor microenvironment. FLIM allows characterization of exogenous and endogenous fluorophores, such as the metabolites FAD and NADH to score for metabolic state and provide optical biomarkers. SLIM permits additional identification and separation of endogenous and exogenous fluorophores by simultaneously collecting their spectra and lifetime, producing an optical molecular "fingerprint". Both FLIM and SLIM also serve as an improved method for the assessment of Förster (or fluorescence) resonance energy transfer (FRET). Hence, the use and further development of these approaches strongly enhances the visualization and quantification of tumor progression, invasion, and metastasis. Herein, we review recent developments of multiphoton FLIM and SLIM to study 2D and 3D cell migration, invasion into the tumor microenvironment, and metastasis.
Collapse
Affiliation(s)
- Paolo P Provenzano
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
41
|
Guo L, Tang Z, Xing D. Theoretical investigation on Raman induced kerr effect spectroscopy in nonlinear confocal microscopy. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11433-008-0086-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Two-Photon Fluorescent Probes for Long-Term Imaging of Calcium Waves in Live Tissue. Chemistry 2008; 14:2075-83. [DOI: 10.1002/chem.200701453] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Helmchen F, Kleinfeld D. Chapter 10. In vivo measurements of blood flow and glial cell function with two-photon laser-scanning microscopy. Methods Enzymol 2008; 444:231-54. [PMID: 19007667 DOI: 10.1016/s0076-6879(08)02810-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-photon laser scanning microscopy is an ideal tool for high-resolution fluorescence imaging in intact organs of living animals. With regard to in vivo brain research, this technique provides new opportunities to study hemodynamics in the microvascular system and morphological dynamics and calcium signaling in various glial cell types. These studies benefit from the ongoing developments for in vivo labeling, imaging, and photostimulation. Here, we review recent advances in the application of two-photon microscopy for the study of blood flow and glial cell function in the neocortex. We emphasize the dual role of two-photon imaging as a means to assess function in the normal state as well as a tool to investigate the vascular system and glia under pathological conditions, such as ischemia and microvascular disease. Further, we show how extensions of ultra-fast laser techniques lead to new models of stroke, where individual vessels may be targeted for occlusion with micrometer precision.
Collapse
Affiliation(s)
- Fritjof Helmchen
- Department of Neurophysiology, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
44
|
|
45
|
Kalab P, Pralle A. Chapter 21 Quantitative Fluorescence Lifetime Imaging in Cells as a Tool to Design Computational Models of Ran‐Regulated Reaction Networks. Methods Cell Biol 2008; 89:541-68. [DOI: 10.1016/s0091-679x(08)00621-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Huff TB, Shi Y, Fu Y, Wang H, Cheng JX. Multimodal Nonlinear Optical Microscopy and Applications to Central Nervous System Imaging. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2008; 14:4-9. [PMID: 19829746 PMCID: PMC2760980 DOI: 10.1109/jstqe.2007.913419] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Multimodal nonlinear optical (NLO) imaging is poised to become a powerful tool in bioimaging given its ability to capitalize on the unique advantages possessed by different NLO imaging modalities. The integration of different imaging modalities such as two-photon-excited fluorescence, sum frequency generation, and coherent anti-Stokes Raman scattering on the same platform can facilitate simultaneous imaging of different biological structures. Parameters to be considered in constructing a multimodal NLO microscope are discussed with emphasis on achieving a compromise in these parameters for efficient signal generation with each imaging modality. As an example of biomedical applications, multimodal NLO imaging is utilized to investigate the central nervous system in healthy and diseased states.
Collapse
Affiliation(s)
- Terry B Huff
- T. B. Huff is with the Department of Chemistry, Purdue University, West Lafayette, IN 47906 USA ( )
| | | | | | | | | |
Collapse
|
47
|
Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo. Clin Gastroenterol Hepatol 2008; 6:95-101. [PMID: 18065276 PMCID: PMC2254558 DOI: 10.1016/j.cgh.2007.10.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The ability to observe cellular and subcellular detail during routine endoscopy is a major goal in the development of new endoscopic imaging techniques. Multiphoton microscopy, which relies on nonlinear infrared optical processes, has the potential to identify cellular details by excitation of endogenous fluorescent molecules. We examined the feasibility of using multiphoton microscopy to characterize mucosal histology in the human gastrointestinal tract. METHODS A multiphoton microscope was used to determine the optimal excitation wavelength for examination of gastrointestinal mucosa. Fresh, unfixed, and unstained biopsy specimens obtained during routine endoscopy in human subjects then were examined by confocal microscopy and multiphoton microscopy. Multiphoton images also were compared with standard H&E images obtained from paired biopsy specimens. A prototype miniaturized multiphoton probe was used to examine intact rat colon. RESULTS Peak multiphoton autofluorescence intensity was detected in mucosa excited at 735 nm. Multiphoton microscopic examination of unstained biopsy specimens revealed improved cellular detail relative to either unstained or stained specimens examined by confocal imaging. Resolution of structures such as epithelial nuclei, goblet cells, and interstitial fibers and cells was comparable with what was obtained using standard H&E histology. Similar findings were observed when using a prototype miniaturized multiphoton probe. CONCLUSIONS Multiphoton microscopy can be used to examine gastrointestinal mucosa at the cellular level, without the need for fluorescent dyes. The construction of a multiphoton endomicroscope therefore could provide a practical means of performing virtual biopsies during the course of routine endoscopy, with advantages over currently available endomicroscopy technologies.
Collapse
|
48
|
Flügel A, Odoardi F, Nosov M, Kawakami N. Autoaggressive effector T cells in the course of experimental autoimmune encephalomyelitis visualized in the light of two-photon microscopy. J Neuroimmunol 2007; 191:86-97. [PMID: 17976745 DOI: 10.1016/j.jneuroim.2007.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Two photon microscopy (TPM) recently emerged as optical tool for the visualization of immune processes hundreds of micrometers deep in living tissue and organs. Here we summarize recent work on exploiting this technology to study brain antigen specific T cells. These cells are the cause of Experimental Autoimmune Encephalomyelitis (EAE) an autoimmune disease model of Multiple Sclerosis. TPM studies elucidated the dynamics of the autoaggressive effector T cells in peripheral immune milieus during preclinical EAE, where the cells become reprogrammed to enter their target organ. These studies revealed an unexpectedly lively locomotion behavior of the cells interrupted only by short-lasting contacts with the local immune stroma. Live T cell behavior was furthermore studied within the acutely inflamed CNS. Two distinct migratory patterns of the T cells were found: the majority of cells (60-70%) moved fast and seemingly unhindered through the compact CNS parenchyma. The motility of the other cell fraction was highly confined. The cells swung around a fixed cell pole forming long-lasting contacts to putative local antigen presenting cells.
Collapse
|
49
|
Liu E, Treiser MD, Johnson PA, Patel P, Rege A, Kohn J, Moghe PV. Quantitative biorelevant profiling of material microstructure within 3D porous scaffolds via multiphoton fluorescence microscopy. J Biomed Mater Res B Appl Biomater 2007; 82:284-97. [PMID: 17238159 DOI: 10.1002/jbm.b.30732] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study presents a novel approach, based on fluorescence multiphoton microscopy (MPM), to image and quantitatively characterize the microstructure and cell-substrate interactions within microporous scaffold substrates fabricated from synthetic biodegradable polymers. Using fluorescently dyed scaffolds fabricated from poly(DTE carbonate)/poly(DTO carbonate) blends of varying porosity and complementary green fluorescent protein-engineered fibroblasts, we reconstructed the three-dimensional distribution of the microporous and macroporous regions in 3D scaffolds, as well as cellular morphological patterns. The porosity, pore size and distribution, strut size, pore interconnectivity, and orientation of both macroscale and microscale pores of 3D scaffolds were effectively quantified and validated using complementary imaging techniques. Compared to other scaffold characterizing techniques such as confocal imaging and scanning electron microscopy (SEM), MPM enables the acquisition of images from scaffold thicknesses greater than a hundred microns with high signal-to-noise ratio, reduced bulk photobleaching, and the elimination of the need for deconvolution. In our study, the morphology and cytoskeletal organization of cells within the scaffold interior could be tracked with high resolution within the limits of penetration of MPM. Thus, MPM affords a promising integrated platform for imaging cell-material interactions within the interior of polymeric biomaterials.
Collapse
Affiliation(s)
- Er Liu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Finikova OS, Troxler T, Senes A, DeGrado WF, Hochstrasser RM, Vinogradov SA. Energy and electron transfer in enhanced two-photon-absorbing systems with triplet cores. J Phys Chem A 2007; 111:6977-90. [PMID: 17608457 PMCID: PMC2441487 DOI: 10.1021/jp071586f] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enhanced two-photon-absorbing (2PA) systems with triplet cores are currently under scrutiny for several biomedical applications, including photodynamic therapy (PDT) and two-photon microscopy of oxygen. The performance of so far developed molecules, however, is substantially below expected. In this study we take a detailed look at the processes occurring in these systems and propose ways to improve their performance. We focus on the interchromophore distance tuning as a means for optimization of two-photon sensors for oxygen. In these constructs, energy transfer from several 2PA chromophores is used to enhance the effective 2PA cross section of phosphorescent metalloporphyrins. Previous studies have indicated that intramolecular electron transfer (ET) can act as an effective quencher of phosphorescence, decreasing the overall sensor efficiency. We studied the interplay between 2PA, energy transfer, electron transfer, and phosphorescence emission using Rhodamine B-Pt tetrabenzoporphyrin (RhB-PtTBP) adducts as model compounds. 2PA cross sections (sigma2) of tetrabenzoporphyrins (TBPs) are in the range of several tens of GM units (near 800 nm), making TBPs superior 2PA chromophores compared to regular porphyrins (sigma2 values typically 1-2 GM). Relatively large 2PA cross sections of rhodamines (about 200 GM in 800-850 nm range) and their high photostabilities make them good candidates as 2PA antennae. Fluorescence of Rhodamine B (lambda(fl) = 590 nm, phi(fl) = 0.5 in EtOH) overlaps with the Q-band of phosphorescent PtTBP (lambda(abs) = 615 nm, epsilon = 98 000 M(-1) cm(-1), phi(p) approximately 0.1), suggesting that a significant amplification of the 2PA-induced phosphorescence via fluorescence resonance energy transfer (FRET) might occur. However, most of the excitation energy in RhB-PtTBP assemblies is consumed in several intramolecular ET processes. By installing rigid nonconducting decaproline spacers (Pro10) between RhB and PtTBP, the intramolecular ETs were suppressed, while the chromophores were kept within the Förster r0 distance in order to maintain high FRET efficiency. The resulting assemblies exhibit linear amplification of their 2PA-induced phosphorescence upon increase in the number of 2PA antenna chromophores and show high oxygen sensitivity. We also have found that PtTBPs possess unexpectedly strong forbidden S0 --> T1 bands (lambda(max) = 762 nm, epsilon = 120 M-1 cm-1). The latter may overlap with the laser spectrum and lead to unwanted linear excitation.
Collapse
Affiliation(s)
- Olga S Finikova
- Departments of Biochemistry and Biophysics and Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|