1
|
Püffel F, Meyer L, Imirzian N, Roces F, Johnston R, Labonte D. Developmental biomechanics and age polyethism in leaf-cutter ants. Proc Biol Sci 2023; 290:20230355. [PMID: 37312549 PMCID: PMC10265030 DOI: 10.1098/rspb.2023.0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Many social insects display age polyethism: young workers stay inside the nest, and only older workers forage. This behavioural transition is accompanied by genetic and physiological changes, but the mechanistic origin of it remains unclear. To investigate if the mechanical demands on the musculoskeletal system effectively prevent young workers from foraging, we studied the biomechanical development of the bite apparatus in Atta vollenweideri leaf-cutter ants. Fully matured foragers generated peak in vivo bite forces of around 100 mN, more than one order of magnitude in excess of those measured for freshly eclosed callows of the same size. This change in bite force was accompanied by a sixfold increase in the volume of the mandible closer muscle, and by a substantial increase of the flexural rigidity of the head capsule, driven by a significant increase in both average thickness and indentation modulus of the head capsule cuticle. Consequently, callows lack the muscle force capacity required for leaf-cutting, and their head capsule is so compliant that large muscle forces would be likely to cause damaging deformations. On the basis of these results, we speculate that continued biomechanical development post eclosion may be a key factor underlying age polyethism, wherever foraging is associated with substantial mechanical demands.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London, UK
| | - Lara Meyer
- Faculty of Nature and Engineering, City University of Applied Sciences Bremen, Bremen, Germany
| | - Natalie Imirzian
- Department of Bioengineering, Imperial College London, London, UK
| | - Flavio Roces
- Department of Behavioural Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | | | - David Labonte
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
2
|
Hughes SM, Escaleira RC, Wanders K, Koth J, Wilkinson DG, Xu Q. Clonal behaviour of myogenic precursor cells throughout the vertebrate lifespan. Biol Open 2022; 11:276275. [PMID: 35972050 PMCID: PMC9399818 DOI: 10.1242/bio.059476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
To address questions of stem cell diversity during skeletal myogenesis, a Brainbow-like genetic cell lineage tracing method, dubbed Musclebow2, was derived by enhancer trapping in zebrafish. It is shown that, after initial formation of the primary myotome, at least 15 muscle precursor cells (mpcs) seed each somite, where they proliferate but contribute little to muscle growth prior to hatching. Thereafter, dermomyotome-derived mpc clones rapidly expand while some progeny undergo terminal differentiation, leading to stochastic clonal drift within the mpc pool. No evidence of cell-lineage-based clonal fate diversity was obtained. Neither fibre nor mpc death was observed in uninjured animals. Individual marked muscle fibres persist across much of the lifespan indicating low rates of nuclear turnover. In adulthood, early-marked mpc clones label stable blocks of tissue comprising a significant fraction of either epaxial or hypaxial somite. Fusion of cells from separate early-marked clones occurs in regions of clone overlap. Wounds are regenerated from several local mpcs; no evidence for specialised stem mpcs was obtained. In conclusion, our data indicate that most mpcs in muscle tissue contribute to local growth and repair and suggest that cellular turnover is low in the absence of trauma.
Collapse
Affiliation(s)
- Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Roberta C Escaleira
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Kees Wanders
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Jana Koth
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | | | - Qiling Xu
- Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
3
|
Developmental and adult-specific processes contribute to de novo neuromuscular regeneration in the lizard tail. Dev Biol 2017; 433:287-296. [PMID: 29291978 DOI: 10.1016/j.ydbio.2017.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Abstract
Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response.
Collapse
|
4
|
Taylor MV, Hughes SM. Mef2 and the skeletal muscle differentiation program. Semin Cell Dev Biol 2017; 72:33-44. [PMID: 29154822 DOI: 10.1016/j.semcdb.2017.11.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 02/06/2023]
Abstract
Mef2 is a conserved and significant transcription factor in the control of muscle gene expression. In cell culture Mef2 synergises with MyoD-family members in the activation of gene expression and in the conversion of fibroblasts into myoblasts. Amongst its in vivo roles, Mef2 is required for both Drosophila muscle development and mammalian muscle regeneration. Mef2 has functions in other cell-types too, but this review focuses on skeletal muscle and surveys key findings on Mef2 from its discovery, shortly after that of MyoD, up to the present day. In particular, in vivo functions, underpinning mechanisms and areas of uncertainty are highlighted. We describe how Mef2 sits at a nexus in the gene expression network that controls the muscle differentiation program, and how Mef2 activity must be regulated in time and space to orchestrate specific outputs within the different aspects of muscle development. A theme that emerges is that there is much to be learnt about the different Mef2 proteins (from different paralogous genes, spliced transcripts and species) and how the activity of these proteins is controlled.
Collapse
Affiliation(s)
- Michael V Taylor
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL UK
| |
Collapse
|
5
|
Nadein K, Betz O. Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini). J Exp Biol 2016; 219:2015-27. [DOI: 10.1242/jeb.140533] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The present study analyses the anatomy, mechanics and functional morphology of the jumping apparatus, the performance and the kinematics of the natural jump of flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini). The kinematic parameters of the initial phase of the jump were calculated for five species from five genera (average values from minimum to maximum): acceleration 0.91–2.25 (×103) m s−2, velocity 1.48–2.80 m s−1, time to take-off 1.35–2.25 ms, kinetic energy 2.43–16.5 µJ, g-force 93–230. The jumping apparatus is localized in the hind legs and formed by the femur, tibia, femoro-tibial joint, modified metafemoral extensor tendon, extensor ligament, tibial flexor sclerite, and extensor and flexor muscles. The primary role of the metafemoral extensor tendon is seen in the formation of an increased attachment site for the extensor muscles. The rubber-like protein resilin was detected in the extensor ligament, i.e. a short, elastic element connecting the extensor tendon with the tibial base. The calculated specific joint power (max. 0.714 W g−1) of the femoro-tibial joint during the jumping movement and the fast full extension of the hind tibia (1–3 ms) suggest that jumping is performed via a catapult mechanism releasing energy that has beforehand been stored in the extensor ligament during its stretching by the extensor muscles. In addition, the morphology of the femoro-tibial joint suggests that the co-contraction of the flexor and the extensor muscles in the femur of the jumping leg is involved in this process.
Collapse
Affiliation(s)
- Konstantin Nadein
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Oliver Betz
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Shieh SJ, Cheng TC. Regeneration and repair of human digits and limbs: fact and fiction. ACTA ACUST UNITED AC 2015; 2:149-68. [PMID: 27499873 PMCID: PMC4857729 DOI: 10.1002/reg2.41] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's "wish list." Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit- and limb-building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations.
Collapse
Affiliation(s)
- Shyh-Jou Shieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine National Cheng Kung University Tainan Taiwan; International Research Center for Wound Repair and Regeneration (iWRR) National Cheng Kung University Tainan Taiwan
| | - Tsun-Chih Cheng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine National Cheng Kung University Tainan Taiwan
| |
Collapse
|
7
|
Tu CF, Tsao KC, Lee SJ, Yang RB. SCUBE3 (signal peptide-CUB-EGF domain-containing protein 3) modulates fibroblast growth factor signaling during fast muscle development. J Biol Chem 2014; 289:18928-42. [PMID: 24849601 DOI: 10.1074/jbc.m114.551929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear. In this study, we first showed that knockdown of SCUBE3 in C2C12 myoblasts inhibited FGF receptor 4 expression and FGF signaling, thus resulting in reduced myogenic differentiation. Furthermore, knockdown of zebrafish scube3 by antisense morpholino oligonucleotides specifically suppressed the expression of the myogenic marker myod1 within the lateral fast muscle precursors, whereas its expression in the adaxial slow muscle precursors was largely unaffected. Consistent with these findings, immunofluorescent staining of fast but not slow muscle myosin was markedly decreased in scube3 morphants. Further genetic studies identified fgf8 as a key regulator in scube3-mediated fast muscle differentiation in zebrafish. Biochemical and molecular analysis showed that SCUBE3 acts as a FGF co-receptor to augment FGF8 signaling. Scube3 may be a critical upstream regulator of fast fiber myogenesis by modulating fgf8 signaling during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and
| | - Ku-Chi Tsao
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Jye Lee
- the Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Bing Yang
- From the Institute of Biomedical Sciences and the, Academia Sinica, Taipei 11529, Taiwan, the Molecular Medicine Program, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, the Institute of Biochemistry and Molecular Biology and the Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan,
| |
Collapse
|
8
|
Woods HA. Mosaic physiology from developmental noise: within-organism physiological diversity as an alternative to phenotypic plasticity and phenotypic flexibility. J Exp Biol 2014; 217:35-45. [DOI: 10.1242/jeb.089698] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A key problem in organismal biology is to explain the origins of functional diversity. In the context of organismal biology, functional diversity describes the set of phenotypes, across scales of biological organization and through time, that a single genotype, or genome, or organism, can produce. Functional diversity encompasses many phenomena: differences in cell types within organisms; physiological and morphological differences among tissues and organs; differences in performance; morphological shifts in external phenotype; and changes in behavior. How can single genomes produce so many different phenotypes? Modern biology proposes two general mechanisms. The first is developmental programs, by which single cells and their single genomes diversify, via relatively deterministic processes, into the sets of cell types, tissues and organs that we see in most multicellular organisms. The second general mechanism is phenotypic modification stemming from interactions between organisms and their environments – modifications known either as phenotypic plasticity or as phenotypic flexibility, depending on the time scale of the response and the degree of reversibility. These two diversity-generating mechanisms are related because phenotypic modifications may sometimes arise as a consequence of environments influencing developmental programs. Here, I propose that functional diversity also arises via a third fundamental mechanism: stochastic developmental events giving rise to mosaics of physiological diversity within individual organisms. In biological systems, stochasticity stems from the inherently random actions of small numbers of molecules interacting with one another. Although stochastic effects occur in many biological contexts, available evidence suggests that they can be especially important in gene networks, specifically as a consequence of low transcript numbers in individual cells. I briefly review known mechanisms by which organisms control such stochasticity, and how they may use it to create adaptive functional diversity. I then fold this idea into modern thinking on phenotypic plasticity and flexibility, proposing that multicellular organisms exhibit ‘mosaic physiology’. Mosaic physiology refers to sets of diversified phenotypes, within individual organisms, that carry out related functions at the same time, but that are distributed in space. Mosaic physiology arises from stochasticity-driven differentiation of cells, early during cell diversification, which is then amplified by cell division and growth into macroscopic phenotypic modules (cells, tissues, organs) making up the physiological systems of later life stages. Mosaic physiology provides a set of standing, diversified phenotypes, within single organisms, that raise the likelihood of the organism coping well with novel environmental challenges. These diversified phenotypes can be distinct, akin to polyphenisms at the organismal level; or they can be continuously distributed, creating a kind of standing, simultaneously expressed reaction norm of physiological capacities.
Collapse
Affiliation(s)
- H. Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
9
|
Merolli A. Can we regrow a human arm? A negative perspective from an upper-limb surgeon. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2635-2638. [PMID: 24077994 DOI: 10.1007/s10856-013-5045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
If we would like to devote time and money to the task of regrowing a human arm, we should feel free to do it, in principle. However, if we recognize a purpose in biomedical research, we must scrutinize this task in the light of a possible clinical application. We will then discover that regrowing a human arm is not only likely to be not possible, but also not required in the clinic. Bionic arms and better reconstructive surgery already provide a different, simpler and easier solution to the loss of a human arm, and should be promoted. Probably, ‘‘can we regrow a human arm?’’ is not the right question. Instead, we should ask, ‘‘can we restore the function of a lost human arm?’’.
Collapse
|
10
|
Yogev O, Williams VC, Hinits Y, Hughes SM. eIF4EBP3L acts as a gatekeeper of TORC1 in activity-dependent muscle growth by specifically regulating Mef2ca translational initiation. PLoS Biol 2013; 11:e1001679. [PMID: 24143132 PMCID: PMC3797031 DOI: 10.1371/journal.pbio.1001679] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 09/04/2013] [Indexed: 01/12/2023] Open
Abstract
Muscle activity promotes muscle growth through the TOR-4EBP pathway by controlling the translation of specific mRNAs, including Mef2ca, a muscle transcription factor required for normal growth. Muscle fiber size is activity-dependent and clinically important in ageing, bed-rest, and cachexia, where muscle weakening leads to disability, prolonged recovery times, and increased costs. Inactivity causes muscle wasting by triggering protein degradation and may simultaneously prevent protein synthesis. During development, muscle tissue grows by several mechanisms, including hypertrophy of existing fibers. As in other tissues, the TOR pathway plays a key role in promoting muscle protein synthesis by inhibition of eIF4EBPs (eukaryotic Initiation Factor 4E Binding Proteins), regulators of the translational initiation. Here, we tested the role of TOR-eIF4EBP in a novel zebrafish muscle inactivity model. Inactivity triggered up-regulation of eIF4EBP3L (a zebrafish homolog of eIF4EBP3) and diminished myosin and actin content, myofibrilogenesis, and fiber growth. The changes were accompanied by preferential reduction of the muscle transcription factor Mef2c, relative to Myod and Vinculin. Polysomal fractionation showed that Mef2c decrease was due to reduced translation of mef2ca mRNA. Loss of Mef2ca function reduced normal muscle growth and diminished the reduction in growth caused by inactivity. We identify eIF4EBP3L as a key regulator of Mef2c translation and protein level following inactivity; blocking eIF4EBP3L function increased Mef2ca translation. Such blockade also prevented the decline in mef2ca translation and level of Mef2c and slow myosin heavy chain proteins caused by inactivity. Conversely, overexpression of active eIF4EBP3L mimicked inactivity by decreasing the proportion of mef2ca mRNA in polysomes, the levels of Mef2c and slow myosin heavy chain, and myofibril content. Inhibiting the TOR pathway without the increase in eIF4EBP3L had a lesser effect on myofibrilogenesis and muscle size. These findings identify eIF4EBP3L as a key TOR-dependent regulator of muscle fiber size in response to activity. We suggest that by selectively inhibiting translational initiation of mef2ca and other mRNAs, eIF4EBP3L reprograms the translational profile of muscle, enabling it to adjust to new environmental conditions. Most genes are transcribed into mRNA and then translated into proteins that function in various cellular processes. Initiation of mRNA translation is thus a fundamental control point in gene expression. Working in a zebrafish model, we have found that muscle activity (or inactivity) can differentially regulate the translation of specific mRNAs and thereby control the growth of skeletal muscle. Emerging evidence suggests that control of translational initiation of particular mRNAs by an intracellular signaling pathway acting through TORC1 is a major regulator of cell growth and function. We show here that muscle activity both activates the TORC1 pathway and suppresses the expression of a downstream TORC1 target—the translational inhibitor eIF4EBP3L. This removes a brake on translation of certain mRNAs. Conversely, we show that muscle inactivity can up-regulate this translational inhibitor, thereby causing reduced translation of these mRNAs. One of the mRNAs targeted in this manner by eIF4EBP3L is Mef2ca, which encodes a transcription factor that promotes assembly of muscle contractile apparatus. Our work thus reveals a mechanism by which muscle growth can be differentially influenced depending on the context of muscle activity (or lack thereof). If this pathway operates in people, it may help explain how exercise regulates muscle growth and performance.
Collapse
Affiliation(s)
- Orli Yogev
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
11
|
Coming of age in an ant colony: cephalic muscle maturation accompanies behavioral development in Pheidole dentata. Naturwissenschaften 2011; 98:783-93. [DOI: 10.1007/s00114-011-0828-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/13/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
|
12
|
Maggs AM, Huxley C, Hughes SM. Nerve-dependent changes in skeletal muscle myosin heavy chain after experimental denervation and cross-reinnervation and in a demyelinating mouse model of Charcot-Marie-Tooth disease type 1A. Muscle Nerve 2009; 38:1572-84. [PMID: 19016545 DOI: 10.1002/mus.21106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Innervation regulates the contractile properties of vertebrate muscle fibers, in part through the effect of electrical activity on expression of distinct myosins. Herein we analyze the role of innervation in regulating the accumulation of the general, maturational, and adult forms of rodent slow myosin heavy chain (MyHC) that are defined by the presence of distinct antigenic epitopes. Denervation increases the number of fibers that express general slow MyHC, but it decreases the adult slow MyHC epitope. Cross-reinnervation of slow muscle by a fast nerve leads to an increase in the number of fibers that express fast MyHC. In both cases, there is an increase in the number of fibers that express slow and fast IIA MyHCs, but without the adult slow MyHC epitope. The data suggest that innervation is required for maturation and maintenance of diversity of both slow and fast fibers. The sequence of slow MyHC epitope transitions is a useful biomarker, and it may play a significant role during nerve-dependent changes in muscle fiber function. We applied this detailed muscle analysis to a transgenic mouse model of human motor and sensory neuropathy IA, also known as Charcot-Marie-Tooth disease type 1A (CMT1A), in which electrical conduction in some motor nerves is poor due to demyelination. The mice display atrophy of some muscle fibers and changes in slow and fast MyHC epitope expression, suggestive of a progressive increase in innervation of muscle fibers by fast motor neurons, even at early stages. The potential role of these early changes in disease pathogenesis is assessed.
Collapse
Affiliation(s)
- Alison M Maggs
- Randall Division for Cell Biophysics, King's College London, UK
| | | | | |
Collapse
|
13
|
Bessarab DA, Chong SW, Srinivas BP, Korzh V. Six1a is required for the onset of fast muscle differentiation in zebrafish. Dev Biol 2008; 323:216-28. [DOI: 10.1016/j.ydbio.2008.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 08/13/2008] [Accepted: 08/13/2008] [Indexed: 01/19/2023]
|
14
|
Sparrow J, Hughes SM, Segalat L. Other model organisms for sarcomeric muscle diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:192-206. [PMID: 19181102 PMCID: PMC3360967 DOI: 10.1007/978-0-387-84847-1_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Model organisms are vital to our understanding of human muscle biology and disease. The potential of the nematode Caenorhabditis elegans, the fruitfly, Drosophila melanogaster and the zebrafish, Danio rerio, as model genetic organisms for the study of human muscle disease is discussed by examining their muscle biology, muscle genetics and development. The powerful genetic tools available with each organism are outlined. It is concluded that these organisms have already demonstrated potential in facilitating the study of muscle disease and in screening for therapeutic agents.
Collapse
Affiliation(s)
- John Sparrow
- Department of Biology, University of York, York, YO1 5DD, UK. Tel: 44-1904-328675; Fax: 44-1904-328825;
| | - Simon M. Hughes
- Randall Division of Cell and Molecular Biophysics and MRC Centre for Developmental Neurobiology, New Hunt’s House, King’s College London, Guy’s Campus, London, SE1 1UL. Tel: 44-20 7848 6445; Fax: 44-7848 6435;
| | - Laurent Segalat
- CNRS-CGMC, Universite Lyon-1 Claude Bernard, Batiment Mendel, 43 bld du 11 Novembre, 69622 Villeurbanne Cedex, France. Tel: 33-4-72-43-29-51; Fax: 33-4-72-43-29-51;
| |
Collapse
|
15
|
Torrente Y, Belicchi M, Marchesi C, D'Antona G, Cogiamanian F, Pisati F, Gavina M, Giordano R, Tonlorenzi R, Fagiolari G, Lamperti C, Porretti L, Lopa R, Sampaolesi M, Vicentini L, Grimoldi N, Tiberio F, Songa V, Baratta P, Prelle A, Forzenigo L, Guglieri M, Pansarasa O, Rinaldi C, Mouly V, Butler-Browne GS, Comi GP, Biondetti P, Moggio M, Gaini SM, Stocchetti N, Priori A, D'Angelo MG, Turconi A, Bottinelli R, Cossu G, Rebulla P, Bresolin N. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 2007; 16:563-77. [PMID: 17912948 DOI: 10.3727/000000007783465064] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive muscle disease due to defect on the gene encoding dystrophin. The lack of a functional dystrophin in muscles results in the fragility of the muscle fiber membrane with progressive muscle weakness and premature death. There is no cure for DMD and current treatment options focus primarily on respiratory assistance, comfort care, and delaying the loss of ambulation. Recent works support the idea that stem cells can contribute to muscle repair as well as to replenishment of the satellite cell pool. Here we tested the safety of autologous transplantation of muscle-derived CD133+ cells in eight boys with Duchenne muscular dystrophy in a 7-month, double-blind phase I clinical trial. Stem cell safety was tested by measuring muscle strength and evaluating muscle structures with MRI and histological analysis. Timed cardiac and pulmonary function tests were secondary outcome measures. No local or systemic side effects were observed in all treated DMD patients. Treated patients had an increased ratio of capillary per muscle fibers with a switch from slow to fast myosin-positive myofibers.
Collapse
MESH Headings
- AC133 Antigen
- Adolescent
- Antigens, CD/classification
- Antigens, CD/isolation & purification
- Antigens, CD/metabolism
- Child
- Double-Blind Method
- Feasibility Studies
- Follow-Up Studies
- Glycoproteins/classification
- Glycoproteins/isolation & purification
- Glycoproteins/metabolism
- Humans
- Immunomagnetic Separation/classification
- Immunophenotyping/classification
- Injections, Intramuscular
- Male
- Muscle Contraction/physiology
- Muscle, Skeletal/cytology
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myoblasts, Skeletal/cytology
- Myoblasts, Skeletal/transplantation
- Peptides/classification
- Peptides/isolation & purification
- Peptides/metabolism
- Stem Cell Transplantation
- Stem Cells/cytology
- Transplantation, Autologous
- Transplantation, Homologous/adverse effects
- Treatment Outcome
Collapse
Affiliation(s)
- Y Torrente
- Fondazione IRCCS Ospedale Maggiore Policlinico of Milan, Department of Neurological Sciences, Dino Ferrari Center, University of Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ganji F, Behzadi G. Postnatal development of masseteric motoneurons in congenital hypothyroid rats. Brain Res 2007; 1129:81-8. [PMID: 17156759 DOI: 10.1016/j.brainres.2006.10.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/16/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
It has been known that an intact thyroid hormone is obligatory for the attainment of the normal masticatory function at the time of weaning. Following induced maternal thyroid hypo-function, the development of masseter motoneurons was determined at postnatal days 1, 7, 15 and 23 (weaning time), using retrograde transport of horseradish peroxidase (HRP) in the normal and hypothyroid pups. Based on the HRP labeling profile (strong and weak), the soma area of the masseteric labeled motoneurons was measured in each group. No significant morphological differences were observed at the end of the first week of life. On day 15, hypothyroid masseteric labeled motoneurons consisted of 76% small and 24% medium-sized neurons compared to 58% and 42% in normal pups, respectively. At the time of weaning (i.e., day 23) the number of large masseter motoneurons reached to 1/3 of normal value with few, short and disoriented dendrites in the hypothyroid pup. There was no statistically significant difference in the uptake of HRP from the neuromuscular junction. These results suggest that neonatal thyroid hormone deficiency considerably postponed the development of feeding behavior from sucking to chewing and biting.
Collapse
Affiliation(s)
- Farzaneh Ganji
- Neuroscience Research Center and Physiology Department, Faculty of Medicine, Shaheed Beheshti Medical Sciences University, Tehran, Iran
| | | |
Collapse
|
17
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Issa LL, Palmer SJ, Guven KL, Santucci N, Hodgson VRM, Popovic K, Joya JE, Hardeman EC. MusTRD can regulate postnatal fiber-specific expression. Dev Biol 2006; 293:104-15. [PMID: 16494860 DOI: 10.1016/j.ydbio.2006.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 12/21/2005] [Accepted: 01/20/2006] [Indexed: 02/09/2023]
Abstract
Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.
Collapse
Affiliation(s)
- Laura L Issa
- Muscle Development Unit, Children's Medical Research Institute, Wentworthville, NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Noirez P, Torres S, Cebrian J, Agbulut O, Peltzer J, Butler-Browne G, Daegelen D, Martelly I, Keller A, Ferry A. TGF-beta1 favors the development of fast type identity during soleus muscle regeneration. J Muscle Res Cell Motil 2005; 27:1-8. [PMID: 16362724 DOI: 10.1007/s10974-005-9014-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 10/02/2005] [Indexed: 11/30/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is known to be expressed in the environment of developing fast muscle fibres during ontogenesis. In the present study, we have examined effects of administration of either TGF-beta1 or neutralizing TGF-beta1 antibody on the induction of fast type phenotype in regenerating skeletal muscles in rats. Expressions of fast and slow myosin heavy chain (MHC) isoforms were studied using protein electrophoresis, at 3 and 6 weeks after myotoxic treatment. Muscle contractile properties were also measured in situ. The results have shown that a single injection of TGF-beta1 into the regenerating slow soleus muscle increased the expression of fast MHC-2x/d and MHC-2a and decreases that of slow MHC-1 (P<0.05). Moreover, it reduced the degree of tetanic fusion during contraction (P<0.05). Conversely, injection of neutralizing antibody against TGF-beta1 into the regenerating fast EDL muscle increased the expression of MHC-2a and MHC-1 (P<0.05). In conclusion, when the slow muscle was regenerating in the presence of an increased level of TGF-beta1, it induced a shift to a less slow MHC phenotype and contractile characteristics. Conversely, neutralization of TGF-beta1 in the regenerating fast muscle induced a shift to a less fast MHC expression. Together these results suggest that TGF-beta1 influences some aspects of fast muscle-type patterning during skeletal muscle regeneration.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Male
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Myosin Heavy Chains/drug effects
- Myosin Heavy Chains/metabolism
- Phenotype
- Protein Isoforms/drug effects
- Protein Isoforms/metabolism
- Rats
- Rats, Wistar
- Regeneration/drug effects
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
- Toxins, Biological/pharmacology
- Transforming Growth Factor beta1/antagonists & inhibitors
- Transforming Growth Factor beta1/pharmacology
- Transforming Growth Factor beta1/physiology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
|
20
|
Sheela SG, Lee WC, Lin WW, Chung BC. Zebrafish ftz-f1a (nuclear receptor 5a2) functions in skeletal muscle organization. Dev Biol 2005; 286:377-90. [PMID: 16162335 DOI: 10.1016/j.ydbio.2005.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 05/03/2005] [Accepted: 06/08/2005] [Indexed: 11/21/2022]
Abstract
Fushi-tarazu factor 1a (Ftz-F1a, Ff1a, Nr5a2) is a nuclear receptor with diverse functions in many tissues. Here, we report the function of ff1a in zebrafish muscle differentiation. In situ hybridization revealed that ff1a mRNA was present in the adaxial and migrating slow muscle precursors and was down-regulated when slow muscle cells matured. This expression was under the control of hedgehog genes, expanded when hedgehog was increased and missing in mutants defective in genes in the Hedgehog pathway like you-too (yot), sonic you (syu), and u-boot (ubo). Blocking ff1a activity by injecting a deleted form of ff1a or an antisense ff1a morpholino oligo into fish embryos caused thinner and disorganized fibers of both slow and fast properties. Transient expression of ff1a in syu, ubo, and yot embryos led to more fibril bundles, even when slow myoblasts were transfated into fast properties. We showed that ff1a and prox1 complemented each other in slow myofibril assembly, but they did not affect the expression of each other. These results demonstrate that ff1a functions in both slow and fast muscle morphogenesis in response to Hedgehog signaling, and this function parallels the activity of another slow muscle gene, prox1.
Collapse
|
21
|
Marco-Ferreres R, Vivar J, Arredondo JJ, Portillo F, Cervera M. Co-operation between enhancers modulates quantitative expression from the Drosophila Paramyosin/miniparamyosin gene in different muscle types. Mech Dev 2005; 122:681-94. [PMID: 15817225 DOI: 10.1016/j.mod.2004.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 12/10/2004] [Accepted: 12/10/2004] [Indexed: 11/16/2022]
Abstract
The distinct muscles of an organism accumulate different quantities of structural proteins, but always maintaining their stoichiometry. However, the mechanisms that control the levels of these proteins and that co-ordinate muscle gene expression remain to be defined. The paramyosin/miniparamyosin gene encodes two thick filament proteins transcribed from two different promoters. We have analysed the regulatory regions that control expression of this gene and that are situated in the two promoters, the 5' and the internal promoters, both in vivo and in silico. A distal muscle enhancer containing three conserved MEF2 motifs is essential to drive high levels of paramyosin expression in all the major embryonic, larval and adult muscles. This enhancer shares sequence motifs, as well as its structure and organisation, with at least four co-regulated muscle enhancers that direct similar patterns of expression. However, other elements located downstream of the enhancer are also required for correct gene expression. Other muscle genes with different patterns of expression, such as miniparamyosin, are regulated by other basic mechanisms. The expression of miniparamyosin is controlled by two enhancers, AB and TX, but a BF modulator is required to ensure the correct levels of expression in each particular muscle. We propose a mechanism of transcriptional regulation in which similar enhancers are responsible for the spatio-temporal expression of co-regulated genes. However, it is the interaction between enhancers which ensures that the correct amounts of protein are expressed at any particular time in a cell, adapting these levels to their specific needs. These mechanisms may not be exclusive to neural or muscle tissue and might represent a general mechanism for genes that are spatially and temporally co-regulated.
Collapse
Affiliation(s)
- Raquel Marco-Ferreres
- Departamento de Bioquímica and Instituto Investigaciones Biomédicas, Facultad de Medicina, UAM-CSIC, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Grifone R, Laclef C, Spitz F, Lopez S, Demignon J, Guidotti JE, Kawakami K, Xu PX, Kelly R, Petrof BJ, Daegelen D, Concordet JP, Maire P. Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol Cell Biol 2004; 24:6253-67. [PMID: 15226428 PMCID: PMC434262 DOI: 10.1128/mcb.24.14.6253-6267.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Muscle fibers show great differences in their contractile and metabolic properties. This diversity enables skeletal muscles to fulfill and adapt to different tasks. In this report, we show that the Six/Eya pathway is implicated in the establishment and maintenance of the fast-twitch skeletal muscle phenotype. We demonstrate that the MEF3/Six DNA binding element present in the aldolase A pM promoter mediates the high level of activation of this promoter in fast-twitch glycolytic (but not in slow-twitch) muscle fibers. We also show that among the Six and Eya gene products expressed in mouse skeletal muscle, Six1 and Eya1 proteins accumulate preferentially in the nuclei of fast-twitch muscles. The forced expression of Six1 and Eya1 together in the slow-twitch soleus muscle induced a fiber-type transition characterized by the replacement of myosin heavy chain I and IIA isoforms by the faster IIB and/or IIX isoforms, the activation of fast-twitch fiber-specific genes, and a switch toward glycolytic metabolism. Collectively, these data identify Six1 and Eya1 as the first transcriptional complex that is able to reprogram adult slow-twitch oxidative fibers toward a fast-twitch glycolytic phenotype.
Collapse
Affiliation(s)
- Raphaelle Grifone
- Departement Génétique, Développement et Pathologie Moléculaire, Institut Cochin-INSERM 567, CNRS UMR 8104, Université Paris V, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li X, Blagden CS, Bildsoe H, Bonnin MA, Duprez D, Hughes SM. Hedgehog can drive terminal differentiation of amniote slow skeletal muscle. BMC DEVELOPMENTAL BIOLOGY 2004; 4:9. [PMID: 15238161 PMCID: PMC471547 DOI: 10.1186/1471-213x-4-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Accepted: 07/06/2004] [Indexed: 03/10/2023]
Abstract
BACKGROUND Secreted Hedgehog (Hh) signalling molecules have profound influences on many developing and regenerating tissues. Yet in most vertebrate tissues it is unclear which Hh-responses are the direct result of Hh action on a particular cell type because Hhs frequently elicit secondary signals. In developing skeletal muscle, Hhs promote slow myogenesis in zebrafish and are involved in specification of medial muscle cells in amniote somites. However, the extent to which non-myogenic cells, myoblasts or differentiating myocytes are direct or indirect targets of Hh signalling is not known. RESULTS We show that Sonic hedgehog (Shh) can act directly on cultured C2 myoblasts, driving Gli1 expression, myogenin up-regulation and terminal differentiation, even in the presence of growth factors that normally prevent differentiation. Distinct myoblasts respond differently to Shh: in some slow myosin expression is increased, whereas in others Shh simply enhances terminal differentiation. Exposure of chick wing bud cells to Shh in culture increases numbers of both muscle and non-muscle cells, yet simultaneously enhances differentiation of myoblasts. The small proportion of differentiated muscle cells expressing definitive slow myosin can be doubled by Shh. Shh over-expression in chick limb bud reduces muscle mass at early developmental stages while inducing ectopic slow muscle fibre formation. Abundant later-differentiating fibres, however, do not express extra slow myosin. Conversely, Hh loss of function in the limb bud, caused by implanting hybridoma cells expressing a functionally blocking anti-Hh antibody, reduces early slow muscle formation and differentiation, but does not prevent later slow myogenesis. Analysis of Hh knockout mice indicates that Shh promotes early somitic slow myogenesis. CONCLUSIONS Taken together, the data show that Hh can have direct pro-differentiative effects on myoblasts and that early-developing muscle requires Hh for normal differentiation and slow myosin expression. We propose a simple model of how direct and indirect effects of Hh regulate early limb myogenesis.
Collapse
Affiliation(s)
- Xiaopeng Li
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Christopher S Blagden
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA
| | - Heidi Bildsoe
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Marie Ange Bonnin
- CNRS, UMR 7622, Université P. et M. Curie, 75252 Paris cedex 05, France
| | - Delphine Duprez
- CNRS, UMR 7622, Université P. et M. Curie, 75252 Paris cedex 05, France
| | - Simon M Hughes
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
| |
Collapse
|
24
|
Mas JA, García-Zaragoza E, Cervera M. Two functionally identical modular enhancers in Drosophila troponin T gene establish the correct protein levels in different muscle types. Mol Biol Cell 2004; 15:1931-45. [PMID: 14718560 PMCID: PMC379288 DOI: 10.1091/mbc.e03-10-0729] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The control of muscle-specific expression is one of the principal mechanisms by which diversity is generated among muscle types. In an attempt to elucidate the regulatory mechanisms that control fiber diversity in any given muscle, we have focused our attention on the transcriptional regulation of the Drosophila Troponin T gene. Two, nonredundant, functionally identical, enhancer-like elements activate Troponin T transcription independently in all major muscles of the embryo and larvae as well as in adult somatic and visceral muscles. Here, we propose that the differential but concerted interaction of these two elements underlies the mechanism by which a particular muscle-type establish the correct levels of Troponin T expression, adapting these levels to their specific needs. This mechanism is not exclusive to the Troponin T gene, but is also relevant to the muscle-specific Troponin I gene. In conjunction with in vivo transgenic studies, an in silico analysis of the Troponin T enhancer-like sequences revealed that both these elements are organized in a modular manner. Extending this analysis to the Troponin I and Tropomyosin regulatory elements, the two other components of the muscle-regulatory complex, we have discovered a similar modular organization of phylogenetically conserved domains.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cell Line, Transformed
- Cloning, Molecular
- Drosophila
- Drosophila melanogaster
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Genes, Reporter
- Immunoblotting
- Models, Genetic
- Molecular Sequence Data
- Muscles/metabolism
- Phylogeny
- Plasmids/metabolism
- Protein Structure, Tertiary
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Thorax/metabolism
- Time Factors
- Transcription, Genetic
- Transgenes
- Tropomyosin/genetics
- Troponin T/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- José-Antonio Mas
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autonoma de Madrid, UAM-CSIC, 28029 Madrid, Spain
| | | | | |
Collapse
|
25
|
Polly P, Haddadi LM, Issa LL, Subramaniam N, Palmer SJ, Tay ESE, Hardeman EC. hMusTRD1alpha1 represses MEF2 activation of the troponin I slow enhancer. J Biol Chem 2003; 278:36603-10. [PMID: 12857748 DOI: 10.1074/jbc.m212814200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The novel transcription factor hMusTRD1alpha1 (human muscle TFII-I repeat domain-containing protein 1alpha1; previously named MusTRD1; O'Mahoney, J. V., Guven, K. L., Lin, J., Joya, J. E., Robinson, C. S., Wade, R. P., and Hardeman, E. C. (1998) Mol. Cell. Biol. 18, 6641-6652) was identified in a yeast one-hybrid screen as a protein that binds within an upstream enhancer-containing region of the skeletal muscle-specific gene, TNNI1 (human troponin I slow; hTnIslow). It has been proposed that hMusTRD1alpha1 may play an important role in fiber-specific muscle gene expression by virtue of its ability to bind to an Inr-like element (nucleotides -977 to -960) within the hTnIslow upstream enhancer-containing region that is necessary for slow fiber-specific expression. In this study we demonstrate that both MEF2C, a known regulator of slow fiber-specific genes, and hMusTRD1alpha1 regulate hTnIslow through the Inr-like element. Co-transfection assays in C2C12 cells and Cos-7 cells demonstrate that hMusTRD1alpha1 represses hTnIslow transcription and prevents MEF2C-mediated activation of hTnIslow transcription. Gel shift analysis shows that hMusTRD1alpha1 can abrogate MEF2C binding to its cognate site in the hTnIslow enhancer. Glutathione S-transferase pull-down assays demonstrate that hMusTRD1alpha1 can interact with both MEF2C and the nuclear receptor co-repressor. The data support the role of hMusTRD1alpha1 as a repressor of slow fiber-specific transcription through mechanisms involving direct interactions with MEF2C and the nuclear receptor co-repressor.
Collapse
Affiliation(s)
- Patsie Polly
- Muscle Development Unit, Children's Medical Research Institute, Wentworthville, New South Wales 2145, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Tay ESE, Guven KL, Subramaniam N, Polly P, Issa LL, Gunning PW, Hardeman EC. Regulation of alternative splicing of Gtf2ird1 and its impact on slow muscle promoter activity. Biochem J 2003; 374:359-67. [PMID: 12780350 PMCID: PMC1223606 DOI: 10.1042/bj20030189] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Revised: 05/12/2003] [Accepted: 06/03/2003] [Indexed: 11/17/2022]
Abstract
A human MusTRD (muscle TFII-I repeat domain (RD)-containing protein) isoform was originally identified in a yeast one-hybrid screen as a protein that binds the slow fibre-specific enhancer of the muscle gene troponin I slow [O'Mahoney, Guven, Lin, Joya, Robinson, Wade and Hardeman (1998) Mol. Cell. Biol. 18, 6641-6652]. MusTRD shares homology with the general transcription factor TFII-I by the presence of diagnostic I-RDs [Roy (2001) Gene 274, 1-13]. The human gene encoding MusTRD, GTF2IRD1 ( WBSCR11 / GTF3 ), was subsequently located on chromosome 7q11.23, a region deleted in the neurodegenerative disease, Williams-Beuren Syndrome [Osborne, Campbell, Daradich, Scherer, Tsui, Franke, Peoples, Francke, Voit, Kramer et al. (1999) Genomics 57, 279-284; Franke, Peoples and Francke (1999) Cytogenet. Cell. Genet. 86, 296-304; Tassabehji, Carette, Wilmot, Donnai, Read and Metcalfe (1999) Eur. J. Hum. Genet. 7, 737-747]. The haploinsufficiency of MusTRD has been implicated in the myopathic aspect of this disease, which manifests itself in symptoms such as lowered resistance to fatigue, kyphoscoliosis, an abnormal gait and joint contractures [Tassabehji, Carette, Wilmot, Donnai, Read and Metcalfe (1999) Eur. J. Hum. Genet. 7, 737-747]. Here, we report the identification of 11 isoforms of MusTRD in mouse skeletal muscles. These isoforms were isolated from a mouse skeletal muscle cDNA library and reverse transcription-PCR on RNA from various adult and embryonic muscles. The variability in these isoforms arises from alternative splicing of a combination of four cassettes and two mutually exclusive exons, all in the 3' region of the primary transcript of Gtf2ird1, the homologous mouse gene. The expression of some of these isoforms is differentially regulated spatially, suggesting individual regulation of the expression of these isoforms. Co-transfection studies in C2C12 muscle cell cultures reveal that isoforms differentially regulate muscle fibre-type-specific promoters. This indicates that the presence of different domains of MusTRD influences the activity exerted by this molecule on multiple promoters active in skeletal muscle.
Collapse
Affiliation(s)
- Enoch S E Tay
- Muscle Development Unit, Children's Medical Research Institute, Locked Bag 23, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Anakwe K, Robson L, Hadley J, Buxton P, Church V, Allen S, Hartmann C, Harfe B, Nohno T, Brown AMC, Evans DJR, Francis-West P. Wnt signalling regulates myogenic differentiation in the developing avian wing. Development 2003; 130:3503-14. [PMID: 12810597 DOI: 10.1242/dev.00538] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The limb musculature arises by delamination of premyogenic cells from the lateral dermomyotome. Initially the cells express Pax3 but, upon entering the limb bud, they switch on the expression of MyoD and Myf5 and undergo terminal differentiation into slow or fast fibres, which have distinct contractile properties that determine how a muscle will function. In the chick, the premyogenic cells express the Wnt antagonist Sfrp2, which is downregulated as the cells differentiate, suggesting that Wnts might regulate myogenic differentiation. Here, we have investigated the role of Wnt signalling during myogenic differentiation in the developing chick wing bud by gain- and loss-of-function studies in vitro and in vivo. We show that Wnt signalling changes the number of fast and/or slow fibres. For example, in vivo, Wnt11 decreases and increases the number of slow and fast fibres, respectively, whereas overexpression of Wnt5a or a dominant-negative Wnt11 protein have the opposite effect. The latter shows that endogenous Wnt11 signalling determines the number of fast and slow myocytes. The distinct effects of Wnt5a and Wnt11 are consistent with their different expression patterns, which correlate with the ultimate distribution of slow and fast fibres in the wing. Overexpression of activated calmodulin kinase II mimics the effect of Wnt5a, suggesting that it uses this pathway. Finally, we show that overexpression of the Wnt antagonist Sfrp2 and DeltaLef1 reduces the number of myocytes. In Sfrp2-infected limbs, the number of Pax3 expressing cells was increased, suggesting that Sfrp2 blocks myogenic differentiation. Therefore, Wnt signalling modulates both the number of terminally differentiated myogenic cells and the intricate slow/fast patterning of the limb musculature.
Collapse
Affiliation(s)
- Kelly Anakwe
- Department of Craniofacial Development, King's College, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Coonan JR, Bartlett PF, Galea MP. Role of EphA4 in defining the position of a motoneuron pool within the spinal cord. J Comp Neurol 2003; 458:98-111. [PMID: 12577325 DOI: 10.1002/cne.10571] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The correct assembly of the neural circuits that control movement requires the development of topographically organized pools of motoneurons within the spinal cord. The generation of a diverse array of motoneuron subtypes, which express differing transcription factors and cell-surface receptors, allows different motoneuron pools to be segregated to specific positions during development. In this investigation, we show that the Eph receptor tyrosine kinase, EphA4, appears to be important for the correct localization of a motoneuron pool to a specific position in the spinal cord. In the spinal cord of mice deficient in EphA4, the motoneuron pool that innervates the tibialis anterior muscle of the hindlimb is caudally displaced by approximately one vertebral segment. However, despite the abnormal position of the tibialis anterior motoneuron pool in the spinal cord of EphA4-deficient animals, the motoneurons of this pool still project to the tibialis anterior muscle of the hindlimb correctly. Additional analyses of other limb innervating motoneuron pools in the cervical and lumbar enlargements of the spinal cord of EphA4-deficient animals revealed them to be located in the appropriate segmental positions. Furthermore, we show that EphA4 does not appear to be important for spinal motoneuron survival as stereological quantification of the number of motoneurons present in the sciatic motoneuron pool of EphA4-deficient animals demonstrated these motoneurons to be present in the correct numbers. These observations suggest an important role for EphA4 in regulating the position of a specific motoneuron pool within the spinal cord.
Collapse
Affiliation(s)
- Jason R Coonan
- The Walter and Eliza Hall Institute of Medical Research, The Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | |
Collapse
|
29
|
Te KG, Reggiani C. Skeletal muscle fibre type specification during embryonic development. J Muscle Res Cell Motil 2003; 23:65-9. [PMID: 12363287 DOI: 10.1023/a:1019940932275] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the last 10 years an increasing number of studies have provided an insight in the signalling mechanisms underlying myogenesis and fibre type specification during embryonic development: this paper aims to review the most relevant findings. In vertebrates a central role in muscle differentiation is played by the MyoD family, a group of transcription factors which activate transcription of muscle specific genes. In turn MyoD family is expressed in response to inductive signals coming from tissues adjacent to somites, in the first place the notochord and the neural tube. Hedgehog and Wnt are among these inductive signals and they find in the future myoblasts a response pathway which includes Ptc, Smu and Gli. The signalling mechanisms have been analysed in model organisms: mouse, chick. zebrafish and Drosophila. For some factors the orthologs in different species have been found to accomplish similar function, but for some other factors important differences are present: for example in Drosophila twist codes for a transcription factor which promotes myogenesis, whereas its ortholog in mouse tends to prevent or inhibit myogenesis. Conversely, nautilus which is the orholog of MyoD in Drosophila does not have a general function in muscle differentiation, but is required for the differentiation of a limited group of muscle fibres.
Collapse
|
30
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|
31
|
Francis-West PH, Antoni L, Anakwe K. Regulation of myogenic differentiation in the developing limb bud. J Anat 2003; 202:69-81. [PMID: 12587922 PMCID: PMC1571055 DOI: 10.1046/j.1469-7580.2003.00136.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2002] [Indexed: 01/30/2023] Open
Abstract
The limb myogenic precursors arise by delamination from the lateral dermomyotome in response to signals from the lateral plate mesoderm. They subsequently migrate into the developing limb bud where they switch on the expression of the myogenic regulatory factors, MyoD and Myf5, and coalese to form the dorsal and ventral muscle masses. The myogenic cells subsequently undergo terminal differentiation into slow or fast fibres which have distinct contractile properties determining how a muscle will function. In general, fast fibres contract rapidly with high force and are characterized by the expression of fast myosin heavy chains (MyHC). These fibres are needed for movement. In contrast, slow fibres express slow MyHC, contract slowly and are required for maintenance of posture. This review focuses on the molecular signals that control limb myogenic development from the initial delamination and migration of the premyogenic cells to the ultimate formation of the complex muscle pattern and differentiation of slow and fast fibres.
Collapse
Affiliation(s)
- Philippa H Francis-West
- Department of Craniofacial Development, King's College London, Guy's Tower, Floor 27, London Bridge, London SE1 9RT, UK.
| | | | | |
Collapse
|
32
|
Krylova O, Herreros J, Cleverley KE, Ehler E, Henriquez JP, Hughes SM, Salinas PC. WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron 2002; 35:1043-56. [PMID: 12354395 DOI: 10.1016/s0896-6273(02)00860-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sensory axons from dorsal root ganglia neurons are guided to spinal targets by molecules differentially expressed along the dorso-ventral axis of the neural tube. NT-3-responsive muscle afferents project ventrally, cease extending, and branch upon contact with motoneurons (MNs), their synaptic partners. We have identified WNT-3 as a candidate molecule that regulates this process. Wnt-3 is expressed by MNs of the lateral motor column at the time when MNs form synapses with sensory neurons. WNT-3 increases branching and growth cone size while inhibiting axonal extension in NT-3- but not NGF-responsive axons. Ventral spinal cord secretes factors with axonal remodeling activity for NT-3-responsive neurons. This activity is present at limb levels and is blocked by a WNT antagonist. We propose that WNT-3, expressed by MNs, acts as a retrograde signal that controls terminal arborization of muscle afferents.
Collapse
Affiliation(s)
- Olga Krylova
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 AY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Hallauer PL, Hastings KEM. TnIfast IRE enhancer: multistep developmental regulation during skeletal muscle fiber type differentiation. Dev Dyn 2002; 224:422-31. [PMID: 12203734 DOI: 10.1002/dvdy.10122] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify developmental steps leading to adult skeletal muscle fiber-type-specific gene expression, we carried out transgenic mouse studies of the IRE enhancer of the quail TnIfast gene. Histochemical analysis of IRE/herpesvirus tk promoter/beta-galactosidase reporter transgene expression in adult muscle directly demonstrated IRE-driven fast vs. slow fiber-type specificity, and IIB>IIX>IIA differential expression among the fast fiber types: patterns similar to those of native-promoter TnIfast constructs. These tissue- and cell-type specificities are autonomous to the IRE and do not depend on interactions with a muscle gene promoter. Developmental studies showed that the adult pattern of IRE-driven transgene expression emerges in three steps: (1) activation during the formation of primary embryonic (presumptive slow) muscle fibers; (2) activation, to markedly higher levels, during formation of secondary (presumptive fast) fibers, and (3) differential augmentation of expression during early postnatal maturation of the IIB, IIX, IIA fast fiber types. These results provide insight into the roles of gene activation and gene repression mechanisms in fiber-type specificity and can account for apparently disparate results obtained in previous studies of TnI isoform expression in development. Each of the three IRE-driven developmental steps is spatiotemporally associated with a different major regulatory event at the fast myosin heavy chain gene cluster, suggesting that diverse muscle gene families respond to common, or tightly integrated, regulatory signals during multiple steps of muscle fiber differentiation.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Embryo, Mammalian
- Embryo, Nonmammalian
- Enhancer Elements, Genetic
- Gene Expression Regulation, Developmental
- Genes, Reporter
- In Situ Hybridization
- Mice
- Mice, Transgenic
- Multigene Family
- Muscle Development
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/physiology
- Promoter Regions, Genetic
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Quail
- Transcriptional Activation
- Transgenes
- Troponin I/genetics
- Troponin I/metabolism
Collapse
Affiliation(s)
- Patricia L Hallauer
- Montreal Neurological Institute, and Department of Biology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
34
|
Bren-Mattison Y, Olwin BB. Sonic hedgehog inhibits the terminal differentiation of limb myoblasts committed to the slow muscle lineage. Dev Biol 2002; 242:130-48. [PMID: 11820811 DOI: 10.1006/dbio.2001.0528] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proliferation, differentiation, and fusion of a small number of myogenic precursor cells must be precisely regulated during development to ensure the proper size, organization, and function of the limb musculature. We have examined the role of Sonic hedgehog (Shh) in these processes by both augmentation and inhibition of the Shh-mediated signaling pathway. Our data show that Shh regulates muscle development by repressing the terminal differentiation of early myogenic precursor cells and does not function as a myoblast mitogen. Shh function in hypaxial muscle appears to be spatially restricted to the early myoblast population within the ventral muscles of the posterior region of the limb. Furthermore, Shh appears to act as a permissive, rather than an inductive, signal for slow MyHC expression in myoblasts. Our data thus provide the foundation for a new hypothesis for Shh function in hypaxial skeletal muscle development.
Collapse
Affiliation(s)
- Yvette Bren-Mattison
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
35
|
Calvo S, Vullhorst D, Venepally P, Cheng J, Karavanova I, Buonanno A. Molecular dissection of DNA sequences and factors involved in slow muscle-specific transcription. Mol Cell Biol 2001; 21:8490-503. [PMID: 11713284 PMCID: PMC100012 DOI: 10.1128/mcb.21.24.8490-8503.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription is a major regulatory mechanism for the generation of slow- and fast-twitch myofibers. We previously identified an upstream region of the slow TnI gene (slow upstream regulatory element [SURE]) and an intronic region of the fast TnI gene (fast intronic regulatory element [FIRE]) that are sufficient to direct fiber type-specific transcription in transgenic mice. Here we demonstrate that the downstream half of TnI SURE, containing E box, NFAT, MEF-2, and CACC motifs, is sufficient to confer pan-skeletal muscle-specific expression in transgenic mice. However, upstream regions of SURE and FIRE are required for slow and fast fiber type specificity, respectively. By adding back upstream SURE sequences to the pan-muscle-specific enhancer, we delineated a 15-bp region necessary for slow muscle specificity. Using this sequence in a yeast one-hybrid screen, we isolated cDNAs for general transcription factor 3 (GTF3)/muscle TFII-I repeat domain-containing protein 1 (MusTRD1). GTF3 is a multidomain nuclear protein related to initiator element-binding transcription factor TF II-I; the genes for both proteins are deleted in persons with Williams-Beuren syndrome, who often manifest muscle weakness. Gel retardation assays revealed that full-length GTF3, as well as its carboxy-terminal half, specifically bind the bicoid-like motif of SURE (GTTAATCCG). GTF3 expression is neither muscle nor fiber type specific. Its levels are highest during a period of fetal development that coincides with the emergence of specific fiber types and transiently increases in regenerating muscles damaged by bupivacaine. We further show that transcription from TnI SURE is repressed by GTF3 when overexpressed in electroporated adult soleus muscles. These results suggest a role for GTF3 as a regulator of slow TnI expression during early stages of muscle development and suggest how it could contribute to Williams-Beuren syndrome.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Cell Nucleus/metabolism
- DNA, Complementary/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Homeodomain Proteins/metabolism
- Humans
- In Situ Hybridization
- Introns
- Luciferases/metabolism
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Proteins
- Muscle, Skeletal/metabolism
- Muscles/pathology
- Nuclear Proteins
- PAX7 Transcription Factor
- Plasmids/metabolism
- Protein Structure, Tertiary
- Sequence Analysis, DNA
- Tissue Distribution
- Trans-Activators
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription, Genetic
- Two-Hybrid System Techniques
- Williams Syndrome
Collapse
Affiliation(s)
- S Calvo
- Section on Molecular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
36
|
Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lømo T, Schiaffino S. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci U S A 2001; 98:13108-13. [PMID: 11606756 PMCID: PMC60832 DOI: 10.1073/pnas.231148598] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nerve activity can induce long-lasting, transcription-dependent changes in skeletal muscle fibers and thus affect muscle growth and fiber-type specificity. Calcineurin signaling has been implicated in the transcriptional regulation of slow muscle fiber genes in culture, but the functional role of calcineurin in vivo has not been unambiguously demonstrated. Here, we report that the up-regulation of slow myosin heavy chain (MyHC) and a MyHC-slow promoter induced by slow motor neurons in regenerating rat soleus muscle is prevented by the calcineurin inhibitors cyclosporin A (CsA), FK506, and the calcineurin inhibitory protein domain from cain/cabin-1. In contrast, calcineurin inhibitors do not block the increase in fiber size induced by nerve activity in regenerating muscle. The activation of MyHC-slow induced by direct electrostimulation of denervated regenerating muscle with a continuous low frequency impulse pattern is blocked by CsA, showing that calcineurin function in muscle fibers and not in motor neurons is responsible for nerve-dependent specification of slow muscle fibers. Calcineurin is also involved in the maintenance of the slow muscle fiber gene program because in the adult soleus muscle, cain causes a switch from MyHC-slow to fast-type MyHC-2X and MyHC-2B gene expression, and the activity of the MyHC-slow promoter is inhibited by CsA and FK506.
Collapse
Affiliation(s)
- A L Serrano
- Department of Biomedical Sciences, Consiglio Nazionale delle Ricerche Center of Muscle Biology and Physiopathology, University of Padova, 35121 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Vertebrate muscle development begins with the patterning of the paraxial mesoderm by inductive signals from midline tissues [1, 2]. Subsequent myotome growth occurs by the addition of new muscle fibers. We show that in zebrafish new slow-muscle fibers are first added at the end of the segmentation period in growth zones near the dorsal and ventral extremes of the myotome, and this muscle growth continues into larval life. In marine teleosts, this mechanism of growth has been termed stratified hyperplasia [3]. We have tested whether these added fibers require an embryonic architecture of muscle fibers to support their development and whether their fate is regulated by the same mechanisms that regulate embryonic muscle fates. Although Hedgehog signaling is required for the specification of adaxial-derived slow-muscle fibers in the embryo [4, 5], we show that in the absence of Hh signaling, stratified hyperplastic growth of slow muscle occurs at the correct time and place, despite the complete absence of embryonic slow-muscle fibers to serve as a scaffold for addition of these new slow-muscle fibers. We conclude that slow-muscle-stratified hyperplasia begins after the segmentation period during embryonic development and continues during the larval period. Furthermore, the mechanisms specifying the identity of these new slow-muscle fibers are different from those specifying the identity of adaxial-derived embryonic slow-muscle fibers. We propose that the independence of early, embryonic patterning mechanisms from later patterning mechanisms may be necessary for growth.
Collapse
Affiliation(s)
- M J Barresi
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | |
Collapse
|
38
|
Martin BS, Ruiz-Gómez M, Landgraf M, Bate M. A distinct set of founders and fusion-competent myoblasts make visceral muscles in the Drosophila embryo. Development 2001; 128:3331-8. [PMID: 11546749 DOI: 10.1242/dev.128.17.3331] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The embryonic Drosophila midgut is enclosed by a latticework of longitudinal and circular visceral muscles. We find that these muscles are syncytial. Like the somatic muscles they are generated by the prior segregation of two populations of cells: fusion-competent myoblasts and founder myoblasts specialised to seed the formation of particular muscles. Visceral muscle founders are of two classes: those that seed circular muscles and those that seed longitudinal muscles. These specialisations are revealed in mutant embryos where myoblast fusion fails. In the absence of fusion, founders make mononucleate circular or longitudinal fibres, while their fusion-competent neighbours remain undifferentiated.
Collapse
Affiliation(s)
- B S Martin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | | |
Collapse
|
39
|
Coutelle O, Blagden CS, Hampson R, Halai C, Rigby PW, Hughes SM. Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev Biol 2001; 236:136-50. [PMID: 11456450 DOI: 10.1006/dbio.2001.0193] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hedgehog proteins have been implicated in the control of myogenesis in the medial vertebrate somite. In the mouse, normal epaxial expression of the myogenic transcription factor gene myf5 is dependent on Sonic hedgehog. Here we examine in zebrafish the interaction between Hedgehog signals, the expression of myoD family genes, including the newly cloned zebrafish myf5, and slow myogenesis. We show that Sonic hedgehog is necessary for normal expression of both myf5 and myoD in adaxial slow muscle precursors, but not in lateral paraxial mesoderm. Expression of both genes is initiated normally in rostral presomitic mesoderm in sonic you mutants, which lack all Sonic hedgehog. Similar initiation continues during tailbud outgrowth when the cells forming caudal somites are generated. However, adaxial cells in sonic you embryos are delayed in terminal differentiation and caudal adaxial cells fail to maintain myogenic regulatory factor expression. Despite these defects, other signals are able to maintain, or reinitiate, some slow muscle development in sonic you mutants. In the cyclops mutant, the absence of floorplate-derived Tiggywinkle hedgehog and Sonic hedgehog has no discernible effect on slow adaxial myogenesis. Similarly, the absence of notochord-derived Sonic hedgehog and Echidna hedgehog in mutants lacking notochord delays, but does not prevent, adaxial slow muscle development. In contrast, removal of both Sonic hedgehog and a floorplate signal, probably Tiggywinkle hedgehog, from the embryonic midline in cyclops;sonic you double mutants essentially abolishes slow myogenesis. We conclude that several midline signals, likely to be various Hedgehogs, collaborate to maintain adaxial slow myogenesis in the zebrafish embryo. Moreover, the data demonstrate that, in the absence of this required Hedgehog signalling, expression of myf5 and myoD is insufficient to commit cells to adaxial myogenesis.
Collapse
Affiliation(s)
- O Coutelle
- Division of Eukaryotic Molecular Genetics, MRC National Institute for Medical Research, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Roy S, Wolff C, Ingham PW. The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev 2001; 15:1563-76. [PMID: 11410536 PMCID: PMC312718 DOI: 10.1101/gad.195801] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Developmental programs that govern the embryonic diversification of distinct kinds of muscles in vertebrates remain obscure. For instance, the most widely recognized attribute of early diversity among skeletal myoblasts is their ability to differentiate exclusively into fibers with slow or fast contractile properties. However, we know little about the developmental basis and genetic regulation of this seminal event in vertebrate myogenesis. Here we show that in the zebrafish, the u-boot gene acts as a myogenic switch that regulates the choice of myoblasts to adopt slow versus fast fiber developmental pathways. In u-boot mutant embryos, slow muscle precursors abort their developmental program, failing to activate expression of the homeobox gene prox1 and transfating into muscle cells with fast fiber properties. Using oligonucleotide-mediated translational inhibition, we have investigated the role of prox1 in this program. We find that it functions in the terminal step of the u-boot controlled slow fiber developmental pathway in the regulation of slow myofibril assembly. Our findings provide new insight into the genetic control of slow versus fast fiber specification and differentiation and indicate that dedicated developmental pathways exist in vertebrates for the elaboration of distinct elements of embryonic muscle pattern.
Collapse
Affiliation(s)
- S Roy
- MRC Intercellular Signaling Group, Centre for Developmental Genetics, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
41
|
Bayline RJ, Duch C, Levine RB. Nerve-muscle interactions regulate motor terminal growth and myoblast distribution during muscle development. Dev Biol 2001; 231:348-63. [PMID: 11237464 DOI: 10.1006/dbio.2001.0158] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between motoneurons and muscles influence many aspects of neuromuscular development in all animals. These interactions can be readily investigated during adult muscle development in holometabolous insects. In this study, the development of the dorsolongitudinal flight muscle (DLM) and its innervation is investigated in the moth, Manduca sexta, to address the specificity of neuromuscular interactions. The DLM develops from an anlage containing both regressed larval template fibers and imaginal myoblasts. In the adult, each fiber bundle (DLM1-5) is innervated by a single motoneuron (MN1-MN5), with the dorsal-most fiber bundle (DLM5) innervated by a mesothoracic motoneuron (MN5). The DLM failed to develop following complete denervation because myoblasts failed to accumulate in the DLM anlage. After lesioning MN1-4, MN5 retained its specificity for the DLM5 region of the anlage and failed to rescue DLM1-4. Thus specific innervation of the DLM fiber bundles does not depend on interactions among motoneurons. Myoblast accumulation, but not myonuclear proliferation, increased around the MN5 terminals, producing a hypertrophied adult DLM5. Therefore, motoneurons compete for uncommitted myoblasts. MN5 terminals subsequently grew more rapidly over the hypertrophied DLM5 anlage, indicating that motoneuron terminal expansion is regulated by the size of the target muscle anlage.
Collapse
Affiliation(s)
- R J Bayline
- Division of Neurobiology, University of Arizona, Room 611, Gould Simpson Building, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
42
|
Allen DL, Harrison BC, Sartorius C, Byrnes WC, Leinwand LA. Mutation of the IIB myosin heavy chain gene results in muscle fiber loss and compensatory hypertrophy. Am J Physiol Cell Physiol 2001; 280:C637-45. [PMID: 11171584 DOI: 10.1152/ajpcell.2001.280.3.c637] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fast skeletal IIb gene is the source of most myosin heavy chain (MyHC) in adult mouse skeletal muscle. We have examined the effects of a null mutation in the IIb MyHC gene on the growth and morphology of mouse skeletal muscle. Loss in muscle mass of several head and hindlimb muscles correlated with amounts of IIb MyHC expressed in that muscle in wild types. Decreased mass was accompanied by decreases in mean fiber number, and immunological and ultrastructural studies revealed fiber pathology. However, mean cross-sectional area was increased in all fiber types, suggesting compensatory hypertrophy. Loss of muscle and body mass was not attributable to impaired chewing, and decreased food intake as a softer diet did not prevent the decrease in body mass. Thus loss of the major MyHC isoform produces fiber loss and fiber pathology reminiscent of muscle disease.
Collapse
Affiliation(s)
- D L Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Zebrafish skeletal muscles are composed of two major types of muscle fibers, broadly classified as fast or slow fibers. Recent studies have demonstrated that members of the Hedgehog (Hh) family induce the formation of slow muscle fibers. Hedgehog signals are secreted proteins that function through the transcription factor Glis. We report here the characterization of a zebrafish Gli2 expression in slow and fast muscle cells and the study of the roles of Hedgehogs and Gli2 in zebrafish muscle development using two mutant strains; sonic-you (syu) and you-too (yot), respective for sonic hedgehog (shh) and Gli2 mutation. We have demonstrated that Shh and Gli2 mutation causes similar defects in slow muscle formation. There is, however, a difference in the degree of defect between these two mutants. In yot mutant embryos, development of slow muscles was completely blocked, whereas in syu mutant embryos, a small number of slow muscle cells could still form, suggesting that other Hhs were also involved in slow muscle induction. Induction of slow muscles by other Hhs appeared to require Gli2, because ectopic expression of Echidna hedgehog (Ehh) and Tiggy-winkle hedgehog (Twhh) failed to induce slow muscles in yot mutant embryos. Together, these data suggest that further Hhs, other than Shh, are also involved in the induction and differentiation of slow muscle cells and that Gli2 is required by Shh, Twhh, and Ehh, thus playing a key role in the induction and differentiation of slow muscle cells.
Collapse
Affiliation(s)
- S J Du
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 710 E. Pratt St., Baltimore, MD 21202, USA.
| | | |
Collapse
|
44
|
Perrier JF, Hounsgaard J. Development and regulation of response properties in spinal cord motoneurons. Brain Res Bull 2000; 53:529-35. [PMID: 11165788 DOI: 10.1016/s0361-9230(00)00386-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The intrinsic response properties of spinal motoneurons determine how converging premotor neuronal input is translated into the final motor command transmitted to muscles. From the patchy data available it seems that these properties and their underlying currents are highly conserved in terrestrial vertebrates in terms of both phylogeny and ontogeny. Spinal motoneurons in adults are remarkably similar in many respects ranging from the resting membrane potential to pacemaker properties. Apart from the axolotls, spinal motoneurons from all species investigated have latent intrinsic response properties mediated by L-type Ca2+ channels. This mature phenotype is reached gradually during development through phases in which A-type potassium channels and T-type calcium channels are transiently expressed. The intrinsic response properties of mature spinal motoneurons are subject to short-term adjustments via metabotropic synaptic regulation of the properties of voltage-sensitive ion channels. Recent findings also suggest that regulation of channel expression may contribute to long-term changes in intrinsic response properties of motoneurons.
Collapse
Affiliation(s)
- J F Perrier
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
45
|
Consoulas C, Duch C, Bayline RJ, Levine RB. Behavioral transformations during metamorphosis: remodeling of neural and motor systems. Brain Res Bull 2000; 53:571-83. [PMID: 11165793 DOI: 10.1016/s0361-9230(00)00391-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During insect metamorphosis, neural and motor systems are remodeled to accommodate behavioral transformations. Nerve and muscle cells that are required for larval behavior, such as crawling, feeding and ecdysis, must either be replaced or respecified to allow adult emergence, walking, flight, mating and egg-laying. This review describes the types of cellular changes that occur during metamorphosis, as well as recent attempts to understand how they are related to behavioral changes and how they are regulated. Within the periphery, many larval muscles degenerate at the onset of metamorphosis and are replaced by adult muscles, which are derived from myoblasts and, in some cases, remnants of the larval muscle fibers. The terminal processes of many larval motoneurons persist within the periphery and are essential for the formation of adult muscle fibers. Although most adult sensory neurons are born postembryonically, a subset of larval proprioceptive neurons persist to participate in adult behavior. Within the central nervous system, larval neurons that will no longer be necessary die and some adult interneurons are born postembryonically. By contrast, all of the adult motoneurons, as well as some interneurons and modulatory neurons, are persistent larval cells. In accordance with their new behavioral roles, these neurons undergo striking changes in dendritic morphology, intrinsic biophysical properties, and synaptic interactions.
Collapse
Affiliation(s)
- C Consoulas
- Division of Neurobiology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
46
|
Tissot M, Stocker RF. Metamorphosis in drosophila and other insects: the fate of neurons throughout the stages. Prog Neurobiol 2000; 62:89-111. [PMID: 10821983 DOI: 10.1016/s0301-0082(99)00069-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nervous system of insects is profoundly reorganised during metamorphosis, affecting the fate of different types of neuron in different ways. Almost all adult motor neurons derive from larval motor neurons that are respecified for adult functions. A subset of larval motor neurons, those which mediate larval- or ecdysis-specific behaviours, die before and immediately after eclosion, respectively. Many adult interneurons develop from larval interneurons, whereas those related to complex adult sense organs originate during larval life from persisting embryonic neuroblasts. Sensory neurons of larvae and adults derive from essentially two distinct sources. Larval sensory neurons are formed in the embryonic integument and - with few exceptions - die during metamorphosis. Their adult counterparts, on the other hand, arise from imaginal discs. Special emphasis is given in this review to the metamorphic remodelling of persisting neurons, both at the input and output levels, and to the associated behavioural changes. Other sections deal with the programmed death of motor neurons and its causes, as well as with the metamorphic interactions between motor neurons and their target muscles. Remodelling and apoptosis of these two elements appear to be under independent ecdysteroid control. This review focusses on the two most thoroughly studied holometabolous species, the fruitfly Drosophila melanogaster and the tobacco hornworm moth Manduca sexta. While Manduca has a long tradition in neurodevelopmental studies due to the identification of many of its neurons, Drosophila has been increasingly used to investigate neural reorganisation thanks to neurogenetic tools and molecular approaches. The wealth of information available emphasises the strength of the insect model system used in developmental studies, rendering it clearly the most important system for studies at the cellular level.
Collapse
Affiliation(s)
- M Tissot
- Department of Biology and Program in Neuroscience, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
47
|
Ruiz-Gómez M, Coutts N, Price A, Taylor MV, Bate M. Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 2000; 102:189-98. [PMID: 10943839 DOI: 10.1016/s0092-8674(00)00024-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aggregation and fusion of myoblasts to form myotubes is essential for myogenesis in many organisms. In Drosophila the formation of syncytial myotubes is seeded by founder myoblasts. Founders fuse with clusters of fusion-competent myoblasts. Here we identify the gene dumbfounded (duf) and show that it is required for myoblast aggregation and fusion. duf encodes a member of the immunoglobulin superfamily of proteins that is an attractant for fusion-competent myoblasts. It is expressed by founder cells and serves to attract clusters of myoblasts from which myotubes form by fusion.
Collapse
Affiliation(s)
- M Ruiz-Gómez
- Department of Zoology, University of Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
48
|
Barresi MJ, Stickney HL, Devoto SH. The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity. Development 2000; 127:2189-99. [PMID: 10769242 DOI: 10.1242/dev.127.10.2189] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hedgehog proteins mediate many of the inductive interactions that determine cell fate during embryonic development. Hedgehog signaling has been shown to regulate slow muscle fiber type development. We report here that mutations in the zebrafish slow-muscle-omitted (smu) gene disrupt many developmental processes involving Hedgehog signaling. smu(−/−) embryos have a 99% reduction in the number of slow muscle fibers and a complete loss of Engrailed-expressing muscle pioneers. In addition, mutant embryos have partial cyclopia, and defects in jaw cartilage, circulation and fin growth. The smu(−/−) phenotype is phenocopied by treatment of wild-type embryos with forskolin, which inhibits the response of cells to Hedgehog signaling by indirect activation of cAMP-dependent protein kinase (PKA). Overexpression of Sonic hedgehog (Shh) or dominant negative PKA (dnPKA) in wild-type embryos causes all somitic cells to develop into slow muscle fibers. Overexpression of Shh does not rescue slow muscle fiber development in smu(−/−) embryos, whereas overexpression of dnPKA does. Cell transplantation experiments confirm that smu function is required cell-autonomously within the muscle precursors: wild-type muscle cells rescue slow muscle fiber development in smu(−/−) embryos, whereas mutant muscle cells cannot develop into slow muscle fibers in wild-type embryos. Slow muscle fiber development in smu mutant embryos is also rescued by expression of rat Smoothened. Therefore, Hedgehog signaling through Slow-muscle-omitted is necessary for slow muscle fiber type development. We propose that smu encodes a vital component in the Hedgehog response pathway.
Collapse
Affiliation(s)
- M J Barresi
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | | | | |
Collapse
|
49
|
Abstract
The development of motor behaviour depends on the differentiation of underlying circuitry. Recent work with the zebrafish brings the simple swimming behaviour of lower vertebrates and their embryos into focus as a suitable model to study the development of motor circuitry and its genetic control. Changes in connectivity and excitability contribute to the development of swimming in this simple system. In the chick embryo, limb motor circuitry is spontaneously active before motor axons reach their muscle targets, and it has properties in common with the spontaneously active networks in the retina. The early rhythmic activity responsible for embryonic movement is probably a generalised property of developing spinal networks that precedes, and may be required for, the completion of functional locomotor circuitry.
Collapse
Affiliation(s)
- M Bate
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.
| |
Collapse
|
50
|
Anderson DJ. Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr Opin Neurobiol 1999; 9:517-24. [PMID: 10508743 DOI: 10.1016/s0959-4388(99)00015-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent advances have indentified some of the key transcriptional regulators of mammalian genes, the neurogenins. Neurogenins 1 and 2 appear to control distinct sublineages for different classes of sensory neurons, including a 'pioneer' lineage for proprioceptors specified early in neural crest migration. Neurogenins act via a cascade of downstream transcriptional regulators, some of which have been identified.
Collapse
Affiliation(s)
- D J Anderson
- Howard Hughes Medical Institute Division of Biology 216-76 California Institute of Technology Pasadena, California 91125, USA.
| |
Collapse
|