1
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
2
|
El Chemali L, Boutary S, Liu S, Liu GJ, Middleton RJ, Banati RB, Bahrenberg G, Rupprecht R, Schumacher M, Massaad-Massade L. GRT-X Stimulates Dorsal Root Ganglia Axonal Growth in Culture via TSPO and Kv7.2/3 Potassium Channel Activation. Int J Mol Sci 2024; 25:7327. [PMID: 39000434 PMCID: PMC11242890 DOI: 10.3390/ijms25137327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
GRT-X, which targets both the mitochondrial translocator protein (TSPO) and the Kv7.2/3 (KCNQ2/3) potassium channels, has been shown to efficiently promote recovery from cervical spine injury. In the present work, we investigate the role of GRT-X and its two targets in the axonal growth of dorsal root ganglion (DRG) neurons. Neurite outgrowth was quantified in DRG explant cultures prepared from wild-type C57BL6/J and TSPO-KO mice. TSPO was pharmacologically targeted with the agonist XBD173 and the Kv7 channels with the activator ICA-27243 and the inhibitor XE991. GRT-X efficiently stimulated DRG axonal growth at 4 and 8 days after its single administration. XBD173 also promoted axonal elongation, but only after 8 days and its repeated administration. In contrast, both ICA27243 and XE991 tended to decrease axonal elongation. In dissociated DRG neuron/Schwann cell co-cultures, GRT-X upregulated the expression of genes associated with axonal growth and myelination. In the TSPO-KO DRG cultures, the stimulatory effect of GRT-X on axonal growth was completely lost. However, GRT-X and XBD173 activated neuronal and Schwann cell gene expression after TSPO knockout, indicating the presence of additional targets warranting further investigation. These findings uncover a key role of the dual mode of action of GRT-X in the axonal elongation of DRG neurons.
Collapse
Affiliation(s)
- Léa El Chemali
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Suzan Boutary
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Song Liu
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
| | - Richard B Banati
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gregor Bahrenberg
- Global Preclinical R&D, Grünenthal Innovation, Grünenthal GmbH, Zieglerstraße 6, D-52078 Aachen, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, D-93053 Regensburg, Germany
| | - Michael Schumacher
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Liliane Massaad-Massade
- Maladies et Hormones du Système Nerveux, Inserm, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
3
|
England SJ, Rusnock AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells. Neural Dev 2023; 18:8. [PMID: 38017520 PMCID: PMC10683209 DOI: 10.1186/s13064-023-00176-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. METHODS To identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. RESULTS Our data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. CONCLUSIONS This study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
Affiliation(s)
| | | | - Amra Mujcic
- Biology Department, Syracuse University, Syracuse, NY, USA
| | | | - Sarah de Jager
- Physiology, Development and Neuroscience Department, Cambridge University, Cambridge, UK
| | | | - José L Juárez-Morales
- Biology Department, Syracuse University, Syracuse, NY, USA
- Programa de IxM-CONAHCYT, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Baja California Sur, México
| | | | - Ginny Grieb
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, NY, USA
| | | |
Collapse
|
4
|
Doganyigit Z, Eroglu E, Okan A. Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases. Anat Histol Embryol 2023; 52:655-672. [PMID: 37329162 DOI: 10.1111/ahe.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cytoskeletal networks are proteins that effectively maintain cell integrity and provide mechanical support to cells by actively transmitting mechanical signals. Intermediate filaments, which are from the cytoskeleton family and are 10 nanometres in diameter, are unlike actin and microtubules, which are highly dynamic cytoskeletal elements. Intermediate filaments are flexible at low strain, harden at high strain and resist breaking. For this reason, these filaments fulfil structural functions by providing mechanical support to the cells through their different strain-hardening properties. Intermediate filaments are suitable in that cells both cope with mechanical forces and modulate signal transmission. These filaments are composed of fibrous proteins that exhibit a central α-helical rod domain with a conserved substructure. Intermediate filament proteins are divided into six groups. Type I and type II include acidic and basic keratins, type III, vimentin, desmin, peripheralin and glial fibrillary acidic protein (GFAP), respectively. Type IV intermediate filament group includes neurofilament proteins and a fourth neurofilament subunit, α-internexin proteins. Type V consists of lamins located in the nucleus, and the type VI group consists of lens-specific intermediate filaments, CP49/phakinin and filen. Intermediate filament proteins show specific immunoreactivity in differentiating cells and mature cells of various types. Various carcinomas such as colorectal, urothelial and ovarian, diseases such as chronic pancreatitis, cirrhosis, hepatitis and cataract have been associated with intermediate filaments. Accordingly, this section reviews available immunohistochemical antibodies to intermediate filament proteins. Identification of intermediate filament proteins by methodological methods may contribute to the understanding of complex diseases.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
5
|
England SJ, Woodard AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular Analyses of V0v Spinal Interneurons and Identification of Transcriptional Regulators Downstream of Evx1 and Evx2 in these Cells. RESEARCH SQUARE 2023:rs.3.rs-3290462. [PMID: 37693471 PMCID: PMC10491344 DOI: 10.21203/rs.3.rs-3290462/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. Methods To identify candidate members of V0v gene regulatory networks, we FAC-sorted WT and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. Results Our data reveal two molecularly distinct subtypes of V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuronal expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. Conclusions This study identifies two molecularly distinct subsets of V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
|
6
|
Overk C, Fiorini E, Babolin C, Vukicevic M, Morici C, Madani R, Eligert V, Kosco-Vilbois M, Roberts A, Becker A, Pfeifer A, Mobley WC. Modeling Alzheimer's disease related phenotypes in the Ts65Dn mouse: impact of age on Aβ, Tau, pTau, NfL, and behavior. Front Neurosci 2023; 17:1202208. [PMID: 37449271 PMCID: PMC10336548 DOI: 10.3389/fnins.2023.1202208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction People with DS are highly predisposed to Alzheimer's disease (AD) and demonstrate very similar clinical and pathological features. Ts65Dn mice are widely used and serve as the best-characterized animal model of DS. Methods We undertook studies to characterize age-related changes for AD-relevant markers linked to Aβ, Tau, and phospho-Tau, axonal structure, inflammation, and behavior. Results We found age related changes in both Ts65Dn and 2N mice. Relative to 2N mice, Ts65Dn mice showed consistent increases in Aβ40, insoluble phospho-Tau, and neurofilament light protein. These changes were correlated with deficits in learning and memory. Discussion These data have implications for planning future experiments aimed at preventing disease-related phenotypes and biomarkers. Interventions should be planned to address specific manifestations using treatments and treatment durations adequate to engage targets to prevent the emergence of phenotypes.
Collapse
Affiliation(s)
- Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | | | | | | | | | | | | | | | - Amanda Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, United States
| | - Ann Becker
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | | | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci 2022; 288:120156. [PMID: 34801512 DOI: 10.1016/j.lfs.2021.120156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disease affecting both upper and lower motor neurons. In the United States alone, there are 16,000-20,000 established cases of ALS. The early disease diagnosis is challenging due to many overlapping pathophysiologies with other neurological diseases. The etiology of ALS is unknown; however, it is divided into two categories: familial ALS (fALS) which occurs due to gene mutations & contributes to 5-10% of ALS, and sporadic ALS (sALS) which is due to environmental factors & contributes to 90-95% of ALS. There is still no curative treatment for ALS: palliative care and symptomatic treatment are therefore essential components in the management of these patients. In this review, we provide a panoramic view of ALS, which includes epidemiology, risk factors, pathophysiologies, biomarkers, diagnosis, therapeutics (natural, synthetic, gene-based, pharmacological, stem cell, extracellular vesicles, and physical therapy), controversies (in the clinical trials of ALS), the scope of nanomedicine in ALS, and future perspectives.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Acharan S Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
8
|
Zhang Y, Chen S, Xiao Z, Liu X, Wu C, Wu K, Liu A, Wei D, Sun J, Zhou L, Fan H. Magnetoelectric Nanoparticles Incorporated Biomimetic Matrix for Wireless Electrical Stimulation and Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100695. [PMID: 34176235 DOI: 10.1002/adhm.202100695] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Electrical stimulation is regarded pivotal to promote repair of nerve injuries, however, failed to get extensive application in vivo due to the challenges in noninvasive electrical loading accompanying with construction of biomimetic cell niche. Herein, a new concept of magneto responsive electric 3D matrix for remote and wireless electrical stimulation is demonstrated. By the preparation of magnetoelectric core/shell structured Fe3 O4 @BaTiO3 NPs-loaded hyaluronan/collagen hydrogels, which recapitulate considerable magneto-electricity and vital features of native neural extracellular matrix, the enhancement of neurogenesis both in cellular level and spinal cord injury in vivo with external pulsed magnetic field applied is proved. The findings pave the way for a novel class of remote controlling and delivering electricity through extracellular niches-mimicked hydrogel network, arising prospects not only in neurogenesis but also in human-computer interaction with higher resolution.
Collapse
Affiliation(s)
- Yusheng Zhang
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Suping Chen
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Xiaoyin Liu
- Department of Neurosurgery West China Medical School West China Hospital Sichuan University Chengdu Sichuan 610064 China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Kai Wu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Amin Liu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Dan Wei
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Jing Sun
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Liangxue Zhou
- Department of Neurosurgery West China Medical School West China Hospital Sichuan University Chengdu Sichuan 610064 China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| |
Collapse
|
9
|
Jiao Y, Wang G, Li D, Li H, Liu J, Yang X, Yang W. Okadaic Acid Exposure Induced Neural Tube Defects in Chicken ( Gallus gallus) Embryos. Mar Drugs 2021; 19:md19060322. [PMID: 34199615 PMCID: PMC8227060 DOI: 10.3390/md19060322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Okadaic acid (OA) is an important liposoluble shellfish toxin distributed worldwide, and is mainly responsible for diarrheic shellfish poisoning in human beings. It has a variety of toxicities, including cytotoxicity, embryonic toxicity, neurotoxicity, and even genotoxicity. However, there is no direct evidence of its developmental toxicity in human offspring. In this study, using the chicken (Gallus gallus) embryo as the animal model, we investigated the effects of OA exposure on neurogenesis and the incidence of neural tube defects (NTDs). We found that OA exposure could cause NTDs and inhibit the neuronal differentiation. Immunofluorescent staining of pHI3 and c-Caspase3 demonstrated that OA exposure could promote cell proliferation and inhibit cell apoptosis on the developing neural tube. Besides, the down-regulation of Nrf2 and increase in reactive oxygen species (ROS) content and superoxide dismutase (SOD) activity in the OA-exposed chicken embryos indicated that OA could result in oxidative stress in early chick embryos, which might enhance the risk of the subsequent NTDs. The inhibition of bone morphogenetic protein 4 (BMP4) and Sonic hedgehog (Shh) expression in the dorsal neural tube suggested that OA could also affect the formation of dorsolateral hinge points, which might ultimately hinder the closure of the neural tube. Transcriptome and qPCR analysis showed the expression of lipopolysaccharide-binding protein (LBP), transcription factor AP-1 (JUN), proto-oncogene protein c-fos (FOS), and C-C motif chemokine 4 (CCL4) in the Toll-like receptor signaling pathway was significantly increased in the OA-exposed embryos, suggesting that the NTDs induced by OA might be associated with the Toll-like receptor signaling pathway. Taken together, our findings could advance the understanding of the embryo–fetal developmental toxicity of OA on human gestation.
Collapse
Affiliation(s)
- Yuhu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China;
| | - Dawei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
| | - Hongye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
| | - Jiesheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China;
- Correspondence: (X.Y.); (W.Y); Tel.: +86-20-85228316 (X.Y.); +86-20-85221491 (W.Y)
| | - Weidong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.J.); (D.L.); (H.L.); (J.L.)
- Correspondence: (X.Y.); (W.Y); Tel.: +86-20-85228316 (X.Y.); +86-20-85221491 (W.Y)
| |
Collapse
|
10
|
Mazzoli A, Spagnuolo MS, Nazzaro M, Gatto C, Iossa S, Cigliano L. Fructose Removal from the Diet Reverses Inflammation, Mitochondrial Dysfunction, and Oxidative Stress in Hippocampus. Antioxidants (Basel) 2021; 10:487. [PMID: 33804637 PMCID: PMC8003595 DOI: 10.3390/antiox10030487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Young age is often characterized by high consumption of processed foods and fruit juices rich in fructose, which, besides inducing a tendency to become overweight, can promote alterations in brain function. The aim of this study was therefore to (a) clarify brain effects resulting from fructose consumption in juvenile age, a critical phase for brain development, and (b) verify whether these alterations can be rescued after removing fructose from the diet. Young rats were fed a fructose-rich or control diet for 3 weeks. Fructose-fed rats were then fed a control diet for a further 3 weeks. We evaluated mitochondrial bioenergetics by high-resolution respirometry in the hippocampus, a brain area that is critically involved in learning and memory. Glucose transporter-5, fructose and uric acid levels, oxidative status, and inflammatory and synaptic markers were investigated by Western blotting and spectrophotometric or enzyme-linked immunosorbent assays. A short-term fructose-rich diet induced mitochondrial dysfunction and oxidative stress, associated with an increased concentration of inflammatory markers and decreased Neurofilament-M and post-synaptic density protein 95. These alterations, except for increases in haptoglobin and nitrotyrosine, were recovered by returning to a control diet. Overall, our results point to the dangerous effects of excessive consumption of fructose in young age but also highlight the effect of partial recovery by switching back to a control diet.
Collapse
Affiliation(s)
- Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System, National Research Council, 80147 Naples, Italy;
| | - Martina Nazzaro
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo, 80126 Naples, Italy; (A.M.); (M.N.); (C.G.); (S.I.)
| |
Collapse
|
11
|
Serum neurofilament light chain withstands delayed freezing and repeated thawing. Sci Rep 2020; 10:19982. [PMID: 33203974 PMCID: PMC7672085 DOI: 10.1038/s41598-020-77098-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Serum neurofilament light chain (sNfL) and its ability to expose axonal damage in neurologic disorders have solicited a considerable amount of attention in blood biomarker research. Hence, with the proliferation of high-throughput assay technology, there is an imminent need to study the pre-analytical stability of this biomarker. We recruited 20 patients with common neurological diagnoses and 10 controls (i.e. patients without structural neurological disease). We investigated whether a variation in pre-analytical variables (delayed freezing up to 24 h and repeated thawing/freezing for up to three cycles) affects the measured sNfL concentrations using state of the art Simoa technology. Advanced statistical methods were applied to expose any relevant changes in sNfL concentration due to different storing and processing conditions. We found that sNfL concentrations remained stable when samples were frozen within 24 h (mean absolute difference 0.2 pg/ml; intraindividual variation below 0.1%). Repeated thawing and re-freezing up to three times did not change measured sNfL concentration significantly, either (mean absolute difference 0.7 pg/ml; intraindividual variation below 0.2%). We conclude that the soluble sNfL concentration is unaffected at 4–8 °C when samples are frozen within 24 h and single aliquots can be used up to three times. These observations should be considered for planning future studies.
Collapse
|
12
|
Laverse E, Guo T, Zimmerman K, Foiani MS, Velani B, Morrow P, Adejuwon A, Bamford R, Underwood N, George J, Brooke D, O'Brien K, Cross MJ, Kemp SPT, Heslegrave AJ, Hardy J, Sharp DJ, Zetterberg H, Morris HR. Plasma glial fibrillary acidic protein and neurofilament light chain, but not tau, are biomarkers of sports-related mild traumatic brain injury. Brain Commun 2020; 2:fcaa137. [PMID: 33543129 PMCID: PMC7846133 DOI: 10.1093/braincomms/fcaa137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Mild traumatic brain injury is a relatively common event in contact sports and there is increasing interest in the long-term neurocognitive effects. The diagnosis largely relies on symptom reporting and there is a need for objective tools to aid diagnosis and prognosis. There are recent reports that blood biomarkers could potentially help triage patients with suspected injury and normal CT findings. We have measured plasma concentrations of glial and neuronal proteins and explored their potential in the assessment of mild traumatic brain injury in contact sport. We recruited a prospective cohort of active male rugby players, who had pre-season baseline plasma sampling. From this prospective cohort, we recruited 25 players diagnosed with mild traumatic brain injury. We sampled post-match rugby players without head injuries as post-match controls. We measured plasma neurofilament light chain, tau and glial fibrillary acidic protein levels using ultrasensitive single molecule array technology. The data were analysed at the group and individual player level. Plasma glial fibrillary acidic protein concentration was significantly increased 1-h post-injury in mild traumatic brain injury cases compared to the non-injured group (P = 0.017). Pairwise comparison also showed that glial fibrillary acidic protein levels were higher in players after a head injury in comparison to their pre-season levels at both 1-h and 3- to 10-day post-injury time points (P = 0.039 and 0.040, respectively). There was also an increase in neurofilament light chain concentration in brain injury cases compared to the pre-season levels within the same individual at both time points (P = 0.023 and 0.002, respectively). Tau was elevated in both the non-injured control group and the 1-h post-injury group compared to pre-season levels (P = 0.007 and 0.015, respectively). Furthermore, receiver operating characteristic analysis showed that glial fibrillary acidic protein and neurofilament light chain can separate head injury cases from control players. The highest diagnostic power was detected when biomarkers were combined in differentiating 1-h post-match control players from 1-h post-head injury players (area under curve 0.90, 95% confidence interval 0.79–1.00, P < 0.0002). The brain astrocytic marker glial fibrillary acidic protein is elevated in blood 1 h after mild traumatic brain injury and in combination with neurofilament light chain displayed the potential as a reliable biomarker for brain injury evaluation. Plasma total tau is elevated following competitive rugby with and without a head injury, perhaps related to peripheral nerve trauma and therefore total tau does not appear to be suitable as a blood biomarker.
Collapse
Affiliation(s)
- Etienne Laverse
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, UK
| | - Tong Guo
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, UK
| | - Karl Zimmerman
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Martha S Foiani
- Department of Neurodegenerative Disease, UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, UK
| | - Bharat Velani
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, UK
| | | | | | | | | | | | | | | | | | | | - Amanda J Heslegrave
- Department of Neurodegenerative Disease, UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, UK
| | - David J Sharp
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UK Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, UK
| |
Collapse
|
13
|
Altmann P, De Simoni D, Kaider A, Ludwig B, Rath J, Leutmezer F, Zimprich F, Hoeftberger R, Lunn MP, Heslegrave A, Berger T, Zetterberg H, Rommer PS. Increased serum neurofilament light chain concentration indicates poor outcome in Guillain-Barré syndrome. J Neuroinflammation 2020; 17:86. [PMID: 32183837 PMCID: PMC7079539 DOI: 10.1186/s12974-020-01737-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Guillain-Barré syndrome (GBS) is an autoimmune disease that results in demyelination and axonal damage. Five percent of patients die and 20% remain significantly disabled on recovery. Recovery is slow in most cases and eventual disability is difficult to predict, especially early in the disease. Blood or cerebrospinal fluid (CSF) biomarkers that could help identify patients at risk of poor outcome are required. We measured serum neurofilament light chain (sNfL) concentrations from blood taken upon admission and investigated a correlation between sNfL and clinical outcome. Methods Baseline sNfL levels in 27 GBS patients were compared with a control group of 22 patients with diagnoses not suggestive of any axonal damage. Clinical outcome parameters for GBS patients included (i) the Hughes Functional Score (HFS) at admission, nadir, and discharge; (ii) the number of days hospitalised; and (iii) whether intensive care was necessary. Results The median sNfL concentration in our GBS sample on admission was 85.5 pg/ml versus 9.1 pg/ml in controls. A twofold increase in sNfL concentration at baseline was associated with an HFS increase of 0.6 at nadir and reduced the likelihood of discharge with favourable outcome by a factor of almost three. Higher sNfL levels upon admission correlated well with hospitalisation time (rs = 0.69, p < 0.0001), during which transfer to intensive care occurred more frequently at an odds ratio of 2.4. Patients with baseline sNfL levels below 85.5 pg/ml had a 93% chance of being discharged with an unimpaired walking ability. Conclusions sNfL levels measured at hospital admission correlated with clinical outcome in GBS patients. These results represent amounts of acute axonal damage and reflect mechanisms resulting in disability in GBS. Thus, sNfL may serve as a convenient blood-borne biomarker to personalise patient care by identifying those at higher risk of poor outcome.
Collapse
Affiliation(s)
- Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Desiree De Simoni
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kaider
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Birgit Ludwig
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jakob Rath
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Romana Hoeftberger
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Michael P Lunn
- Neuroimmunology and CSF Laboratory, Institute of Neurology, University College London, London, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,The UK Dementia Research Institute at UCL, London, UK
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,The UK Dementia Research Institute at UCL, London, UK.,Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | |
Collapse
|
14
|
Didonna A, Opal P. The role of neurofilament aggregation in neurodegeneration: lessons from rare inherited neurological disorders. Mol Neurodegener 2019; 14:19. [PMID: 31097008 PMCID: PMC6524292 DOI: 10.1186/s13024-019-0318-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Many neurodegenerative disorders, including Parkinson's, Alzheimer's, and amyotrophic lateral sclerosis, are well known to involve the accumulation of disease-specific proteins. Less well known are the accumulations of another set of proteins, neuronal intermediate filaments (NFs), which have been observed in these diseases for decades. NFs belong to the family of cytoskeletal intermediate filament proteins (IFs) that give cells their shape; they determine axonal caliber, which controls signal conduction; and they regulate the transport of synaptic vesicles and modulate synaptic plasticity by binding to neurotransmitter receptors. In the last two decades, a number of rare disorders caused by mutations in genes that encode NFs or regulate their metabolism have been discovered. These less prevalent disorders are providing novel insights into the role of NF aggregation in the more common neurological disorders.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
15
|
Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SMR. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS. Front Neurol 2019; 10:400. [PMID: 31139131 PMCID: PMC6527847 DOI: 10.3389/fneur.2019.00400] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable neurodegenerative condition, characterized by the loss of upper and lower motor neurons. It affects 1-1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Thus, there is an urgent need to identify both therapeutic targets and disease-specific biomarkers-biomarkers that would be useful to diagnose and stratify patients into different sub-groups for therapeutic strategies, as well as biomarkers to follow the efficacy of any treatment tested during clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses. Numerous "omics" studies have been conducted on ALS in the past decade to identify a disease-signature in tissues and circulating biomarkers. The first goal of the present review was to group the molecular pathways that have been implicated in monogenic forms of ALS, to enable the description of patient strata corresponding to each pathway grouping. This strategy allowed us to suggest 14 strata, each potentially targetable by different pharmacological strategies. The second goal of this review was to identify diagnostic/prognostic biomarker candidates consistently observed across the literature. For this purpose, we explore previous biomarker-relevant "omics" studies of ALS and summarize their findings, focusing on potential circulating biomarker candidates. We systematically review 118 papers on biomarkers published during the last decade. Several candidate markers were consistently shared across the results of different studies in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these candidates still need to be validated in a systematic manner, we suggest the use of combinations of biomarkers that would likely reflect the "health status" of different tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin), inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because ALS is increasingly perceived as a multi-system disease, the identification of a panel of biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic purposes but also for prognostic or predictive applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie Marie-Rose Duguez
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, United Kingdom
| |
Collapse
|
16
|
Hibernation induces changes in the metacerebral neurons of Cornu aspersum: distribution and co-localization of cytoskeletal and calcium-binding proteins. INVERTEBRATE NEUROSCIENCE 2018; 18:13. [DOI: 10.1007/s10158-018-0217-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 01/05/2023]
|
17
|
Campos-Melo D, Hawley ZCE, Strong MJ. Dysregulation of human NEFM and NEFH mRNA stability by ALS-linked miRNAs. Mol Brain 2018; 11:43. [PMID: 30029677 PMCID: PMC6054723 DOI: 10.1186/s13041-018-0386-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
Neurofilaments (NFs) are the most abundant cytoskeletal component of vertebrate myelinated axons. NFs function by determining axonal caliber, promoting axonal growth and forming a 3-dimensional lattice that supports the organization of cytoplasmic organelles. The stoichiometry of NF protein subunits (NFL, NFM and NFH) has to be tightly controlled to avoid the formation of NF neuronal cytoplasmic inclusions (NCIs), axonal degeneration and neuronal death, all pathological hallmarks of amyotrophic lateral sclerosis (ALS). The post-transcriptional control of NF transcripts is critical for regulating normal levels of NF proteins. Previously, we showed that miRNAs that are dysregulated in ALS spinal cord regulate the levels of NEFL mRNA. In order to complete the understanding of altered NF expression in ALS, in this study we have investigated the regulation of NEFM and NEFH mRNA levels by miRNAs. We observed that a small group of ALS-linked miRNAs that are expressed in human spinal motor neurons directly regulate NEFM and NEFH transcript levels in a manner that is associated with an increase in NFM and NFH protein levels in ALS spinal cord homogenates. In concert with previous observations demonstrating the suppression of NEFL mRNA steady state levels in ALS, these observations provide support for the hypothesis that the dysregulation of miRNAs in spinal motor neurons in ALS fundamentally alters the stoichiometry of NF expression, leading to the formation of pathological NCIs.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,University Hospital, LHSC, Rm C7-120, 339, Windermere Road, London, ON, N6A 5A5, Canada.
| |
Collapse
|
18
|
Lee JC, Park JH, Ahn JH, Park J, Kim IH, Cho JH, Shin BN, Lee TK, Kim H, Song M, Cho GS, Kim DW, Kang IJ, Kim YM, Won MH, Choi SY. Effects of chronic scopolamine treatment on cognitive impairment and neurofilament expression in the mouse hippocampus. Mol Med Rep 2017; 17:1625-1632. [PMID: 29257227 PMCID: PMC5780103 DOI: 10.3892/mmr.2017.8082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/09/2017] [Indexed: 01/02/2023] Open
Abstract
Neurofilaments (NFs) including neurofilament-200 kDa (NF-H), neurofilament-165 kDa (NF-M) and neurofilament-68 kDa (NF-L) are major protein constituents of the brain, and serve important roles in the regulation of axonal transport. NF alteration is a key feature in the pathogenesis of neurological disorders involving cognitive dysfunction. In the present study, cognitive impairments were investigated, via assessments using the Morris water maze and passive avoidance tests, in mice following chronic systemic treatment with 1 mg/kg scopolamine (SCO) for 4 weeks. SCO-induced cognitive impairments were significantly observed 1 week following the SCO treatment, and these cognitive deficits were maintained for 4 weeks. However, the NF immunoreactivities and levels were altered differently according to the hippocampal subregion following SCO treatment. NF-H immunoreactivity and levels were markedly altered in all hippocampal subregions, and were significantly increased 1 week following the SCO treatment; thereafter, the immunoreactivity and levels significantly decreased with time. NF-M immunoreactivity and levels gradually decreased in the hippocampus and were significantly decreased 4 weeks following SCO treatment. NF-L immunoreactivity and levels gradually decreased in the hippocampus, and were significantly decreased 2 and 4 weeks following SCO treatment. In conclusion, the results of the present study demonstrated that chronic systemic treatment with SCO induced cognitive impairment from 1 week following SCO treatment, and NF expression was diversely altered according to the hippocampal subregion from 1 week following SCO treatment. These results suggest that SCO-induced changes in NF expression may be associated with cognitive impairment.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bich Na Shin
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Geum-Sil Cho
- Pharmacology and Toxicology Department, Shinpoong Pharmaceutical Co., Ltd., Ansan, Gyeonggi 15610, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, Kangnung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
19
|
Bonafede R, Mariotti R. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles. Front Cell Neurosci 2017; 11:80. [PMID: 28377696 PMCID: PMC5359305 DOI: 10.3389/fncel.2017.00080] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.
Collapse
Affiliation(s)
- Roberta Bonafede
- Department of Neuroscience, Biomedicine and Movement Sciences, University of VeronaVerona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of VeronaVerona, Italy
| |
Collapse
|
20
|
Effect of amitriptyline treatment on neurofilament-H protein in an experimental model of depression. Brain Res Bull 2017; 128:1-6. [DOI: 10.1016/j.brainresbull.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 02/04/2023]
|
21
|
Parlakian A, Paulin D, Izmiryan A, Xue Z, Li Z. Intermediate filaments in peripheral nervous system: Their expression, dysfunction and diseases. Rev Neurol (Paris) 2016; 172:607-613. [DOI: 10.1016/j.neurol.2016.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022]
|
22
|
McGuire JL, Gill AJ, Douglas SD, Kolson DL. The complement system, neuronal injury, and cognitive function in horizontally-acquired HIV-infected youth. J Neurovirol 2016; 22:823-830. [PMID: 27273074 PMCID: PMC5127892 DOI: 10.1007/s13365-016-0460-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 11/28/2022]
Abstract
The complement system (C1q/C3) is a key mediator of synaptic pruning during normal development. HIV inappropriately induces C1q and C3 production in the brain, and reduces neuronal complement inhibition. HIV may thus alter neural connectivity in the developing brain by excessively targeting synapses for elimination. The resultant pattern of neuronal injury may fundamentally alter neurodevelopmental and cognitive processes differentially across ages. This study aimed to (1) measure the association between the cerebrospinal fluid (CSF) complement factors (C1q/C3) and a marker of neuronal injury (NFL) in HIV+ subjects; (2) quantify the differences in CSF C1q/C3 between HIV+ youth and older adults; and (3) define the relationship between CSF C1q/C3 and cognitive impairment in each age group. We performed a retrospective cross-sectional study of 20 HIV+ 18–24-year-old youth and 20 HIV+ 40–46-year-old adults with varying levels of cognitive impairment enrolled in the CNS Antiretroviral Therapy Effects Research study. We quantified C3, C1q, and NFL by ELISA in paired CSF/plasma specimens. We found that CSF C1q correlates with NFL in all subjects not receiving antiretroviral therapy (n = 16, rho = 0.53, p = 0.035) when extreme NFL outliers were eliminated (n = 1). There was no difference in plasma/CSF C1q or C3 between older adults and youth. In 18–24-year-old youth, a nearly significant (p = 0.052) elevation of CSF C1q expression was observed in cognitively impaired subjects compared to cognitively normal subjects. Further investigation into the role of the CNS complement system in the neuropathogenesis of HIV is warranted and should be considered in a developmentally specific context.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Division of Neurology, The Children's Hospital of Philadelphia, 34th St and Civic Center Blvd, Philadelphia, PA, 19104, USA. .,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Alexander J Gill
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven D Douglas
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
23
|
Israeli E, Dryanovski DI, Schumacker PT, Chandel NS, Singer JD, Julien JP, Goldman RD, Opal P. Intermediate filament aggregates cause mitochondrial dysmotility and increase energy demands in giant axonal neuropathy. Hum Mol Genet 2016; 25:2143-2157. [PMID: 27000625 DOI: 10.1093/hmg/ddw081] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/07/2016] [Indexed: 12/26/2022] Open
Abstract
Intermediate filaments (IFs) are cytoskeletal polymers that extend from the nucleus to the cell membrane, giving cells their shape and form. Abnormal accumulation of IFs is involved in the pathogenesis of number neurodegenerative diseases, but none as clearly as giant axonal neuropathy (GAN), a ravaging disease caused by mutations in GAN, encoding gigaxonin. Patients display early and severe degeneration of the peripheral nervous system along with IF accumulation, but it has been difficult to link GAN mutations to any particular dysfunction, in part because GAN null mice have a very mild phenotype. We therefore established a robust dorsal root ganglion neuronal model that mirrors key cellular events underlying GAN. We demonstrate that gigaxonin is crucial for ubiquitin-proteasomal degradation of neuronal IF. Moreover, IF accumulation impairs mitochondrial motility and is associated with metabolic and oxidative stress. These results have implications for other neurological disorders whose pathology includes IF accumulation.
Collapse
Affiliation(s)
| | | | | | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey D Singer
- Department of Biology, Portland State University, Portland, OR, USA and
| | - Jean P Julien
- Research Centre of IUSMQ, Department of Psychiatry and Neuroscience of Laval University, Quebec, QC, G1V 0A6, Canada
| | | | - Puneet Opal
- Davee Department of Neurology, Department of Cell and Molecular Biology,
| |
Collapse
|
24
|
Deek J, Chung PJ, Safinya CR. Neurofilament networks: Salt-responsive hydrogels with sidearm-dependent phase behavior. Biochim Biophys Acta Gen Subj 2016; 1860:1560-9. [PMID: 26993199 DOI: 10.1016/j.bbagen.2016.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/28/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neurofilaments (NFs) - the neuron-specific intermediate filament proteins - are assembled into 10nm wide filaments in a tightly controlled ratio of three different monomer types: NF-Low (NF-L), NF-Medium (NF-M), and NF-High (NF-H). Previous work on reconstituted bovine NF hydrogels has shown the dependence of network properties, including filament alignment and spacing, on the subunit composition. METHODS We use polarized optical microscopy and SAXS to explore the full salt-dependent phase behavior of reconstituted bovine NF networks as a function of various binary and ternary subunit ratios. RESULTS We observe three salt-induced liquid crystalline phases: the liquid-ordered B(G) and N(G) phases, and the disordered I(G) phase. We note the emergent sidearm roles, particularly that of NF-H in driving the parallel to cross-filament transition, and the counter-role of NF-M in suppressing the I(G) phase. CONCLUSIONS In copolymers of NF-LH, NF-H shifts the I(G) to N(G) transition to nearer physiological salt concentrations, as compared to NF-M in copolymers of NF-LM. For ternary mixtures, the role of NF-H is modulated by the ratio of NF-M, where beneath 10wt.% NF-M, NF-H drives the transition to the disordered phase, and above which NF-H increases interfilament spacing. GENERAL SIGNIFICANCE Understanding the role of individual subunits in regulating the network structure will enable us to understand the mechanisms that drive the dysfunction of these networks, as observed in diseased conditions.
Collapse
Affiliation(s)
- Joanna Deek
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States.
| | - Peter J Chung
- Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| | - Cyrus R Safinya
- Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
25
|
An L, Li G, Si J, Zhang C, Han X, Wang S, Jiang L, Xie K. Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms. Neurochem Res 2015; 41:1000-9. [PMID: 26721510 DOI: 10.1007/s11064-015-1782-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/02/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
Abstract
Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport.
Collapse
Affiliation(s)
- Lihong An
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China.,Institute of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Guozhen Li
- Beijing Municipal Institute of Labour Protection, Taoranting Road, Xicheng District, Beijing, 100054, China
| | - Jiliang Si
- Institute of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Xiaoying Han
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
26
|
Heine P, Ehrlicher A, Käs J. Neuronal and metastatic cancer cells: Unlike brothers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3126-31. [DOI: 10.1016/j.bbamcr.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
|
27
|
McGuire JL, Gill AJ, Douglas SD, Kolson DL. Central and peripheral markers of neurodegeneration and monocyte activation in HIV-associated neurocognitive disorders. J Neurovirol 2015; 21:439-48. [PMID: 25776526 PMCID: PMC4511078 DOI: 10.1007/s13365-015-0333-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/02/2015] [Accepted: 02/24/2015] [Indexed: 02/02/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) affect up to 50 % of HIV-infected adults, independently predict HIV morbidity/mortality, and are associated with neuronal damage and monocyte activation. Cerebrospinal fluid (CSF) neurofilament subunits (NFL, pNFH) are sensitive surrogate markers of neuronal damage in several neurodegenerative diseases. In HIV, CSF NFL is elevated in individuals with and without cognitive impairment, suggesting early/persistent neuronal injury during HIV infection. Although individuals with severe cognitive impairment (HIV-associated dementia (HAD)) express higher CSF NFL levels than cognitively normal HIV-infected individuals, the relationships between severity of cognitive impairment, monocyte activation, neurofilament expression, and systemic infection are unclear. We performed a retrospective cross-sectional study of 48 HIV-infected adults with varying levels of cognitive impairment, not receiving antiretroviral therapy (ART), enrolled in the CNS Anti-Retroviral Therapy Effects Research (CHARTER) study. We quantified NFL, pNFH, and monocyte activation markers (sCD14/sCD163) in paired CSF/plasma samples. By examining subjects off ART, these correlations are not confounded by possible effects of ART on inflammation and neurodegeneration. We found that CSF NFL levels were elevated in individuals with HAD compared to cognitively normal or mildly impaired individuals with CD4+ T-lymphocyte nadirs ≤200. In addition, CSF NFL levels were significantly positively correlated to plasma HIV-1 RNA viral load and negatively correlated to plasma CD4+ T-lymphocyte count, suggesting a link between neuronal injury and systemic HIV infection. Finally, CSF NFL was significantly positively correlated with CSF pNFH, sCD163, and sCD14, demonstrating that monocyte activation within the CNS compartment is directly associated with neuronal injury at all stages of HAND.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA,
| | | | | | | |
Collapse
|
28
|
Neuroproteomics in the auditory brainstem: Candidate proteins for ultrafast and precise information processing. Mol Cell Neurosci 2015; 64:9-23. [DOI: 10.1016/j.mcn.2014.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 12/18/2022] Open
|
29
|
Loss of prion protein leads to age-dependent behavioral abnormalities and changes in cytoskeletal protein expression. Mol Neurobiol 2014; 50:923-36. [PMID: 24604355 DOI: 10.1007/s12035-014-8655-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/29/2014] [Indexed: 12/13/2022]
Abstract
The cellular prion protein (PrPC) is a highly conserved protein whose exact physiological role remains elusive. In the present study, we investigated age-dependent behavioral abnormalities in PrPC-knockout (Prnp0/0) mice and wild-type (WT) controls. Prnp0/0 mice showed age-dependent behavioral deficits in memory performance, associative learning, basal anxiety, and nest building behavior. Using a hypothesis-free quantitative proteomic investigation, we found that loss of PrPC affected the levels of neurofilament proteins in an age-dependent manner. In order to understand the biochemical basis of these observations, we analyzed the phosphorylation status of neurofilament heavy chain (NF-H). We found a reduction in NF-H phosphorylation in both Prnp0/0 mice and in PrPC-deficient cells. The expression of Fyn and phospho-Fyn, a potential regulator for NF phosphorylation, was associated with PrPC ablation. The number of β-tubulin III-positive neurons in the hippocampus was diminished in Prnp0/0 mice relative to WT mice. These data indicate that PrPC plays an important role in cytoskeletal organization, brain function, and age-related neuroprotection. Our work represents the first direct biochemical link between these proteins and the observed behavioral phenotypes.
Collapse
|
30
|
Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 2013; 7:265. [PMID: 24391543 PMCID: PMC3867638 DOI: 10.3389/fncel.2013.00265] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDDs) originate from a loss of neurons in the central nervous system and are severely debilitating. The incidence of NDDs increases with age, and they are expected to become more common due to extended life expectancy. Because no cure is available, these diseases have become a major challenge in neurobiology. The increasing relevance of microRNAs (miRNAs) in biology has prompted investigation into their possible involvement in neurodegeneration in order to identify new therapeutic targets. The idea of using miRNAs as therapeutic targets is not far from realization, but important issues need to be addressed before moving into the clinics. Here, we review what is known about the involvement of miRNAs in the pathogenesis of NDDs. We also report the miRNA expression levels in peripheral tissues of patients affected by NDDs in order to evaluate their application as biomarkers of disease. Finally, discrepancies, innovations, and the effectiveness of collected data will be elucidated and discussed.
Collapse
Affiliation(s)
- Simona Maciotta
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy ; Diabetes Research Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Italy
| |
Collapse
|
31
|
Holmgren A, Bouhy D, De Winter V, Asselbergh B, Timmermans JP, Irobi J, Timmerman V. Charcot-Marie-Tooth causing HSPB1 mutations increase Cdk5-mediated phosphorylation of neurofilaments. Acta Neuropathol 2013; 126:93-108. [PMID: 23728742 PMCID: PMC3963106 DOI: 10.1007/s00401-013-1133-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/03/2013] [Accepted: 05/21/2013] [Indexed: 01/21/2023]
Abstract
Mutations in the small heat shock protein HSPB1 (HSP27) are a cause of axonal Charcot-Marie-Tooth neuropathy (CMT2F) and distal hereditary motor neuropathy. To better understand the effect of mutations in HSPB1 on the neuronal cytoskeleton, we stably transduced neuronal cells with wild-type and mutant HSPB1 and investigated axonal transport of neurofilaments (NFs). We observed that mutant HSPB1 affected the binding of NFs to the anterograde motor protein kinesin, reducing anterograde transport of NFs. These deficits were associated with an increased phosphorylation of NFs and cyclin-dependent kinase Cdk5. As Cdk5 mediates NF phosphorylation, inhibition of Cdk5/p35 restored NF phosphorylation level, as well as NF binding to kinesin in mutant HSPB1 neuronal cells. Altogether, we demonstrate that HSPB1 mutations induce hyperphosphorylation of NFs through Cdk5 and reduce anterograde transport of NFs.
Collapse
Affiliation(s)
- Anne Holmgren
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Delphine Bouhy
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Vicky De Winter
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Bob Asselbergh
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2020 Antwerpen, Belgium
| | - Joy Irobi
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
| | - Vincent Timmerman
- Department of Molecular Genetics, VIB and University of Antwerp, 2610 Antwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, 2610 Antwerpen, Belgium
- Peripheral Neuropathy Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| |
Collapse
|
32
|
Öztürk G, Cengiz N, Erdoğan E, Him A, Oğuz EK, Yenidünya E, Ayşit N. Two distinct types of dying back axonal degenerationin vitro. Neuropathol Appl Neurobiol 2013; 39:362-76. [DOI: 10.1111/j.1365-2990.2012.01295.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Liu JX, Brännström T, Andersen PM, Pedrosa-Domellöf F. Distinct changes in synaptic protein composition at neuromuscular junctions of extraocular muscles versus limb muscles of ALS donors. PLoS One 2013; 8:e57473. [PMID: 23468993 PMCID: PMC3582511 DOI: 10.1371/journal.pone.0057473] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/21/2013] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of amyotrophic lateral sclerosis (ALS) is very complex and still rather elusive but in recent years evidence of early involvement of the neuromuscular junctions (NMJs) has accumulated. We have recently reported that the human extraocular muscles (EOMs) are far less affected than limb muscles at the end-stage of ALS from the same donor. The present study aimed to compare the differences in synaptic protein composition at NMJ and in nerve fibers between EOM and limb muscles from ALS donors and controls. Neurofilament light subunit and synaptophysin decreased significantly at NMJs and in nerve fibers in limb muscles with ALS whereas they were maintained in ALS EOMs. S100B was significantly decreased at NMJs and in nerve fibers in both EOMs and limb muscles of ALS donors, but other markers confirmed the presence of terminal Schwann cells in these NMJs. p75 neurotrophin receptor was present in nerve fibers but absent at NMJs in ALS limb muscles. The EOMs were able to maintain the integrity of their NMJs to a very large extent until the end-stage of ALS, in contrast to the limb muscles. Changes in Ca2+ homeostasis, reflected by altered S100B distribution, might be involved in the breakdown of nerve-muscle contact at NMJs in ALS.
Collapse
Affiliation(s)
- Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
34
|
Lee J, Kim S, Chang R, Jayanthi L, Gebremichael Y. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation. J Chem Phys 2013; 138:015103. [DOI: 10.1063/1.4773297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
35
|
Triolo D, Dina G, Taveggia C, Vaccari I, Porrello E, Rivellini C, Domi T, La Marca R, Cerri F, Bolino A, Quattrini A, Previtali SC. Vimentin regulates peripheral nerve myelination. Development 2012; 139:1359-67. [PMID: 22357929 DOI: 10.1242/dev.072371] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Myelination is a complex process that requires coordinated Schwann cell-axon interactions during development and regeneration. Positive and negative regulators of myelination have been recently described, and can belong either to Schwann cells or neurons. Vimentin is a fibrous component present in both Schwann cell and neuron cytoskeleton, the expression of which is timely and spatially regulated during development and regeneration. We now report that vimentin negatively regulates myelination, as loss of vimentin results in peripheral nerve hypermyelination, owing to increased myelin thickness in vivo, in transgenic mice and in vitro in a myelinating co-culture system. We also show that this is due to a neuron-autonomous increase in the levels of axonal neuregulin 1 (NRG1) type III. Accordingly, genetic reduction of NRG1 type III in vimentin-null mice rescues hypermyelination. Finally, we demonstrate that vimentin acts synergistically with TACE, a negative regulator of NRG1 type III activity, as shown by hypermyelination of double Vim/Tace heterozygous mice. Our results reveal a novel role for the intermediate filament vimentin in myelination, and indicate vimentin as a regulator of NRG1 type III function.
Collapse
Affiliation(s)
- Daniela Triolo
- Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 60, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
LEERMAKERS FAM, ZHULINA EB. SELF-CONSISTENT FIELD MODELING OF THE NEUROFILAMENT NETWORK. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s179304800800085x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have investigated, on a self-consistent field level, the equilibrium structure of the neurofilament network formed by the NF -H, NF -M and NF -L proteins, using the one-gradient version of the numerical model of Scheutjens and Fleer. We demonstrate a reticulation of NFs in parallel bundles that occurs due to hydrophobic attractions between apolar aminoacid residues in the terminal parts of the M- and H-tails. We elaborate on the feasibility that the stability of the NF network can be enhanced by specific interactions between the projection domains, possibly induced by accessary proteins. We demonstrate that the phosphorylation of KSP repeats in the M- and H-tails promotes the cross-bridging between the NFs and therefore helps form the NF network.
Collapse
Affiliation(s)
- F. A. M. LEERMAKERS
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6307 HB Wageningen, The Netherlands
| | - E. B. ZHULINA
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| |
Collapse
|
37
|
Ferreira AFB, Real CC, Rodrigues AC, Alves AS, Britto LRG. Short-term, moderate exercise is capable of inducing structural, BDNF-independent hippocampal plasticity. Brain Res 2011; 1425:111-22. [PMID: 22035567 DOI: 10.1016/j.brainres.2011.10.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 09/12/2011] [Accepted: 10/02/2011] [Indexed: 12/28/2022]
Abstract
Exercise is known to improve cognitive functions and to induce neuroprotection. In this study we used a short-term, moderate intensity treadmill exercise protocol to investigate the effects of exercise on usual markers of hippocampal synaptic and structural plasticity, such as synapsin I (SYN), synaptophysin (SYP), neurofilaments (NF), microtubule-associated protein 2 (MAP2), glutamate receptor subunits GluR1 and GluR2/3, brain-derived neurotrophic factor (BDNF) and glial fibrillary acidic protein (GFAP). Immunohistochemistry, Western blotting and real-time PCR were used. We also evaluated the number of cells positive for the proliferation marker 5-bromo-2-deoxyuridine (BrdU), the neurogenesis marker doublecortin (DCX) and the plasma corticosterone levels. Adult male Wistar rats were adapted to a treadmill and divided into 4 groups: sedentary (SED), 3-day exercise (EX3), 7-day exercise (EX7) and 15-day exercise (EX15). The protein changes detected were increased levels of NF68 and MAP2 at EX3, of SYN at EX7 and of GFAP at EX15, accompanied by a decreased level of GluR1 at EX3. Immunohistochemical findings revealed a similar pattern of changes. The real-time PCR analysis disclosed only an increase of MAP2 mRNA at EX7. We also observed an increased number of BrdU-positive cells and DCX-positive cells in the subgranular zone of the dentate gyrus at all time points and increased corticosterone levels at EX3 and EX7. These results reveal a positive effect of short-term, moderate treadmill exercise on hippocampal plasticity. This effect was in general independent of transcriptional processes and of BDNF upregulation, and occurred even in the presence of increased corticosterone levels.
Collapse
Affiliation(s)
- Ana F B Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
38
|
Chansard M, Hong JH, Park YU, Park SK, Nguyen MD. Ndel1, Nudel (Noodle): flexible in the cell? Cytoskeleton (Hoboken) 2011; 68:540-54. [PMID: 21948775 DOI: 10.1002/cm.20532] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 02/06/2023]
Abstract
Nuclear distribution element-like 1 (Ndel1 or Nudel) was firstly described as a regulator of the cytoskeleton in microtubule and intermediate filament dynamics and microtubule-based transport. Emerging evidence indicates that Ndel1 also serves as a docking platform for signaling proteins and modulates enzymatic activities (kinase, ATPase, oligopeptidase, GTPase). Through these structural and signaling functions, Ndel1 plays a role in diverse cellular processes (e.g., mitosis, neurogenesis, neurite outgrowth, and neuronal migration). Furthermore, Ndel1 is linked to the etiology of various mental illnesses and neurodegenerative disorders. In the present review, we summarize the physiological and pathological functions associated with Ndel1. We further advance the concept that Ndel1 interfaces GTPases-mediated processes (endocytosis, vesicles morphogenesis/signaling) and cytoskeletal dynamics to impact cell signaling and behaviors. This putative mechanism may affect cellular functionalities and may contribute to shed light into the causes of devastating human diseases.
Collapse
Affiliation(s)
- Mathieu Chansard
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
39
|
Cifuentes-Diaz C, Chareyre F, Garcia M, Devaux J, Carnaud M, Levasseur G, Niwa-Kawakita M, Harroch S, Girault JA, Giovannini M, Goutebroze L. Protein 4.1B contributes to the organization of peripheral myelinated axons. PLoS One 2011; 6:e25043. [PMID: 21966409 PMCID: PMC3180372 DOI: 10.1371/journal.pone.0025043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/23/2011] [Indexed: 12/26/2022] Open
Abstract
Neurons are characterized by extremely long axons. This exceptional cell shape is likely to depend on multiple factors including interactions between the cytoskeleton and membrane proteins. In many cell types, members of the protein 4.1 family play an important role in tethering the cortical actin-spectrin cytoskeleton to the plasma membrane. Protein 4.1B is localized in myelinated axons, enriched in paranodal and juxtaparanodal regions, and also all along the internodes, but not at nodes of Ranvier where are localized the voltage-dependent sodium channels responsible for action potential propagation. To shed light on the role of protein 4.1B in the general organization of myelinated peripheral axons, we studied 4.1B knockout mice. These mice displayed a mildly impaired gait and motility. Whereas nodes were unaffected, the distribution of Caspr/paranodin, which anchors 4.1B to the membrane, was disorganized in paranodal regions and its levels were decreased. In juxtaparanodes, the enrichment of Caspr2, which also interacts with 4.1B, and of the associated TAG-1 and Kv1.1, was absent in mutant mice, whereas their levels were unaltered. Ultrastructural abnormalities were observed both at paranodes and juxtaparanodes. Axon calibers were slightly diminished in phrenic nerves and preterminal motor axons were dysmorphic in skeletal muscle. βII spectrin enrichment was decreased along the axolemma. Electrophysiological recordings at 3 post-natal weeks showed the occurrence of spontaneous and evoked repetitive activity indicating neuronal hyperexcitability, without change in conduction velocity. Thus, our results show that in myelinated axons 4.1B contributes to the stabilization of membrane proteins at paranodes, to the clustering of juxtaparanodal proteins, and to the regulation of the internodal axon caliber.
Collapse
Affiliation(s)
- Carmen Cifuentes-Diaz
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Fabrice Chareyre
- Inserm, U674, Institut Universitaire d'Hématologie, Paris, France
| | - Marta Garcia
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Jérôme Devaux
- Département de Signalisation Neuronale, CRN2M, UMR 6231, CNRS, Université de la Méditerranée-Université Paul Cézanne, IFR Jean Roche, Marseille, France
| | - Michèle Carnaud
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Grégoire Levasseur
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| | | | - Sheila Harroch
- Département de Neuroscience, Institut Pasteur, Paris, France
| | - Jean-Antoine Girault
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail:
| | - Marco Giovannini
- Inserm, U674, Institut Universitaire d'Hématologie, Paris, France
| | - Laurence Goutebroze
- Inserm, UMR-S 839, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- Institut du Fer à Moulin, Paris, France
| |
Collapse
|
40
|
Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 2011; 124:225-50. [PMID: 21914720 DOI: 10.1093/toxsci/kfr239] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration describes the loss of neuronal structure and function. Numerous neurodegenerative diseases are associated with neurodegeneration. Many are rare and stem from purely genetic causes. However, the prevalence of major neurodegenerative diseases is increasing with improvements in treating major diseases such as cancers and cardiovascular diseases, resulting in an aging population. The neurological consequences of neurodegeneration in patients can have devastating effects on mental and physical functioning. The causes of most cases of prevalent neurodegenerative diseases are unknown. The role of neurotoxicant exposures in neurodegenerative disease has long been suspected, with much effort devoted to identifying causative agents. However, causative factors for a significant number of cases have yet to be identified. In this review, the role of environmental neurotoxicant exposures on neurodegeneration in selected major neurodegenerative diseases is discussed. Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis were chosen because of available data on environmental influences. The special sensitivity the nervous system exhibits to toxicant exposure and unifying mechanisms of neurodegeneration are explored.
Collapse
Affiliation(s)
- Jason R Cannon
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
41
|
Changes of protein oxidation, calpain and cytoskeletal proteins (alpha tubulin and pNF-H) levels in rat brain after nerve agent poisoning. Toxicol Lett 2011; 203:227-36. [DOI: 10.1016/j.toxlet.2011.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022]
|
42
|
Cacace AT, Pinheiro JMB. The mitochondrial connection in auditory neuropathy. Audiol Neurootol 2011; 16:398-413. [PMID: 21266802 DOI: 10.1159/000323276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/30/2010] [Indexed: 12/21/2022] Open
Abstract
'Auditory neuropathy' (AN), the term used to codify a primary degeneration of the auditory nerve, can be linked directly or indirectly to mitochondrial dysfunction. These observations are based on the expression of AN in known mitochondrial-based neurological diseases (Friedreich's ataxia, Mohr-Tranebjærg syndrome), in conditions where defects in axonal transport, protein trafficking, and fusion processes perturb and/or disrupt mitochondrial dynamics (Charcot-Marie-Tooth disease, autosomal dominant optic atrophy), in a common neonatal condition known to be toxic to mitochondria (hyperbilirubinemia), and where respiratory chain deficiencies produce reductions in oxidative phosphorylation that adversely affect peripheral auditory mechanisms. This body of evidence is solidified by data derived from temporal bone and genetic studies, biochemical, molecular biologic, behavioral, electroacoustic, and electrophysiological investigations.
Collapse
Affiliation(s)
- Anthony T Cacace
- Department of Communication Sciences and Disorders, Wayne State University, Detroit, Mich 48202, USA. cacacea @ wayne.edu
| | | |
Collapse
|
43
|
Vavlitou N, Sargiannidou I, Markoullis K, Kyriacou K, Scherer SS, Kleopa KA. Axonal pathology precedes demyelination in a mouse model of X-linked demyelinating/type I Charcot-Marie Tooth neuropathy. J Neuropathol Exp Neurol 2010; 69:945-58. [PMID: 20720503 PMCID: PMC3034224 DOI: 10.1097/nen.0b013e3181efa658] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The X-linked demyelinating/type I Charcot-Marie-Tooth neuropathy (CMT1X) is an inherited peripheral neuropathy caused by mutations in GJB1, the gene that encodes the gap junction protein connexin32. Connexin32 is expressed by myelinating Schwann cells and forms gap junctions in noncompact myelin areas, but axonal involvement is more prominent in X-linked compared with other forms of demyelinating Charcot-Marie-Tooth disease. To clarify the cellular and molecular mechanisms of axonal pathology in CMT1X, we studied Gjb1-null mice at early stages (i.e. 2-4 months old) of the neuropathy, when there is minimal or no demyelination. The diameters of large myelinated axons were progressively reduced in Gjb1-null mice compared with those in wild-type littermates. Furthermore, neurofilaments were relatively more dephosphorylated and more densely packed starting at 2 months of age. Increased expression of β-amyloid precursor protein, a marker of axonal damage, was also detected in Gjb1-null nerves. Finally, fast axonal transport, assayed by sciatic nerve ligation experiments, was slower in distal axons of Gjb1-null versus wild-type animals with reduced accumulation of synaptic vesicle-associated proteins. These findings demonstrate that axonal abnormalities including impaired cytoskeletal organization and defects in axonal transport precede demyelination in this mouse model of CMT1X.
Collapse
Affiliation(s)
- Natalie Vavlitou
- Neuroscience Laboratory and Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
44
|
Diana V, Ottolina A, Botti F, Fumagalli E, Calcagno E, De Paola M, Cagnotto A, Invernici G, Parati E, Curti D, Mennini T. Neural precursor-derived astrocytes of wobbler mice induce apoptotic death of motor neurons through reduced glutamate uptake. Exp Neurol 2010; 225:163-72. [DOI: 10.1016/j.expneurol.2010.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/17/2010] [Accepted: 06/07/2010] [Indexed: 11/16/2022]
|
45
|
Volkening K, Leystra-Lantz C, Strong MJ. Human low molecular weight neurofilament (NFL) mRNA interacts with a predicted p190RhoGEF homologue (RGNEF) in humans. ACTA ACUST UNITED AC 2010; 11:97-103. [PMID: 19488899 DOI: 10.3109/17482960902995584] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the mouse, p190RhoGEF is a low molecular weight neurofilament (NFL) mRNA stability factor that is involved in NF aggregate formation in neurons. A human homologue of this protein has not been described. Our objective was to identify a human homologue of p190RhoGEF, and to determine its interaction with human NFL mRNA. We used sequence homology searches to predict a human homologue (RGNEF), and RT-PCR to determine the expression of mRNA in ALS and neuropathologically normal control tissues. Gel shift assays determined the interaction of RGNEF with human NFL mRNA in vitro, while IP-RT-PCR and gel shift assays were used to confirm the interaction in tissue lysates. We determined that RGNEF is a human homologue of p190RhoGEF, and that its RNA is expressed in both brain and spinal cord. While RGNEF and NFL mRNA interact directly in vitro, interestingly they only appear to interact in ALS lysates and not in controls. These data add another player to the family of NFL mRNA stability regulators, and raise the intriguing possibility that the mechanism by which p190RhoGEF contributes to murine neuronal NF aggregate formation may be important to human ALS NF aggregate formation.
Collapse
|
46
|
Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, Rubin LL, Misawa H, Tabin CJ, Brown R, Chen A, Hornstein E. miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 2010; 107:13111-6. [PMID: 20616011 PMCID: PMC2919953 DOI: 10.1073/pnas.1006151107] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Defective RNA metabolism is an emerging mechanism involved in ALS pathogenesis and possibly in other neurodegenerative disorders. Here, we show that microRNA (miRNA) activity is essential for long-term survival of postmitotic spinal motor neurons (SMNs) in vivo. Thus, mice that do not process miRNA in SMNs exhibit hallmarks of spinal muscular atrophy (SMA), including sclerosis of the spinal cord ventral horns, aberrant end plate architecture, and myofiber atrophy with signs of denervation. Furthermore, a neurofilament heavy subunit previously implicated in motor neuron degeneration is specifically up-regulated in miRNA-deficient SMNs. We demonstrate that the heavy neurofilament subunit is a target of miR-9, a miRNA that is specifically down-regulated in a genetic model of SMA. These data provide evidence for miRNA function in SMN diseases and emphasize the potential role of miR-9-based regulatory mechanisms in adult neurons and neurodegenerative states.
Collapse
Affiliation(s)
| | | | - Yehezkel Sztainberg
- Departments of Neurobiology and
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Raya Eilam
- Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | - Edwina McGlinn
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Patrick W. Heiser
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
| | - Itzhak Wirguin
- Department of Neurology, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 91352 , Israel
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Hidemi Misawa
- Department of Pharmacology, Keio University Faculty of Pharmacy, Tokyo 160-8582, Japan; and
| | | | - Robert Brown
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA 01655
| | | | | |
Collapse
|
47
|
Bechara SL, Judson A, Popat KC. Template synthesized poly(ɛ-caprolactone) nanowire surfaces for neural tissue engineering. Biomaterials 2010; 31:3492-501. [DOI: 10.1016/j.biomaterials.2010.01.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
48
|
Yang DS, Lee JH, Vinod KY, Stavrides P, Amin ND, Pant HC, Nixon RA. Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments. Neurobiol Aging 2009; 32:2016-29. [PMID: 20031277 DOI: 10.1016/j.neurobiolaging.2009.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/24/2009] [Accepted: 12/02/2009] [Indexed: 01/03/2023]
Abstract
Cytoskeletal protein phosphorylation is frequently altered in neuropathologic states but little is known about changes during normal aging. Here we report that declining protein phosphatase activity, rather than activation of kinases, underlies aging-related neurofilament hyperphosphorylation. Purified PP2A or PP2B dephosphorylated the heavy neurofilament (NFH) subunit or its extensively phorphorylated carboxyl-terminal domain in vitro. In cultured primary hippocampal neurons, inhibiting either phosphatase induced NFH phosphorylation without activating known neurofilament kinases. Neurofilament phosphorylation in the mouse CNS, as reflected by levels of the RT-97 phosphoepitope associated with late axon maturation, more than doubled during the 12-month period after NFH expression plateaued at p21. This was accompanied by declines in levels and activity of PP2A but not PP2B, and no rise in activities of neurofilament kinases (Erk1,2, cdk5 and JNK1,2). Inhibiting PP2A in mice in vivo restored brain RT-97 to levels seen in young mice. Declining PP2A activity, therefore, can account for rising neurofilament phosphorylation in maturing brain, potentially compounding similar changes associated with adult-onset neurodegenerative diseases.
Collapse
|
49
|
Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 2009; 1305:168-82. [PMID: 19815002 DOI: 10.1016/j.brainres.2009.09.105] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by progressive motor neuron degeneration in association with neurofilament (NF) aggregate formation. This process is accompanied by an alteration in the stoichiometry of NF subunit protein expression such that the steady state levels of the low molecular weight NF (NFL) mRNA levels are selectively suppressed. We have previously shown that each of TDP-43, 14-3-3 and mutant SOD1 can function as NFL mRNA 3'UTR binding proteins that directly affect the stability of NFL transcripts. In this study, we demonstrate that the interaction of TDP-43 with the NFL mRNA 3' UTR involves ribonucleotide (UG) motifs present on stem loops of the 3'UTR as well as the RRM1 and RRM2 motifs of TDP-43. Ex vivo, TDP-43, 14-3-3 and SOD1 proteins interact to modulate NFL mRNA stability, although in vivo, only TDP-43 and either mutant or wild-type SOD1 co-localize in ALS motor neurons. TDP-43 was observed to co-localize to RNA transport granules (Staufen immunoreactive) in both control and ALS spinal motor neurons. In contrast, both stress granules (TIA-1 immunoreactive) and processing bodies (P-bodies; XRN-1 immunoreactive) were more prevalent in ALS motor neurons than in controls and demonstrated strong co-localization with TDP-43. Using RNA-IP-PCR, we further demonstrate that NFL mRNA is preferentially sequestered to both stress granules and P-bodies in ALS. These data suggest that NFL mRNA processing is fundamentally altered in ALS spinal motor neurons to favour compartmentalization within both stress granules and P-bodies, and that TDP-43 plays a fundamental role in this process.
Collapse
Affiliation(s)
- Kathryn Volkening
- Molecular Brain Research Group, Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada N6A 5K8
| | | | | | | | | |
Collapse
|
50
|
Shahani N, Gourie-Devi M, Nalini A, Rammohan P, Shobha K, Harsha HN, Raju TR. (‐)‐Deprenyl alleviates the degenerative changes induced in the neonatal rat spinal cord by CSF from amyotrophic lateral sclerosis patients. ACTA ACUST UNITED AC 2009; 5:172-9. [PMID: 15512906 DOI: 10.1080/14660820410017037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous studies from our laboratory suggest the presence of toxic factor(s) in the cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS) which induces degenerative changes in the spinal cord neurons. The present work was carried out to investigate the role of (-)-deprenyl in attenuating these degenerative changes. CSF samples from ALS and non-ALS neurological patients were injected into the spinal subarachnoid space of 3-day-old rat pups, followed by a single dose (0.01 mg/kg body weight) of (-)-deprenyl, administered 24 h after CSF injection. After a further period of 24 h, the rats were sacrificed and the spinal cord sections were stained with antibodies against phosphorylated neurofilament (NF, SMI-31 antibody) and glial fibrillary acidic protein (GFAP). Activity of lactate dehydrogenase (LDH) was also measured. (-)-Deprenyl injection resulted in a significant (61%) decrease in the number of SMI-31 stained neuronal soma in the ventral horn of the spinal cord of ALS CSF exposed rats. This was accompanied by a reduction in the astrocytes immunoreactive for GFAP. There was also a significant (35%) decrease in the LDH activity following (-)-deprenyl treatment. These results suggest that (-)-deprenyl may confer neuroprotection against the toxic factor(s) present in ALS CSF.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neurobiology, University of Osnabrueck, D- 49076 Osnabrueck, Germany
| | | | | | | | | | | | | |
Collapse
|