1
|
Gao L, Li G, Qiu C, Ye Y, Li X, Liao P, Ming W, Liu Z, Luo X, Liao G. Design, Synthesis, and Bioactivity Evaluation of a TF-Based Cancer Vaccine Candidate Using Lipid A Mimetics As a Built-In Adjuvant. J Med Chem 2024; 67:9976-9990. [PMID: 38886162 DOI: 10.1021/acs.jmedchem.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study describes the design and synthesis of five TF-based cancer vaccine candidates using a lipid A mimetic as the carrier and a built-in adjuvant. All synthesized conjugates elicited robust and consistent TF-specific immune responses in mice without external adjuvants. Immunological studies subsequently conducted in wild-type and TLR4 knockout C57BL/6 mice demonstrated that the activation of TLR4 was the main reason that the synthesized lipid A mimetics increased the TF-specific immune responses. All antisera induced by these conjugates can specifically recognize, bind to, and induce the lysis of TF-positive cancer cells. Moreover, representative conjugates 2 and 3 could effectively reduce the growth of tumors and prolong the survival time of mice in vivo, and the efficacies were better than glycoprotein TF-CRM197 with alum adjuvant. Lipid A mimetics could therefore be a promising platform for the development of new carbohydrate-based vaccine carriers with self-adjuvanting properties for the treatment of cancer.
Collapse
Affiliation(s)
- Lingqiang Gao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guiqi Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Cuiping Qiu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yifan Ye
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaohui Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Pan Liao
- Guangzhou Yuemei Pharmaceutical Technology Co., Ltd, Guangzhou 510535, China
| | - Wenbo Ming
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
2
|
Khalaf JK, Bess LS, Walsh LM, Ward JM, Johnson CL, Livesay MT, Jackson KJ, Evans JT, Ryter KT, Bazin-Lee HG. Diamino Allose Phosphates: Novel, Potent, and Highly Stable Toll-like Receptor 4 Agonists. J Med Chem 2023; 66:13900-13917. [PMID: 37847244 DOI: 10.1021/acs.jmedchem.3c00724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Most known synthetic toll-like receptor 4 (TLR4) agonists are carbohydrate-based lipid-A mimetics containing several fatty acyl chains, including a labile 3-O-acyl chain linked to the C-3 position of the non-reducing sugar known to undergo cleavage impacting stability and resulting in loss of activity. To overcome this inherent instability, we rationally designed a new class of chemically more stable synthetic TLR4 ligands that elicit robust innate and adaptive immune responses. This new class utilized a diamino allose phosphate (DAP) scaffold containing a nonhydrolyzable 3-amide bond instead of the classical 3-ester. Accordingly, the DAPs have significantly improved thermostability in aqueous formulations and potency relative to other known natural and synthetic TLR4 ligands. Furthermore, the DAP analogues function as potent vaccine adjuvants to enhance influenza-specific antibodies in mice and provide protection against lethal influenza virus challenges. This novel set of TLR4 ligands show promise as next-generation vaccine adjuvants and stand-alone immunomodulators.
Collapse
Affiliation(s)
- Juhienah K Khalaf
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| | - Laura S Bess
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| | - Lois M Walsh
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| | - Janine M Ward
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| | - Craig L Johnson
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| | - Mark T Livesay
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| | - Konner J Jackson
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| | - Jay T Evans
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| | - Kendal T Ryter
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| | - Hélène G Bazin-Lee
- Inimmune Corporation, 1121 E Broadway, Suite 121, Missoula, Montana 59802, United States
| |
Collapse
|
3
|
Fully synthetic Tn-based three-component cancer vaccine using covalently linked TLR4 ligand MPLA and iNKT cell agonist KRN-7000 as built-in adjuvant effectively protects mice from tumor development. Acta Pharm Sin B 2022; 12:4432-4445. [PMID: 36561989 PMCID: PMC9764137 DOI: 10.1016/j.apsb.2022.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
Abstract
We present a new strategy for self-adjuvanting vaccine development that has different types of covalently-linked immunostimulants as the carrier molecule. Using Tn antigen as the model, a three-component vaccine (MPLA-Tn-KRN7000) containing the TLR4 ligand MPLA and the iNKT cell agonist KRN7000 was designed and synthesized. This expands fully synthetic self-adjuvanting vaccine studies that use a single carrier to one with two different types of carriers. The corresponding two-component conjugate vaccines Tn-MPLA, Tn-KRN7000 and Tn-CRM197 were also synthesized, as controls. The immunological evaluation found that MPLA-Tn-KRN7000 elicits robust Tn-specific and T cell-dependent immunity. The antibodies specifically recognized, bound to and exhibited complement-dependent cytotoxicity against Tn-positive cancer cells. In addition, MPLA-Tn-KRN7000 increased the survival rate and survival time of tumor-challenged mice, and surviving mice reject further tumor attacks without any additional treatment. Compared to the glycoprotein vaccine Tn-CRM197, the two-component conjugate vaccines, Tn-MPLA and Tn-KRN7000, and the physical mixture of Tn-MPLA and Tn-KRN7000, MPLA-Tn-KRN7000 showed the most effect at combating tumor cells both in vitro and in vivo. The comparison of immunological studies in wild-type and TLR4 knockout mice, along with the test of binding affinity to CD1d protein suggests that the covalently linked MPLA-KRN7000 immunostimulant induces a synergistic activation of TLR4 and iNKT cell that improves the immunogenicity of Tn. This work demonstrates that MPLA-Tn-KRN7000 has the potential to be a vaccine candidate and provides a new direction for fully synthetic vaccine design.
Collapse
|
4
|
QIN CJ, DING MR, TIAN GZ, ZOU XP, FU JJ, HU J, YIN J. Chemical approaches towards installation of rare functional groups in bacterial surface glycans. Chin J Nat Med 2022; 20:401-420. [DOI: 10.1016/s1875-5364(22)60177-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 11/24/2022]
|
5
|
Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther 2022; 230:107970. [PMID: 34454000 DOI: 10.1016/j.pharmthera.2021.107970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Lipopolysaccharides (LPS) are the main components of the external leaflet of the Gram-negative outer membrane and consist of three different moieties: lipid A, core oligosaccharide, and O-polysaccharide. The lipid A is a glucosamine disaccharide with different levels of acylation and phosphorylation, beside carrying, in certain cases, additional substituents on the sugar backbone. It is also the main immunostimulatory part of the LPS, as its recognition by the host immune system represents a fundamental event for detection of perilous microorganisms. Moreover, an uncontrolled immune response caused by a large amount of circulating LPS can lead to dramatic outcomes for human health, such as septic shock. The immunostimulant properties of an LPS incredibly vary depending on lipid A chemical structure, and for this reason, natural and synthetic variants of the lipid A are under study to develop new drugs that mimic or antagonise its natural effects. Here, we review past and recent findings on the lipid A as an antibiotic target and immune-therapeutic molecule, with a special attention on the crucial role of the chemical structure and its exploitation for conceiving novel strategies for treatment of several immune-related pathologies.
Collapse
Affiliation(s)
- Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Daniele Zucchetta
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
6
|
Gao L, Lian Q, Ma L, Su S, Yang M, Fang Y, Liu Z, Luo X, Liao G. Full synthesis and bioactivity evaluation of Tn-RC-529 derivative conjugates as self-adjuvanting cancer vaccines. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Gao J, Guo Z. Progress in the synthesis and biological evaluation of lipid A and its derivatives. Med Res Rev 2018; 38:556-601. [PMID: 28621828 PMCID: PMC5732894 DOI: 10.1002/med.21447] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/09/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Lipid A is one of the core structures of bacterial lipopolysaccharides (LPSs), and it is mainly responsible for the strong immunostimulatory activities of LPS through interactions with the Toll-like receptors and other molecules in the human immune system. To obtain structurally homogeneous and well-defined lipid As and its derivatives in quantities meaningful for various biological studies and applications, their chemical synthesis has become a focal point. This review has provided a survey of significant progresses made in the synthesis of lipid A, and its derivatives that carry diverse saturated and unsaturated lipids, have the phosphate group at its reducing end replaced with a more stable phosphate or carboxyl group, or lack the reducing end phosphate or both phosphate groups, as well as progresses in the synthesis of LPS analogs and other lipid A conjugates. These synthetic molecules have facilitated the elucidation of the structure-activity relationships of lipid A useful for the design and development of lipid A based therapeutics, such as those utilized to treat sepsis, and other medical applications, for example the use of monophosphoryl lipid A as a carrier molecule for the study of fully synthetic self-adjuvanting conjugate vaccines. These topics are also briefly covered in the current review.
Collapse
Affiliation(s)
- Jian Gao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Lewicky JD, Ulanova M, Jiang ZH. Synthesis of a TLR4 Agonist-Carbohydrate Antigen Conjugate As A Self-Adjuvanting Cancer Vaccine. ChemistrySelect 2016. [DOI: 10.1002/slct.201600230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jordan D. Lewicky
- Department of Chemistry; Lakehead University; 955 Oliver Road, Thunder Bay Ontario P7B 5E1 Canada
- Advanced Medical Research Institute of Canada; 41 Ramsey Lake Road Sudbury, Ontario P3E 5J1 Canada
| | - Marina Ulanova
- Medical Sciences Division; Northern Ontario School of Medicine; Lakehead University; 955 Oliver Road, Thunder Bay Ontario P7B 5E1 Canada
| | - Zi-Hua Jiang
- Department of Chemistry; Lakehead University; 955 Oliver Road, Thunder Bay Ontario P7B 5E1 Canada
| |
Collapse
|
9
|
Ahmed KK, Geary SM, Salem AK. Development and Evaluation of Biodegradable Particles Coloaded With Antigen and the Toll-Like Receptor Agonist, Pentaerythritol Lipid A, as a Cancer Vaccine. J Pharm Sci 2016; 105:1173-9. [PMID: 26886334 DOI: 10.1016/j.xphs.2015.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/08/2015] [Accepted: 11/20/2015] [Indexed: 12/01/2022]
Abstract
Immune adjuvants are important components of current and prospective cancer vaccines. In this study, we aimed at evaluating the use of a synthetic lipid A derivative, pentaerythritol lipid A (PET lipid A), loaded into poly(lactic-co-glycolic acid) particles, as a potential cancer vaccine adjuvant. Poly(lactic-co-glycolic acid) particles (size range: 250-600 nm) were successfully formulated to include PET lipid A and/or the model tumor antigen, chicken ovalbumin (OVA). It was shown that particulated PET lipid A had a distinct advantage at promoting secretion of the immune potentiating cytokine, IL-12p70, and upregulating key costimulatory surface proteins, CD86 and CD40, in murine dendritic cells in vitro. In a murine tumor model, involving prophylactic vaccination with various permutations of soluble versus particulated formulations of OVA with or without PET lipid A, modest benefit was observed in terms of OVA-specific cell-mediated immune responses when PET lipid A was delivered in particles. These findings translated into a corresponding trend toward increased survival of mice challenged with OVA-expressing tumor cells (E.G7). In terms of translation of safe adjuvants into the clinic, these results promote the concept of delivering toll-like receptor-4 agonists in particles because doing so improves their adjuvant properties, while decreasing the chances of adverse effects due to off-target uptake by nonphagocytic cells.
Collapse
Affiliation(s)
- Kawther K Ahmed
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242.
| |
Collapse
|
10
|
Ireton GC, Reed SG. Adjuvants containing natural and synthetic Toll-like receptor 4 ligands. Expert Rev Vaccines 2014; 12:793-807. [PMID: 23885824 DOI: 10.1586/14760584.2013.811204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last decade has seen an increased focus on the development of adjuvants for vaccines, and several novel adjuvants are now in licensed products or in late-stage clinical development. These advancements have been aided by the discovery of receptors and signaling pathways of the innate immune system and an increased understanding of how these innate responses influence the adaptive immune response. Successful vaccine development relies on knowledge of which adjuvants to use and the proper formulation of adjuvants and antigens to achieve safe, stable and immunogenic vaccines. In this review, the authors focus on the current use of natural and synthetic lipopolysaccharide analogues that retain their adjuvant properties with reduced toxicity compared with the parent compound for use in emerging vaccines. The authors review how these compounds initiate signal transduction through Toll-like receptor 4, insights from structure-function studies and how formulation parameters can influence their effectiveness as vaccine adjuvants.
Collapse
Affiliation(s)
- Gregory C Ireton
- Infectious Disease Research Institute, 1124 Columbia St., Ste 400, Seattle, WA 98104, USA
| | | |
Collapse
|
11
|
Lewicky JD, Ulanova M, Jiang ZH. Improving the immunostimulatory potency of diethanolamine-containing lipid A mimics. Bioorg Med Chem 2013; 21:2199-2209. [PMID: 23490149 DOI: 10.1016/j.bmc.2013.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 11/19/2022]
Abstract
Lipid A is the active principal of gram negative bacterial lipopolysaccharide (LPS) in the activation of Toll-like receptor 4 (TLR4). Given the important role TLR4 plays in innate immunity and the development of adaptive immune responses, ligands that can modulate TLR4-mediated signaling have great therapeutic potential. Recently, we have reported a series of monophosphorylated lipid A mimics as potential ligands of TLR4, in which a diethanolamine moiety is employed to replace the reducing end (d-glucosamine). In this paper, we describe the synthesis of two further diethanolamine-containing lipid A mimics, 3 and 4, in an effort to mimic more closely the di-phosphate nature of natural lipid A. Both mimic 3, with an additional phosphate on the diethanolamine acyclic scaffold, and mimic 4, with a terminal carboxylic acid moiety as a phosphate bioisostere, serve to increase the potency of the immunostimulatory response induced, as measured by the induction of the cytokines TNF-α, IL-6, and IL-1β in the human monocytic cell line THP-1. In addition, mechanistic studies involving the known TLR4 antagonist lipid IVa confirm TLR4 as the target of the diethanolamine-containing lipid A mimics.
Collapse
Affiliation(s)
- Jordan D Lewicky
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1
| | - Marina Ulanova
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1.
| |
Collapse
|
12
|
Enugala R, Carvalho LCR, Dias Pires MJ, Marques MMB. Stereoselective Glycosylation of Glucosamine: The Role of the
N
‐Protecting Group. Chem Asian J 2012; 7:2482-501. [DOI: 10.1002/asia.201200338] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Ramu Enugala
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - Luísa C. R. Carvalho
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - Marina J. Dias Pires
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| | - M. Manuel B. Marques
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica 2829‐516 Caparica (Portugal), Fax: (+351) 21‐294‐8550
| |
Collapse
|
13
|
Lewicky JD, Ulanova M, Jiang ZH. Synthesis and immunostimulatory activity of diethanolamine-containing lipid A mimics. RSC Adv 2012. [DOI: 10.1039/c2ra01149b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
14
|
Lewicky JD, Ulanova M, Jiang ZH. Synthesis of a dimeric monosaccharide lipid A mimic and its synergistic effect on the immunostimulatory activity of lipopolysaccharide. Carbohydr Res 2011; 346:1705-13. [DOI: 10.1016/j.carres.2011.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/29/2011] [Accepted: 05/15/2011] [Indexed: 01/22/2023]
|
15
|
Abstract
Natural derivatives and synthetic analogues of lipopolysaccharide are potent stimulators of the mammalian immune system. Retained adjuvant activity with reduced toxicity was obtained by the development of monophosphoryl lipid A (MPL((R))), which is approved for use in several vaccine products. Ongoing research and development of synthetic TLR4 agonists may offer increased purity and biological activity with reduced cost. Extensive research has elucidated the mechanism of action of TLR4 agonists and structure-function relationships. Moreover, the formulation of TLR4 agonists has been shown to significantly affect the type and magnitude of elicited immune response. TLR4 agonists comprise a promising class of adjuvants for safe and effective vaccines.
Collapse
|
16
|
Simerska P, Moyle PM, Toth I. Modern lipid-, carbohydrate-, and peptide-based delivery systems for peptide, vaccine, and gene products. Med Res Rev 2009; 31:520-47. [DOI: 10.1002/med.20191] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Zhong W, Skwarczynski M, Toth I. Lipid Core Peptide System for Gene, Drug, and Vaccine Delivery. Aust J Chem 2009. [DOI: 10.1071/ch09149] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A vast number of biologically active compounds await efficient delivery to become therapeutic agents. Lipidation has been demonstrated to be a convenient and useful approach to improve the stability and transport across biological membranes of potential drug molecules. The lipid core peptide (LCP) system has emerged as a promising lipidation tool because of its versatile features. This review discusses the progress in the development of the LCP system to improve cell permeability of nucleotides, physicochemical properties of potential drugs, and vaccine immunogenicity. Emphasis was put on the application of the LCP system to deliver antigens for the prevention of group A streptococcus infection, novel techniques of conjugation of target molecules to the LCP, and new alterations of the LCP system itself.
Collapse
|
18
|
Bazin HG, Murray TJ, Bowen WS, Mozaffarian A, Fling SP, Bess LS, Livesay MT, Arnold JS, Johnson CL, Ryter KT, Cluff CW, Evans JT, Johnson DA. The 'Ethereal' nature of TLR4 agonism and antagonism in the AGP class of lipid A mimetics. Bioorg Med Chem Lett 2008; 18:5350-4. [PMID: 18835160 DOI: 10.1016/j.bmcl.2008.09.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 12/01/2022]
Abstract
To overcome the chemical and metabolic instability of the secondary fatty acyl residues in the AGP class of lipid A mimetics, the secondary ether lipid analogs of the potent TLR4 agonist CRX-527 (2) and TLR4 antagonist CRX-526 (3) were synthesized and evaluated along with their ester counterparts for agonist/antagonist activity in both in vitro and in vivo models. Like CRX-527, the secondary ether lipid 4 showed potent agonist activity in both murine and human models. Ether lipid 5, on the other hand, showed potent TLR4 antagonist activity similar to CRX-526 in human cell assays, but did not display any antagonist activity in murine models and, in fact, was weakly agonistic. Glycolipids 2, 4, and 5 were synthesized via a new highly convergent method utilizing a common advanced intermediate strategy. A new method for preparing (R)-3-alkyloxytetradecanoic acids, a key component of ether lipids 4 and 5, is also described.
Collapse
Affiliation(s)
- Hélène G Bazin
- GlaxoSmithKline Biologicals, 553 Old Corvallis Road, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xu R, Jiang ZH. Synthesis of β-(1→4)-oligo-d-mannuronic acid neoglycolipids. Carbohydr Res 2008; 343:7-17. [DOI: 10.1016/j.carres.2007.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/05/2007] [Accepted: 10/11/2007] [Indexed: 11/24/2022]
|
20
|
Synthesis of β-1,4-di-d-mannuronic acid glycosides as potential ligands for toll-like receptors. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.02.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Jiang ZH, Budzynski WA, Qiu D, Yalamati D, Koganty RR. Monophosphoryl lipid A analogues with varying 3-O-substitution: synthesis and potent adjuvant activity. Carbohydr Res 2007; 342:784-96. [PMID: 17300769 DOI: 10.1016/j.carres.2007.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 11/28/2022]
Abstract
Structurally defined immunostimulatory adjuvants play important roles in the development of new generation vaccines. Here described are the syntheses of three monophosphoryl lipid A analogues (1-3) with different substitution at 3-O-position of the reducing sugar and their potent immunostimulatory adjuvant activity. The syntheses involve the preparation of glycosylation acceptors benzyl 3,4-di-O-benzyl-2-deoxy-2-[(R)-3-tetradecanoyloxytetradecanamido]-beta-D-glucopyranoside (16) and benzyl 3-O-allyl-4-O-benzyl-2-deoxy-2-[(R)-3-tetradecanoyloxytetradecanamido]-beta-D-glucopyranoside (17). The glycosylation reactions between the donor 4,6-di-O-benzylidene-2-deoxy-2-(2',2',2'-trichloroethoxycarbonylamino)-alpha-d-glucopyranosyl trichloroacetimidate (21) and acceptors 16 and 17 provide the desired beta-(1-->6)-linked disaccharides 22 and 23, respectively. Selective reductive ring opening of the 4,6-di-O-benzylidene group, installation of a phosphate group to the 4'-hydroxyl group, and the final global debenzylation produce the designed monophosphoryl lipid A analogues 1-3. All three synthetic analogues induce antigen specific T-cell proliferation and interferon-gamma (IFN-gamma) production in ex vivo experiments with a totally synthetic liposomal vaccine system. The immunostimulatory potency of compound 1-3 is in the same order of magnitude as that of the detoxified natural lipid A product isolated from Salmonella minnesota R595 (R595 lipid A). The substituent at the 3-O-position of the reducing sugar does not have much effect on the adjuvant activity of monophosphoryl lipid A analogues. The preliminary lethal toxicity study indicates that the 3-O-acylated hepta-acyl monophosphoryl lipid A may not be more toxic than its 3-O-deacylated hexa-acyl analogue.
Collapse
Affiliation(s)
- Zi-Hua Jiang
- Biomira Inc., 2011-94 Street, Edmonton, Alberta, Canada T6N 1H1.
| | | | | | | | | |
Collapse
|
22
|
Chong CSW, Cao M, Wong WW, Fischer KP, Addison WR, Kwon GS, Tyrrell DL, Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release 2005; 102:85-99. [PMID: 15653136 DOI: 10.1016/j.jconrel.2004.09.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 09/24/2004] [Indexed: 12/11/2022]
Abstract
Currently, there is a need for therapeutic vaccines that are effective in inducing robust T helper type 1 (Th1) immune responses capable of mediating viral clearance in chronic hepatitis B infection. Hepatitis B therapeutic vaccines were designed and formulated by loading the hepatitis B core antigen (HBcAg) into poly(D,L-lactic-acid-co-glycolic acid) (PLGA) nanoparticles with or without monophospholipid A (MPLA), a Th1-favoring immunomodulator. These particles were around 300 nm in diameter, spherical in shape and had approximately 50% HBcAg encapsulation efficiency. A single immunization with a vaccine formulation containing (MPLA+HBcAg) coformulated in PLGA nanoparticles induced a stronger Th1 cellular immune response with a predominant interferon-gamma (IFN-gamma) profile than those induced by HBcAg alone, free (HBcAg+MPLA) simple mixture or HBcAg-loaded nanoparticles in a murine model. More importantly, the level of HBcAg-specific IFN-gamma production could be increased further significantly by a booster immunization with the (HBcAg+MPLA)-loaded nanoparticles. In summary, these results demonstrated that codelivery of HBcAg and MPLA in PLGA nanoparticles promoted HBcAg-specific Th1 immune responses with IFN-gamma production. These findings suggest that appropriate design of the vaccine formulation and careful planning of the immunization schedule are important in the successful development of effective HBV therapeutic vaccines.
Collapse
Affiliation(s)
- Carrie S W Chong
- Faculty of Pharmacy and Pharmaceutical Sciences, Dentistry-Pharmacy Building, University of Alberta, 3118 Edmonton, Alberta, Canada T6G 2N8
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Novel lipid A mimetics derived from pentaerythritol: synthesis and their potent agonistic activity. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)01067-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|