1
|
Adriaenssens Y, Jiménez Fernández D, Vande Walle L, Elvas F, Joossens J, Lambeir A, Augustyns K, Lamkanfi M, Van der Veken P. Carboxylate isosteres for caspase inhibitors: the acylsulfonamide case revisited. Org Biomol Chem 2017; 15:7456-7473. [PMID: 28837200 DOI: 10.1039/c7ob01403a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As part of an ongoing effort to discover inhibitors of caspase-1 with an optimized selectivity and biopharmaceutical profile, acylsulfonamides were explored as carboxylate isosteres for caspase inhibitors. Acylsulfonamide analogues of the clinically investigated caspase-1 inhibitor VRT-043198 and of the pan-caspase inhibitor Z-VAD-CHO were synthesized. The isostere-containing analogues with an aldehyde warhead had inhibitory potencies comparable to the carboxylate references. In addition, the conformational and tautomeric characteristics of these molecules were determined using 1H- and 13C-based NMR. The propensity of acylsulfonamides with an aldehyde warhead to occur in a ring-closed conformation at physiological pH significantly increases the sensitivity to hydrolysis of the acylsulfonamide moiety, yielding the parent carboxylate containing inhibitors. These results indicate that the acylsulfonamide analogues of the aldehyde-based inhibitor VRT-043198 might have potential as a novel type of prodrug for the latter. Finally, inhibition of caspase 1 and 11 mediated inflammation in mouse macrophages was found to correlate with the potencies of the compounds in enzymatic assays.
Collapse
Affiliation(s)
- Y Adriaenssens
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
3
|
Barlow TMA, Jida M, Tourwé D, Ballet S. Efficient synthesis of conformationally constrained, amino-triazoloazepinone-containing di- and tripeptides via a one-pot Ugi-Huisgen tandem reaction. Org Biomol Chem 2015; 12:6986-9. [PMID: 25116189 DOI: 10.1039/c4ob01381f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we describe a catalyst-free procedure employing an Ugi-4CR between a β-azido-α-amino acid, propargylamine, an isocyanide and an aldehyde, followed by a thermal azide-alkyne Huisgen cycloaddition to generate a 16-member library of amino-triazoloazepinone-bearing di- and tripeptides with up to four points of diversification and high atom economy.
Collapse
Affiliation(s)
- T M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
4
|
Pharmacophore modeling and docking studies on some nonpeptide-based caspase-3 inhibitors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:306081. [PMID: 24089669 PMCID: PMC3780516 DOI: 10.1155/2013/306081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 11/17/2022]
Abstract
Neurodegenerative disorders are major consequences of excessive apoptosis caused by a proteolytic enzyme known as caspase-3. Therefore, caspase-3 inhibition has become a validated therapeutic approach for neurodegenerative disorders. We performed pharmacophore modeling on some synthetic derivatives of caspase-3 inhibitors (pyrrolo[3,4-c]quinoline-1,3-diones) using PHASE 3.0. This resulted in the common pharmacophore hypothesis AAHRR.6 which might be responsible for the biological activity: two aromatic rings (R) mainly in the quinoline nucleus, one hydrophobic (H) group (CH3), and two acceptor (A) groups (–C=O). After identifying a valid hypothesis, we also developed an atom-based 3D-QSAR model applying the PLS algorithm. The developed model was statistically robust (q2 = 0.53; pred_r2 = 0.80). Additionally, we have performed molecular docking studies, cross-validated our results, and gained a deeper insight into its molecular recognition process. Our developed model may serve as a query tool for future virtual screening and drug designing for this particular target.
Collapse
|
5
|
Maillard MC, Brookfield FA, Courtney SM, Eustache FM, Gemkow MJ, Handel RK, Johnson LC, Johnson PD, Kerry MA, Krieger F, Meniconi M, Muñoz-Sanjuán I, Palfrey JJ, Park H, Schaertl S, Taylor MG, Weddell D, Dominguez C. Exploiting differences in caspase-2 and -3 S₂ subsites for selectivity: structure-based design, solid-phase synthesis and in vitro activity of novel substrate-based caspase-2 inhibitors. Bioorg Med Chem 2011; 19:5833-51. [PMID: 21903398 DOI: 10.1016/j.bmc.2011.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 11/17/2022]
Abstract
Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ∼200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD.
Collapse
Affiliation(s)
- Michel C Maillard
- CHDI Management, Inc., 6080 Center Drive Suite 100, Los Angeles, CA 90045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Loughlin WA, Tyndall JDA, Glenn MP, Hill TA, Fairlie DP. Update 1 of: Beta-Strand Mimetics. Chem Rev 2011; 110:PR32-69. [DOI: 10.1021/cr900395y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wendy A. Loughlin
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Joel D. A. Tyndall
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Matthew P. Glenn
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Timothy A. Hill
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - David P. Fairlie
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| |
Collapse
|
7
|
Wang Y, Jia S, Tseng B, Drewe J, Cai SX. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: peptidomimetic replacement of the P(2) amino acid by 2-aminoaryl acids and other non-natural amino acids. Bioorg Med Chem Lett 2007; 17:6178-82. [PMID: 17889532 DOI: 10.1016/j.bmcl.2007.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 08/30/2007] [Accepted: 09/05/2007] [Indexed: 01/06/2023]
Abstract
As a continuation of our SAR studies of dipeptidyl aspartyl-fmk as caspase inhibitors, we explored the replacement of the P(2) amino acid by a 2-aminoaryl acid or other non-natural amino acids. Several of these compounds, such as 6l and 6p, were found to have good activities with inhibition potencies of around 100 nM in a caspase-3 enzyme assay. EP1113, Z-Val-(2-aminobenzoyl)-Asp-fmk (9b), is identified as a potent broad-spectrum caspase inhibitor with IC(50) values of 6-60 nM in different caspases. EP1113 also has good activity in a cell apoptosis protection assay.
Collapse
Affiliation(s)
- Yan Wang
- EpiCept Corporation, 6650 Nancy Ridge Drive, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
The pathogenesis of many diseases is most closely connected with aberrantly regulated apoptotic cell death. The past 15 years have witnessed an explosion in the basic knowledge of mechanisms that regulate apoptosis and the mediators that either trigger or inhibit cell death. Consequently, great interest has emerged in devising therapeutic strategies for modulating the key molecules of life-and-death decisions. Numerous novel approaches are currently being followed employing gene therapy and antisense strategies, recombinant biologics or classical organic and combinatorial chemistry in order to target specific apoptotic regulators. Although drug development is still in its infancy, several therapeutics have progressed to clinical testing or have even been approved in record time. This review outlines the recent advances in the field of apoptosis-based therapies and explores some highlights of a very active field of drug development.
Collapse
Affiliation(s)
- U Fischer
- Institute of Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
9
|
Micale N, Kozikowski AP, Ettari R, Grasso S, Zappalà M, Jeong JJ, Kumar A, Hanspal M, Chishti AH. Novel Peptidomimetic Cysteine Protease Inhibitors as Potential Antimalarial Agents. J Med Chem 2006; 49:3064-7. [PMID: 16722625 DOI: 10.1021/jm060405f] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of a new class of peptidomimetics 1a-j, based on a 1,4-benzodiazepine scaffold and on a C-terminal aspartyl aldehyde building block, is described. Compounds 1a-j provided significant inhibitory activity against falcipains 2A and 2B (FP-2A and FP-2B), two cysteine proteases from Plasmodium falciparum.
Collapse
Affiliation(s)
- Nicola Micale
- Dipartimento Farmaco Chimico, University of Messina, Viale Annunziata, 98168, Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kravchenko DV, Kysil VM, Tkachenko SE, Maliarchouk S, Okun IM, Ivachtchenko AV. Pyrrolo[3,4-c]quinoline-1,3-diones as potent caspase-3 inhibitors. Synthesis and SAR of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-pyrrolo[3,4-c]quinoline-1,3-diones. Eur J Med Chem 2005; 40:1377-83. [PMID: 16169127 DOI: 10.1016/j.ejmech.2005.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 07/05/2005] [Accepted: 07/18/2005] [Indexed: 11/15/2022]
Abstract
Synthesis, biological evaluation and structure-activity relationships for a series of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]quinolines are described. These compounds represent a new chemotype of nonpeptide small molecule inhibitors of caspase-3. Among the studied compounds, several potent inhibitors with IC50 in the range of 3-10 nM have been identified. The most active compound within this series, 7{49} and 7{58}, inhibited caspase-3 with IC50=3 nM.
Collapse
Affiliation(s)
- Dmitri V Kravchenko
- Department of Organic Chemistry, Chemical Diversity Research Institute, Khimki, Moscow Region, Russia.
| | | | | | | | | | | |
Collapse
|
11
|
Fischer U, Schulze-Osthoff K. New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev 2005; 57:187-215. [PMID: 15914467 DOI: 10.1124/pr.57.2.6] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. Presumably, even more important is a causative or contributing role of apoptosis to various human diseases. These include situations with unwanted cell accumulation (cancer) and failure to eradicate aberrant cells (autoimmune diseases) or disorders with an inappropriate loss of cells (heart failure, stroke, AIDS, neurodegenerative diseases, and liver injury). The past decade has witnessed a tremendous progress in the knowledge of the molecular mechanisms that regulate apoptosis and the mediators that either prevent or trigger cell death. Consequently, apoptosis regulators have emerged as key targets for the design of therapeutic strategies aimed at modulating cellular life-and-death decisions. Numerous novel approaches are currently being followed employing gene therapy and antisense strategies, recombinant biologics, or classical organic and combinatorial chemistry to target specific apoptotic regulators. Convincing proof-of-principle evidence obtained in several animal models confirms the validity of strategies targeting apoptosis and revealed an enormous potential for therapeutic intervention in a variety of illnesses. Although numerous apoptotic drugs are currently being developed, several therapeutics have progressed to clinical testing or are already approved and marketed. Here we review the recent progress of apoptosis-based therapies and survey some highlights in a very promising field of drug development.
Collapse
Affiliation(s)
- Ute Fischer
- Institute of Molecular Medicine, University of Düsseldorf, Building 23.12, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
12
|
Wang Y, Guan L, Jia S, Tseng B, Drewe J, Cai SX. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: peptidomimetic replacement of the P2 α-amino acid by a α-hydroxy acid. Bioorg Med Chem Lett 2005; 15:1379-83. [PMID: 15713391 DOI: 10.1016/j.bmcl.2005.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 01/04/2005] [Accepted: 01/06/2005] [Indexed: 01/04/2023]
Abstract
As a continuation of our SAR studies of dipeptidyl aspartyl-fmk as caspase inhibitors, we explored the replacement of the P2 alpha-amino acid by a peptidomimetic alpha-hydroxy acid. These alpha-carbamoyl-alkylcarbonyl-aspartyl fluoromethylketones were found to be potent caspase inhibitors, and the SAR of these compounds is similar to the corresponding dipeptidyl aspartyl-fmk. MX1153, (S)-3-methyl-2-(phenylcarbamoyl)butanoyl-Asp-fmk, is identified as a potent broad-spectrum caspase inhibitor, and is selective for caspases versus other proteases. MX1153 also has good activity in the cell apoptosis protection assays and is active in the mouse liver apoptosis model.
Collapse
Affiliation(s)
- Yan Wang
- Maxim Pharmaceuticals, 6650 Nancy Ridge Drive, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
13
|
Cluzeau J, Lubell WD. Design, synthesis, and application of azabicyclo[X.Y.0]alkanone amino acids as constrained dipeptide surrogates and peptide mimics. Biopolymers 2005; 80:98-150. [PMID: 15795926 DOI: 10.1002/bip.20213] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Azabicyclo[X.Y.0]alkanone amino acids are challenging synthetic targets and useful tools for studying structure-activity relationships of native peptide ligands. They have been employed to increase potency and stability in conformationally rigid enzyme inhibitors and receptor ligands. Since last reviewed in 1997, activity in their synthesis and application has increased significantly and access is now available to a wider diversity of these peptide mimics. This review focuses on recent syntheses of these heterocyclic amino acids and their application in the investigation of biologically active peptides and peptide mimics.
Collapse
Affiliation(s)
- Jérôme Cluzeau
- Département de Chimie, Université de Montréal, Montréal H3C 3J7, Québec, Canada
| | | |
Collapse
|
14
|
Micale N, Vairagoundar R, Yakovlev AG, Kozikowski AP. Design and Synthesis of a Potent and Selective Peptidomimetic Inhibitor of Caspase-3. J Med Chem 2004; 47:6455-8. [PMID: 15588079 DOI: 10.1021/jm049248f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper we report the synthesis and characterization of a novel potent and selective inhibitor of caspase-3, a member of the caspase family of cysteine proteases which plays an important role in many human disorders. This molecule represents 3(S)-acetylamino-N-[1-[(((3S)-2-hydroxy-5-oxo-tetrahydrofuran-3-yl)carbamoyl)methyl]-2-oxo-5-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl]succinamic acid, a monocyclic conformationally constrained form of the tetrapeptide Ac-DEVD-H, in which a 1,4-benzodiazepine nucleus is introduced internally to the peptidic sequence.
Collapse
Affiliation(s)
- Nicola Micale
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Illinois 60612, USA.
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Wendy A Loughlin
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia.
| | | | | | | |
Collapse
|
16
|
Cai SX, Guan L, Jia S, Wang Y, Yang W, Tseng B, Drewe J. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: SAR of the N-protecting group. Bioorg Med Chem Lett 2004; 14:5295-300. [PMID: 15454214 DOI: 10.1016/j.bmcl.2004.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/11/2004] [Accepted: 08/11/2004] [Indexed: 12/20/2022]
Abstract
This article describes the synthesis and biological evaluation of a group of N-protected Val-Asp-fmk as caspase inhibitors. The protecting group was found to contribute to caspase-3 inhibiting activity, and compounds with a large group such as Cbz are more active than compounds with a small group such as Ac. Compounds with more hydrophobic protecting groups were found to be more active in cell apoptosis protection assays, probably due to increased cell permeability. MX1122, 2,4-di-Cl-Cbz-Val-Asp-fmk, is identified as a potent broad-spectrum caspase inhibitor and is selective for caspases versus other proteases, with good activity in the cell apoptosis protection assays as well as good efficacy in the mouse liver apoptosis model.
Collapse
Affiliation(s)
- Sui Xiong Cai
- Maxim Pharmaceuticals, 6650 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Tavares FX, Deaton DN, Miller AB, Miller LR, Wright LL, Zhou HQ. Potent and Selective Ketoamide-Based Inhibitors of Cysteine Protease, Cathepsin K. J Med Chem 2004; 47:5049-56. [PMID: 15456248 DOI: 10.1021/jm0400799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cathepsin K, a lysosomal cysteine protease of the papain superfamily, is abundantly and selectively expressed in osteoclasts, suggesting that this enzyme is crucial for bone resorption. Prevention of osteoclast-mediated bone resorption via inhibition of cathepsin K could be an effective approach to prevent osteoporosis. Potent and selective reversible ketoamide-based inhibitors have been identified in the present study. Using a known crystal structure of a ketoamide-based inhibitor, information from residues that form the P2/P3 pocket was used in the design of inhibitors that could allow for gains in selectivity and potency. Further, incorporation of P' selective heterocycles, along with the P2/P3 modifications, is also described. These modifications have resulted in potent and selective cathepsin K inhibitors that allow for improvements in their physiochemical properties and represent a viable lead series for the discovery of new therapies for the prevention and treatment of osteoporosis
Collapse
Affiliation(s)
- Francis X Tavares
- Department of Medicinal Chemistry, Discovery Research Biology, GlaxoSmithKline, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Tavares FX, Deaton DN, Miller LR, Wright LL. Ketoamide-Based Inhibitors of Cysteine Protease, Cathepsin K: P3 Modifications. J Med Chem 2004; 47:5057-68. [PMID: 15456249 DOI: 10.1021/jm040107n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Osteoporosis is a disease characterized by skeletal fragility. Cathepsin K, a lysosomal cysteine protease, has been implicated in the osteoclast mediated bone resorption. Inhibitors of this protease could potentially treat this skeletal disease. The present work describes exploration of the spatial requirements of the S3 subsite by the use of various sterically demanding P3 substituents. Sulfur and oxygen linked heterocycles as well as those without heteroatom linkers were found to provide potent inhibitors of cathepsin K. Representative examples from these series also afforded quite good selectivity ratios against most cathepsins tested. The tolerability of the S3 subsite for sterically demanding groups that provide potency and selectivity enhances the attractiveness of P3 changes to improve the physiochemical properties of inhibitors in the developments of compounds for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Francis X Tavares
- Department of Medicinal Chemistry, Discovery Research Biology, GlaxoSmithKline, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
19
|
Kang YJ, Chae SW. JNK/SAPK is required in nitric oxide-induced apoptosis in osteoblasts. Arch Pharm Res 2004; 26:937-42. [PMID: 14661860 DOI: 10.1007/bf02980203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide(NO) induces apoptosis in human osteoblasts. Treatment with exogenous NO donors, SNAP (S-Nitroso-N-acetylpenicillamine) and SNP (sodium nitroprusside), to MG-63 osteoblasts resulted in apoptotic morphological changes, as shown by a bright blue-fluorescent condensed nuclei and chromatin fragmentation by fluorescence microscope of Hoechst 33258-staining. The activities of caspase-9 and the subsequent caspase-3-like cysteine proteases were increased during NO-induced cell death. Pretreatment with Z-VAD-FMK (a pan-caspase inhibitor) or Ac-DEVD-CHO (a specific caspase-3 inhibitor) abrogated the NO-induced cell death. The NO donor markedly activated JNK, a stress-activated protein kinase in the human osteoblasts. This study showed that the inhibition of the JNK pathway markedly reduced NO-induced cell death. But neither PD98059 (MEK inhibitor) nor SB203580 (p38 MAPK inhibitor) had any effect on NO-induced death. Taken together, these results suggest that JNK/SAPK may be related to NO-induced apoptosis in MG-63 human osteoblasts.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Pharmacology, Institute of Cardiovascular Research, Chonbuk National University Medical School, Korea
| | | |
Collapse
|
20
|
Wang Y, Huang JC, Zhou ZL, Yang W, Guastella J, Drewe J, Cai SX. Dipeptidyl aspartyl fluoromethylketones as potent caspase-3 inhibitors: SAR of the P 2 amino acid. Bioorg Med Chem Lett 2004; 14:1269-72. [PMID: 14980679 DOI: 10.1016/j.bmcl.2003.12.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2003] [Accepted: 12/09/2003] [Indexed: 01/06/2023]
Abstract
This article describes the synthesis and biological evaluation of a series of dipeptidyl aspartyl fluoromethylketones as caspase-3 inhibitors. Structure-activity relationship (SAR) studies showed that for caspase-3 inhibition, Val is the best P(2) amino acid. The SAR studies also showed that the Asp free carboxylic acid in P(1) is important for caspase inhibiting activities, as well as for selectivity over other proteases.
Collapse
Affiliation(s)
- Yan Wang
- Maxim Pharmaceuticals, 6650 Nancy Ridge Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Graczyk PP. Caspase inhibitors as anti-inflammatory and antiapoptotic agents. PROGRESS IN MEDICINAL CHEMISTRY 2003; 39:1-72. [PMID: 12536670 DOI: 10.1016/s0079-6468(08)70068-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The striking efficacy of Z-VAD-fmk in the various animal models presented above may reflect its ability to inhibit multiple enzymes including caspases. In accord with this, more selective, reversible inhibitors usually show low efficacy in multifactorial models such as ischaemia, but may offer some protection against NMDA-induced excitotoxicity and hepatitis. Importantly, caspase inhibitors may exhibit significant activity in vivo even when they are applied post insult. As far as the CNS is concerned, the first systemically active inhibitors have emerged. Functional recovery could be achieved in some ischaemia models, but long-term protection by caspase inhibitors is still being questioned. Recent developments in drug design enabled the first caspase inhibitors to enter the clinic. Although initially directed towards peripheral indications such as rheumatoid arthritis, caspase inhibitors will no doubt eventually be used to target CNS disorders. For this purpose the peptidic character of current inhibitors will have to be further reduced. Small molecule, nonpeptidic caspase inhibitors, which have appeared recently, indicate that this goal can be accomplished. Unfortunately, many fundamental questions still remain to be addressed. In particular, the necessary spectrum of inhibitory activity required to achieve the desired effect needs to be determined. There is also a safety aspect associated with prolonged administration. Therefore, the next therapeutic areas for broader-range caspase inhibitors are likely to involve acute treatment. Recent results with synergistic effects between MK-801 and caspase inhibitors in ischaemia suggest that caspase inhibitors may need to be used in conjunction with other drugs. It can be expected that, in the near future, research on caspases and their inhibitors will remain a rapidly developing area of biology and medicinal chemistry. More time, however, may be needed for the first caspase inhibitors to appear on the market.
Collapse
Affiliation(s)
- Piotr P Graczyk
- Department of Medicinal Chemistry, EISAI London Research Laboratories, University College London, Bernard Katz Building, London WC1E 6BT, UK
| |
Collapse
|
22
|
Scott CW, Sobotka-Briner C, Wilkins DE, Jacobs RT, Folmer JJ, Frazee WJ, Bhat RV, Ghanekar SV, Aharony D. Novel small molecule inhibitors of caspase-3 block cellular and biochemical features of apoptosis. J Pharmacol Exp Ther 2003; 304:433-40. [PMID: 12490620 DOI: 10.1124/jpet.102.039651] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caspase-3 is an intracellular cysteine protease, activated as part of the apoptotic response to cell injury. Its interest as a therapeutic target has led many to pursue the development of inhibitors. To date, only one series of nonpeptidic inhibitors have been described, and these have limited selectivity within the caspase family. Here we report the properties of a series of anilinoquinazolines (AQZs) as potent small molecule inhibitors of caspase-3. The AQZs inhibit human caspase-3 with Ki values in the 90 to 800 nM range. A subset of AQZs are equipotent against caspase-6, although most lack activity against this isoform and caspase-1, -2, -7, and -8. The AQZs inhibit endogenous caspase-3 activity toward a cell permeable, exogenously added substrate in staurosporine-treated SH-SY5Y cells. The AQZs reduce biochemical and cellular features of apoptosis that are thought to be a consequence of caspase-3 activation including DNA fragmentation, TUNEL staining, and the various morphological features that define the terminal stages of apoptotic cell death. Moreover, the AQZs also inhibit apoptosis induced by nerve growth factor withdrawal from differentiated PC12 cells. Thus, the AQZs represent a new and structurally novel class of inhibitors, some of which selectively inhibit caspase-3 and will thereby allow evaluation of the role of caspase-3 activity in various cellular models of apoptosis.
Collapse
Affiliation(s)
- Clay W Scott
- Departments of Lead Discovery, Neuroscience, and Chemistry, AstraZeneca Pharmaceuticals, Wilmington, Delaware 19810, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kitada S, Pedersen IM, Schimmer AD, Reed JC. Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene 2002; 21:3459-74. [PMID: 12032782 DOI: 10.1038/sj.onc.1205327] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ever since the discovery of Bcl-2 and the elucidation of its role in apoptosis, tremendous interest has arisen in prospects for triggering suicide of malignant cells by exploiting knowledge emerging from apoptosis research. In this review, we summarize information about the multiple genetic lesions which have been identified in apoptosis-regulatory genes of hematopoietic and lymphoid neoplasms. Emerging data about the structural and biochemical details of apoptosis proteins and their upstream regulators have reveal novel strategies for therapeutic intervention, some of which are under interrogation in clinical trials currently.
Collapse
Affiliation(s)
- Shinichi Kitada
- The Burnham Institute, 10901 N. Torrey Pines Rd, La Jolla, California, CA 92037, USA
| | | | | | | |
Collapse
|
24
|
Lauffer DJ, Mullican MD. A practical synthesis of (S) 3-tert-butoxycarbonylamino-2-oxo-2,3,4,5-tetrahydro-1,5-benzodiazepine-1-acetic acid methyl ester as a conformationally restricted dipeptido-mimetic for caspase-1 (ICE) inhibitors. Bioorg Med Chem Lett 2002; 12:1225-7. [PMID: 11934593 DOI: 10.1016/s0960-894x(02)00107-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A simple and versatile method for the synthesis of (S) 3-tert-butoxycarbonylamino-2-oxo-2,3,4,5-tetrahydro-1,5-benzodiazepine-1-acetic acid methyl ester (4), a dipeptide mimetic, has been developed. The regioselective functionalization of the N1 and N5 ring nitrogens and the C3 amino group is demonstrated in the synthesis of an interleukin-1beta converting enzyme inhibitor 13.
Collapse
Affiliation(s)
- David J Lauffer
- Vertex Pharmaceuticals, Inc., 130 Waverly Street, Cambridge, MA 02139-4211, USA.
| | | |
Collapse
|
25
|
Gros C, Boulègue C, Galeotti N, Niel G, Jouin P. Stereochemical control in the preparation of α-amino N-methylthiazolidine masked aldehydes used for peptide aldehydes synthesis. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00115-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Abstract
Defects in the regulation of apoptosis (programmed cell death) contribute to many diseases, including pathologies associated with cell loss (e.g. stroke, heart failure, neurodegeneration and AIDS), and disorders characterized by a failure to eliminate harmful cells (e.g. cancer, autoimmunity). Apoptosis is caused by activation of intracellular proteases, known as caspases, which are responsible directly or indirectly for the morphological and biochemical events that characterize the apoptotic cell. Numerous caspase regulators have been discovered, which respond to environmental stimuli and influence the decision of cell death and survival. Knowledge of the molecular details of apoptosis regulation, and the three-dimensional structures of proteins constituting the apoptosis core machinery has revealed new strategies for identifying small-molecule drugs that could one day yield more effective treatments for a wide variety of illnesses.
Collapse
Affiliation(s)
- J C Reed
- The Burnham Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Abstract
Apoptosis, a type of programmed cell death, is a decisive mechanism in cell processes such as homeostasis, development, and many diseases including cancer. In mammals, the mechanisms that trigger and control the process of apoptosis are complex, because it has been observed that many molecules might be involved, acting in distinct ways and depending on the cellular type. The process of apoptosis is characterized by specific biochemical and morphologic changes. However, important specific messengers such as Ca(2)+ act in active proliferation as well as in apoptosis. At present, there is convincing evidence that a sustained increase in intracellular Ca(2)+ can activate cytotoxic mechanisms in various cells and tissues. Several ionic channels located in the cytoplasmic membrane might participate in the entry of calcium into the cytosol during apoptosis. Among these ionic channels, the purinoreceptors P2X and the channels of capacitative entry of calcium have been described. Pro- and anti-apoptotic molecules such as bax and bcl-2, respectively, have also been shown to participate in the process. We have recently found the activation of a Ca(2)+-permeable, nonselective cation channel of 23 pS conductance in prostatic cancer (LNCaP) exclusively in cells previously induced to apoptosis. Our findings are discussed taking into account the different ion channels that might participate in programmed cell death in prostate cancer.
Collapse
Affiliation(s)
- J V Tapia-Vieyra
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | |
Collapse
|
28
|
Ventimiglia R, Lau LF, Kinloch RA, Hopkins A, Karran EH, Petalidis LP, Ward RV. Role of caspases in neuronal apoptosis. Drug Dev Res 2001. [DOI: 10.1002/ddr.1155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Nuttall ME, Lee D, McLaughlin B, Erhardt JA. Selective inhibitors of apoptotic caspases: implications for novel therapeutic strategies. Drug Discov Today 2001; 6:85-91. [PMID: 11166256 DOI: 10.1016/s1359-6446(00)01601-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caspases are essential for apoptosis. A crucial question regarding the role(s) of these proteases is whether the selective inhibition of an effector caspase will prevent cell death. We have identified potent, selective non-peptide inhibitors of the effector caspases 3 and 7. Apoptosis can be inhibited and cell functionality maintained using an inhibitor selective for caspases 3 and 7. This has important therapeutic implications and the potential to generate novel anti-apoptotic strategies in diseases that involve dysregulated apoptosis.
Collapse
Affiliation(s)
- M E. Nuttall
- Department of Cardiovascular Pharmacology SmithKline Beecham Pharmaceuticals 709 Swedeland Rd 19406, King of Prussia PA, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Cell suicide is a normal process that participates in a wide variety of physiological processes, including tissue homeostasis, immune regulation, and fertility. Physiological cell death typically occurs by apoptosis, as opposed to necrosis. Defects in apoptotic cell-death regulation contribute to many diseases, including disorders associated with cell accumulation (e.g. cancer, autoimmunity, inflammation and restenosis) or where cell loss occurs (e.g. stroke, heart failure, neurodegeneration, AIDS and osteoporosis). At the center of the apoptosis machinery is a family of intracellular proteases, known as 'caspases', that are responsible directly or indirectly for the morphological and biochemical events that characterize apoptosis. Multiple positive and negative regulators of these cell-death proteases have been discovered in the genomes of mammals, amphibians, insects, nematodes, and other animal species, as well as a variety of animal viruses. Inputs from signal-transduction pathways into the core of the cell-death machinery have also been identified, demonstrating ways of linking environmental stimuli to cell-death responses or cell-survival maintenance. Knowledge of the molecular mechanisms of apoptosis has provided important insights into the causes of multiple diseases where aberrant cell-death regulation occurs and has revealed new approaches for identifying small-molecule drugs for more effectively treating these illnesses.
Collapse
Affiliation(s)
- J C Reed
- The Burnham Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
31
|
Caulfield TJ, Patel S, Salvino JM, Liester L, Labaudiniere R. Parallel solid-phase synthesis of peptidyl Michael acceptors. JOURNAL OF COMBINATORIAL CHEMISTRY 2000; 2:600-3. [PMID: 11126289 DOI: 10.1021/cc0000444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T J Caulfield
- Lead Discovery Department, Rhone-Poulenc Rorer, Collegeville, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
32
|
Talanian RV, Brady KD, Cryns VL. Caspases as targets for anti-inflammatory and anti-apoptotic drug discovery. J Med Chem 2000; 43:3351-71. [PMID: 10978183 DOI: 10.1021/jm000060f] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- R V Talanian
- BASF Bioresearch Corporation, 100 Research Drive, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
33
|
Affiliation(s)
- M Bamford
- GlaxoWellcome Medicines Research Center, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | | | | |
Collapse
|
34
|
|
35
|
Leung D, Abbenante G, Fairlie DP. Protease inhibitors: current status and future prospects. J Med Chem 2000; 43:305-41. [PMID: 10669559 DOI: 10.1021/jm990412m] [Citation(s) in RCA: 674] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D Leung
- Centre for Drug Design and Development, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|