1
|
Berecki G, Tao E, Howell KB, Coorg RK, Andersen E, Kahlig K, Wolff M, Corry B, Petrou S. Nav1.2 channel mutations preventing fast inactivation lead to SCN2A encephalopathy. Brain 2025; 148:212-226. [PMID: 38939966 PMCID: PMC11706276 DOI: 10.1093/brain/awae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
SCN2A gene-related early-infantile developmental and epileptic encephalopathy (EI-DEE) is a rare and severe disorder that manifests in early infancy. SCN2A mutations affecting the fast inactivation gating mechanism can result in altered voltage dependence and incomplete inactivation of the encoded neuronal Nav1.2 channel and lead to abnormal neuronal excitability. In this study, we evaluated clinical data of seven missense Nav1.2 variants associated with DEE and performed molecular dynamics simulations, patch-clamp electrophysiology and dynamic clamp real-time neuronal modelling to elucidate the molecular and neuron-scale phenotypic consequences of the mutations. The N1662D mutation almost completely prevented fast inactivation without affecting activation. The comparison of wild-type and N1662D channel structures suggested that the ambifunctional hydrogen bond formation between residues N1662 and Q1494 is essential for fast inactivation. Fast inactivation could also be prevented with engineered Q1494A or Q1494L Nav1.2 channel variants, whereas Q1494E or Q149K variants resulted in incomplete inactivation and persistent current. Molecular dynamics simulations revealed a reduced affinity of the hydrophobic IFM-motif to its receptor site with N1662D and Q1494L variants relative to wild-type. These results demonstrate that the interactions between N1662 and Q1494 underpin the stability and the orientation of the inactivation gate and are essential for the development of fast inactivation. Six DEE-associated Nav1.2 variants, with mutations mapped to channel segments known to be implicated in fast inactivation were also evaluated. Remarkably, the L1657P variant also prevented fast inactivation and produced biophysical characteristics that were similar to those of N1662D, whereas the M1501V, M1501T, F1651C, P1658S and A1659V variants resulted in biophysical properties that were consistent with gain-of-function and enhanced action potential firing of hybrid neurons in dynamic action potential clamp experiments. Paradoxically, low densities of N1662D or L1657P currents potentiated action potential firing, whereas increased densities resulted in sustained depolarization. Our results provide novel structural insights into the molecular mechanism of Nav1.2 channel fast inactivation and inform treatment strategies for SCN2A-related EI-DEE. The contribution of non-inactivating Nav1.2 channels to neuronal excitability may constitute a distinct cellular mechanism in the pathogenesis of SCN2A-related DEE.
Collapse
Affiliation(s)
- Géza Berecki
- Ion Channels and Human Disease Group, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Department of the Florey Institute, University of Melbourne, Parkville, VIC 3050, Australia
| | - Elaine Tao
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Katherine B Howell
- Department of Neurology, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Neuroscience, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Rohini K Coorg
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erik Andersen
- Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand
| | - Kris Kahlig
- Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA
| | - Markus Wolff
- Swiss Epilepsy Center, Klinik Lengg, Zürich 8001, Switzerland
| | - Ben Corry
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Steven Petrou
- Ion Channels and Human Disease Group, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Department of the Florey Institute, University of Melbourne, Parkville, VIC 3050, Australia
- Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Li Z, Wu Q, Yan N. A structural atlas of druggable sites on Na v channels. Channels (Austin) 2024; 18:2287832. [PMID: 38033122 PMCID: PMC10732651 DOI: 10.1080/19336950.2023.2287832] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Nav channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Nav channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Nav channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Nav channels, encompassing the structural map for ligand binding on Nav channels. These findings have established a vital groundwork for future drug development.
Collapse
Affiliation(s)
- Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Zhang D, Feng F, Chen Y, Sui J, Ding L. The potential of marine natural products and their synthetic derivatives as drugs targeting ion channels. Eur J Med Chem 2024; 276:116644. [PMID: 38971051 DOI: 10.1016/j.ejmech.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Ion channels are a type of protein channel that play a vital role in numerous physiological functions by facilitating the passage of ions through cell membranes, thereby enabling ion and electrical signal transmission. As a crucial target for drug action, ion channels have been implicated in various diseases. Many natural products from marine organisms, such as fungi, algae, sponges, and sea cucumber, etc. have been found to have activities related to ion channels for decades. These interesting natural product molecules undoubtedly bring good news for the treatment of neurological and cardiovascular diseases. In this review, 92 marine natural products and their synthetic derivatives with ion channel-related activities that were identified during the period 2000-2024 were systematically reviewed. The synthesis and mechanisms of action of selected compounds were also discussed, aiming to offer insights for the development of drugs targeting ion channels.
Collapse
Affiliation(s)
- Dashuai Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fangjian Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Chen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jingyao Sui
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
5
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
6
|
Tibery DV, Nunes JAA, da Mata DO, Menezes LFS, de Souza ACB, Fernandes-Pedrosa MDF, Treptow W, Schwartz EF. Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus. Toxins (Basel) 2024; 16:257. [PMID: 38922152 PMCID: PMC11209618 DOI: 10.3390/toxins16060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this study, we present a comparative investigation using electrophysiological approaches and computational analysis between two alpha toxins from evolutionarily close scorpion species of the genus Tityus, namely, Tst3 and Ts3 from T. stigmurus and T. serrulatus, respectively. These toxins exhibit three natural substitutions near the C-terminal region, which is directly involved in the interaction between alpha toxins and Nav channels. Additionally, we characterized the activity of the Tst3 toxin on Nav1.1-Nav1.7 channels. The three natural changes between the toxins did not alter sensitivity to Nav1.4, maintaining similar intensities regarding their ability to alter opening probabilities, delay fast inactivation, and induce persistent currents. Computational analysis demonstrated a preference for the down conformation of VSD4 and a shift in the conformational equilibrium towards this state. This illustrates that the sequence of these toxins retained the necessary information, even with alterations in the interaction site region. Through electrophysiological and computational analyses, screening of the Tst3 toxin on sodium isoform revealed its classification as a classic α-NaTx with a broad spectrum of activity. It effectively delays fast inactivation across all tested isoforms. Structural analysis of molecular energetics at the interface of the VSD4-Tst3 complex further confirmed this effect.
Collapse
Affiliation(s)
- Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - João Antonio Alves Nunes
- Laboratório de Biologia Teórica e Computacional (LBTC), Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (J.A.A.N.); (W.T.)
| | - Daniel Oliveira da Mata
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Adolfo Carlos Barros de Souza
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Werner Treptow
- Laboratório de Biologia Teórica e Computacional (LBTC), Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (J.A.A.N.); (W.T.)
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| |
Collapse
|
7
|
Chen H, Xia Z, Dong J, Huang B, Zhang J, Zhou F, Yan R, Shi Y, Gong J, Jiang J, Huang Z, Jiang D. Structural mechanism of voltage-gated sodium channel slow inactivation. Nat Commun 2024; 15:3691. [PMID: 38693179 PMCID: PMC11063143 DOI: 10.1038/s41467-024-48125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated sodium (NaV) channels mediate a plethora of electrical activities. NaV channels govern cellular excitability in response to depolarizing stimuli. Inactivation is an intrinsic property of NaV channels that regulates cellular excitability by controlling the channel availability. The fast inactivation, mediated by the Ile-Phe-Met (IFM) motif and the N-terminal helix (N-helix), has been well-characterized. However, the molecular mechanism underlying NaV channel slow inactivation remains elusive. Here, we demonstrate that the removal of the N-helix of NaVEh (NaVEhΔN) results in a slow-inactivated channel, and present cryo-EM structure of NaVEhΔN in a potential slow-inactivated state. The structure features a closed activation gate and a dilated selectivity filter (SF), indicating that the upper SF and the inner gate could serve as a gate for slow inactivation. In comparison to the NaVEh structure, NaVEhΔN undergoes marked conformational shifts on the intracellular side. Together, our results provide important mechanistic insights into NaV channel slow inactivation.
Collapse
Affiliation(s)
- Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhou
- Beijing StoneWise Technology Co Ltd., 15 Haidian street, Haidian district, Beijing, China
| | - Rui Yan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
8
|
Yang Y, Chen Z, Zhou J, Jiang S, Wang G, Wan L, Yu J, Jiang M, Wang Y, Hu J, Liu X, Wang Y. Anti-PD-1 treatment protects against seizure by suppressing sodium channel function. CNS Neurosci Ther 2024; 30:e14504. [PMID: 37904722 PMCID: PMC11017438 DOI: 10.1111/cns.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
AIMS Although programmed cell death protein 1 (PD-1) typically serves as a target for immunotherapies, a few recent studies have found that PD-1 is expressed in the nervous system and that neuronal PD-1 might play a crucial role in regulating neuronal excitability. However, whether brain-localized PD-1 is involved in seizures and epileptogenesis is still unknown and worthy of in-depth exploration. METHODS The existence of PD-1 in human neurons was confirmed by immunohistochemistry, and PD-1 expression levels were measured by real-time quantitative PCR (RT-qPCR) and western blotting. Chemoconvulsants, pentylenetetrazol (PTZ) and cyclothiazide (CTZ), were applied for the establishment of in vivo (rodents) and in vitro (primary hippocampal neurons) models of seizure, respectively. SHR-1210 (a PD-1 monoclonal antibody) and sodium stibogluconate (SSG, a validated inhibitor of SH2-containing protein tyrosine phosphatase-1 [SHP-1]) were administrated to investigate the impact of PD-1 pathway blockade on epileptic behaviors of rodents and epileptiform discharges of neurons. A miRNA strategy was applied to determine the impact of PD-1 knockdown on neuronal excitability. The electrical activities and sodium channel function of neurons were determined by whole-cell patch-clamp recordings. The interaction between PD-1 and α-6 subunit of human voltage-gated sodium channel (Nav1.6) was validated by performing co-immunostaining and co-immunoprecipitation (co-IP) experiments. RESULTS Our results reveal that PD-1 protein and mRNA levels were upregulated in lesion cores compared with perifocal tissues of surgically resected specimens from patients with intractable epilepsy. Furthermore, we show that anti-PD-1 treatment has anti-seizure effects both in vivo and in vitro. Then, we reveal that PD-1 blockade can alter the electrophysiological properties of sodium channels. Moreover, we reveal that PD-1 acts together with downstream SHP-1 to regulate sodium channel function and hence neuronal excitability. Further investigation suggests that there is a direct interaction between neuronal PD-1 and Nav1.6. CONCLUSION Our study reveals that neuronal PD-1 plays an important role in epilepsy and that anti-PD-1 treatment protects against seizures by suppressing sodium channel function, identifying anti-PD-1 treatment as a novel therapeutic strategy for epilepsy.
Collapse
Affiliation(s)
- Yuling Yang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhiyun Chen
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
- Rehabilitation CenterShenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhenChina
| | - Shize Jiang
- Department of Neurosurgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Guoxiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Li Wan
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
- Rehabilitation CenterShenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhenChina
| | - Jiangning Yu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Min Jiang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yulong Wang
- Rehabilitation CenterShenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhenChina
| | - Jie Hu
- Department of Neurosurgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Xu Liu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
9
|
del Carlo RE, Reimche JS, Moniz HA, Hague MT, Agarwal SR, Brodie ED, Brodie ED, Leblanc N, Feldman CR. Coevolution with toxic prey produces functional trade-offs in sodium channels of predatory snakes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570760. [PMID: 38106015 PMCID: PMC10723449 DOI: 10.1101/2023.12.08.570760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Seemingly unrelated traits often share the same underlying molecular mechanisms, potentially generating a pleiotropic relationship whereby selection shaping one trait can simultaneously compromise another. While such functional trade-offs are expected to influence evolutionary outcomes, their actual relevance in nature is masked by obscure links between genotype, phenotype, and fitness. Here, we describe functional trade-offs that likely govern a key adaptation and coevolutionary dynamics in a predator-prey system. Several garter snake (Thamnophis spp.) populations have evolved resistance to tetrodotoxin (TTX), a potent chemical defense in their prey, toxic newts (Taricha spp.). Snakes achieve TTX resistance through mutations occurring at toxin-binding sites in the pore of snake skeletal muscle voltage-gated sodium channels (NaV1.4). We hypothesized that these mutations impair basic NaV functions, producing molecular trade-offs that should ultimately scale up to compromised organismal performance. We investigate biophysical costs in two snake species with unique and independently evolved mutations that confer TTX resistance. We show electrophysiological evidence that skeletal muscle sodium channels encoded by toxin-resistant alleles are functionally compromised. Furthermore, skeletal muscles from snakes with resistance genotypes exhibit reduced mechanical performance. Lastly, modeling the molecular stability of these sodium channel variants partially explains the electrophysiological and muscle impairments. Ultimately, adaptive genetic changes favoring toxin resistance appear to negatively impact sodium channel function, skeletal muscle strength, and organismal performance. These functional trade-offs at the cellular and organ levels appear to underpin locomotor deficits observed in resistant snakes and may explain variation in the population-level success of toxin-resistant alleles across the landscape, ultimately shaping the trajectory of snake-newt coevolution.
Collapse
Affiliation(s)
- Robert E. del Carlo
- University of Nevada, Reno School of Medicine, Department of Pharmacology, Reno, Nevada, USA, 89557
- University of Nevada, Reno Program in Cell & Molecular Pharmacology & Physiology
| | - Jessica S. Reimche
- University of Nevada, Reno, Department of Biology, Reno, Nevada, USA, 89557
- University of Nevada, Reno Program in Ecology, Evolution & Conservation Biology
| | - Haley A. Moniz
- University of Nevada, Reno, Department of Biology, Reno, Nevada, USA, 89557
- University of Nevada, Reno Program in Ecology, Evolution & Conservation Biology
| | - Michael T.J. Hague
- University of Virginia, Department of Biology, Charlottesville, Virginia, USA, 22904
| | - Shailesh R. Agarwal
- University of Nevada, Reno School of Medicine, Department of Pharmacology, Reno, Nevada, USA, 89557
| | - Edmund D. Brodie
- University of Virginia, Department of Biology, Charlottesville, Virginia, USA, 22904
| | - Edmund D. Brodie
- Utah State University, Department of Biology, Logan, Utah, USA, 84322
| | - Normand Leblanc
- University of Nevada, Reno School of Medicine, Department of Pharmacology, Reno, Nevada, USA, 89557
| | - Chris R. Feldman
- University of Nevada, Reno, Department of Biology, Reno, Nevada, USA, 89557
- University of Nevada, Reno Program in Ecology, Evolution & Conservation Biology
| |
Collapse
|
10
|
Raisch T, Raunser S. The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology. Nat Struct Mol Biol 2023; 30:1411-1427. [PMID: 37845413 DOI: 10.1038/s41594-023-01113-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/31/2023] [Indexed: 10/18/2023]
Abstract
Insecticides are indispensable tools for plant protection in modern agriculture. Despite having highly heterogeneous structures, many neurotoxic insecticides use similar principles to inhibit or deregulate neuronal ion channels. Insecticides targeting pentameric ligand-gated channels are structural mimetics of neurotransmitters or manipulate and deregulate the proteins. Those binding to (pseudo-)tetrameric voltage-gated(-like) channels, on the other hand, are natural or synthetic compounds that directly block the ion-conducting pore or prevent conformational changes in the transmembrane domain necessary for opening and closing the pore. The use of a limited number of inhibition mechanisms can be problematic when resistances arise and become more widespread. Therefore, there is a rising interest in the development of insecticides with novel mechanisms that evade resistance and are pest-insect-specific. During the last decade, most known insecticide targets, many with bound compounds, have been structurally characterized, bringing the rational design of novel classes of agrochemicals within closer reach than ever before.
Collapse
Affiliation(s)
- Tobias Raisch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
11
|
Elamin M, Lemtiri-Chlieh F, Robinson TM, Levine ES. Dysfunctional sodium channel kinetics as a novel epilepsy mechanism in chromosome 15q11-q13 duplication syndrome. Epilepsia 2023; 64:2515-2527. [PMID: 37329181 PMCID: PMC10529833 DOI: 10.1111/epi.17687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Duplication of the maternal chromosome 15q11.2-q13.1 region causes Dup15q syndrome, a highly penetrant neurodevelopmental disorder characterized by severe autism and refractory seizures. Although UBE3A, the gene encoding the ubiquitin ligase E3A, is thought to be the main driver of disease phenotypes, the cellular and molecular mechanisms that contribute to the development of the syndrome are yet to be determined. We previously established the necessity of UBE3A overexpression for the development of cellular phenotypes in human Dup15q neurons, including increased action potential firing and increased inward current density, which prompted us to further investigate sodium channel kinetics. METHODS We used a Dup15q patient-derived induced pluripotent stem cell line that was CRISPR-edited to remove the supernumerary chromosome and create an isogenic control line. We performed whole cell patch clamp electrophysiology on Dup15q and corrected control neurons at two time points of in vitro development. RESULTS Compared to corrected neurons, Dup15q neurons showed increased sodium current density and a depolarizing shift in steady-state inactivation. Moreover, onset of slow inactivation was delayed, and a faster recovery from both fast and slow inactivation processes was observed in Dup15q neurons. A fraction of sodium current in Dup15q neurons (~15%) appeared to be resistant to slow inactivation. Not unexpectedly, a higher fraction of persistent sodium current was also observed in Dup15q neurons. These phenotypes were modulated by the anticonvulsant drug rufinamide. SIGNIFICANCE Sodium channels play a crucial role in the generation of action potentials, and sodium channelopathies have been uncovered in multiple forms of epilepsy. For the first time, our work identifies in Dup15q neurons dysfunctional inactivation kinetics, which have been previously linked to multiple forms of epilepsy. Our work can also guide therapeutic approaches to epileptic seizures in Dup15q patients and emphasize the role of drugs that modulate inactivation kinetics, such as rufinamide.
Collapse
Affiliation(s)
- Marwa Elamin
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Fouad Lemtiri-Chlieh
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Tiwanna M Robinson
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Eric S Levine
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
12
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Song J, Jiang M, Jin Y, Li H, Li Y, Liu Y, Yu H, Huang X. Phytol from Faeces Bombycis alleviated migraine pain by inhibiting Nav1.7 sodium channels. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116161. [PMID: 36646158 DOI: 10.1016/j.jep.2023.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/11/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Faeces Bombycis (silkworm excrement, called Cansha in Chinese), is the dried faeces of the larvae of silkworm. According to the theories of traditional Chinese medicine recorded in "Compendium of Materia Medica", Faeces Bombycis has often been prescribed in traditional Chinese medicine for the treatment of recurrent headache, rheumatalgia, rubella and itching et al. However, the bioactive components and their exact mechanisms underlying the pain-relieving effects remain to be revealed. AIM OF THE STUDY The present study aimed to evaluate the analgesic effect of Faeces Bombycis extract (FBE) on migraine, explore the main active constituents and investigate the pharmacological mechanisms for its pain relief. MATERIALS AND METHODS The bioactivity of different extracts from Faeces Bombycis was tracked by the nitroglycerin (NTG)-induced migraine model on rats and identified by NMR spectroscopic data. Whole-cell patch clamp technique, an electrophysiological method, was used to screen the potential targets and study the mechanism of action for the bioactive compound. The following targets have been screened and studied, including Nav1.7 sodium channels, Nav1.8 sodium channels, TRPV1 channels and TRPA1 channels. The trigeminal ganglion neurons were further used to study the effects of the identified compound on neuronal excitability. RESULTS By testing the bioactivity of the different extracts proceedingly, fraction petroleum ether showed higher anti-migraine activity. Through further step-by-step isolations, 7 compounds were isolated. Among them, phytol was identified with the highest yield and displayed a potent anti-migraine effect. By screening the potential ion channel targets for migraine, phytol was found to preferentially block the inactivated state of Nav1.7 sodium channels with half-inhibition concentration 0.32 ± 0.05 μM. Thus, the effects of phytol on the biophysical properties of Nav1.7 sodium channels were further characterized. Phytol induced a hyperpolarizing shift of voltage-dependent inactivation and slowed the recovery from inactivation. The affinity of phytol became weaker in the inactivation-deficient Nav1.7 channels (Nav1.7-WCW). And such an effect was independent on the local anesthetic site (Nav1.7 F1737A). Consistent with the data from recombinant channels, the compound also displayed state-dependent inhibition on neuronal sodium channels and further decreased the neuronal excitability in trigeminal ganglion neurons. Moreover, besides Nav1.7 channel, phytol also antagonized the activation of TRPV1 and TRPA1 channels at micromolar concentrations with a weaker affinity. CONCLUSION Our results demonstrated that phytol is the major anti-migraine ingredient of Faeces Bombycis and alleviates migraine behaviors by acting on Nav1.7 sodium channels in the trigeminal ganglion neurons. This study provided evidences for the therapeutic application of Faeces Bombycis and phytol on migraine disease.
Collapse
Affiliation(s)
- Jianan Song
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Department of Neurobiology, Harbin Medical University, Harbin, 150086, China.
| | - Mengyuan Jiang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongrui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Yanhong Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, Harbin, 150086, China.
| | - Haibo Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Xiangzhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| |
Collapse
|
14
|
Marchal GA, Remme CA. Subcellular diversity of Nav1.5 in cardiomyocytes: distinct functions, mechanisms and targets. J Physiol 2023; 601:941-960. [PMID: 36469003 DOI: 10.1113/jp283086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
In cardiomyocytes, the rapid depolarisation of the membrane potential is mediated by the α-subunit of the cardiac voltage-gated Na+ channel (NaV 1.5), encoded by the gene SCN5A. This ion channel allows positively charged Na+ ions to enter the cardiomyocyte, resulting in the fast upstroke of the action potential and is therefore crucial for cardiac excitability and electrical propagation. This essential role is underscored by the fact that dysfunctional NaV 1.5 is associated with high risk for arrhythmias and sudden cardiac death. However, development of therapeutic interventions regulating NaV 1.5 has been limited due to the complexity of NaV 1.5 structure and function and its diverse roles within the cardiomyocyte. In particular, research from the last decade has provided us with increased knowledge on the subcellular distribution of NaV 1.5 as well as the proteins which it interacts with in distinct cardiomyocyte microdomains. We here review these insights, detailing the potential role of NaV 1.5 within subcellular domains as well as its dysfunction in the setting of arrhythmia disorders. We furthermore provide an overview of current knowledge on the pathways involved in (microdomain-specific) trafficking of NaV 1.5, and their potential as novel targets. Unravelling the complexity of NaV 1.5 (dys)function may ultimately facilitate the development of therapeutic strategies aimed at preventing lethal arrhythmias. This is not only of importance for pathophysiological conditions where sodium current is specifically decreased within certain subcellular regions, such as in arrhythmogenic cardiomyopathy and Duchenne muscular dystrophy, but also for other acquired and inherited disorders associated with NaV 1.5.
Collapse
Affiliation(s)
- Gerard A Marchal
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,National Institute of Optics, National Research Council (CNR-INO), Sesto Fiorentino, Florence, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Alvear-Arias JJ, Pena-Pichicoi A, Carrillo C, Fernandez M, Gonzalez T, Garate JA, Gonzalez C. Role of voltage-gated proton channel (Hv1) in cancer biology. Front Pharmacol 2023; 14:1175702. [PMID: 37153807 PMCID: PMC10157179 DOI: 10.3389/fphar.2023.1175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
The acid-base characteristics of tumor cells and the other elements that compose the tumor microenvironment have been topics of scientific interest in oncological research. There is much evidence confirming that pH conditions are maintained by changes in the patterns of expression of certain proton transporters. In the past decade, the voltage-gated proton channel (Hv1) has been added to this list and is increasingly being recognized as a target with onco-therapeutic potential. The Hv1 channel is key to proton extrusion for maintaining a balanced cytosolic pH. This protein-channel is expressed in a myriad of tissues and cell lineages whose functions vary from producing bioluminescence in dinoflagellates to alkalizing spermatozoa cytoplasm for reproduction, and regulating the respiratory burst for immune system response. It is no wonder that in acidic environments such as the tumor microenvironment, an exacerbated expression and function of this channel has been reported. Indeed, multiple studies have revealed a strong relationship between pH balance, cancer development, and the overexpression of the Hv1 channel, being proposed as a marker for malignancy in cancer. In this review, we present data that supports the idea that the Hv1 channel plays a significant role in cancer by maintaining pH conditions that favor the development of malignancy features in solid tumor models. With the antecedents presented in this bibliographic report, we want to strengthen the idea that the Hv1 proton channel is an excellent therapeutic strategy to counter the development of solid tumors.
Collapse
Affiliation(s)
- Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Antonio Pena-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernandez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Tania Gonzalez
- National Center for Minimally Invasive Surgery, La Habana, Cuba
| | - Jose A. Garate
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Carlos Gonzalez,
| |
Collapse
|
16
|
Fouda MA, Mohamed YF, Fernandez R, Ruben PC. Anti-inflammatory effects of cannabidiol against lipopolysaccharides in cardiac sodium channels. Br J Pharmacol 2022; 179:5259-5272. [PMID: 35906756 DOI: 10.1111/bph.15936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Sepsis, caused by a dysregulated host response to infections, can lead to cardiac arrhythmias. However, the mechanisms underlying sepsis-induced inflammation, and how inflammation provokes cardiac arrhythmias, are not well understood. We hypothesized that CBD may ameliorate lipopolysaccharides (LPS)-induced cardiotoxicity via Toll-like receptor 4 (TLR-4) and cardiac sodium channels (Nav1.5). METHODS AND RESULTS We incubated human immune cells (THP-1 macrophages) with LPS for 24 hours, then extracted the THP-1 incubation media. ELISA assay showed that LPS (1 or 5 μg/ml), in a concentration-dependent manner, or MPLA (TLR-4 agonist, 5 μg/ml) stimulated the THP-1 cells to release inflammatory cytokines (TNF-α and IL-6). Prior incubation (4 hours) with cannabidiol (CBD: 5 μM) or C34 (TLR-4 antagonist: 5 μg/ml) inhibited LPS and MPLA-induced release of both IL-6 and TNF-α. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) were subsequently incubated for 24 hours in the media extracted from THP-1 cells incubated with LPS, MPLA alone, or in combination with CBD or C34. Voltage-clamp experiments showed a right shift in the voltage dependence of Nav1.5 activation, steady state fast inactivation (SSFI), increased persistent current and prolonged in silico action potential duration in hiSPC-CM incubated in the LPS or MPLA-THP-1 media. Co-incubation with CBD or C34 rescued the biophysical dysfunction caused by LPS and MPLA. CONCLUSION Our results suggest that CBD may protect against sepsis-induced inflammation and subsequent arrhythmias through (i) inhibition of the release of inflammatory cytokines, antioxidant and anti-apoptotic effects and/or (ii) direct effect on Nav1.5.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Yasmine Fathy Mohamed
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Microbiology and Immunology, Alexandria University, Alexandria, Egypt
| | - Rachel Fernandez
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
17
|
Jiang D, Zhang J, Xia Z. Structural Advances in Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:908867. [PMID: 35721169 PMCID: PMC9204039 DOI: 10.3389/fphar.2022.908867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the rapid rising-phase of action potentials in excitable cells. Over 1,000 mutations in NaV channels are associated with human diseases including epilepsy, periodic paralysis, arrhythmias and pain disorders. Natural toxins and clinically-used small-molecule drugs bind to NaV channels and modulate their functions. Recent advances from cryo-electron microscopy (cryo-EM) structures of NaV channels reveal invaluable insights into the architecture, activation, fast inactivation, electromechanical coupling, ligand modulation and pharmacology of eukaryotic NaV channels. These structural analyses not only demonstrate molecular mechanisms for NaV channel structure and function, but also provide atomic level templates for rational development of potential subtype-selective therapeutics. In this review, we summarize recent structural advances of eukaryotic NaV channels, highlighting the structural features of eukaryotic NaV channels as well as distinct modulation mechanisms by a wide range of modulators from natural toxins to synthetic small-molecules.
Collapse
Affiliation(s)
- Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daohua Jiang,
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
N-type fast inactivation of a eukaryotic voltage-gated sodium channel. Nat Commun 2022; 13:2713. [PMID: 35581266 PMCID: PMC9114117 DOI: 10.1038/s41467-022-30400-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/28/2022] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (NaV) channels initiate action potentials. Fast inactivation of NaV channels, mediated by an Ile-Phe-Met motif, is crucial for preventing hyperexcitability and regulating firing frequency. Here we present cryo-electron microscopy structure of NaVEh from the coccolithophore Emiliania huxleyi, which reveals an unexpected molecular gating mechanism for NaV channel fast inactivation independent of the Ile-Phe-Met motif. An N-terminal helix of NaVEh plugs into the open activation gate and blocks it. The binding pose of the helix is stabilized by multiple electrostatic interactions. Deletion of the helix or mutations blocking the electrostatic interactions completely abolished the fast inactivation. These strong interactions enable rapid inactivation, but also delay recovery from fast inactivation, which is ~160-fold slower than human NaV channels. Together, our results provide mechanistic insights into fast inactivation of NaVEh that fundamentally differs from the conventional local allosteric inhibition, revealing both surprising structural diversity and functional conservation of ion channel inactivation.
Collapse
|
19
|
Hmaidi R, Ksouri A, Benabderrazek R, Antonietti V, Sonnet P, Gautier M, Bouhaouala-Zahar B, Ouadid-Ahidouch H. The Pharmacological and Structural Basis of the AahII–NaV1.5 Interaction and Modulation by the Anti-AahII Nb10 Nanobody. Front Pharmacol 2022; 13:821181. [PMID: 35295326 PMCID: PMC8918821 DOI: 10.3389/fphar.2022.821181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Scorpion α-toxins are neurotoxins that target the fast inactivation mechanism of voltage-gated sodium (NaV) channels leading to several neuro- and cardiotoxic effects in mammals. The toxin AahII is the most active α-toxin from the North African scorpion Androctonus australis Hector that slows the fast inactivation of NaV channels. To fight scorpion envenomation, an anti-AahII nanobody named NbAahII10 (Nb10) was developed. The efficiency of this nanobody has been evaluated in vivo on mice, but its mechanism of action at the cellular level remains unknown. Here we have shown that AahII toxin slows the fast inactivation of the adult cardiac NaV1.5 channels, expressed in HEK293 cells, in a dose-dependent manner, while current amplitude was not affected. The inactivation of NaV1.5 is slower by a factor of 4, 7, and 35 in the presence of [AahII] at 75, 150, and 300 nM, respectively. The washout partially reversed the toxin effect on inactivation from 8.3 ± 0.9 ms to 5.2 ± 1.2 ms at 75 nM. We have also demonstrated that the highly neutralizing Nb10 can fully reverse the effect of AahII toxin on the channel inactivation kinetics even at the 1:1 M ratio. However, the 1:0.5 M ratio is not able to neutralize completely the AahII effect. Therefore, the application of Nb10 promotes a partial abolishment of AahII action. Bioinformatic analysis and prediction of NaV1.5-driven docking with AahII show that Ala39 and Arg62 of AahII play a crucial role to establish a stable interaction through H-bound interactions with Gln1615 and Lys1616 (S3–S4 extracellular loop) and Asp1553 (S1–S2 loop) from the voltage-sensing domain IV (VSD4) of NaV1.5, respectively. From this, we notice that AahII shares the same contact surface with Nb10. This strongly suggests that Nb10 dynamically replaces AahII toxin from its binding site on the NaV1.5 channel. At the physiopathological level, Nb10 completely neutralized the enhancement of breast cancer cell invasion induced by AahII. In summary, for the first time, we made an electrophysiological and structural characterization of the neutralization potent of Nb10 against the α-scorpion toxin AahII in a cellular model overexpressing NaV1.5 channels.
Collapse
Affiliation(s)
- Riadh Hmaidi
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
| | - Ayoub Ksouri
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rahma Benabderrazek
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Viviane Antonietti
- Infectious Agents, Resistance and Chemotherapy UR 4294, UFR of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Pascal Sonnet
- Infectious Agents, Resistance and Chemotherapy UR 4294, UFR of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Mathieu Gautier
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical School of Tunis, University of Tunis El Manar, Tunis, Tunisia
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| |
Collapse
|
20
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
21
|
Le Cann K, Meents JE, Sudha Bhagavath Eswaran V, Dohrn MF, Bott R, Maier A, Bialer M, Hautvast P, Erickson A, Rolke R, Rothermel M, Körner J, Kurth I, Lampert A. Assessing the impact of pain-linked Nav1.7 variants: An example of two variants with no biophysical effect. Channels (Austin) 2021; 15:208-228. [PMID: 33487118 PMCID: PMC7833769 DOI: 10.1080/19336950.2020.1870087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022] Open
Abstract
Mutations in the voltage-gated sodium channel Nav1.7 are linked to human pain. The Nav1.7/N1245S variant was described before in several patients suffering from primary erythromelalgia and/or olfactory hypersensitivity. We have identified this variant in a pain patient and a patient suffering from severe and life-threatening orthostatic hypotension. In addition, we report a female patient suffering from muscle pain and carrying the Nav1.7/E1139K variant. We tested both Nav1.7 variants by whole-cell voltage-clamp recordings in HEK293 cells, revealing a slightly enhanced current density for the N1245S variant when co-expressed with the β1 subunit. This effect was counteracted by an enhanced slow inactivation. Both variants showed similar voltage dependence of activation and steady-state fast inactivation, as well as kinetics of fast inactivation, deactivation, and use-dependency compared to WT Nav1.7. Finally, homology modeling revealed that the N1245S substitution results in different intramolecular interaction partners. Taken together, these experiments do not point to a clear pathogenic effect of either the N1245S or E1139K variant and suggest they may not be solely responsible for the patients' pain symptoms. As discussed previously for other variants, investigations in heterologous expression systems may not sufficiently mimic the pathophysiological situation in pain patients, and single nucleotide variants in other genes or modulatory proteins are necessary for these specific variants to show their effect. Our findings stress that biophysical investigations of ion channel mutations need to be evaluated with care and should preferably be supplemented with studies investigating the mutations in their context, ideally in human sensory neurons.
Collapse
Affiliation(s)
- Kim Le Cann
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jannis E. Meents
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Maike F. Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Raya Bott
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andrea Maier
- Department of Neurology, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Martin Bialer
- Division of Clinical Metabolism of Medical Genetics and Human Genomics at Northwell Health System, New-York, United States
| | - Petra Hautvast
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Roman Rolke
- Department for Palliative Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Jannis Körner
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
22
|
Pharmacogenetics of Drug-Resistant Epilepsy (Review of Literature). Int J Mol Sci 2021; 22:ijms222111696. [PMID: 34769124 PMCID: PMC8584095 DOI: 10.3390/ijms222111696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Pharmacogenomic studies in epilepsy are justified by the high prevalence rate of this disease and the high cost of its treatment, frequent drug resistance, different response to the drug, the possibility of using reliable methods to assess the control of seizures and side effects of antiepileptic drugs. Candidate genes encode proteins involved in pharmacokinetic processes (drug transporters, metabolizing enzymes), pharmacodynamic processes (receptors, ion channels, enzymes, regulatory proteins, secondary messengers) and drug hypersensitivity (immune factors). This article provides an overview of the literature on the influence of genetic factors on treatment in epilepsy.
Collapse
|
23
|
Takla M, Edling CE, Zhang K, Saadeh K, Tse G, Salvage SC, Huang CL, Jeevaratnam K. Transcriptional profiles of genes related to electrophysiological function in Scn5a +/- murine hearts. Physiol Rep 2021; 9:e15043. [PMID: 34617689 PMCID: PMC8495800 DOI: 10.14814/phy2.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
The Scn5a gene encodes the major pore-forming Nav 1.5 (α) subunit, of the voltage-gated Na+ channel in cardiomyocytes. The key role of Nav 1.5 in action potential initiation and propagation in both atria and ventricles predisposes organisms lacking Scn5a or carrying Scn5a mutations to cardiac arrhythmogenesis. Loss-of-function Nav 1.5 genetic abnormalities account for many cases of the human arrhythmic disorder Brugada syndrome (BrS) and related conduction disorders. A murine model with a heterozygous Scn5a deletion recapitulates many electrophysiological phenotypes of BrS. This study examines the relationships between its Scn5a+/- genotype, resulting transcriptional changes, and the consequent phenotypic presentations of BrS. Of 62 selected protein-coding genes related to cardiomyocyte electrophysiological or homeostatic function, concentrations of mRNA transcribed from 15 differed significantly from wild type (WT). Despite halving apparent ventricular Scn5a transcription heterozygous deletion did not significantly downregulate its atrial expression, raising possibilities of atria-specific feedback mechanisms. Most of the remaining 14 genes whose expression differed significantly between WT and Scn5a+/- animals involved Ca2+ homeostasis specifically in atrial tissue, with no overlap with any ventricular changes. All statistically significant changes in expression were upregulations in the atria and downregulations in the ventricles. This investigation demonstrates the value of future experiments exploring for and clarifying links between transcriptional control of Scn5a and of genes whose protein products coordinate Ca2+ regulation and examining their possible roles in BrS.
Collapse
Affiliation(s)
- Michael Takla
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Christ’s CollegeUniversity of CambridgeCambridgeUK
| | | | - Kevin Zhang
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- School of MedicineImperial College LondonLondonUK
| | - Khalil Saadeh
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Clinical SchoolUniversity of CambridgeCambridgeUK
| | - Gary Tse
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Second Hospital of Tianjin Medical UniversityTianjinChina
| | | | - Christopher L.‐H. Huang
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
24
|
Jiang D, Banh R, Gamal El-Din TM, Tonggu L, Lenaeus MJ, Pomès R, Zheng N, Catterall WA. Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell 2021; 184:5151-5162.e11. [PMID: 34520724 DOI: 10.1016/j.cell.2021.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
The heartbeat is initiated by voltage-gated sodium channel NaV1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure. The fast inactivation gate moves away from its receptor, allowing asymmetric opening of pore-lining S6 segments, which bend and rotate at their intracellular ends to dilate the activation gate to ∼10 Å diameter. Molecular dynamics analyses predict physiological rates of Na+ conductance. The open-state pore blocker propafenone binds in a high-affinity pose, and drug-access pathways are revealed through the open activation gate and fenestrations. Comparison with mutagenesis results provides a structural map of arrhythmia mutations that target the activation and fast inactivation gates. These results give atomic-level insights into molecular events that underlie generation of the action potential, open-state drug block, and fast inactivation of cardiac sodium channels, which initiate the heartbeat.
Collapse
Affiliation(s)
- Daohua Jiang
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Richard Banh
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Pal R, Kumar B, Akhtar MJ, Chawla PA. Voltage gated sodium channel inhibitors as anticonvulsant drugs: A systematic review on recent developments and structure activity relationship studies. Bioorg Chem 2021; 115:105230. [PMID: 34416507 DOI: 10.1016/j.bioorg.2021.105230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/28/2022]
Abstract
Voltage-gated sodium channel blockers are one of the vital targets for the management of several central nervous system diseases, including epilepsy, chronic pain, psychiatric disorders, and spasticity. The voltage-gated sodium channels play a key role in controlling cellular excitability. This reduction in excitotoxicity is also applied to improve the symptoms of epileptic conditions. The effectiveness of antiepileptic drugs as sodium channel depends upon the reversible blocking of the spontaneous discharge without blocking its propagation. There are number of antiepileptic drug(s) which are in pipeline to flour the market to conquer abnormal neuronal excitability. They inhibit the seizures through the inhibition of complex voltage- and frequency-dependent ionic currents through sodium channels. Over the past decade, the sodium channel is one of the most explored targets to control or treat the seizure, but there has not been any game-changing discovery yet. Although there are large numbers of drugs approved for the treatment of epilepsy, however they are associated with several acute to chronic side effects. Many research groups have tirelessly worked for better therapeutic medication on this popular target to treat epileptic seizures. The review quotes briefly the developments of the approved examples of sodium channel blockers as anticonvulsant drugs. Medicinal chemists have tried the design and development of some more potent anticonvulsant drugs to minimize the toxicity that are discussed here, and an emphasis is given for their possible mechanism and the structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO620, PC 130 Azaiba, Bousher, Muscat, Sultanate of Oman
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
26
|
Fouda MA, Ruben PC. Protein Kinases Mediate Anti-Inflammatory Effects of Cannabidiol and Estradiol Against High Glucose in Cardiac Sodium Channels. Front Pharmacol 2021; 12:668657. [PMID: 33995099 PMCID: PMC8115126 DOI: 10.3389/fphar.2021.668657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Cardiovascular anomalies are predisposing factors for diabetes-induced morbidity and mortality. Recently, we showed that high glucose induces changes in the biophysical properties of the cardiac voltage-gated sodium channel (Nav1.5) that could be strongly correlated to diabetes-induced arrhythmia. However, the mechanisms underlying hyperglycemia-induced inflammation, and how inflammation provokes cardiac arrhythmia, are not well understood. We hypothesized that inflammation could mediate the high glucose-induced biophyscial changes on Nav1.5 through protein phosphorylation by protein kinases A and C. We also hypothesized that this signaling pathway is, at least partly, involved in the cardiprotective effects of cannabidiol (CBD) and 17β-estradiol (E2). Methods and Results: To test these ideas, we used Chinese hamster ovarian (CHO) cells transiently co-transfected with cDNA encoding human Nav1.5 α-subunit under control, a cocktail of inflammatory mediators or 100 mM glucose conditions (for 24 h). We used electrophysiological experiments and action potential modeling. Inflammatory mediators, similar to 100 mM glucose, right shifted the voltage dependence of conductance and steady-state fast inactivation and increased persistent current leading to computational prolongation of action potential (hyperexcitability) which could result in long QT3 arrhythmia. We also used human iCell cardiomyocytes derived from inducible pluripotent stem cells (iPSC-CMs) as a physiologically relevant system, and they replicated the effects produced by inflammatory mediators observed in CHO cells. In addition, activators of PK-A or PK-C replicated the inflammation-induced gating changes of Nav1.5. Inhibitors of PK-A or PK-C, CBD or E2 mitigated all the potentially deleterious effects provoked by high glucose/inflammation. Conclusion: These findings suggest that PK-A and PK-C may mediate the anti-inflammatory effects of CBD and E2 against high glucose-induced arrhythmia. CBD, via Nav1.5, may be a cardioprotective therapeutic approach in diabetic postmenopausal population.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
27
|
Haverinen J, Dzhumaniiazova I, Abramochkin DV, Hassinen M, Vornanen M. Effects of Na+ channel isoforms and cellular environment on temperature tolerance of cardiac Na+ current in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). J Exp Biol 2021; 224:237812. [PMID: 33914031 DOI: 10.1242/jeb.241067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022]
Abstract
Heat tolerance of heart rate in fish is suggested to be limited by impaired electrical excitation of the ventricle due to the antagonistic effects of high temperature on Na+ (INa) and K+ (IK1) ion currents (INa is depressed at high temperatures while IK1 is resistant to them). To examine the role of Na+ channel proteins in heat tolerance of INa, we compared temperature dependencies of zebrafish (Danio rerio, warm-dwelling subtropical species) and rainbow trout (Oncorhynchus mykiss, cold-active temperate species) ventricular INa, and INa generated by the cloned zebrafish and rainbow trout NaV1.4 and NaV1.5 Na+ channels in human embryonic kidney (HEK) cells. Whole-cell patch-clamp recordings showed that zebrafish ventricular INa has better heat tolerance and slower inactivation kinetics than rainbow trout ventricular INa. In contrast, heat tolerance and inactivation kinetics of zebrafish and rainbow trout NaV1.4 channels are similar when expressed in the identical cellular environment of HEK cells. The same applies to NaV1.5 channels. These findings indicate that thermal adaptation of ventricular INa is largely achieved by differential expression of Na+ channel alpha subunits: zebrafish that tolerate higher temperatures mainly express the slower NaV1.5 isoform, while rainbow trout that prefer cold waters mainly express the faster NaV1.4 isoform. Differences in elasticity (stiffness) of the lipid bilayer and/or accessory protein subunits of the channel assembly may also be involved in thermal adaptation of INa. The results are consistent with the hypothesis that slow Na+ channel kinetics are associated with increased heat tolerance of cardiac excitation.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119234 Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119234 Moscow, Russia.,Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya 15a, 121552 Moscow, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Str. 1, 117997 Moscow, Russia
| | - Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| |
Collapse
|
28
|
Carbone E. Fast inactivation of Nav1.3 channels by FGF14 proteins: An unconventional way to regulate the slow firing of adrenal chromaffin cells. J Gen Physiol 2021; 153:211934. [PMID: 33792614 PMCID: PMC8020463 DOI: 10.1085/jgp.202112879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Using Nav1.3 and FGF14 KO mice, Martinez-Espinosa et al. provide new findings on how intracellular FGF14 proteins interfere with the endogenous fast inactivation gating and regulate the “long-term inactivation” of Nav1.3 channels that sets Nav channel availability and spike adaptation during sustained stimulation in adrenal chromaffin cells.
Collapse
Affiliation(s)
- Emilio Carbone
- Department of Drug Science, Lab of Cell Physiology and Molecular Neuroscience, University of Torino, Torino, Italy
| |
Collapse
|
29
|
Xiao J, Chen Z, Yu B. A Potential Mechanism of Sodium Channel Mediating the General Anesthesia Induced by Propofol. Front Cell Neurosci 2020; 14:593050. [PMID: 33343303 PMCID: PMC7746837 DOI: 10.3389/fncel.2020.593050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
General anesthesia has revolutionized healthcare over the past 200 years and continues to show advancements. However, many phenomena induced by general anesthetics including paradoxical excitation are still poorly understood. Voltage-gated sodium channels (NaV) were believed to be one of the proteins targeted during general anesthesia. Based on electrophysiological measurements before and after propofol treatments of different concentrations, we mathematically modified the Hodgkin–Huxley sodium channel formulations and constructed a thalamocortical model to investigate the potential roles of NaV. The ion channels of individual neurons were modeled using the Hodgkin–Huxley type equations. The enhancement of propofol-induced GABAa current was simulated by increasing the maximal conductance and the time-constant of decay. Electroencephalogram (EEG) was evaluated as the post-synaptic potential from pyramidal (PY) cells. We found that a left shift in activation of NaV was induced primarily by a low concentration of propofol (0.3–10 μM), while a left shift in inactivation of NaV was induced by an increasing concentration (0.3–30 μM). Mathematical simulation indicated that a left shift of NaV activation produced a Hopf bifurcation, leading to cell oscillations. Left shift of NaV activation around a value of 5.5 mV in the thalamocortical models suppressed normal bursting of thalamocortical (TC) cells by triggering its chaotic oscillations. This led to irregular spiking of PY cells and an increased frequency in EEG readings. This observation suggests a mechanism leading to paradoxical excitation during general anesthesia. While a left shift in inactivation led to light hyperpolarization in individual cells, it inhibited the activity of the thalamocortical model after a certain depth of anesthesia. This finding implies that high doses of propofol inhibit the network partly by accelerating NaV toward inactivation. Additionally, this result explains why the application of sodium channel blockers decreases the requirement for general anesthetics. Our study provides an insight into the roles that NaV plays in the mechanism of general anesthesia. Since the activation and inactivation of NaV are structurally independent, it should be possible to avoid side effects by state-dependent binding to the NaV to achieve precision medicine in the future.
Collapse
Affiliation(s)
- Jinglei Xiao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengguo Chen
- College of Computer, National University of Defence Technology, Changsha, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Wang GH, Chou P, Hsueh SW, Yang YC, Kuo CC. Glutamate transmission rather than cellular pacemaking propels excitatory-inhibitory resonance for ictogenesis in amygdala. Neurobiol Dis 2020; 148:105188. [PMID: 33221531 DOI: 10.1016/j.nbd.2020.105188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Epileptic seizures are automatic, excessive, and synchronized neuronal activities originating from many brain regions especially the amygdala, the allocortices and neocortices. This may reflect a shared principle for network organization and signaling in these telencephalic structures. In theory, the automaticity of epileptic discharges may stem from spontaneously active "oscillator" neurons equipped with intrinsic pacemaking conductances, or from a group of synaptically-connected collaborating "resonator" neurons. In the basolateral amygdalar (BLA) network of pyramidal-inhibitory (PN-IN) neuronal resonators, we demonstrated that rhythmogenic currents are provided by glutamatergic rather than the classic intrinsic or cellular pacemaking conductances (namely the h currents). The excitatory output of glutamatergic neurons such as PNs presumably propels a novel network-based "relay burst mode" of discharges especially in INs, which precondition PNs into a state prone to burst discharges and thus further glutamate release. Also, selective activation of unilateral PNs, but never INs, readily drives bilateral BLA networks into reverberating discharges which are fully synchronized with the behavioral manifestations of seizures (e.g. muscle contractions). Seizures originating in BLA and/or the other structures with similar PN-IN networks thus could be viewed as glutamate-triggered erroneous network oscillations that are normally responsible for information relay.
Collapse
Affiliation(s)
- Guan-Hsun Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Medical Education, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Ping Chou
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan.
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
31
|
Rühlmann AH, Körner J, Hausmann R, Bebrivenski N, Neuhof C, Detro-Dassen S, Hautvast P, Benasolo CA, Meents J, Machtens JP, Schmalzing G, Lampert A. Uncoupling sodium channel dimers restores the phenotype of a pain-linked Na v 1.7 channel mutation. Br J Pharmacol 2020; 177:4481-4496. [PMID: 32663327 PMCID: PMC7484505 DOI: 10.1111/bph.15196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose The voltage‐gated sodium channel Nav1.7 is essential for adequate perception of painful stimuli. Mutations in the encoding gene, SCN9A, cause various pain syndromes in humans. The hNav1.7/A1632E channel mutant causes symptoms of erythromelalgia and paroxysmal extreme pain disorder (PEPD), and its main gating change is a strongly enhanced persistent current. On the basis of recently published 3D structures of voltage‐gated sodium channels, we investigated how the inactivation particle binds to the channel, how this mechanism is altered by the hNav1.7/A1632E mutation, and how dimerization modifies function of the pain‐linked mutation. Experimental Approach We applied atomistic molecular simulations to demonstrate the effect of the mutation on channel fast inactivation. Native PAGE was used to demonstrate channel dimerization, and electrophysiological measurements in HEK cells and Xenopus laevis oocytes were used to analyze the links between functional channel dimerization and impairment of fast inactivation by the hNav1.7/A1632E mutation. Key Results Enhanced persistent current through hNav1.7/A1632E channels was caused by impaired binding of the inactivation particle, which inhibits proper functioning of the recently proposed allosteric fast inactivation mechanism. hNav1.7 channels form dimers and the disease‐associated persistent current through hNav1.7/A1632E channels depends on their functional dimerization status: Expression of the synthetic peptide difopein, a 14‐3‐3 inhibitor known to functionally uncouple dimers, decreased hNav1.7/A1632E channel‐induced persistent currents. Conclusion and Implications Functional uncoupling of mutant hNav1.7/A1632E channel dimers restored their defective allosteric fast inactivation mechanism. Our findings support the concept of sodium channel dimerization and reveal its potential relevance for human pain syndromes.
Collapse
Affiliation(s)
- Annika H Rühlmann
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Jannis Körner
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany.,Department of Anaesthesiology, Medical Faculty, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Ralf Hausmann
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Nikolay Bebrivenski
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Christian Neuhof
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Silvia Detro-Dassen
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Petra Hautvast
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Carène A Benasolo
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany.,Forschungszentrum Jülich, Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Jülich, Germany
| | - Jannis Meents
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Jan-Philipp Machtens
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany.,Forschungszentrum Jülich, Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Jülich, Germany
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, Aachen, Deutschland, 52074, Germany
| |
Collapse
|
32
|
Nakajima T, Kaneko Y, Dharmawan T, Kurabayashi M. Role of the voltage sensor module in Na v domain IV on fast inactivation in sodium channelopathies: The implication of closed-state inactivation. Channels (Austin) 2020; 13:331-343. [PMID: 31357904 PMCID: PMC6713248 DOI: 10.1080/19336950.2019.1649521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The segment 4 (S4) voltage sensor in voltage-gated sodium channels (Navs) have domain-specific functions, and the S4 segment in domain DIV (DIVS4) plays a key role in the activation and fast inactivation processes through the coupling of arginine residues in DIVS4 with residues of putative gating charge transfer center (pGCTC) in DIVS1-3. In addition, the first four arginine residues (R1-R4) in Nav DIVS4 have position-specific functions in the fast inactivation process, and mutations in these residues are associated with diverse phenotypes of Nav-related diseases (sodium channelopathies). R1 and R2 mutations commonly display a delayed fast inactivation, causing a gain-of-function, whereas R3 and R4 mutations commonly display a delayed recovery from inactivation and profound use-dependent current attenuation, causing a severe loss-of-function. In contrast, mutations of residues of pGCTC in Nav DIVS1-3 can also alter fast inactivation. Such alterations in fast inactivation may be caused by disrupted interactions of DIVS4 with DIVS1-3. Despite fast inactivation of Navs occurs from both the open-state (open-state inactivation; OSI) and closed state (closed-state inactivation; CSI), changes in CSI have received considerably less attention than those in OSI in the pathophysiology of sodium channelopathies. CSI can be altered by mutations of arginine residues in DIVS4 and residues of pGCTC in Navs, and altered CSI can be an underlying primary biophysical defect of sodium channelopathies. Therefore, CSI should receive focus in order to clarify the pathophysiology of sodium channelopathies.
Collapse
Affiliation(s)
- Tadashi Nakajima
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| | - Yoshiaki Kaneko
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| | - Tommy Dharmawan
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| | - Masahiko Kurabayashi
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| |
Collapse
|
33
|
Miao P, Tang S, Ye J, Wang J, Lou Y, Zhang B, Xu X, Chen X, Li Y, Feng J. Electrophysiological features: The next precise step for SCN2A developmental epileptic encephalopathy. Mol Genet Genomic Med 2020; 8:e1250. [PMID: 32400968 PMCID: PMC7336724 DOI: 10.1002/mgg3.1250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background To investigate the relationships among phenotypes, genotypes, and funotypes of SCN2A‐related developmental epileptic encephalopathy (DEE). Methods We enrolled five DEE patients with five de novo variants of the SCN2A. Functional analysis and pharmacological features of Nav1.2 channel protein expressed in HEK293T cells were characterized by whole‐cell patch‐clamp recording. Results The phenotypes of c.4712T>C(p. I1571T), c.2995G>A(p.E999K), and c.4015A>G(p. N1339D) variants showed similar characteristics, including early seizure onset with severe to profound intellectual disability. Electrophysiological recordings revealed a hyperpolarizing shift in the voltage dependence of the activation curve and smaller recovery time constants of fast‐inactivation than in wild type, indicating a prominent gain of function (GOF). Moreover, pharmacological electrophysiology showed that phenytoin inhibited over a 70% peak current and was more effective than oxcarbazepine and carbamazepine. In contrast, c.4972C>T (p.P1658S) and c.5317G>A (p.A1773T) led to loss of function (LOF) changes, showing reduced current density and enhanced fast inactivation. Both showed seizure onset after 3 months of age with moderate development delay. Interestingly, we discovered that choreoathetosis was a specific phenotype feature. Conclusion These findings provided the insights into the phenotype–genotype–funotype relationships of SCN2A‐related DEE. The preliminary evaluation using the distinct hints of GOF and LOF helped plan the treatment, and the next precise step should be electrophysiological study.
Collapse
Affiliation(s)
- Pu Miao
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyang Tang
- Children's Hospital and Department of Biophysics, National Clinical Research Center for Child Health, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Ye
- Children's Hospital and Department of Biophysics, National Clinical Research Center for Child Health, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianda Wang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Lou
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bijun Zhang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Xu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoquan Chen
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhou Li
- Children's Hospital and Department of Biophysics, National Clinical Research Center for Child Health, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Feng
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Tapia CM, Folorunso O, Singh AK, McDonough K, Laezza F. Effects of Deltamethrin Acute Exposure on Nav1.6 Channels and Medium Spiny Neurons of the Nucleus Accumbens. Toxicology 2020; 440:152488. [PMID: 32387285 DOI: 10.1016/j.tox.2020.152488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Exposure to pyrethroids, a popular insecticide class that targets voltage-gated Na+ (Nav) channels, has been correlated to an increase in diagnosis of neurodevelopmental disorders, such as attention deficit hyperactive disorder (ADHD), in children. Dysregulation of medium spiny neurons (MSNs) firing in the nucleus accumbens (NAc) is thought to play a critical role in the pathophysiology of ADHD and other neurodevelopmental disorders. The Nav1.6 channel is the primary molecular determinant of MSN firing and is sensitive to modification by pyrethroids. Building on previous studies demonstrating that deltamethrin (DM), a commonly used pyrethroid, leads to use-dependent enhancement of sodium currents, we characterized the effect of the toxin on long-term inactivation (LTI) of the Nav1.6 channel, a parameter known to affect neuronal firing, and characterized changes in MSN intrinsic excitability. We employed whole-cell patch-clamp electrophysiology to measure sodium currents in HEK-293 cells stably expressing Nav1.6 channels and intrinsic excitability of MSNs in the brain slice preparation. We found that in response to repetitive stimulation acute exposure to 10 μM DM potentiated a build-up of residual sodium currents and modified availability of Nav1.6 by inducing LTI. In the NAc, DM modified MSN intrinsic excitability increasing evoked action potential firing frequency and inducing aberrant action potentials with low amplitude and depolarized voltage threshold, phenotypes that could be explained by DM induced changes on the Nav1.6 channel. These results provide a potential initial mechanism of toxicity of DM that could lead to disruption of the NAc circuitry overtime, increasing the risk of ADHD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cynthia M Tapia
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA; NIEHS Enviornmental Toxicology Training Program, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Kathleen McDonough
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| |
Collapse
|
35
|
Isaac E, Cooper SM, Jones SA, Loubani M. Do age-associated changes of voltage-gated sodium channel isoforms expressed in the mammalian heart predispose the elderly to atrial fibrillation? World J Cardiol 2020; 12:123-135. [PMID: 32431783 PMCID: PMC7215965 DOI: 10.4330/wjc.v12.i4.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/18/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide. The prevalence of the disease increases with age, strongly implying an age-related process underlying the pathology. At a time when people are living longer than ever before, an exponential increase in disease prevalence is predicted worldwide. Hence unraveling the underlying mechanics of the disease is paramount for the development of innovative treatment and prevention strategies. The role of voltage-gated sodium channels is fundamental in cardiac electrophysiology and may provide novel insights into the arrhythmogenesis of AF. Nav1.5 is the predominant cardiac isoform, responsible for the action potential upstroke. Recent studies have demonstrated that Nav1.8 (an isoform predominantly expressed within the peripheral nervous system) is responsible for cellular arrhythmogenesis through the enhancement of pro-arrhythmogenic currents. Animal studies have shown a decline in Nav1.5 leading to a diminished action potential upstroke during phase 0. Furthermore, the study of human tissue demonstrates an inverse expression of sodium channel isoforms; reduction of Nav1.5 and increase of Nav1.8 in both heart failure and ventricular hypertrophy. This strongly suggests that the expression of voltage-gated sodium channels play a crucial role in the development of arrhythmias in the diseased heart. Targeting aberrant sodium currents has led to novel therapeutic approaches in tackling AF and continues to be an area of emerging research. This review will explore how voltage-gated sodium channels may predispose the elderly heart to AF through the examination of laboratory and clinical based evidence.
Collapse
Affiliation(s)
- Emmanuel Isaac
- Department of Cardiothoracic Surgery, Hull University Teaching Hospitals, Cottingham HU16 5JQ, United Kingdom
| | - Stephanie M Cooper
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Sandra A Jones
- Department of Biomedical Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Mahmoud Loubani
- Department of Cardiothoracic Surgery, Hull University Teaching Hospitals, Cottingham HU16 5JQ, United Kingdom
| |
Collapse
|
36
|
Takla M, Huang CLH, Jeevaratnam K. The cardiac CaMKII-Na v1.5 relationship: From physiology to pathology. J Mol Cell Cardiol 2020; 139:190-200. [PMID: 31958466 DOI: 10.1016/j.yjmcc.2019.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
The SCN5A gene encodes Nav1.5, which, as the cardiac voltage-gated Na+ channel's pore-forming α subunit, is crucial for the initiation and propagation of atrial and ventricular action potentials. The arrhythmogenic propensity of inherited SCN5A mutations implicates the Na+ channel in determining cardiomyocyte excitability under normal conditions. Cytosolic kinases have long been known to alter the kinetic profile of Nav1.5 inactivation via phosphorylation of specific residues. Recent substantiation of both the role of calmodulin-dependent kinase II (CaMKII) in modulating the properties of the Nav1.5 inactivation gate and the significant rise in oxidation-dependent autonomous CaMKII activity in structural heart disease has raised the possibility of a novel pathway for acquired arrhythmias - the CaMKII-Nav1.5 relationship. The aim of this review is to: (1) outline the relationship's translation from physiological adaptation to pathological vicious circle; and (2) discuss the relative merits of each of its components as pharmacological targets.
Collapse
Affiliation(s)
- Michael Takla
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom
| | - Christopher L-H Huang
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| |
Collapse
|
37
|
In vivo assessment of interictal sarcolemmal membrane properties in hypokalaemic and hyperkalaemic periodic paralysis. Clin Neurophysiol 2020; 131:816-827. [PMID: 32066100 DOI: 10.1016/j.clinph.2019.12.414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Hypokalaemic periodic paralysis (HypoPP) is caused by mutations of Cav1.1, and Nav1.4 which result in an aberrant gating pore current. Hyperkalaemic periodic paralysis (HyperPP) is due to a gain-of-function mutation of the main alpha pore of Nav1.4. This study used muscle velocity recovery cycles (MVRCs) to investigate changes in interictal muscle membrane properties in vivo. METHODS MVRCs and responses to trains of stimuli were recorded in tibialis anterior and compared in patients with HyperPP(n = 7), HypoPP (n = 10), and normal controls (n = 26). RESULTS Muscle relative refractory period was increased, and early supernormality reduced in HypoPP, consistent with depolarisation of the interictal resting membrane potential. In HyperPP the mean supernormality and residual supernormality to multiple conditioning stimuli were increased, consistent with increased inward sodium current and delayed repolarisation, predisposing to spontaneous myotonic discharges. CONCLUSIONS The in vivo findings suggest the interictal resting membrane potential is depolarized in HypoPP, and mostly normal in HyperPP. The MVRC findings in HyperPP are consistent with presence of a window current, previously proposed on the basis of in vitro expression studies. Although clinically similar, HyperPP was electrophysiologically distinct from paramyotonia congenita. SIGNIFICANCE MVRCs provide important in vivo data that complements expression studies of ion channel mutations.
Collapse
|
38
|
Sabatier LL, Palestro PH, Enrique AV, Pastore V, Sbaraglini ML, Martín P, Gavernet L. Design, synthesis and biological evaluation of N-substituted α-hydroxyimides and 1,2,3-oxathiazolidine-4-one-2,2-dioxides with anticonvulsant activity. J Enzyme Inhib Med Chem 2019; 34:1465-1473. [PMID: 31411081 PMCID: PMC6713207 DOI: 10.1080/14756366.2019.1651722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
In this investigation, we studied a family of compounds with an oxathiazolidine-4-one-2,2-dioxide skeleton and their amide synthetic precursors as new anticonvulsant drugs. The cyclic structures were synthesized using a three-step protocol that include solvent-free reactions and microwave-assisted heating. The compounds were tested in vivo through maximal electroshock seizure test in mice. All the structures showed activity at the lower doses tested (30 mg/Kg) and no signs of neurotoxicity were detected. Compound encoded as 1g displayed strong anticonvulsant effects in comparison with known anticonvulsants (ED50 = 29 mg/Kg). First approximations about the mechanisms of action of the cyclic structures were proposed by docking simulations and in vitro assays against sodium channels (patch clamp methods).
Collapse
Affiliation(s)
- Laureano L. Sabatier
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Pablo H. Palestro
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Andrea V. Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET—Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Valentina Pastore
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET—Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María L. Sbaraglini
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, La Plata, Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET—Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luciana Gavernet
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, La Plata, Argentina
| |
Collapse
|
39
|
Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Toxins (Basel) 2019; 11:toxins11110626. [PMID: 31671792 PMCID: PMC6891507 DOI: 10.3390/toxins11110626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are a key determinant of neuronal signalling. Neurotoxins from diverse taxa that selectively activate or inhibit NaV channels have helped unravel the role of NaV channels in diseases, including chronic pain. Spider venoms contain the most diverse array of inhibitor cystine knot (ICK) toxins (knottins). This review provides an overview on how spider knottins modulate NaV channels and describes the structural features and molecular determinants that influence their affinity and subtype selectivity. Genetic and functional evidence support a major involvement of NaV subtypes in various chronic pain conditions. The exquisite inhibitory properties of spider knottins over key NaV subtypes make them the best lead molecules for the development of novel analgesics to treat chronic pain.
Collapse
|
40
|
Chen M, Du Y, Wu S, Nomura Y, Zhu G, Zhorov BS, Dong K. Molecular evidence of sequential evolution of DDT- and pyrethroid-resistant sodium channel in Aedes aegypti. PLoS Negl Trop Dis 2019; 13:e0007432. [PMID: 31158225 PMCID: PMC6564045 DOI: 10.1371/journal.pntd.0007432] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/13/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Multiple mutations in the voltage-gated sodium channel have been associated with knockdown resistance (kdr) to DDT and pyrethroid insecticides in a major human disease vector Aedes aegypti. One mutation, V1016G, confers sodium channel resistance to pyrethroids, but a different substitution in the same position V1016I alone had no effect. In pyrethroid-resistant Ae. aegypti populations, V1016I is often linked to another mutation, F1534C, which confers sodium channel resistance only to Type I pyrethroids including permethrin (PMT), but not to Type II pyrethroids including deltamethrin (DMT). Mosquitoes carrying both V1016G and F1534C exhibited a greater level of pyrethroid resistance than those carrying F1534C alone. More recently, a new mutation T1520I co-existing with F1534C was detected in India. However, whether V1016I or T1520I enhances pyrethroid resistance of sodium channels carrying F1534C remains unknown. METHODOLOGY/PRINCIPAL FINDINGS V1016I, V1016G, T1520I and F1534C substitutions were introduced alone and in various combinations into AaNav1-1, a sodium channel from Aedes aegypti. The mutant channels were then expressed in Xenopus oocytes and examined for channel properties and sensitivity to pyrethroids using the two-electrode voltage clamping technique. The results showed that V1016I or T1520I alone did not alter the AaNav1-1 sensitivity to PMT or DMT. However, the double mutant T1520I+F1534C was more resistant to PMT than F1534C, but remained sensitive to DMT. In contrast, the double mutant V1016I+F1534C was resistant to DMT and more resistant to PMT than F1534C. Furthermore, V1016I/G and F1534C channels, but not T1520I, were resistant to dichlorodiphenyltrichloroethane (DDT). Cryo-EM structures of sodium channels suggest that T1520I allosterically deforms geometry of the pyrethroid receptor site PyR1 in AaNav1-1. The small deformation does not affect binding of DDT, PMT or DMT, but in combination with F1534C it increases the channel resistance to PMT and DDT. CONCLUSIONS/SIGNIFICANCE Our data corroborated the previously proposed sequential selection of kdr mutations in Ae. aegypti. We proposed that mutation F1534C first emerged in response to DDT/pyrethroids providing a platform for subsequent selection of mutations V1016I and T1520I that confer greater and broader spectrum of pyrethroid resistance.
Collapse
Affiliation(s)
- Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| | - Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| | - Shaoying Wu
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, United States of America
| |
Collapse
|
41
|
de Araújo AP, Paiva MHS, Cabral AM, Cavalcanti AEHD, Pessoa LFF, Diniz DFA, Helvecio E, da Silva EVG, da Silva NM, Anastácio DB, Pontes C, Nunes V, de Souza MDFM, Magalhães FJR, de Melo Santos MAV, Ayres CFJ. Screening Aedes aegypti (Diptera: Culicidae) Populations From Pernambuco, Brazil for Resistance to Temephos, Diflubenzuron, and Cypermethrin and Characterization of Potential Resistance Mechanisms. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:16. [PMID: 31175834 PMCID: PMC6556078 DOI: 10.1093/jisesa/iez054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 05/15/2023]
Abstract
Resistance to chemical insecticides detected in Aedes aegypti (L.) mosquitoes has been a problem for the National Dengue Control Program (PNCD) over the last years. In order to provide deeper knowledge of resistance to xenobiotics, our study evaluated the susceptibility profile of temephos, diflubenzuron, and cypermethrin insecticides in natural mosquito populations from the Pernambuco State, associating these results with the local historical use of such compounds. Furthermore, mechanisms that may be associated with this particular type of resistance were characterized. Bioassays with multiple temephos and diflubenzuron concentrations were performed to detect and quantify resistance. For cypermethrin, diagnostic dose assays were performed. Biochemical tests were carried out to quantify the activity of detoxification enzymes. In addition, a screening of mutations present in the voltage-gated sodium channel gene (NaV) was performed in samples previously submitted to bioassays with cypermethrin. The populations under study were resistant to temephos and showed a positive correlation between insecticide consumption and the resistance ratio (RR) to the compound. For diflubenzuron, the biological activity ratio (BAR) ranged from 1.3 to 4.7 times, when compared to the susceptible strain. All populations showed resistance to cypermethrin. Altered enzymatic profiles of alpha, p-nitrophenyl acetate (PNPA) esterases and glutathione-S-transferases were recorded in most of these samples. Molecular analysis demonstrated that Arcoverde was the only population that presented the mutated form 1016Ile/Ile. These findings show that the situation is critical vis-à-vis the effectiveness of mosquito control using chemical insecticides, since resistance to temephos and cypermethrin is widespread in Ae. aegypti from Pernambuco.
Collapse
Affiliation(s)
- Ana Paula de Araújo
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Marcelo Henrique Santos Paiva
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
- Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Núcleo de Ciências da Vida, Caruaru, Pernambuco, Brazil
| | - Amanda Maria Cabral
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - Luiz Fernando Freitas Pessoa
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Diego Felipe Araujo Diniz
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Elisama Helvecio
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Ellyda Vanessa Gomes da Silva
- Instituto Aggeu Magalhães/FIOCRUZ, Departamento de Entomologia. s/n Cidade Universitária, Recife, Pernambuco, Brazil
| | - Norma Machado da Silva
- Departamento de Biologia Celular, Embriologia e Genética – BEG, Universidade Federal de Santa Catarina, SC, Brasil. Campus Universitário Reitor João David Ferreira Lima, Bairro Trindade, Florianópolis, Santa Catarina, Brazil
| | | | - Claudenice Pontes
- State of Pernambuco Department of Health, Arbovirus Surveillance Manager Recife, Pernambuco, Brazil
| | - Vânia Nunes
- Secretaria Municipal de Saúde do Recife, Recife, Pernambuco, Brazil
| | | | | | | | | |
Collapse
|
42
|
Dharmawan T, Nakajima T, Iizuka T, Tamura S, Matsui H, Kaneko Y, Kurabayashi M. Enhanced closed-state inactivation of mutant cardiac sodium channels (SCN5A N1541D and R1632C) through different mechanisms. J Mol Cell Cardiol 2019; 130:88-95. [PMID: 30935997 DOI: 10.1016/j.yjmcc.2019.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND SCN5A variants can be associated with overlapping phenotypes such as Brugada syndrome (BrS), sinus node dysfunction and supraventricular tachyarrhythmias. Our genetic screening of SCN5A in 65 consecutive BrS probands revealed two patients with overlapping phenotypes: one carried an SCN5A R1632C (in domain IV-segment 4), which we have previously reported, the other carried a novel SCN5A N1541D (in domain IV-segment 1). OBJECTIVE We sought to reveal whether or not these variants are associated with the same biophysical defects. METHODS Wild-type (WT) or mutant SCN5A was expressed in tsA201-cells, and whole-cell sodium currents (hNav1.5/INa) were recorded using patch-clamp techniques. RESULTS The N1541D-INa density, when assessed from a holding potential of -150 mV, was not different from WT-INa as with R1632C-INa, indicating that SCN5A N1541D did not cause trafficking defects. The steady-state inactivation curve of N1541D-INa was markedly shifted to hyperpolarizing potentials in comparison to WT-INa (V1/2-WT: -82.3 ± 0.9 mV, n = 15; N1541D: -108.8 ± 1.6 mV, n = 26, P < .01) as with R1632C-INa. Closed-state inactivation (CSI) was evaluated using prepulses of -90 mV for 1460 ms. Residual N1541D-INa and R1632C-INa were markedly reduced in comparison to WT-INa (WT: 63.8 ± 4.6%, n = 18; N1541D: 15.1 ± 2.3%, n = 19, P < .01 vs WT; R1632C: 5.3 ± 0.5%, n = 15, P < .01 vs WT). Entry into CSI of N1541D-INa was markedly accelerated, and that of R1632C-INa was weakly accelerated in comparison to WT-INa (tau-WT: 65.8 ± 7.4 ms, n = 18; N1541D: 13.7 ± 1.1 ms, n = 19, P < .01 vs WT; R1632C: 39.5 ± 2.9 ms, n = 15, P < .01 vs WT and N1541D). Although N1541D-INa recovered from closed-state fast inactivation at the same rate as WT-INa, R1632C-INa recovered very slowly (tau-WT: 1.90 ± 0.16 ms, n = 10; N1541D: 1.72 ± 0.12 ms, n = 10, P = .41 vs WT; R1632C: 53.0 ± 2.5 ms, n = 14, P < .01 vs WT and N1541D). CONCLUSIONS Both N1541D-INa and R1632C-INa exhibited marked enhancement of CSI, but through different mechanisms. The data provided a novel understanding of the mechanisms of CSI of INa. Clinically, the enhanced CSI of N1541D-INa leads to a severe loss-of-function of INa at voltages near the physiological resting membrane potential (~-90 mV) of cardiac myocytes; this can be attributable to the patient's phenotypic manifestations.
Collapse
Affiliation(s)
- Tommy Dharmawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Takashi Iizuka
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Gunma, Japan
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
43
|
Electrical cortical stimulation for refractory focal epilepsy: A long-term follow-up study. Epilepsy Res 2019; 151:24-30. [DOI: 10.1016/j.eplepsyres.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/25/2018] [Accepted: 01/06/2019] [Indexed: 11/24/2022]
|
44
|
Iqbal SM, Lemmens‐Gruber R. Phosphorylation of cardiac voltage-gated sodium channel: Potential players with multiple dimensions. Acta Physiol (Oxf) 2019; 225:e13210. [PMID: 30362642 PMCID: PMC6590314 DOI: 10.1111/apha.13210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
Cardiomyocytes are highly coordinated cells with multiple proteins organized in micro domains. Minor changes or interference in subcellular proteins can cause major disturbances in physiology. The cardiac sodium channel (NaV1.5) is an important determinant of correct electrical activity in cardiomyocytes which are localized at intercalated discs, T‐tubules and lateral membranes in the form of a macromolecular complex with multiple interacting protein partners. The channel is tightly regulated by post‐translational modifications for smooth conduction and propagation of action potentials. Among regulatory mechanisms, phosphorylation is an enzymatic and reversible process which modulates NaV1.5 channel function by attaching phosphate groups to serine, threonine or tyrosine residues. Phosphorylation of NaV1.5 is implicated in both normal physiological and pathological processes and is carried out by multiple kinases. In this review, we discuss and summarize recent literature about the (a) structure of NaV1.5 channel, (b) formation and subcellular localization of NaV1.5 channel macromolecular complex, (c) post‐translational phosphorylation and regulation of NaV1.5 channel, and (d) how these phosphorylation events of NaV1.5 channel alter the biophysical properties and affect the channel during disease status. We expect, by reviewing these aspects will greatly improve our understanding of NaV1.5 channel biology, physiology and pathology, which will also provide an insight into the mechanism of arrythmogenesis at molecular level.
Collapse
Affiliation(s)
- Shahid M. Iqbal
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
- Drugs Regulatory Authority of Pakistan Telecom Foundation (TF) Complex Islamabad Pakistan
| | - Rosa Lemmens‐Gruber
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
| |
Collapse
|
45
|
Pan X, Li Z, Zhou Q, Shen H, Wu K, Huang X, Chen J, Zhang J, Zhu X, Lei J, Xiong W, Gong H, Xiao B, Yan N. Structure of the human voltage-gated sodium channel Na v1.4 in complex with β1. Science 2018; 362:science.aau2486. [PMID: 30190309 DOI: 10.1126/science.aau2486] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (Nav) channels, which are responsible for action potential generation, are implicated in many human diseases. Despite decades of rigorous characterization, the lack of a structure of any human Nav channel has hampered mechanistic understanding. Here, we report the cryo-electron microscopy structure of the human Nav1.4-β1 complex at 3.2-Å resolution. Accurate model building was made for the pore domain, the voltage-sensing domains, and the β1 subunit, providing insight into the molecular basis for Na+ permeation and kinetic asymmetry of the four repeats. Structural analysis of reported functional residues and disease mutations corroborates an allosteric blocking mechanism for fast inactivation of Nav channels. The structure provides a path toward mechanistic investigation of Nav channels and drug discovery for Nav channelopathies.
Collapse
Affiliation(s)
- Xiaojing Pan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhangqiang Li
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Zhou
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Huaizong Shen
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kun Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoshuang Huang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaofeng Chen
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juanrong Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechen Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Bailong Xiao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Wu J, Young M, Lewis AH, Martfeld AN, Kalmeta B, Grandl J. Inactivation of Mechanically Activated Piezo1 Ion Channels Is Determined by the C-Terminal Extracellular Domain and the Inner Pore Helix. Cell Rep 2018; 21:2357-2366. [PMID: 29186675 PMCID: PMC5938756 DOI: 10.1016/j.celrep.2017.10.120] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/07/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
Piezo proteins form mechanically activated ion channels that are responsible for our sense of light touch, proprioception, and vascular blood flow. Upon activation by mechanical stimuli, Piezo channels rapidly inactivate in a voltage-dependent manner through an unknown mechanism. Inactivation of Piezo channels is physiologically important, as it modulates overall mechanical sensitivity, gives rise to frequency filtering of repetitive mechanical stimuli, and is itself the target of numerous human disease-related channelopathies that are not well understood mechanistically. Here, we identify the globular C-terminal extracellular domain as a structure that is sufficient to confer the time course of inactivation and a single positively charged lysine residue at the adjacent inner pore helix as being required for its voltage dependence. Our results are consistent with a mechanism for inactivation that is mediated through voltage-dependent conformations of the inner pore helix and allosteric coupling with the C-terminal extracellular domain.
Collapse
Affiliation(s)
- Jason Wu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Young
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashley N Martfeld
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Breanna Kalmeta
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
47
|
Galiana GL, Gauthier AC, Mattson RH. Eslicarbazepine Acetate: A New Improvement on a Classic Drug Family for the Treatment of Partial-Onset Seizures. Drugs R D 2018; 17:329-339. [PMID: 28741150 PMCID: PMC5629137 DOI: 10.1007/s40268-017-0197-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eslicarbazepine acetate is a new anti-epileptic drug belonging to the dibenzazepine carboxamide family that is currently approved as adjunctive therapy and monotherapy for partial-onset (focal) seizures. The drug enhances slow inactivation of voltage-gated sodium channels and subsequently reduces the activity of rapidly firing neurons. Eslicarbazepine acetate has few, but some, drug–drug interactions. It is a weak enzyme inducer and it inhibits cytochrome P450 2C19, but it affects a smaller assortment of enzymes than carbamazepine. Clinical studies using eslicarbazepine acetate as adjunctive treatment or monotherapy have demonstrated its efficacy in patients with refractory or newly diagnosed focal seizures. The drug is generally well tolerated, and the most common side effects include dizziness, headache, and diplopia. One of the greatest strengths of eslicarbazepine acetate is its ability to be administered only once per day. Eslicarbazepine acetate has many advantages over older anti-epileptic drugs, and it should be strongly considered when treating patients with partial-onset epilepsy.
Collapse
Affiliation(s)
- Graciana L Galiana
- Department of Neurology, Yale Comprehensive Epilepsy Center, Yale School of Medicine, PO Box 208018, New Haven, CT, 06520, USA
| | - Angela C Gauthier
- Department of Neurology, Yale Comprehensive Epilepsy Center, Yale School of Medicine, PO Box 208018, New Haven, CT, 06520, USA.
| | - Richard H Mattson
- Department of Neurology, Yale Comprehensive Epilepsy Center, Yale School of Medicine, PO Box 208018, New Haven, CT, 06520, USA
| |
Collapse
|
48
|
Du Y, Tikhonov DB, Nomura Y, Dong K, Zhorov BS. Mutational analysis of state-dependent contacts in the pore module of eukaryotic sodium channels. Arch Biochem Biophys 2018; 652:59-70. [PMID: 29936083 DOI: 10.1016/j.abb.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 06/20/2018] [Indexed: 02/04/2023]
Abstract
Voltage-gated sodium channels have residues that change or may change contacts upon gating. Contributions of individual contacts in stability of different states are incompletely understood. Pore-lining inner helices contain exceptionally conserved asparagines in positions i20. Here we explored how mutations in positions i20 and i29 affect electrophysiological properties of insect sodium channels. In repeat interfaces I/IV, III/II and IV/III, alanine substitutions caused positive activation shifts in positions i20 and i29, negative shifts of slow inactivation in positions i20 and positive shifts of slow inactivation in positions i29. The results support the hypothesis on open state inter-repeat H-bonding of residues i20 and i29. The shift magnitudes vary between interfaces, reflecting structural asymmetry of the channels. Mutations in positions i20 of repeats III and IV caused much longer recovery delay from the slow and fast inactivation than other mutations. In repeat IV, alanine substitution of tyrosine i30 rescued positive activation shift of mutation in position i29. Our data suggest that polar residues in positions i29 are involved in stabilization of both the open and slow-inactivated states. Transition between the states may involve switching of H-bonding partners of residues i29 from the conserved asparagines to currently unknown residues.
Collapse
Affiliation(s)
- Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
49
|
Vargas Luna JL, Mayr W, Cortés-Ramirez JA. Sub-threshold depolarizing pre-pulses can enhance the efficiency of biphasic stimuli in transcutaneous neuromuscular electrical stimulation. Med Biol Eng Comput 2018; 56:2213-2219. [PMID: 29949020 PMCID: PMC6245015 DOI: 10.1007/s11517-018-1851-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
There is multiple evidence in the literature that a sub-threshold pre-pulse, delivered immediately prior to an electrical stimulation pulse, can alter the activation threshold of nerve fibers and motor unit recruitment characteristics. So far, previously published works combined monophasic stimuli with sub-threshold depolarizing pre-pulses (DPPs) with inconsistent findings—in some studies, the DPPs decreased the activation threshold, while in others it was increased. This work aimed to evaluate the effect of DPPs during biphasic transcutaneous electrical stimulation and to study the possible mechanism underlying those differences. Sub-threshold DPPs between 0.5 and 15 ms immediately followed by biphasic or monophasic pulses were administered to the tibial nerve; the electrophysiological muscular responses (motor-wave, M-wave) were monitored via electromyogram (EMG) recording from the soleus muscle. The data show that, under the specific studied conditions, DPPs tend to lower the threshold for nerve fiber activation rather than elevating it. DPPs with the same polarity as the leading phase of biphasic stimuli are more effective to increase the sensitivity. This work assesses for the first time the effect of DPPs on biphasic pulses, which are required to achieve charge-balanced stimulation, and it provides guidance on the effect of polarity and intensity to take full advantage of this feature. In this work, the effect of sub-threshold depolarizing pre-pulses (DPP) is investigated in a setup with transcutaneous electrical stimulation. We found that, within the tested 0–15 ms DPP duration range, the DPPs administered immediately before biphasic pulses proportionally increase the nerve excitability as visible in the M-waves recorded from the soleus muscle. Interestingly, these findings oppose published results, where DPPs, administered immediately before monophasic stimuli via implanted electrodes, led to decrease of nerve excitability. ![]()
Collapse
Affiliation(s)
- Jose Luis Vargas Luna
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria. .,Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, Mexico.
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Jorge-Armando Cortés-Ramirez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, Mexico
| |
Collapse
|
50
|
Tovar KR, Bridges DC, Wu B, Randall C, Audouard M, Jang J, Hansma PK, Kosik KS. Action potential propagation recorded from single axonal arbors using multielectrode arrays. J Neurophysiol 2018; 120:306-320. [PMID: 29641308 DOI: 10.1152/jn.00659.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report the presence of co-occurring extracellular action potentials (eAPs) from cultured mouse hippocampal neurons among groups of planar electrodes on multielectrode arrays (MEAs). The invariant sequences of eAPs among coactive electrode groups, repeated co-occurrences, and short interelectrode latencies are consistent with action potential propagation in unmyelinated axons. Repeated eAP codetection by multiple electrodes was widespread in all our data records. Codetection of eAPs confirms they result from the same neuron and allows these eAPs to be isolated from all other spikes independently of spike sorting algorithms. We averaged co-occurring events and revealed additional electrodes with eAPs that would otherwise be below detection threshold. We used these eAP cohorts to explore the temperature sensitivity of action potential propagation and the relationship between voltage-gated sodium channel density and propagation velocity. The sequence of eAPs among coactive electrodes "fingerprints" neurons giving rise to these events and identifies them within neuronal ensembles. We used this property and the noninvasive nature of extracellular recording to monitor changes in excitability at multiple points in single axonal arbors simultaneously over several hours, demonstrating independence of axonal segments. Over several weeks, we recorded changes in interelectrode propagation latencies and ongoing changes in excitability in different regions of single axonal arbors. Our work illustrates how repeated eAP co-occurrences can be used to extract physiological data from single axons with low-density MEAs. However, repeated eAP co-occurrences lead to oversampling spikes from single neurons and thus can confound traditional spike-train analysis. NEW & NOTEWORTHY We studied action potential propagation in single axons using low-density multielectrode arrays. We unambiguously identified the neuronal sources of propagating action potentials and recorded extracellular action potentials from several positions within single axonal arbors. We found a surprisingly high density of axonal voltage-gated sodium channels responsible for a high propagation safety factor. Our experiments also demonstrate that excitability in different segments of single axons is regulated independently on timescales from hours to weeks.
Collapse
Affiliation(s)
- Kenneth R Tovar
- Neuroscience Research Institute, University of California , Santa Barbara, California
| | - Daniel C Bridges
- Neuroscience Research Institute, University of California , Santa Barbara, California.,Department of Physics, University of California , Santa Barbara, California
| | - Bian Wu
- Neuroscience Research Institute, University of California , Santa Barbara, California
| | - Connor Randall
- Department of Physics, University of California , Santa Barbara, California
| | - Morgane Audouard
- Neuroscience Research Institute, University of California , Santa Barbara, California.,Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California
| | - Jiwon Jang
- Neuroscience Research Institute, University of California , Santa Barbara, California.,Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California
| | - Paul K Hansma
- Neuroscience Research Institute, University of California , Santa Barbara, California.,Department of Physics, University of California , Santa Barbara, California
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California , Santa Barbara, California.,Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California
| |
Collapse
|