1
|
Ma X, Ligan C, Huang S, Chen Y, Li M, Cao Y, Zhao W, Zhao S. Mitochondrial activity related genes of mast cells identify poor prognosis and metastasis of ovarian cancer. Immunobiology 2024; 229:152831. [PMID: 38944891 DOI: 10.1016/j.imbio.2024.152831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs' biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.
Collapse
Affiliation(s)
- Xinghua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shijia Huang
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yirong Chen
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Muxin Li
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Cao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Cazzato G, Tamma R, Fanelli M, Colagrande A, Marzullo A, Cascardi E, Trilli I, Lorusso L, Lettini T, Ingravallo G, Ribatti D. Mast cell density in Merkel cell carcinoma and its correlation with prognostic features and MCPyV status: a pilot study. Clin Exp Med 2024; 24:151. [PMID: 38967728 PMCID: PMC11226501 DOI: 10.1007/s10238-024-01366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 07/06/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive, primitive neuroendocrine carcinoma of the skin, the origin of which is not yet fully understood. Numerous independent prognostic factors have been investigated in an attempt to understand which are the most important parameters to indicate in the histological diagnostic report of MCC. Of these, mast cells have only been studied in one paper before this one. We present a retrospective descriptive study of 13 cases of MCC, received at the Department of Pathology over a 20-year period (2003-2023 inclusive) on which we performed a study using whole-slide (WSI) morphometric analysis scanning platform Aperio Scanscope CS for the detection and spatial distribution of mast cells, using monoclonal anti-tryptase antibody and anti-CD34 monoclonal antibody to study the density of microvessels. In addition, we analyzed MCPyV status with the antibody for MCPyV large T-antigen (Clone CM2B4). We found statistically significant correlation between mast cell density and local recurrence/distant metastasis/death-of-disease (p = 0.008). To our knowledge, we firstly reported that MCPyV ( -) MCC shows higher mast cells density compared to MCPyV ( +) MCC, the latter well known to be less aggressive. Besides, the median vascular density did not show no significant correlation with recurrence/metastasis/death-of-disease, (p = 0.18). Despite the small sample size, this paper prompts future studies investigating the role of mast cell density in MCC.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Margherita Fanelli
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Anna Colagrande
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Andrea Marzullo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Eliano Cascardi
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Loredana Lorusso
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Teresa Lettini
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
3
|
Panagi M, Mpekris F, Voutouri C, Hadjigeorgiou AG, Symeonidou C, Porfyriou E, Michael C, Stylianou A, Martin JD, Cabral H, Constantinidou A, Stylianopoulos T. Stabilizing Tumor-Resident Mast Cells Restores T-Cell Infiltration and Sensitizes Sarcomas to PD-L1 Inhibition. Clin Cancer Res 2024; 30:2582-2597. [PMID: 38578281 PMCID: PMC11145177 DOI: 10.1158/1078-0432.ccr-24-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE To explore the cellular cross-talk of tumor-resident mast cells (MC) in controlling the activity of cancer-associated fibroblasts (CAF) to overcome tumor microenvironment (TME) abnormalities, enhancing the efficacy of immune-checkpoint inhibitors in sarcoma. EXPERIMENTAL DESIGN We used a coculture system followed by further validation in mouse models of fibrosarcoma and osteosarcoma with or without administration of the MC stabilizer and antihistamine ketotifen. To evaluate the contribution of ketotifen in sensitizing tumors to therapy, we performed combination studies with doxorubicin chemotherapy and anti-PD-L1 (B7-H1, clone 10F.9G2) treatment. We investigated the ability of ketotifen to modulate the TME in human sarcomas in the context of a repurposed phase II clinical trial. RESULTS Inhibition of MC activation with ketotifen successfully suppressed CAF proliferation and stiffness of the extracellular matrix accompanied by an increase in vessel perfusion in fibrosarcoma and osteosarcoma as indicated by ultrasound shear wave elastography imaging. The improved tissue oxygenation increased the efficacy of chemoimmunotherapy, supported by enhanced T-cell infiltration and acquisition of tumor antigen-specific memory. Importantly, the effect of ketotifen in reducing tumor stiffness was further validated in sarcoma patients, highlighting its translational potential. CONCLUSIONS Our study suggests the targeting of MCs with clinically administered drugs, such as antihistamines, as a promising approach to overcome resistance to immunotherapy in sarcomas.
Collapse
Affiliation(s)
- Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas G. Hadjigeorgiou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | | | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- Basic and Translational Cancer Research Center, School of Sciences, European University of Cyprus, Nicosia, Cyprus
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Anastasia Constantinidou
- Bank of Cyprus Oncology Centre, Nicosia, Cyprus
- Cyprus Cancer Research Institute, Nicosia, Cyprus
- Medical School, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
4
|
Cazzato G, Ingravallo G, Ribatti D. Angiogenesis Still Plays a Crucial Role in Human Melanoma Progression. Cancers (Basel) 2024; 16:1794. [PMID: 38791873 PMCID: PMC11120419 DOI: 10.3390/cancers16101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Angiogenesis plays a pivotal role in tumor progression, particularly in melanoma, the deadliest form of skin cancer. This review synthesizes current knowledge on the intricate interplay between angiogenesis and tumor microenvironment (TME) in melanoma progression. Pro-angiogenic factors, including VEGF, PlGF, FGF-2, IL-8, Ang, TGF-β, PDGF, integrins, MMPs, and PAF, modulate angiogenesis and contribute to melanoma metastasis. Additionally, cells within the TME, such as cancer-associated fibroblasts, mast cells, and melanoma-associated macrophages, influence tumor angiogenesis and progression. Anti-angiogenic therapies, while showing promise, face challenges such as drug resistance and tumor-induced activation of alternative angiogenic pathways. Rational combinations of anti-angiogenic agents and immunotherapies are being explored to overcome resistance. Biomarker identification for treatment response remains crucial for personalized therapies. This review highlights the complexity of angiogenesis in melanoma and underscores the need for innovative therapeutic approaches tailored to the dynamic TME.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
5
|
Kohl LM, Sumpter TL. Melanomas and mast cells: an ambiguous relationship. Melanoma Res 2024; 34:1-8. [PMID: 37924526 DOI: 10.1097/cmr.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Mast cells (MCs) accumulate in a broad range of tumors, including melanomas. While MCs are potent initiators of immunity in infection, and in allergic inflammation, the function of MCs in anti-melanoma immunity is unclear. MCs have the potential to release tumoricidal cytokines and proteases, to activate antigen-presenting cells and to promote anti-tumor adaptive immunity. However, within the immunosuppressive tumor microenvironment (TME), MC activation may promote angiogenesis and contribute to tumor growth. In this review, the relationship between MCs and melanomas is discussed with a focus on the impact of the TME on MC activation.
Collapse
Affiliation(s)
- Lisa M Kohl
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
- Departments of Dermatology
| | - Tina L Sumpter
- Departments of Dermatology
- Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
7
|
Kaszuba A, Sławińska M, Żółkiewicz J, Sobjanek M, Nowicki RJ, Lange M. Mastocytosis and Skin Cancer: The Current State of Knowledge. Int J Mol Sci 2023; 24:9840. [PMID: 37372988 DOI: 10.3390/ijms24129840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Mastocytosis is a heterogeneous group of diseases associated with excessive proliferation and accumulation of mast cells in different organs. Recent studies have demonstrated that patients suffering from mastocytosis face an increased risk of melanoma and non-melanoma skin cancer. The cause of this has not yet been clearly identified. In the literature, the potential influence of several factors has been suggested, including genetic background, the role of cytokines produced by mast cells, iatrogenic and hormonal factors. The article summarizes the current state of knowledge regarding the epidemiology, pathogenesis, diagnosis, and management of skin neoplasia in mastocytosis patients.
Collapse
Affiliation(s)
- Agnieszka Kaszuba
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Martyna Sławińska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Jakub Żółkiewicz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Michał Sobjanek
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Roman J Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| |
Collapse
|
8
|
Shi S, Ye L, Yu X, Jin K, Wu W. Focus on mast cells in the tumor microenvironment: Current knowledge and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188845. [PMID: 36476563 DOI: 10.1016/j.bbcan.2022.188845] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mast cells (MCs) are crucial cells participating in both innate and adaptive immune processes that play important roles in protecting human health and in the pathophysiology of various diseases, such as allergies, cardiovascular diseases, and autoimmune diseases. In the context of tumors, MCs are a non-negligible population of immune cells in the tumor microenvironment (TME). In most tumor types, MCs accumulate in both the tumor tissue and the surrounding tissue. MCs interact with multiple components of the TME, affecting TME remodeling and the tumor cell fate. However, controversy persists regarding whether MCs contribute to tumor progression or trigger an anti-tumor immune response. This review focuses on the context of the TME to explore the specific properties and functions of MCs and discusses the crosstalk that occurs between MCs and other components of the TME, which affect tumor angiogenesis and lymphangiogenesis, invasion and metastasis, and tumor immunity through different mechanisms. We also anticipate the potential role of MCs in cancer immunotherapy, which might expand upon the success achieved with existing cancer therapies.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Nielsen PS, Georgsen JB, Vinding MS, Østergaard LR, Steiniche T. Computer-Assisted Annotation of Digital H&E/SOX10 Dual Stains Generates High-Performing Convolutional Neural Network for Calculating Tumor Burden in H&E-Stained Cutaneous Melanoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14327. [PMID: 36361209 PMCID: PMC9654525 DOI: 10.3390/ijerph192114327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Deep learning for the analysis of H&E stains requires a large annotated training set. This may form a labor-intensive task involving highly skilled pathologists. We aimed to optimize and evaluate computer-assisted annotation based on digital dual stains of the same tissue section. H&E stains of primary and metastatic melanoma (N = 77) were digitized, re-stained with SOX10, and re-scanned. Because images were aligned, annotations of SOX10 image analysis were directly transferred to H&E stains of the training set. Based on 1,221,367 annotated nuclei, a convolutional neural network for calculating tumor burden (CNNTB) was developed. For primary melanomas, precision of annotation was 100% (95%CI, 99% to 100%) for tumor cells and 99% (95%CI, 98% to 100%) for normal cells. Due to low or missing tumor-cell SOX10 positivity, precision for normal cells was markedly reduced in lymph-node and organ metastases compared with primary melanomas (p < 0.001). Compared with stereological counts within skin lesions, mean difference in tumor burden was 6% (95%CI, -1% to 13%, p = 0.10) for CNNTB and 16% (95%CI, 4% to 28%, p = 0.02) for pathologists. Conclusively, the technique produced a large annotated H&E training set with high quality within a reasonable timeframe for primary melanomas and subcutaneous metastases. For these lesion types, the training set generated a high-performing CNNTB, which was superior to the routine assessments of pathologists.
Collapse
Affiliation(s)
- Patricia Switten Nielsen
- Department of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus, Denmark
| | - Jeanette Baehr Georgsen
- Department of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus, Denmark
| | - Mads Sloth Vinding
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Lasse Riis Østergaard
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg, Denmark
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus, Denmark
| |
Collapse
|
10
|
Huang S, Wu H, Luo F, Zhang B, Li T, Yang Z, Ren B, Yin W, Wu D, Tai S. Exploring the role of mast cells in the progression of liver disease. Front Physiol 2022; 13:964887. [PMID: 36176778 PMCID: PMC9513450 DOI: 10.3389/fphys.2022.964887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to being associated with allergic diseases, parasites, bacteria, and venoms, a growing body of research indicates that mast cells and their mediators can regulate liver disease progression. When mast cells are activated, they degranulate and release many mediators, such as histamine, tryptase, chymase, transforming growth factor-β1 (TGF-β1), tumor necrosis factor–α(TNF-α), interleukins cytokines, and other substances that mediate the progression of liver disease. This article reviews the role of mast cells and their secretory mediators in developing hepatitis, cirrhosis and hepatocellular carcinoma (HCC) and their essential role in immunotherapy. Targeting MC infiltration may be a novel therapeutic option for improving liver disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dehai Wu
- *Correspondence: Sheng Tai, ; Dehai Wu,
| | - Sheng Tai
- *Correspondence: Sheng Tai, ; Dehai Wu,
| |
Collapse
|
11
|
NCAPH is a prognostic biomarker and associated with immune infiltrates in lung adenocarcinoma. Sci Rep 2022; 12:9578. [PMID: 35688915 PMCID: PMC9187691 DOI: 10.1038/s41598-022-12862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
Non-SMC condensin I complex subunit H (NCAPH) plays a regulatory role in various cancers. However, its role in prognosis and immune infiltrates in lung adenocarcinoma (LUAD) remains unclear. This study examined the expression of NCAPH in tumor tissues and its association with immune infiltrates and prognostic roles in LUAD patients. Patients characteristics were obtained from The Cancer Genome Atlas (TCGA). Integrated analysis of TCGA showed that NCAPH was overexpressed across cancers, including LUAD. NCAPH expression was verified by quantitative polymerase chain reaction and western blotting in 20 LUAD matched tissues. High NCAPH expression was significantly related to T, N, M, pathologic stage, primary therapy outcome and smoking status according to the Wilcoxon rank sum test. Cox and Kaplan-Meier analyses showed that the NCAPH-high group was associated with shorter OS. The PFI and DSS in the NCAPH-high group were significantly decreased. Multivariate analysis showed that NCAPH was an independent predictive factor for poor prognosis. Gene set enrichment analysis demonstrated that the G2/M checkpoint, ncRNA metabolic, memory B cells, KRAS, E2F targets and MIER1 process were significantly associated with NCAPH expression. Single-sample Gene Set Enrichment Analysis indicated that NCAPH expression was associated with levels of Th2 and mast cells. The impact of NCAPH on malignant phenotypes was evaluated by MTT, transwell, cell cycle and apoptosis assays in vitro. The malignant phenotype of LUAD cells was inhibited if NCAPH was knocked down. In conclusion, this research indicates that NCAPH could be a potential factor for predicting prognosis and a new biomarker in LUAD.
Collapse
|
12
|
Honda T, Keith YH. Novel Insights Into the Immune-Regulatory Functions of Mast Cells in the Cutaneous Immune Response. Front Immunol 2022; 13:898419. [PMID: 35634300 PMCID: PMC9134104 DOI: 10.3389/fimmu.2022.898419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Skin is a frontline organ that is continuously exposed to external stimuli, including pathogens. Various immune cells reside in the skin under physiological conditions and protect the body from the entry of pathogens/antigens by interacting with each other and orchestrating diverse cutaneous immune responses. To avoid unnecessary inflammation and tissue damage during the elimination of external pathogens and antigens, skin possesses regulatory systems that fine-tune these immune reactions. Mast cells (MCs) are one of the skin-resident immune cell populations that play both effector and regulatory functions in the cutaneous immune response. So far, the interleukin-10-mediated mechanisms have mostly been investigated as the regulatory mechanisms of MCs. Recent studies have elucidated other regulatory mechanisms of MCs, such as the maintenance of regulatory T/B cells and the programmed cell death protein-1/programmed cell death-ligand 1-mediated inhibitory pathway. These regulatory pathways of MCs have been suggested to play important roles in limiting the excessive inflammation in inflammatory skin diseases, such as contact and atopic dermatitis. The regulatory functions of MCs may also be involved in the escape mechanisms of antitumor responses in skin cancers, such as melanoma. Understanding and controlling the regulatory functions of skin MCs may lead to novel therapeutic strategies for inflammatory skin diseases and skin cancers.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- *Correspondence: Tetsuya Honda,
| | - Yuki Honda Keith
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Das B, Mendonca S. Prognostic significance of mast cells and vascular density in prostatic adenocarcinoma. INDIAN J PATHOL MICR 2022; 65:828-831. [DOI: 10.4103/ijpm.ijpm_93_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Soltantoyeh T, Akbari B, Karimi A, Mahmoodi Chalbatani G, Ghahri-Saremi N, Hadjati J, Hamblin MR, Mirzaei HR. Chimeric Antigen Receptor (CAR) T Cell Therapy for Metastatic Melanoma: Challenges and Road Ahead. Cells 2021; 10:cells10061450. [PMID: 34207884 PMCID: PMC8230324 DOI: 10.3390/cells10061450] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma is the most aggressive and difficult to treat type of skin cancer, with a survival rate of less than 10%. Metastatic melanoma has conventionally been considered very difficult to treat; however, recent progress in understanding the cellular and molecular mechanisms involved in the tumorigenesis, metastasis and immune escape have led to the introduction of new therapies. These include targeted molecular therapy and novel immune-based approaches such as immune checkpoint blockade (ICB), tumor-infiltrating lymphocytes (TILs), and genetically engineered T-lymphocytes such as chimeric antigen receptor (CAR) T cells. Among these, CAR T cell therapy has recently made promising strides towards the treatment of advanced hematological and solid cancers. Although CAR T cell therapy might offer new hope for melanoma patients, it is not without its shortcomings, which include off-target toxicity, and the emergence of resistance to therapy (e.g., due to antigen loss), leading to eventual relapse. The present review will not only describe the basic steps of melanoma metastasis, but also discuss how CAR T cells could treat metastatic melanoma. We will outline specific strategies including combination approaches that could be used to overcome some limitations of CAR T cell therapy for metastatic melanoma.
Collapse
Affiliation(s)
- Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa;
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
- Correspondence: ; Tel.: +98-21-64053268; Fax: +98-21-66419536
| |
Collapse
|
15
|
Lichterman JN, Reddy SM. Mast Cells: A New Frontier for Cancer Immunotherapy. Cells 2021; 10:cells10061270. [PMID: 34063789 PMCID: PMC8223777 DOI: 10.3390/cells10061270] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are unique tissue-resident immune cells of the myeloid lineage that have long been implicated in the pathogenesis of allergic and autoimmune disorders. More recently, mast cells have been recognized as key orchestrators of anti-tumor immunity, modulators of the cancer stroma, and have also been implicated in cancer cell intrinsic properties. As such, mast cells are an underrecognized but very promising target for cancer immunotherapy. In this review, we discuss the role of mast cells in shaping cancer and its microenvironment, the interaction between mast cells and cancer therapies, and strategies to target mast cells to improve cancer outcomes. Specifically, we address (1) decreasing cell numbers through c-KIT inhibition, (2) modulating mast cell activation and phenotype (through mast cell stabilizers, FcεR1 signaling pathway activators/inhibitors, antibodies targeting inhibitory receptors and ligands, toll like receptor agonists), and (3) altering secreted mast cell mediators and their downstream effects. Finally, we discuss the importance of translational research using patient samples to advance the field of mast cell targeting to optimally improve patient outcomes. As we aim to expand the successes of existing cancer immunotherapies, focused clinical and translational studies targeting mast cells in different cancer contexts are now warranted.
Collapse
Affiliation(s)
- Jake N. Lichterman
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sangeetha M. Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-648-4180
| |
Collapse
|
16
|
Mass E, Gentek R. Fetal-Derived Immune Cells at the Roots of Lifelong Pathophysiology. Front Cell Dev Biol 2021; 9:648313. [PMID: 33708774 PMCID: PMC7940384 DOI: 10.3389/fcell.2021.648313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident innate immune cells exert a wide range of functions in both adult homeostasis and pathology. Our understanding of when and how these cellular networks are established has dramatically changed with the recognition that many lineages originate at least in part from fetal sources and self-maintain independently from hematopoietic stem cells. Indeed, fetal-derived immune cells are found in most organs and serous cavities of our body, where they reside throughout the entire lifespan. At the same time, there is a growing appreciation that pathologies manifesting in adulthood may be caused by adverse early life events, a concept known as “developmental origins of health and disease” (DOHaD). Yet, whether fetal-derived immune cells are mechanistically involved in DOHaD remains elusive. In this review, we summarize our knowledge of fetal hematopoiesis and its contribution to adult immune compartments, which results in a “layered immune system.” Based on their ontogeny, we argue that fetal-derived immune cells are prime transmitters of long-term consequences of prenatal adversities. In addition to increasing disease susceptibility, these may also directly cause inflammatory, degenerative, and metabolic disorders. We explore this notion for cells generated from erythro-myeloid progenitors (EMP) produced in the extra-embryonic yolk sac. Focusing on macrophages and mast cells, we present emerging evidence implicating them in lifelong disease by either somatic mutations or developmental programming events resulting from maternal and early environmental perturbations.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Ribatti D, Tamma R, Annese T, Crivellato E. The role of mast cells in human skin cancers. Clin Exp Med 2021; 21:355-360. [PMID: 33576908 DOI: 10.1007/s10238-021-00688-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs) are immune cells derived from myeloid lineage present in all classes of vertebrates and have emerged preceding much time the development of adaptive immunity. MCs are involved in inflammatory processes, allergic reactions, and host responses to parasites and bacteria infectious diseases. MCs are located at the host-environment interface, at many sites of initial antigen entry, including skin, lung and gastrointestinal tract, and have part of a protective mechanism. Skin has an important role in protecting the host from invasion both as physical barriers and by employing an intricate network of resident immune and non-immune cells include macrophages, T and B lymphocytes, MCs, neutrophils, eosinophils, and Langerhans cells. In this review we discussed the role of MCs in human skin cancers.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico - Piazza G. Cesare, 11, 70124, Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico - Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico - Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Enrico Crivellato
- Department of Medicine, Section of Human Anatomy, University of Udine, Udine, Italy
| |
Collapse
|
18
|
Domagala M, Laplagne C, Leveque E, Laurent C, Fournié JJ, Espinosa E, Poupot M. Cancer Cells Resistance Shaping by Tumor Infiltrating Myeloid Cells. Cancers (Basel) 2021; 13:E165. [PMID: 33418996 PMCID: PMC7825276 DOI: 10.3390/cancers13020165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Interactions between malignant cells and neighboring stromal and immune cells profoundly shape cancer progression. New forms of therapies targeting these cells have revolutionized the treatment of cancer. However, in order to specifically address each population, it was essential to identify and understand their individual roles in interaction between malignant cells, and the formation of the tumor microenvironment (TME). In this review, we focus on the myeloid cell compartment, a prominent, and heterogeneous group populating TME, which can initially exert an anti-tumoral effect, but with time actively participate in disease progression. Macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, mast cells, eosinophils, and basophils act alone or in concert to shape tumor cells resistance through cellular interaction and/or release of soluble factors favoring survival, proliferation, and migration of tumor cells, but also immune-escape and therapy resistance.
Collapse
Affiliation(s)
- Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Edouard Leveque
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- IUCT-O, 31000 Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Eric Espinosa
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| |
Collapse
|
19
|
Yin H, Tang Y, Guo Y, Wen S. Immune Microenvironment of Thyroid Cancer. J Cancer 2020; 11:4884-4896. [PMID: 32626535 PMCID: PMC7330689 DOI: 10.7150/jca.44506] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer (TC) is a highly heterogeneous endocrine malignancy with an increased incidence in women than in men. Previous studies regarding the pathogenesis of TC focused on the pathological changes of the tumor cells while ignoring the importance of the mesenchymal cells in tumor microenvironment. However, more recently, the stable environment provided by the interaction of thyroid cancer cells with the peri-tumoral stroma has been widely studied. Studies have shown that components of an individual's immune system are closely related to the occurrence, invasion, and metastasis of TC, which may affect response to treatment and prognosis of the patients. This article presents a comprehensive review of the immune cells, secreted soluble mediators and immune checkpoints in the immune microenvironment, mechanisms that promoting TC cells immune evasion and existing immunotherapy strategies. Besides it provides new strategies for TC prognosis prediction and immunotherapy.
Collapse
Affiliation(s)
- Hongyu Yin
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Yemei Tang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Shuxin Wen
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,General Hospital, Shenzhen University, Shenzhen 518061, Guangdong, P.R. China
| |
Collapse
|
20
|
Grujic M, Hellman L, Gustafson AM, Akula S, Melo FR, Pejler G. Protective role of mouse mast cell tryptase Mcpt6 in melanoma. Pigment Cell Melanoma Res 2020; 33:579-590. [PMID: 31894627 PMCID: PMC7317424 DOI: 10.1111/pcmr.12859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
Tryptase-positive mast cells populate melanomas, but it is not known whether tryptase impacts on melanoma progression. Here we addressed this and show that melanoma growth is significantly higher in tryptase-deficient (Mcpt6-/- ) versus wild-type mice. Histochemical analysis showed that mast cells were frequent in the tumor stroma of both wild-type and Mcpt6-/- mice, and also revealed their presence within the tumor parenchyma. Confocal microscopy analysis revealed that tryptase was taken up by the tumor cells. Further, tryptase-positive granules were released from mast cells and were widely distributed within the tumor tissue, suggesting that tryptase could impact on the tumor microenvironment. Indeed, gene expression analysis showed that the absence of Mcpt6 caused decreased expression of numerous genes, including Cxcl9, Tgtp2, and Gbp10, while the expression of 5p-miR3098 was enhanced. The levels of CXCL9 were lower in serum from Mcpt6-/- versus wild-type mice. In further support of a functional impact of tryptase on melanoma, recombinant tryptase (Mcpt6) was taken up by cultured melanoma cells and caused reduced proliferation. Altogether, our results indicate a protective role of mast cell tryptase in melanoma growth.
Collapse
Affiliation(s)
- Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Ann-Marie Gustafson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Fabio Rabelo Melo
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
21
|
Siiskonen H, Harvima I. Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation. Front Cell Neurosci 2019; 13:422. [PMID: 31619965 PMCID: PMC6759746 DOI: 10.3389/fncel.2019.00422] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
The intimate interaction between mast cells and sensory nerves can be illustrated by the wheal and surrounding flare in an urticarial reaction in human skin. This reaction is typically associated with an intense itch at the reaction site. Upon activation, cutaneous mast cells release powerful mediators, such as histamine, tryptase, cytokines, and growth factors that can directly stimulate corresponding receptors on itch-mediating sensory nerves. These include, e.g., H1- and H4-receptors, protease-activated receptor-2, IL-31 receptor, and the high-affinity receptor of nerve growth factor (TrkA). On the other hand, sensory nerves can release neuropeptides, including substance P and vasoactive intestinal peptide, that are able to stimulate mast cells to release mediators leading to potentiation of the reciprocal interaction, inflammation, and itch. Even though mast cells are well recognized for their role in allergic skin whealing and urticaria, increasing evidence supports the reciprocal function between mast cells and sensory nerves in neurogenic inflammation in chronic skin diseases, such as psoriasis and atopic dermatitis, which are often characterized by distressing itch, and exacerbated by psychological stress. Increased morphological contacts between mast cells and sensory nerves in the lesional skin in psoriasis and atopic dermatitis as well as experimental models in mice and rats support the essential role for mast cell-sensory nerve communication in consequent pruritus. Therefore, we summarize here the present literature pointing to a close association between mast cells and sensory nerves in pruritic skin diseases as well as review the essential supporting findings on pruritic models in mice and rats.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Ilkka Harvima
- Department of Dermatology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
22
|
Varricchi G, Loffredo S, Marone G, Modestino L, Fallahi P, Ferrari SM, de Paulis A, Antonelli A, Galdiero MR. The Immune Landscape of Thyroid Cancer in the Context of Immune Checkpoint Inhibition. Int J Mol Sci 2019; 20:E3934. [PMID: 31412566 PMCID: PMC6720642 DOI: 10.3390/ijms20163934] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Immune cells play critical roles in tumor prevention as well as initiation and progression. However, immune-resistant cancer cells can evade the immune system and proceed to form tumors. The normal microenvironment (immune cells, fibroblasts, blood and lymphatic vessels, and interstitial extracellular matrix (ECM)) maintains tissue homeostasis and prevents tumor initiation. Inflammatory mediators, reactive oxygen species, cytokines, and chemokines from an altered microenvironment promote tumor growth. During the last decade, thyroid cancer, the most frequent cancer of the endocrine system, has emerged as the fifth most incident cancer in the United States (USA), and its incidence is steadily growing. Inflammation has long been associated with thyroid cancer, raising critical questions about the role of immune cells in its pathogenesis. A plethora of immune cells and their mediators are present in the thyroid cancer ecosystem. Monoclonal antibodies (mAbs) targeting immune checkpoints, such as mAbs anti-cytotoxic T lymphocyte antigen 4 (anti-CTLA-4) and anti-programmed cell death protein-1/programmed cell death ligand-1 (anti-PD-1/PD-L1), have revolutionized the treatment of many malignancies, but they induce thyroid dysfunction in up to 10% of patients, presumably by enhancing autoimmunity. Combination strategies involving immune checkpoint inhibitors (ICIs) with tyrosine kinase (TK) or serine/threonine protein kinase B-raf (BRAF) inhibitors are showing considerable promise in the treatment of advanced thyroid cancer. This review illustrates how different immune cells contribute to thyroid cancer development and the rationale for the antitumor effects of ICIs in combination with BRAF/TK inhibitors.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
- WAO Center of Excellence, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
- WAO Center of Excellence, 80131 Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, 56126 Pisa, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, 56126 Pisa, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy
- WAO Center of Excellence, 80131 Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, School of Medicine, 56126 Pisa, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DISMET), University of Naples Federico II, 80131 Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| |
Collapse
|
23
|
Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, Ranieri G, Memeo R. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int J Mol Sci 2019; 20:E2106. [PMID: 31035644 PMCID: PMC6540185 DOI: 10.3390/ijms20092106] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| | - Valentina Ferraro
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, Aldo Moro University, 74124 Bari, Italy.
| | - Michele Ammendola
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| | | | - Maria Luposella
- Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy.
| | - Lorenza Maltese
- Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy.
| | - Giuseppe Currò
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
- Department of Human Pathology of Adult and Evolutive Age G. Barresi, University of Messina, 98122 Messina, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 74124 Bari, Italy.
| | - Riccardo Memeo
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| |
Collapse
|
24
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
25
|
Blomberg OS, Spagnuolo L, de Visser KE. Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Dis Model Mech 2018; 11:11/10/dmm036236. [PMID: 30355585 PMCID: PMC6215427 DOI: 10.1242/dmm.036236] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metastatic disease is the leading cause of death in cancer patients. Metastasis formation involves a cascade of events for which the underlying mechanisms are still poorly understood. During the metastatic cascade, cancer cells tightly interact with the immune system and they influence each other, both in the tumor microenvironment and systemically. The crosstalk between cancer and immune cells adds another layer of complexity to our understanding of metastasis formation, but at the same time opens new therapeutic opportunities for cancer patients. The intensifying development of immunotherapeutic strategies calls for a better understanding of immune regulation of metastasis in order to maximize the therapeutic benefit for patients with metastatic disease. In this Review and accompanying poster, we describe the main mechanisms of immune regulation of metastasis that have been reported to date, and present promising immunotherapeutic options that are currently available, or may become so in the near future, to tackle metastasis.
Collapse
Affiliation(s)
- Olga S Blomberg
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lorenzo Spagnuolo
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
26
|
Yuan Y, Lin H, Lin Z, Wang Y. A Review Of Hydrogen-Based Membrane Biofilm Reactor To Remove Oxidized Pollutants From Water. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/392/4/042031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Öhrvik H, Grujic M, Waern I, Gustafson AM, Ernst N, Roers A, Hartmann K, Pejler G. Mast cells promote melanoma colonization of lungs. Oncotarget 2018; 7:68990-69001. [PMID: 27602499 PMCID: PMC5356606 DOI: 10.18632/oncotarget.11837] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre− R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre− R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre− R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.
Collapse
Affiliation(s)
- Helena Öhrvik
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ann-Marie Gustafson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Nancy Ernst
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Axel Roers
- Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Karin Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
28
|
The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung. Oncotarget 2018; 8:25066-25079. [PMID: 28212574 PMCID: PMC5421910 DOI: 10.18632/oncotarget.15339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
Mast cell secretory granules are densely packed with various bioactive mediators including proteases of chymase, tryptase and CPA3 type. Previous studies have indicated that mast cells can affect the outcome of melanoma but the contribution of the mast cell granule proteases to such effects has not been clear. Here we addressed this issue by assessing mice lacking either the chymase Mcpt4, the tryptase Mcpt6 or carboxypeptidase A3 (Cpa3), as well as mice simultaneously lacking all three proteases, in a model of melanoma dissemination from blood to the lung. Although mice with individual deficiency in the respective proteases did not differ significantly from wildtype mice in the extent of melanoma colonization, mice with multiple protease deficiency (Mcpt4/Mcpt6/Cpa3-deficient) exhibited a higher extent of melanoma colonization in lungs as compared to wildtype animals. This was supported by higher expression of melanoma-specific genes in lungs of Mcpt4/Mcpt6/CPA3-deficient vs. wildtype mice. Cytokine profiling showed that the levels of CXCL16, a chemokine with effects on T cell populations and NKT cells, were significantly lower in lungs of Mcpt4/Mcpt6/Cpa3-deficient animals vs. controls, suggesting that multiple mast cell protease deficiency might affect T cell or NKT cell populations. In line with this, we found that the Mcpt4/Mcpt6/Cpa3-deficiency was associated with a reduction in cells expressing CD1d, a MHC class 1-like molecule that is crucial for presenting antigen to invariant NKT (iNKT) cells. Together, these findings indicate a protective role of mast cell-specific proteases in melanoma dissemination, and suggest that this effect involves a CXCL16/CD1d/NKT cell axis.
Collapse
|
29
|
Paolino G, Corsetti P, Moliterni E, Corsetti S, Didona D, Albanesi M, Mattozzi C, Lido P, Calvieri S. Mast cells and cancer. GIORN ITAL DERMAT V 2017; 154:650-668. [PMID: 29192477 DOI: 10.23736/s0392-0488.17.05818-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) are a potent proangiogenic factor in tumors, they product several pro-angiogenic factors such as fibroblast growth factor 2 (FGF-2), vascular epithelial growth factor (VEGF), tryptase and chymase. Tryptase is a serine protease classified as α-tryptase and β-tryptase, both produced by MCs. Tryptase degrades the tissues, playing an important role in angiogenesis and in the development of metastases. Serum tryptase increases with age, with increased damage to cells and risk of developing a malignancy and it could be considered the expression of a fundamental role of MCs in tumor growth or, on the contrary, in the antitumor response. Many biomarkers have been developed in clinical practice for improving diagnosis and prognosis of some neoplasms. Elevated tryptase levels are found in subgroups of patients with haematologic and solid cancers. In the current review, we want to update the perspectives of tryptase as a potential biomarker in daily practice in different neoplasms.
Collapse
Affiliation(s)
| | | | | | - Serena Corsetti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, San Vito al Tagliamento, Pordenone, Italy -
| | - Dario Didona
- First Division of Dermatology, Istituto Dermopatico dell'Immacolata IRCCS, Rome, Italy
| | - Marcello Albanesi
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Bari, Italy
| | | | - Paolo Lido
- Internal Medicine Residency Program, Tor Vergata University, Rome, Italy
| | | |
Collapse
|
30
|
Molderings GJ, Zienkiewicz T, Homann J, Menzen M, Afrin LB. Risk of solid cancer in patients with mast cell activation syndrome: Results from Germany and USA. F1000Res 2017; 6:1889. [PMID: 29225779 PMCID: PMC5710302 DOI: 10.12688/f1000research.12730.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2017] [Indexed: 01/20/2023] Open
Abstract
Background: It has been shown repeatedly that mast cells can promote or prevent cancer development and growth. If development and/or progression of a solid cancer is substantially influenced by mast cell activity, the frequencies of occurrence of solid cancers in patients with primary mast cells disorders would be expected to differ from the corresponding prevalence data in the general population. In fact, a recent study demonstrated that patients with systemic mastocytosis (i.e., a rare neoplastic variant of the primary mast cell activation disease) have increased risk for solid cancers, in particular melanoma and non-melanoma skin cancers. The aim of the present study is to examine whether the risk of solid cancer is increased in systemic mast cell activation syndrome (MCAS), the common systemic variant of mast cell activation disease. Methods: In the present descriptive study, we have analysed a large (n=828) patient group with MCAS, consisting of cohorts from Germany and the USA, for occurrence of solid forms of cancer and compared the frequencies of the different cancers with corresponding prevalence data for German and U.S. general populations. Results: Sixty-eight of the 828 MCAS patients (46 female, 22 male) had developed a solid tumor before the diagnosis of MCAS was made. Comparison of the frequencies of the malignancies in the MCAS patients with their prevalence in the general population revealed a significantly increased prevalence for melanoma and cancers of the breast, cervix uteri, ovary, lung, and thyroid in MCAS patients. Conclusions: Our data support the view that mast cells may promote development of certain malignant tumors. These findings indicate a need for increased surveillance of certain types of cancer in MCAS patients irrespective of its individual clinical presentation.
Collapse
Affiliation(s)
| | | | - Jürgen Homann
- Division of Internal Medicine, Department of Gastroenterology and Diabetology, Gemeinschaftskrankenhaus Bonn, Bonn, D-53113, Germany
| | - Markus Menzen
- Division of Internal Medicine, Department of Gastroenterology and Diabetology, Gemeinschaftskrankenhaus Bonn, Bonn, D-53113, Germany
| | | |
Collapse
|
31
|
Siiskonen H, Smorodchenko A, Krause K, Maurer M. Ultraviolet radiation and skin mast cells: Effects, mechanisms and relevance for skin diseases. Exp Dermatol 2017; 27:3-8. [PMID: 28677275 DOI: 10.1111/exd.13402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are well known as versatile effector cells in allergic reactions and several other immune responses. Skin MCs and cutaneous MC responses are subject to the effects of environmental factors including ultraviolet radiation (UVR). Numerous studies have assessed the effects of UVR on MCs, in vitro and in vivo. Interestingly, UVR seems to have variable effects on non-activated and activated mast cells. In general, UV therapy is beneficial in the treatment of urticaria and mastocytosis, but the effects are variable depending on treatment regimen and type of UVR. Here, we review and summarise key reports from the older and current literature on the crosstalk of UVR and skin MCs. Specifically, we present the literature and discuss published reports on the effects of UVR on skin MCs in rodents and humans. In addition, we review the role of MCs in UVR-driven skin diseases and the influence of UV light on MC-mediated skin diseases. This summary of our current understanding of the interplay of skin MCs and UVR may help to improve the management of patients with urticaria and other MC disorders, to identify current gaps of knowledge, and to guide further research.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin, Berlin, Germany.,Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anna Smorodchenko
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Karoline Krause
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Marcus Maurer
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
32
|
Galdiero MR, Varricchi G, Seaf M, Marone G, Levi-Schaffer F, Marone G. Bidirectional Mast Cell-Eosinophil Interactions in Inflammatory Disorders and Cancer. Front Med (Lausanne) 2017; 4:103. [PMID: 28791287 PMCID: PMC5523083 DOI: 10.3389/fmed.2017.00103] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Human mast cells (MCs) and eosinophils were first described and named by Paul Ehrlich. These cells have distinct myeloid progenitors and differ morphologically, ultrastructurally, immunologically, biochemically, and pharmacologically. However, MCs and eosinophils play a pivotal role in several allergic disorders. In addition, these cells are involved in autoimmune disorders, cardiovascular diseases, and cancer. MCs are distributed throughout all normal human tissues, whereas eosinophils are present only in gastrointestinal tract, secondary lymphoid tissues, and adipose tissue, thymus, mammary gland, and uterus. However, in allergic disorders, MCs and eosinophils can form the "allergic effector unit." Moreover, in several tumors, MCs and eosinophils can be found in close proximity. Therefore, it is likely that MCs have the capacity to modulate eosinophil functions and vice versa. For example, interleukin 5, stem cell factor, histamine, platelet-activating factor (PAF), prostaglandin D2 (PGD2), cysteinyl leukotrienes, and vascular endothelial growth factors (VEGFs), produced by activated MCs, can modulate eosinophil functions through the engagement of specific receptors. In contrast, eosinophil cationic proteins such as eosinophil cationic protein and major basic protein (MBP), nerve growth factor, and VEGFs released by activated eosinophils can modulate MC functions. These bidirectional interactions between MCs and eosinophils might be relevant not only in allergic diseases but also in several inflammatory and neoplastic disorders.
Collapse
Affiliation(s)
- Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Mansour Seaf
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
33
|
Rajabi P, Bagheri A, Hani M. Intratumoral and Peritumoral Mast Cells in Malignant Melanoma: An Immunohistochemical Study. Adv Biomed Res 2017; 6:39. [PMID: 28503494 PMCID: PMC5414406 DOI: 10.4103/2277-9175.204592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The aim of the current study was to determine mast cell infiltration in malignant melanoma by immunohistochemistry method and its relationship with some of the cancer prognostic factors, including age, sex, and depth of the tumor. MATERIALS AND METHODS In this retrospective analytic cross-sectional study, paraffin-embedded tissue blocks of patients with cutaneous malignant melanoma who had undergone excisional biopsy were studied. Mast cells count in studied cases in different stages of the tumor depth was evaluated by mast cell tryptase immunohistochemistry method. Mast cells infiltration was evaluated both inside the tumor and peritumoral area. Tumor infiltrating lymphocytes (TILs) was also determined. Distribution of intratumoral and peritumoral mast cells and TILs was compared in different stages tof tumor depth. RESULTS In this study, 51 cases with melanoma were studied. Mean ± standard deviation (SD) of intratumoral mast cells in stages 1, 2, and 3 was 9.4 ± 4.2, 10.8 ± 5.1, and 2.1 ± 2.3, respectively (P = 0.000). Mean ± SD of peritumoral mast cells in stages 1, 2 and 3 was 13.4 ± 2.4, 16.6 ± 2.4 and 8.2 ± 4.6, respectively (P = 0.000). There was a significant direct relationship between depth of the tumor and TIL (P = 0.000) and distribution of intratumoral (P = 0.000) and peritumoral mast cells (P = 0.000). CONCLUSION Lower distribution of intratumoral and peritumoral mast cells and TILs in higher stages of tumor depth in malignant melanoma suggests a possible inhibitory effect of infiltrating mast cells and lymphocytes on the progression of this tumor.
Collapse
Affiliation(s)
- Parvin Rajabi
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Bagheri
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohssen Hani
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol 2017; 8:424. [PMID: 28446910 PMCID: PMC5388770 DOI: 10.3389/fimmu.2017.00424] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Guidolin D, Ruggieri S, Annese T, Tortorella C, Marzullo A, Ribatti D. Spatial distribution of mast cells around vessels and glands in human gastric carcinoma. Clin Exp Med 2017; 17:531-539. [PMID: 28105541 DOI: 10.1007/s10238-017-0452-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022]
Abstract
The spatial distribution of mast cells inside the tumor stroma has been little investigated. In this study, we have evaluated tumor mast cells (MCs) distribution in gastric cancer through the analysis of the morphological features of the spatial patterns generated by these cells, including size, shape, and architecture of the cell pattern. The pattern of distribution of tryptase- and chymase-positive MCs around the blood vessels and gastric glands in human gastric adenocarcinoma samples was investigated by immunohistochemical techniques and by introducing a quantitative approach to characterize the spatial distribution of MCs. In human gastric cancer, both chymase-positive MC and vessels exhibited significant deviations from randomness for what it concerns their spatial relationship with gastric parenchyma. As indicated by cell-to-gland distances shorter than expected by chance, in grade II samples a preferential localization of chymase-positive MC near the gastric glands was observed. Interestingly, the same type of spatial association was exhibited by vessels in grade IV samples, where vessel-to-gland distances shorter than expected by chance were observed. These two findings allow to speculate about a sequence of events in which a subpopulation of MC is first recruited around gastric parenchyma to drive the subsequent development of a vascular support to the tissue.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Molecular Medicine, University of Padova Medical School, University of Padova, Padova, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Cinzia Tortorella
- Department of Molecular Medicine, University of Padova Medical School, University of Padova, Padova, Italy
| | - Andrea Marzullo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124, Bari, Italy. .,National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
36
|
Varricchi G, Galdiero MR, Marone G, Granata F, Borriello F, Marone G. Controversial role of mast cells in skin cancers. Exp Dermatol 2016; 26:11-17. [PMID: 27305467 DOI: 10.1111/exd.13107] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria R Galdiero
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
37
|
Ribatti D. Mast cells as therapeutic target in cancer. Eur J Pharmacol 2016; 778:152-7. [DOI: 10.1016/j.ejphar.2015.02.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 02/07/2023]
|
38
|
Guidolin D, Marinaccio C, Tortorella C, Annese T, Ruggieri S, Finato N, Crivellato E, Ribatti D. Non-random spatial relationships between mast cells and microvessels in human endometrial carcinoma. Clin Exp Med 2016; 17:71-77. [PMID: 26886279 DOI: 10.1007/s10238-016-0407-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/28/2016] [Indexed: 11/28/2022]
Abstract
Mast cells (MCs) accumulate in the stroma surrounding tumors, where they secrete angiogenic cytokines and proteases, and an increased number of MCs have been demonstrated in angiogenesis associated with solid and hematological tumors. The aim of this study is to contribute to the knowledge of distribution of MCs in tumors, investigating the pattern of distribution of tryptase-positive MCs around the blood vessels in human endometrial carcinoma samples by introducing a quantitative approach to characterize their spatial distribution. The results have shown that in human endometrial cancer bioptic specimens the spatial distribution of MCs shows significant deviation from randomness as compared with control group in which, instead, the spatial distribution of MCs is consistent with a random distribution. These findings confirm that MCs enhance tumor angiogenesis and their preferential localization along blood vessels and sites of new vessel formation sustaining the suggestion for an association between MCs and angiogenesis. However, this spatial association between vessels and MCs might simply reflect migrating MCs from the blood stream at vessel growing sites.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Molecular Medicine, University of Padova Medical School, Padua, Italy
| | - Christian Marinaccio
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Cinzia Tortorella
- Department of Molecular Medicine, University of Padova Medical School, Padua, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Nicoletta Finato
- Department of Biological and Medical Sciences, University of Udine Medical School, Udine, Italy
| | - Enrico Crivellato
- Department of Experimental and Clinical Medical Sciences, University of Udine Medical School, Udine, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
- National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
39
|
de Aguiar RB, Parise CB, Souza CRT, Braggion C, Quintilio W, Moro AM, Navarro Marques FL, Buchpiguel CA, Chammas R, de Moraes JZ. Blocking FGF2 with a new specific monoclonal antibody impairs angiogenesis and experimental metastatic melanoma, suggesting a potential role in adjuvant settings. Cancer Lett 2015; 371:151-60. [PMID: 26655277 DOI: 10.1016/j.canlet.2015.11.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023]
Abstract
Compelling evidence suggests that fibroblast growth factor 2 (FGF2), overexpressed in melanomas, plays an important role in tumor growth, angiogenesis and metastasis. In this study, we evaluated the therapeutic use of a new anti-FGF2 monoclonal antibody (mAb), 3F12E7, using for that the B16-F10 melanoma model. The FGF2 neutralizing effect of this antibody was certified by in vitro assays, which allowed the further track of its possible in vivo application. 3F12E7 mAb could be retained in B16-F10 tumors, as shown by antibody low-pH elution and nuclear medicine studies, and also led to reduction in number and size of metastatic foci in lungs, when treatment starts one day after intravenous injection of B16-F10 cells. Such data were accompanied by decreased CD34(+) tumor vascular density and impaired subcutaneous tumor outgrowth. Treatments starting one week after melanoma cell intravenous injection did not reduce tumor burden, remaining the therapeutic effectiveness restricted to early-adopted regimens. Altogether, the presented anti-FGF2 3F12E7 mAb stands as a promising agent to treat metastatic melanoma tumors in adjuvant settings.
Collapse
Affiliation(s)
- Rodrigo Barbosa de Aguiar
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr Arnaldo 251, 01246-000 São Paulo, SP, Brazil; Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - Carolina Bellini Parise
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - Carolina Rosal Teixeira Souza
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr Arnaldo 251, 01246-000 São Paulo, SP, Brazil
| | - Camila Braggion
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil
| | - Wagner Quintilio
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, Avenida Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
| | - Ana Maria Moro
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, Avenida Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
| | - Fabio Luiz Navarro Marques
- Centro de Medicina Nuclear, Faculdade de Medicina, Universidade de São Paulo, Trav. Rua Dr. Ovídio Pires de Campos s/n, 05403-010 São Paulo, SP, Brazil
| | - Carlos Alberto Buchpiguel
- Centro de Medicina Nuclear, Faculdade de Medicina, Universidade de São Paulo, Trav. Rua Dr. Ovídio Pires de Campos s/n, 05403-010 São Paulo, SP, Brazil
| | - Roger Chammas
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr Arnaldo 251, 01246-000 São Paulo, SP, Brazil.
| | - Jane Zveiter de Moraes
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Low numbers of tryptase+ and chymase+ mast cells associated with reduced survival and advanced tumor stage in melanoma. Melanoma Res 2015; 25:479-85. [DOI: 10.1097/cmr.0000000000000192] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Hölzel M, Landsberg J, Glodde N, Bald T, Rogava M, Riesenberg S, Becker A, Jönsson G, Tüting T. A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells. Cancer Res 2015; 76:251-63. [PMID: 26511633 DOI: 10.1158/0008-5472.can-15-1090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/27/2015] [Indexed: 11/16/2022]
Abstract
Human melanomas exhibit considerable genetic, pathologic, and microenvironmental heterogeneity. Genetically engineered mice have successfully been used to model the genomic aberrations contributing to melanoma pathogenesis, but their ability to recapitulate the phenotypic variability of human disease and the complex interactions with the immune system have not been addressed. Here, we report the unexpected finding that immune cell-poor pigmented and immune cell-rich amelanotic melanomas developed simultaneously in Cdk4R24C-mutant mice upon melanocyte-specific conditional activation of oncogenic BrafV600E and a single application of the carcinogen 7,12-dimethylbenz(a)anthracene. Interestingly, amelanotic melanomas showed morphologic and molecular features of malignant peripheral nerve sheath tumors (MPNST). A bioinformatic cross-species comparison using a gene expression signature of MPNST-like mouse melanomas identified a subset of human melanomas with a similar histomorphology. Furthermore, this subset of human melanomas was found to be highly associated with a mast cell gene signature, and accordingly, mouse MPNST-like melanomas were also extensively infiltrated by mast cells and expressed mast cell chemoattractants similar to human counterparts. A transplantable mouse MPNST-like melanoma cell line recapitulated mast cell recruitment in syngeneic mice, demonstrating that this cell state can directly reconstitute the histomorphologic and microenvironmental features of primary MPNST-like melanomas. Our study emphasizes the importance of reciprocal, phenotype-dependent melanoma-immune cell interactions and highlights a critical role for mast cells in a subset of melanomas. Moreover, our BrafV600E-Cdk4R24C model represents an attractive system for the development of therapeutic approaches that can target the heterogeneous tumor microenvironment characteristic of human melanomas.
Collapse
Affiliation(s)
- Michael Hölzel
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany.
| | - Jennifer Landsberg
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Nicole Glodde
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Tobias Bald
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Meri Rogava
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Stefanie Riesenberg
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Albert Becker
- Section of Translational Epileptology, Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Göran Jönsson
- Department of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, Bonn, Germany.
| |
Collapse
|
42
|
Benito-Martin A, Di Giannatale A, Ceder S, Peinado H. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Front Immunol 2015; 6:66. [PMID: 25759690 PMCID: PMC4338782 DOI: 10.3389/fimmu.2015.00066] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
Tumors must evade the immune system to survive and metastasize, although the mechanisms that lead to tumor immunoediting and their evasion of immune surveillance are far from clear. The first line of defense against metastatic invasion is the innate immune system that provides immediate defense through humoral immunity and cell-mediated components, mast cells, neutrophils, macrophages, and other myeloid-derived cells that protect the organism against foreign invaders. Therefore, tumors must employ different strategies to evade such immune responses or to modulate their environment, and they must do so prior metastasizing. Exosomes and other secreted vesicles can be used for cell–cell communication during tumor progression by promoting the horizontal transfer of information. In this review, we will analyze the role of such extracellular vesicles during tumor progression, summarizing the role of secreted vesicles in the crosstalk between the tumor and the innate immune system.
Collapse
Affiliation(s)
- Alberto Benito-Martin
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA
| | - Angela Di Giannatale
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA
| | - Sophia Ceder
- Department of Oncology and Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Héctor Peinado
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Weill Cornell Medical College , New York, NY , USA ; Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| |
Collapse
|
43
|
Marichal T, Tsai M, Galli SJ. Mast cells: potential positive and negative roles in tumor biology. Cancer Immunol Res 2015; 1:269-79. [PMID: 24777963 DOI: 10.1158/2326-6066.cir-13-0119] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors.
Collapse
Affiliation(s)
- Thomas Marichal
- Authors' Affiliations: Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
44
|
Ribatti D, Ranieri G. Tryptase, a novel angiogenic factor stored in mast cell granules. Exp Cell Res 2014; 332:157-62. [PMID: 25478999 DOI: 10.1016/j.yexcr.2014.11.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
Human mast cells (MCs) are a rich reservoir of neutral proteases, packed in large amounts in their granules and comprising a high fraction of all cellular proteins. Among these proteases, tryptase is involved in angiogenesis after its release from activated MC granules, as it has been demonstrated in different in vitro and in vivo assays. Moreover, tryptase-positive MCs increase in number and vascularization increases in a linear fashion in different solid and hematological tumors. This complex interplay between MCs and tumor angiogenesis have led to consider the therapeutic use of angiogenesis inhibitors, which specifically target the angiogenic activity of tryptase, such as gabexate mesilate and nafamostat mesilate, two inhibitors of trypsin-like serine proteases.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy; National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| | | |
Collapse
|
45
|
Ammendola M, Leporini C, Marech I, Gadaleta CD, Scognamillo G, Sacco R, Sammarco G, De Sarro G, Russo E, Ranieri G. Targeting mast cells tryptase in tumor microenvironment: a potential antiangiogenetic strategy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:154702. [PMID: 25295247 PMCID: PMC4177740 DOI: 10.1155/2014/154702] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022]
Abstract
Angiogenesis is a complex process finely regulated by the balance between angiogenesis stimulators and inhibitors. As a result of proangiogenic factors overexpression, it plays a crucial role in cancer development. Although initially mast cells (MCs) role has been defined in hypersensitivity reactions and in immunity, it has been discovered that MCs have a crucial interplay on the regulatory function between inflammatory and tumor cells through the release of classical proangiogenic factors (e.g., vascular endothelial growth factor) and nonclassical proangiogenic mediators granule-associated (mainly tryptase). In fact, in several animal and human malignancies, MCs density is highly correlated with tumor angiogenesis. In particular, tryptase, an agonist of the proteinase-activated receptor-2 (PAR-2), represents one of the most powerful angiogenic mediators released by human MCs after c-Kit receptor activation. This protease, acting on PAR-2 by its proteolytic activity, has angiogenic activity stimulating both human vascular endothelial and tumor cell proliferation in paracrine manner, helping tumor cell invasion and metastasis. Based on literature data it is shown that tryptase may represent a promising target in cancer treatment due to its proangiogenic activity. Here we focused on molecular mechanisms of three tryptase inhibitors (gabexate mesylate, nafamostat mesylate, and tranilast) in order to consider their prospective role in cancer therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgery Sciences, Clinical Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Christian Leporini
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Ilaria Marech
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Giovanni Scognamillo
- Radiotherapy Unit, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Rosario Sacco
- Department of Medical and Surgery Sciences, Clinical Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Giuseppe Sammarco
- Department of Medical and Surgery Sciences, Clinical Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Emilio Russo
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
46
|
Pastushenko I, Vermeulen PB, Van den Eynden GG, Rutten A, Carapeto FJ, Dirix LY, Van Laere S. Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. Br J Dermatol 2014; 171:220-33. [PMID: 24641095 DOI: 10.1111/bjd.12973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/02/2023]
Abstract
Malignant melanoma represents < 10% of all skin cancers but is responsible for the majority of skin-cancer-related deaths. Metastatic melanoma has historically been considered as one of the most therapeutically challenging malignancies. Fortunately, for the first time after decades of basic research and clinical investigation, new drugs have produced major clinical responses. Angiogenesis has been considered an important target for cancer treatment. Initial efforts have focused primarily on targeting endothelial and tumour-related vascular endothelial growth factor signalling. Here, we review different mechanisms of tumour vascularization described in melanoma and discuss the potential clinical implications.
Collapse
Affiliation(s)
- I Pastushenko
- Department of Dermatology, Hospital Clínico Universitario 'Lozano Blesa', Zaragoza, 50009, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Wu X, Huang H, Wang C, Lin S, Huang Y, Wang Y, Liang G, Yan Q, Xiao J, Wu J, Yang Y, Li X. Identification of a novel peptide that blocks basic fibroblast growth factor-mediated cell proliferation. Oncotarget 2014; 4:1819-28. [PMID: 24142482 PMCID: PMC3858566 DOI: 10.18632/oncotarget.1312] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) has been implicated in tumor growth via interactions with its receptors (FGFRs) on the cell surface and therefore, bFGF/FGFRs are considered essential targets for cancer therapy. Herein, a consensus heptapeptide (LSPPRYP) was identified for the first time from a phage display heptapeptide library after three sequential rounds of biopanning against FGFR-expressing cells with competitive displacement of phage by bFGF, followed by subtraction of non-specific binding by FGFR-deficient cells. Phage bearing LSPPRYP showed high levels of binding to Balb/c 3T3 cells expressing high-affinity bFGF-binding FGFR (bFGFR), but not to the cells that do not express bFGFR (Cos-7), or express a very low affinity bFGFR (HaCat). The selected-phage-derived peptide synthesized by solid phase method using a rapid and practical Fmoc strategy was found to specifically compete with bFGF for binding to its receptors, inhibit bFGF-stimulated cell proliferation by inducing cell cycle arrest, and block bFGF-induced activation of Erk1 and Erk2 kinase in B16-F10 melanoma cells. Importantly, treatment of melanoma-bearing mice with the synthetic peptide significantly suppressed tumor growth. The results demonstrate a strong anticancer activity of the isolated bFGFR-binding peptide (and its future derivatives), which may have great potential for cancer therapy.
Collapse
Affiliation(s)
- Xiaoping Wu
- School of Pharmaceutical Science, Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stockmann C, Schadendorf D, Klose R, Helfrich I. The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol 2014; 4:69. [PMID: 24782982 PMCID: PMC3986554 DOI: 10.3389/fonc.2014.00069] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, as well as inflammation with massive infiltration of leukocytes are hallmarks of various tumor entities. Various epidemiological, clinical, and experimental studies have not only demonstrated a link between chronic inflammation and cancer onset but also shown that immune cells from the bone marrow such as tumor-infiltrating macrophages significantly influence tumor progression. Tumor angiogenesis is critical for tumor development as tumors have to establish a blood supply in order to progress. Although tumor cells were first believed to fuel tumor angiogenesis, numerous studies have shown that the tumor microenvironment and infiltrating immune cell subsets are important for regulating the process of tumor angiogenesis. These infiltrates involve the adaptive immune system including several types of lymphocytes as well as cells of the innate immunity such as macrophages, neutrophils, eosinophils, mast cells, dendritic cells, and natural killer cells. Besides their known immune function, these cells are now recognized for their crucial role in regulating the formation and the remodeling of blood vessels in the tumor. In this review, we will discuss for each cell type the mechanisms that regulate the vascular phenotype and its impact on tumor growth and metastasis.
Collapse
Affiliation(s)
- Christian Stockmann
- UMR 970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) , Paris , France
| | - Dirk Schadendorf
- Skin Cancer Unit, Dermatology Department, Medical Faculty, University Duisburg-Essen , Essen , Germany
| | - Ralph Klose
- UMR 970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) , Paris , France
| | - Iris Helfrich
- Skin Cancer Unit, Dermatology Department, Medical Faculty, University Duisburg-Essen , Essen , Germany
| |
Collapse
|
49
|
Oldford SA, Marshall JS. Mast cells as targets for immunotherapy of solid tumors. Mol Immunol 2014; 63:113-24. [PMID: 24698842 DOI: 10.1016/j.molimm.2014.02.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/09/2023]
Abstract
Mast cells have historically been studied mainly in the context of allergic disease. In recent years, we have come to understand the critical importance of mast cells in tissue remodeling events and their role as sentinel cells in the induction and development of effective immune responses to infection. Studies of the role of mast cells in tumor immunity are more limited. The pro-tumorigenic role of mast cells has been widely reported. However, mast cell infiltration predicts improved prognosis in some cancers, suggesting that their prognostic value may be dependent on other variables. Such factors may include the nature of local mast cell subsets and the various activation stimuli present within the tumor microenvironment. Experimental models have highlighted the importance of mast cells in orchestrating the anti-tumor events that follow immunotherapies that target innate immunity. Mast cells are long-lived tissue resident cells that are abundant around many solid tumors and are radiation resistant making them unique candidates for combined treatment modalities. This review will examine some of the key roles of mast cells in tumor immunity, with a focus on potential immunotherapeutic interventions that harness the sentinel role of mast cells.
Collapse
Affiliation(s)
- Sharon A Oldford
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
50
|
Woldemeskel M, Mann E, Whittington L. Tumor microvessel density-associated mast cells in canine nodal lymphoma. SAGE Open Med 2014; 2:2050312114559575. [PMID: 26770752 PMCID: PMC4607238 DOI: 10.1177/2050312114559575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. METHODS Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. RESULTS The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. CONCLUSIONS Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended.
Collapse
Affiliation(s)
- Moges Woldemeskel
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, Department of Pathology, The University of Georgia, Tifton, GA, USA
| | - Elizabeth Mann
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, Department of Pathology, The University of Georgia, Tifton, GA, USA
| | - Lisa Whittington
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, Department of Pathology, The University of Georgia, Tifton, GA, USA
| |
Collapse
|