1
|
Vitaliti A, Reggio A, Colletti M, Galardi A, Palma A. Integration of single-cell datasets depicts profiles of macrophages and fibro/adipogenic progenitors in dystrophic muscle. Exp Cell Res 2024; 442:114197. [PMID: 39111382 DOI: 10.1016/j.yexcr.2024.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Single-cell technologies have recently expanded the possibilities for researchers to gain, at an unprecedented resolution level, knowledge about tissue composition, cell complexity, and heterogeneity. Moreover, the integration of data coming from different technologies and sources also offers, for the first time, the possibility to draw a holistic portrait of how cells behave to sustain tissue physiology during the human lifespan and disease. Here, we interrogated and integrated publicly available single-cell RNAseq data to advance the understanding of how macrophages, fibro/adipogenic progenitors, and other cell types establish gene regulatory networks and communicate with each other in the muscle tissue. We identified altered gene signatures and signaling pathways associated with the dystrophic condition, including an enhanced Spp1-Cd44 signaling in dystrophic macrophages. We shed light on the differences among dystrophic muscle aging, considering wild type, mdx, and more severe conditions as in the case of the mdx-2d model. Contextually, we provided details on existing communication relations between muscle niche cell populations, highlighting increased interactions and distinct signaling events that these cells stablish in the dystrophic microenvironment. We believe our findings can help scientists to formulate and test new hypotheses by moving towards a more complete understanding of muscle regeneration and immune system biology.
Collapse
Affiliation(s)
- Alessandra Vitaliti
- Department of Chemical Science and Technologies, "Tor Vergata" University of Rome, Viale della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Alessio Reggio
- Department of Biology, University of Rome "Tor Vergata", Viale della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Marta Colletti
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Angela Galardi
- Hematology/Oncology and Cell and Gene Therapy Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Alessandro Palma
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
2
|
Riddell DO, Hildyard JCW, Harron RCM, Hornby NL, Wells DJ, Piercy RJ. Serum inflammatory cytokines as disease biomarkers in the DE50-MD dog model of Duchenne muscular dystrophy. Dis Model Mech 2022; 15:dmm049394. [PMID: 36444978 PMCID: PMC9789403 DOI: 10.1242/dmm.049394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease, caused by mutations in the dystrophin gene, characterised by cycles of muscle degeneration, inflammation and regeneration. Recently, there has been renewed interest specifically in drugs that ameliorate muscle inflammation in DMD patients. The DE50-MD dog is a model of DMD that closely mimics the human DMD phenotype. We quantified inflammatory proteins in serum from wild-type (WT) and DE50-MD dogs aged 3-18 months to identify biomarkers for future pre-clinical trials. Significantly higher concentrations of C-C motif chemokine ligand 2 (CCL2), granulocyte-macrophage colony-stimulating factor (GM-CSF or CSF2), keratinocyte chemotactic-like (KC-like, homologous to mouse CXCL1), TNFα (or TNF), and interleukins IL2, IL6, IL7, IL8 (CXCL8), IL10, IL15 and IL18 were detected in DE50-MD serum compared to WT serum. Of these, CCL2 best differentiated the two genotypes. The relative level of CCL2 mRNA was greater in the vastus lateralis muscle of DE50-MD dogs than in that of WT dogs, and CCL2 was expressed both within and at the periphery of damaged myofibres. Serum CCL2 concentration was significantly associated with acid phosphatase staining in vastus lateralis biopsy samples in DE50-MD dogs. In conclusion, the serum cytokine profile suggests that inflammation is a feature of the DE50-MD phenotype. Quantification of serum CCL2 in particular is a useful non-invasive biomarker of the DE50-MD phenotype.
Collapse
Affiliation(s)
- Dominique O. Riddell
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - John C. W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Rachel C. M. Harron
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Natasha L. Hornby
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Camden, London NW1 0TU, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, Camden, London NW1 0TU, UK
| |
Collapse
|
3
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
4
|
Jackson T, Seifi M, Górecki DC, Swinny JD. Specific Dystrophins Selectively Associate with Inhibitory and Excitatory Synapses of the Mouse Cerebellum and their Loss Alters Expression of P2X7 Purinoceptors and Pro-Inflammatory Mediators. Cell Mol Neurobiol 2022; 42:2357-2377. [PMID: 34101068 PMCID: PMC9418305 DOI: 10.1007/s10571-021-01110-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.
Collapse
Affiliation(s)
- Torquil Jackson
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
| | - Mohsen Seifi
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Dariusz C Górecki
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK.
| |
Collapse
|
5
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
6
|
Flores I, Welc SS, Wehling-Henricks M, Tidball JG. Myeloid cell-mediated targeting of LIF to dystrophic muscle causes transient increases in muscle fiber lesions by disrupting the recruitment and dispersion of macrophages in muscle. Hum Mol Genet 2021; 31:189-206. [PMID: 34392367 PMCID: PMC8743000 DOI: 10.1093/hmg/ddab230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Leukemia inhibitory factor (LIF) can influence development by increasing cell proliferation and inhibiting differentiation. Because of its potency for expanding stem cell populations, delivery of exogenous LIF to diseased tissue could have therapeutic value. However, systemic elevations of LIF can have negative, off-target effects. We tested whether inflammatory cells expressing a LIF transgene under control of a leukocyte-specific, CD11b promoter provide a strategy to target LIF to sites of damage in the mdx mouse model of Duchenne muscular dystrophy, leading to increased numbers of muscle stem cells and improved muscle regeneration. However, transgene expression in inflammatory cells did not increase muscle growth or increase numbers of stem cells required for regeneration. Instead, transgene expression disrupted the normal dispersion of macrophages in dystrophic muscles, leading to transient increases in muscle damage in foci where macrophages were highly concentrated during early stages of pathology. The defect in inflammatory cell dispersion reflected impaired chemotaxis of macrophages to C-C motif chemokine ligand-2 and local increases of LIF production that produced large aggregations of cytolytic macrophages. Transgene expression also induced a shift in macrophage phenotype away from a CD206+, M2-biased phenotype that supports regeneration. However, at later stages of the disease when macrophage numbers declined, they dispersed in the muscle, leading to reductions in muscle fiber damage, compared to non-transgenic mdx mice. Together, the findings show that macrophage-mediated delivery of transgenic LIF exerts differential effects on macrophage dispersion and muscle damage depending on the stage of dystrophic pathology.
Collapse
Affiliation(s)
- Ivan Flores
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA
| | - Steven S Welc
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606, USA
| | - James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Lai X, Chen J. C-X-C motif chemokine ligand 12: a potential therapeutic target in Duchenne muscular dystrophy. Bioengineered 2021; 12:5428-5439. [PMID: 34424816 PMCID: PMC8806931 DOI: 10.1080/21655979.2021.1967029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by a mutant dystrophin protein. DMD patients undergo gradual progressive paralysis until death. Chronic glucocorticoid therapy remains one of the main treatments for DMD, despite the significant side effects. However, its mechanisms of action remain largely unknown. We used bioinformatics tools to identify pathogenic genes involved in DMD and glucocorticoid target genes. Two gene expression profiles containing data from DMD patients and healthy controls (GSE38417 and GSE109178) were downloaded for further analysis. Differentially expressed genes (DEGs) between DMD patients and controls were identified using GEO2R, and glucocorticoid target genes were predicted from the Pharmacogenetics and Pharmacogenomics Knowledge Base. Surprisingly, only one gene, CXCL12 (C-X-C motif chemokine ligand 12), was both a glucocorticoid target and a DEG. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, Gene Ontology term enrichment analysis, and gene set enrichment analysis were performed. A protein-protein interaction network was constructed and hub genes identified using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape. Enriched pathways involving the DEGs, including CXCL12, were associated with the immune response and inflammation. Levels of CXCL12 and its receptor CXCR4 (C-X-C motif chemokine receptor 4) were increased in X-linked muscular dystrophy (mdx) mice (DMD models) but became significantly reduced after prednisone treatment. Metformin also reduced the expression of CXCL12 and CXCR4 in mdx mice. In conclusion, the CXCL12-CXCR4 pathway may be a potential target for DMD therapy.
Collapse
Affiliation(s)
- Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Chen
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Validation of Chemokine Biomarkers in Duchenne Muscular Dystrophy. Life (Basel) 2021; 11:life11080827. [PMID: 34440571 PMCID: PMC8401931 DOI: 10.3390/life11080827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease involving complex skeletal muscle pathogenesis. The pathogenesis is triggered by sarcolemma instability due to the lack of dystrophin protein expression, leading to Ca2+ influx, muscle fiber apoptosis, inflammation, muscle necrosis, and fibrosis. Our lab recently used two high-throughput multiplexing techniques (e.g., SomaScan® aptamer assay and tandem mass tag-(TMT) approach) and identified a series of serum protein biomarkers tied to different pathobiochemical pathways. In this study, we focused on validating the circulating levels of three proinflammatory chemokines (CCL2, CXCL10, and CCL18) that are believed to be involved in an early stage of muscle pathogenesis. We used highly specific and reproducible MSD ELISA assays and examined the association of these chemokines with DMD pathogenesis, age, disease severity, and response to glucocorticoid treatment. As expected, we confirmed that these three chemokines were significantly elevated in serum and muscle samples of DMD patients relative to age-matched healthy controls (p-value < 0.05, CCL18 was not significantly altered in muscle samples). These three chemokines were not significantly elevated in Becker muscular dystrophy (BMD) patients, a milder form of dystrophinopathy, when compared in a one-way ANOVA to a control group but remained significantly elevated in the age-matched DMD group (p < 0.05). CCL2 and CCL18 but not CXCL10 declined with age in DMD patients, whereas all three chemokines remained unchanged with age in BMD and controls. Only CCL2 showed significant association with time to climb four steps in the DMD group (r = 0.48, p = 0.038) and neared significant association with patients' reported outcome in the BMD group (r = 0.39, p = 0.058). Furthermore, CCL2 was found to be elevated in a serum of the mdx mouse model of DMD, relative to wild-type mouse model. This study suggests that CCL2 might be a suitable candidate biomarker for follow-up studies to demonstrate its physiological significance and clinical utility in DMD.
Collapse
|
9
|
Yoshikawa N, Oda A, Yamazaki H, Yamamoto M, Kuribara-Souta A, Uehara M, Tanaka H. The Influence of Glucocorticoid Receptor on Sex Differences of Gene Expression Profile in Skeletal Muscle. Endocr Res 2021; 46:99-113. [PMID: 33590778 DOI: 10.1080/07435800.2021.1884874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Skeletal muscle functions as a locomotory system and maintains whole-body metabolism. Sex differences in such skeletal muscle morphology and function have been documented; however, their underlying mechanisms remain elusive. Glucocorticoids are adrenocortical hormones maintaining homeostasis, including regulating whole-body energy metabolism in addition to stress response. In skeletal muscle, glucocorticoids can reduce the synthesis of muscle proteins and simultaneously accelerate the breakdown of proteins to regulate skeletal muscle mass and energy metabolism via a transcription factor glucocorticoid receptor (GR). We herein evaluated the related contributions of the GR to sex differences of gene expression profiles in skeletal muscle using GR-floxed (GRf/f) and skeletal muscle-specific GR knockout (GRmKO) mice. There were no differences in GR mRNA and protein expression levels in gastrocnemius muscle between males and females. A DNA microarray analysis using gastrocnemius muscle from GRf/f and GRmKO mice revealed that, although most gene expression levels were identical in both sexes, genes related to cholesterol and apolipoprotein synthesis and fatty acid biosynthesis and the immunological system were predominantly expressed in males and females, respectively, in GRf/f but not in GRmKO mice. Moreover, many genes were up-regulated in response to starvation in GRf/f but not in GRmKO mice, many of which were sex-independent and functioned to maintain homeostasis, while genes that showed sex dominance related to a variety of functions. Although the genes expressed in skeletal muscle may be predominantly sex-independent, sex-dominant genes may relate to sex differences in energy metabolism and the immune system and could be controlled by the GR.
Collapse
Affiliation(s)
- Noritada Yoshikawa
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo;, Tokyo, Japan
- Department of Rheumatology and Allergy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Aya Oda
- Department of Rheumatology and Allergy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Hiroki Yamazaki
- Department of Rheumatology and Allergy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Motohisa Yamamoto
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo;, Tokyo, Japan
- Department of Rheumatology and Allergy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Akiko Kuribara-Souta
- Department of Rheumatology and Allergy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Masaaki Uehara
- Department of Rheumatology and Allergy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Hirotoshi Tanaka
- Division of Rheumatology, Center for Antibody and Vaccine Therapy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo;, Tokyo, Japan
- Department of Rheumatology and Allergy, IMSUT Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Kastenschmidt JM, Coulis G, Farahat PK, Pham P, Rios R, Cristal TT, Mannaa AH, Ayer RE, Yahia R, Deshpande AA, Hughes BS, Savage AK, Giesige CR, Harper SQ, Locksley RM, Mozaffar T, Villalta SA. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep 2021; 35:108997. [PMID: 33852849 PMCID: PMC8127948 DOI: 10.1016/j.celrep.2021.108997] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the well-accepted view that chronic inflammation contributes to the pathogenesis of Duchenne muscular dystrophy (DMD), the function and regulation of eosinophils remain an unclear facet of type II innate immunity in dystrophic muscle. We report the observation that group 2 innate lymphoid cells (ILC2s) are present in skeletal muscle and are the principal regulators of muscle eosinophils during muscular dystrophy. Eosinophils were elevated in DMD patients and dystrophic mice along with interleukin (IL)-5, a major eosinophil survival factor that was predominantly expressed by muscle ILC2s. We also find that IL-33 was upregulated in dystrophic muscle and was predominantly produced by fibrogenic/adipogenic progenitors (FAPs). Exogenous IL-33 and IL-2 complex (IL-2c) expanded muscle ILC2s and eosinophils, decreased the cross-sectional area (CSA) of regenerating myofibers, and increased the expression of genes associated with muscle fibrosis. The deletion of ILC2s in dystrophic mice mitigated muscle eosinophilia and impaired the induction of IL-5 and fibrosis-associated genes. Our findings highlight a FAP/ILC2/eosinophil axis that promotes type II innate immunity, which influences the balance between regenerative and fibrotic responses during muscular dystrophy. Immune cells that comprise type II innate immunity coalesce to regulate tissue repair and fibrosis. Kastenschmidt et al. report that ILC2s reside in skeletal muscle, are activated in muscular dystrophy, and promote muscle eosinophilia. Stromal progenitors expressed IL-33, which expanded ILC2s and promoted a transcriptional program associated with muscle fibrosis.
Collapse
Affiliation(s)
- Jenna M Kastenschmidt
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Philip K Farahat
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Phillip Pham
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rodolfo Rios
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Therese T Cristal
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Ali H Mannaa
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rachel E Ayer
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Rayan Yahia
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Archis A Deshpande
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Brandon S Hughes
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Adam K Savage
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA; Departments of Medicine and Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Carlee R Giesige
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Scott Q Harper
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Tahseen Mozaffar
- Institute for Immunology, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA; Department of Orthopaedic Surgery, University of California Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA; Institute for Immunology, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
The linkage between inflammation and fibrosis in muscular dystrophies: The axis autotaxin-lysophosphatidic acid as a new therapeutic target? J Cell Commun Signal 2021; 15:317-334. [PMID: 33689121 PMCID: PMC8222483 DOI: 10.1007/s12079-021-00610-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MDs) are a diverse group of severe disorders characterized by increased skeletal muscle feebleness. In many cases, respiratory and cardiac muscles are also compromised. Skeletal muscle inflammation and fibrosis are hallmarks of several skeletal muscle diseases, including MDs. Until now, several keys signaling pathways and factors that regulate inflammation and fibrosis have been identified. However, no curative treatments are available. Therefore, it is necessary to find new therapeutic targets to fight these diseases and improve muscle performance. Lysophosphatidic acid (LPA) is an active glycerophospholipid mainly synthesized by the secreted enzyme autotaxin (ATX), which activates six different G protein-coupled receptors named LPA1 to LPA6 (LPARs). In conjunction, they are part of the ATX/LPA/LPARs axis, involved in the inflammatory and fibrotic response in several organs-tissues. This review recapitulates the most relevant aspects of inflammation and fibrosis in MDs. It analyzes experimental evidence of the effects of the ATX/LPA/LPARs axis on inflammatory and fibrotic responses. Finally, we speculate about its potential role as a new therapeutic pharmacological target to treat these diseases.
Collapse
|
12
|
Micheletto MLJ, Hermes TDA, Bertassoli BM, Petri G, Perez MM, Fonseca FLA, Carvalho AADS, Feder D. Ixazomib, an oral proteasome inhibitor, exhibits potential effect in dystrophin-deficient mdx mice. Int J Exp Pathol 2021; 102:11-21. [PMID: 33296126 PMCID: PMC7839951 DOI: 10.1111/iep.12383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Dystrophin deficiency makes the sarcolemma fragile and susceptible to degeneration in Duchenne muscular dystrophy. The proteasome is a multimeric protease complex and is central to the regulation of cellular proteins. Previous studies have shown that proteasome inhibition improved pathological changes in mdx mice. Ixazomib is the first oral proteasome inhibitor used as a therapy in multiple myeloma. This study investigated the effects of ixazomib on the dystrophic muscle of mdx mice. MDX mice were treated with ixazomib (7.5 mg/kg/wk by gavage) or 0.2 mL of saline for 12 weeks. The Kondziela test was performed to measure muscle strength. The tibialis anterior (TA) and diaphragm (DIA) muscles were used for morphological analysis, and blood samples were collected for biochemical measurement. We observed maintenance of the muscle strength in the animals treated with ixazomib. Treatment with ixazomib had no toxic effect on the mdx mouse. The morphological analysis showed a reduction in the inflammatory area and fibres with central nuclei in the TA and DIA muscles and an increase in the number of fibres with a diameter of 20 µm2 in the DIA muscle after treatment with ixazomib. There was an increase in the expression of dystrophin and utrophin in the TA and DIA muscles and a reduction in the expression of osteopontin and TGF-β in the DIA muscle of mdx mice treated with ixazomib. Ixazomib was thus shown to increase the expression of dystrophin and utrophin associated with improved pathological and functional changes in the dystrophic muscles of mdx mice.
Collapse
Affiliation(s)
| | - Tulio de Almeida Hermes
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
- Departament of AnatomyFederal University of AlfenasAlfenasBrazil
| | | | - Giuliana Petri
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| | | | | | | | - David Feder
- Departament of Morphology and PhysiologyMedical Faculty of the ABCSanto AndréBrazil
| |
Collapse
|
13
|
Kranig SA, Tschada R, Braun M, Patry C, Pöschl J, Frommhold D, Hudalla H. Dystrophin deficiency promotes leukocyte recruitment in mdx mice. Pediatr Res 2019; 86:188-194. [PMID: 31091530 DOI: 10.1038/s41390-019-0427-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND A growing body of evidence defines inflammation as a hallmark feature of disease pathogenesis of Duchenne muscular dystrophy. To tailor potential immune modulatory interventions, a better understanding of immune dysregulation in Duchenne muscular dystrophy is needed. We now asked whether dystrophin deficiency affects the cascade of leukocyte recruitment. METHODS We performed intravital microscopy on the cremaster muscle of wild-type and dystrophin-deficient mdx mice. Recruitment was triggered by preparation alone (traumatic inflammation) or in combination with scrotal TNFα injections. Neutrophilic infiltration of the cremaster muscle was assessed on tissue sections. Integrin expression on circulating neutrophils and serum levels of pro-inflammatory cytokines were measured by flow cytometry. RESULTS Mdx mice show increased rolling and adhesion at baseline (traumatic inflammation) and a more profound response upon TNFα injection compared with wild-type animals. In both models, neutrophilic infiltration of the cremaster muscle is increased. Upregulation of the integrins LFA-1 and Mac-1 on circulating leukocytes and pro-inflammatory cytokines IL-6 and CCL2 in the serum points toward systemically altered immune regulation in mdx mice. CONCLUSION We are the first to show exaggerated activation of the leukocyte recruitment cascade in a dystrophin-deficient organism in vivo.
Collapse
Affiliation(s)
- Simon Alexander Kranig
- Department of Neonatology, Heidelberg University Children's Hospital, 69120, Heidelberg, Germany
| | - Raphaela Tschada
- Department of Neonatology, Heidelberg University Children's Hospital, 69120, Heidelberg, Germany
| | - Maylis Braun
- Department of Neonatology, Heidelberg University Children's Hospital, 69120, Heidelberg, Germany
| | - Christian Patry
- Department of General Pediatrics, Heidelberg University Children's Hospital, 69120, Heidelberg, Germany
| | - Johannes Pöschl
- Department of Neonatology, Heidelberg University Children's Hospital, 69120, Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, 87700, Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children's Hospital, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Rogers RG, Fournier M, Sanchez L, Ibrahim AG, Aminzadeh MA, Lewis MI, Marbán E. Disease-modifying bioactivity of intravenous cardiosphere-derived cells and exosomes in mdx mice. JCI Insight 2019; 4:125754. [PMID: 30944252 DOI: 10.1172/jci.insight.125754] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/14/2019] [Indexed: 02/05/2023] Open
Abstract
Dystrophin deficiency leads to progressive muscle degeneration in Duchenne muscular dystrophy (DMD) patients. No known cure exists, and standard care relies on the use of antiinflammatory steroids, which are associated with side effects that complicate long-term use. Here, we report that a single intravenous dose of clinical-stage cardiac stromal cells, called cardiosphere-derived cells (CDCs), improves the dystrophic phenotype in mdx mice. CDCs augment cardiac and skeletal muscle function, partially reverse established heart damage, and boost the regenerative capacity of skeletal muscle. We further demonstrate that CDCs work by secreting exosomes, which normalize gene expression at the transcriptome level, and alter cell signaling and biological processes in mdx hearts and skeletal muscle. The work reported here motivated the ongoing HOPE-2 clinical trial of systemic CDC delivery to DMD patients, and identifies exosomes as next-generation cell-free therapeutic candidates for DMD.
Collapse
|
15
|
Growth Factor Screening in Dystrophic Muscles Reveals PDGFB/PDGFRB-Mediated Migration of Interstitial Stem Cells. Int J Mol Sci 2019; 20:ijms20051118. [PMID: 30841538 PMCID: PMC6429448 DOI: 10.3390/ijms20051118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Progressive muscle degeneration followed by dilated cardiomyopathy is a hallmark of muscular dystrophy. Stem cell therapy is suggested to replace diseased myofibers by healthy myofibers, although so far, we are faced by low efficiencies of migration and engraftment of stem cells. Chemokines are signalling proteins guiding cell migration and have been shown to tightly regulate muscle tissue repair. We sought to determine which chemokines are expressed in dystrophic muscles undergoing tissue remodelling. Therefore, we analysed the expression of chemokines and chemokine receptors in skeletal and cardiac muscles from Sarcoglycan-α null, Sarcoglycan-β null and immunodeficient Sgcβ-null mice. We found that several chemokines are dysregulated in dystrophic muscles. We further show that one of these, platelet-derived growth factor-B, promotes interstitial stem cell migration. This finding provides perspective to an approachable mechanism for improving stem cell homing towards dystrophic muscles.
Collapse
|
16
|
Liang F, Giordano C, Shang D, Li Q, Petrof BJ. The dual CCR2/CCR5 chemokine receptor antagonist Cenicriviroc reduces macrophage infiltration and disease severity in Duchenne muscular dystrophy (Dmdmdx-4Cv) mice. PLoS One 2018; 13:e0194421. [PMID: 29561896 PMCID: PMC5862483 DOI: 10.1371/journal.pone.0194421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/04/2018] [Indexed: 01/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle weakness which is ultimately fatal, most often due to involvement of the diaphragm. Macrophage infiltration of dystrophic muscles has been strongly linked to muscle damage and fibrosis in DMD. We hypothesized that cenicriviroc (CVC), a dual chemokine receptor (CCR2/CCR5) antagonist currently under clinical evaluation for other diseases, could prevent macrophage accumulation and blunt disease progression in the diaphragms of mdx mice (genetic homologue of DMD). Treatment with CVC (20 mg/kg/day intraperitoneally) or vehicle was initiated in mdx mice at 2 weeks of age (prior to the onset of muscle necrosis) and continued for 4 weeks. Flow cytometry to assess inflammatory cell subsets as well as histological and force generation parameters were determined in mdx diaphragms at the conclusion of the treatment. CVC therapy induced a major (3.9-fold) reduction in total infiltrating macrophages, whereas total numbers of neutrophils and T lymphocytes (CD4+ and CD8+) were unaffected. No changes in macrophage polarization status (inflammatory versus anti-inflammatory skewing based on iNOS and CD206 expression) were observed. Muscle fiber size and fibrosis were not altered by CVC, whereas a significant reduction in centrally nucleated fibers was found suggesting a decrease in prior necrosis-regeneration cycles. In addition, maximal isometric force production by the diaphragm was increased by CVC therapy. These results suggest that CVC or other chemokine receptor antagonists which reduce pathological macrophage infiltration may have the potential to slow disease progression in DMD.
Collapse
Affiliation(s)
- Feng Liang
- Meakins-Christie Laboratories and Respiratory Division, McGill University, Montreal, Quebec, Canada
- Program for Translational Research in Respiratory Diseases, McGill University Health Centre, Montreal, Quebec, Canada
| | - Christian Giordano
- Meakins-Christie Laboratories and Respiratory Division, McGill University, Montreal, Quebec, Canada
- Program for Translational Research in Respiratory Diseases, McGill University Health Centre, Montreal, Quebec, Canada
| | - Dong Shang
- Meakins-Christie Laboratories and Respiratory Division, McGill University, Montreal, Quebec, Canada
- Program for Translational Research in Respiratory Diseases, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi’an JiaoTong University, Xi’an, Shaanxi, P. R. China
| | - Qian Li
- Meakins-Christie Laboratories and Respiratory Division, McGill University, Montreal, Quebec, Canada
- Program for Translational Research in Respiratory Diseases, McGill University Health Centre, Montreal, Quebec, Canada
| | - Basil J. Petrof
- Meakins-Christie Laboratories and Respiratory Division, McGill University, Montreal, Quebec, Canada
- Program for Translational Research in Respiratory Diseases, McGill University Health Centre, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
17
|
Fernández-Verdejo R, Vanwynsberghe AM, Hai T, Deldicque L, Francaux M. Activating transcription factor 3 regulates chemokine expression in contracting C 2C 12 myotubes and in mouse skeletal muscle after eccentric exercise. Biochem Biophys Res Commun 2017; 492:249-254. [PMID: 28822763 DOI: 10.1016/j.bbrc.2017.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023]
Abstract
Activating transcription factor (ATF) 3 regulates chemokine expression in various cell types and tissues. Herein, we studied this regulation in contracting muscle cells in vitro, and in skeletal muscle after muscle-damaging exercise in vivo. C2C12 myotubes with normal or low ATF3 levels (atf3_siRNA) were electrically stimulated (EPS). Also, ATF3-knockout (ATF3-KO) and control mice ran downhill until exhaustion, and muscles were analyzed post-exercise. EPS increased ATF3 levels in myotubes (P < 0.01). Chemokine C-C motif ligand (ccl) 2 mRNA increased post-EPS, but atf3_siRNA attenuated the response (P < 0.05). Atf3_siRNA up-regulated ccl6 basal mRNA, and down-regulated ccl9 and chemokine C-X-C motif ligand (cxcl) 1 basal mRNAs. Post-exercise, ATF3-KO mice showed exacerbated mRNA levels of ccl6 and ccl9 in soleus (P < 0.05), and similar trends were observed for ccl2 and interleukin (il) 1β (P < 0.09). In quadriceps, il6 mRNA level increased only in ATF3-KO (P < 0.05), and cxcl1 mRNA showed a similar trend (P = 0.082). Cluster of differentiation-68 (cd68) mRNA, a macrophage marker, increased in quadriceps and soleus independently of genotype (P < 0.001). Our data demonstrate that ATF3 regulates chemokine expression in muscle cells in vitro and skeletal muscle in vivo, but the regulation differs in each model. Cells other than myofibers may thus participate in the response observed in skeletal muscle. Our results also indicate that ATF3-independent mechanisms would regulate macrophage infiltration upon muscle-damaging exercise. The implications of chemokine regulation in skeletal muscle remain to be determined.
Collapse
Affiliation(s)
- R Fernández-Verdejo
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - A M Vanwynsberghe
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - T Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - L Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - M Francaux
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
18
|
Burns DP, Rowland J, Canavan L, Murphy KH, Brannock M, O'Malley D, O'Halloran KD, Edge D. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2. Exp Physiol 2017; 102:1177-1193. [PMID: 28665499 DOI: 10.1113/ep086232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
NEW FINDINGS What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg-1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg-1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal density of infiltrates and collagen content were significantly increased in mdx sternohyoid; both indices were unaffected by drug treatment. The abundance of myosin heavy chain type IIb fibres was significantly decreased in mdx sternohyoid; drug treatment preserved myosin heavy chain type IIb complement in mdx muscle. The chemokines macrophage inflammatory protein 2, interferon-γ-induced protein 10 and macrophage inflammatory protein 3α were significantly increased in mdx sternohyoid compared with WT. Drug treatment significantly increased chemokine expression in mdx but not WT sternohyoid. Recovery of contractile function was impressive in our study, with implications for Duchenne muscular dystrophy. The precise molecular mechanisms by which the drug treatment exerts an inotropic effect on mdx sternohyoid muscle remain to be elucidated.
Collapse
Affiliation(s)
- David P Burns
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Jane Rowland
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Leonie Canavan
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Kevin H Murphy
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Molly Brannock
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Dervla O'Malley
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Deirdre Edge
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Gomez JP, Gonçalves C, Pichon C, Midoux P. Effect of IL-1β, TNF-α and IGF-1 on trans-endothelial passage of synthetic vectors through an in vitro vascular endothelial barrier of striated muscle. Gene Ther 2017; 24:416-424. [DOI: 10.1038/gt.2017.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
|
20
|
Waldemer-Streyer RJ, Reyes-Ordoñez A, Kim D, Zhang R, Singh N, Chen J. Cxcl14 depletion accelerates skeletal myogenesis by promoting cell cycle withdrawal. NPJ Regen Med 2017; 2. [PMID: 28775895 PMCID: PMC5537738 DOI: 10.1038/npjregenmed.2016.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Skeletal muscle in adults retains a robust ability to regenerate after injury, which progressively declines with age. Many of the regulators of skeletal myogenesis are unknown or incompletely understood. Intriguingly, muscle cells secrete a wide variety of factors, such as cytokines, which can influence muscle development and regeneration in an autocrine or paracrine manner. Here we describe chemokine (C-X-C motif) ligand 14 (Cxcl14) as a novel negative regulator of skeletal myogenesis. We found that Cxcl14 expression in myoblasts prevented cell cycle withdrawal, thereby inhibiting subsequent differentiation. Knockdown of Cxcl14 in vitro enhanced myogenic differentiation through promoting cell cycle withdrawal in an ERK1/2-dependent manner. Recapitulating these in vitro observations, the process of muscle regeneration following injury in young adult mice was accelerated by Cxcl14 depletion, accompanied by reduced cell proliferation. Furthermore, impaired capacity for muscle regeneration in aging mice was fully restored by Cxcl14 depletion. Our results indicate that Cxcl14 may be a promising target for development of therapeutics to treat muscle disease, especially aging-related muscle wasting.
Collapse
Affiliation(s)
- Rachel J Waldemer-Streyer
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Adriana Reyes-Ordoñez
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dongwook Kim
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rongping Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nilmani Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
21
|
Fernández-Verdejo R, Vanwynsberghe AM, Essaghir A, Demoulin JB, Hai T, Deldicque L, Francaux M. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J 2016; 31:840-851. [PMID: 27856557 DOI: 10.1096/fj.201600987r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022]
Abstract
Activating transcription factor (ATF)3 regulates the expression of inflammation-related genes in several tissues under pathological contexts. In skeletal muscle, atf3 expression increases after exercise, but its target genes remain unknown. We aimed to identify those genes and to determine the influence of ATF3 on muscle adaptation to training. Skeletal muscles of ATF3-knockout (ATF3-KO) and control mice were analyzed at rest, after exercise, and after training. In resting muscles, there was no difference between genotypes in enzymatic activities or fiber type. After exercise, a microarray analysis in quadriceps revealed ATF3 affects genes modulating chemotaxis and chemokine/cytokine activity. Quantitative PCR showed that the mRNA levels of chemokine C-C motif ligand (ccl)8 and chemokine C-X-C motif ligand (cxcl)13 were higher in quadriceps of ATF3-KO mice than in control mice. The same was observed for ccl9 and cxcl13 in soleus. Also in soleus, ccl2, interleukin (il)6, il1β, and cluster of differentiation (cd)68 mRNA levels increased after exercise only in ATF3-KO mice. Endurance training increased the basal mRNA level of hexokinase-2, hormone sensitive lipase, glutathione peroxidase-1, and myosin heavy chain IIa in quadriceps of control mice but not in ATF3-KO mice. In summary, ATF3 attenuates the expression of inflammation-related genes after exercise and thus facilitates molecular adaptation to training.-Fernández-Verdejo, R., Vanwynsberghe, A. M., Essaghir, A., Demoulin, J.-B., Hai, T., Deldicque, L., Francaux, M. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training.
Collapse
Affiliation(s)
| | - Aline M Vanwynsberghe
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ahmed Essaghir
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; and
| | | | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium;
| |
Collapse
|
22
|
Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2745-58. [PMID: 27621596 PMCID: PMC5012616 DOI: 10.2147/dddt.s110163] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.
Collapse
Affiliation(s)
- Shouta Miyatake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
23
|
Rosenberg AS, Puig M, Nagaraju K, Hoffman EP, Villalta SA, Rao VA, Wakefield LM, Woodcock J. Immune-mediated pathology in Duchenne muscular dystrophy. Sci Transl Med 2016; 7:299rv4. [PMID: 26246170 DOI: 10.1126/scitranslmed.aaa7322] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunological and inflammatory processes downstream of dystrophin deficiency as well as metabolic abnormalities, defective autophagy, and loss of regenerative capacity all contribute to muscle pathology in Duchenne muscular dystrophy (DMD). These downstream cascades offer potential avenues for pharmacological intervention. Modulating the inflammatory response and inducing immunological tolerance to de novo dystrophin expression will be critical to the success of dystrophin-replacement therapies. This Review focuses on the role of the inflammatory response in DMD pathogenesis and opportunities for clinical intervention.
Collapse
Affiliation(s)
- Amy S Rosenberg
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 71/2238, Silver Spring, MD 20993, USA.
| | - Montserrat Puig
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 71/2238, Silver Spring, MD 20993, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - S Armando Villalta
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA
| | - V Ashutosh Rao
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 71/2238, Silver Spring, MD 20993, USA
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Building 37, Room 4032A, Bethesda, MD 20892, USA
| | - Janet Woodcock
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 71/2238, Silver Spring, MD 20993, USA
| |
Collapse
|
24
|
Arnold L, Perrin H, de Chanville CB, Saclier M, Hermand P, Poupel L, Guyon E, Licata F, Carpentier W, Vilar J, Mounier R, Chazaud B, Benhabiles N, Boissonnas A, Combadiere B, Combadiere C. CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production. Nat Commun 2015; 6:8972. [PMID: 26632270 PMCID: PMC4686853 DOI: 10.1038/ncomms9972] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/21/2015] [Indexed: 01/22/2023] Open
Abstract
Muscle injury triggers inflammation in which infiltrating mononuclear phagocytes are crucial for tissue regeneration. The interaction of the CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axis that guides phagocyte infiltration is incompletely understood. Here, we show that CX3CR1 deficiency promotes muscle repair and rescues Ccl2−/− mice from impaired muscle regeneration as a result of altered macrophage function, not infiltration. Transcriptomic analysis of muscle mononuclear phagocytes reveals that Apolipoprotein E (ApoE) is upregulated in mice with efficient regeneration. ApoE treatment enhances phagocytosis by mononuclear phagocytes in vitro, and restores phagocytic activity and muscle regeneration in Ccl2−/− mice. Because CX3CR1 deficiency may compensate for defective CCL2-dependant monocyte recruitment by modulating ApoE-dependent macrophage phagocytic activity, targeting CX3CR1 expressed by macrophages might be a powerful therapeutic approach to improve muscle regeneration. Chemokine-driven infiltration of inflammatory macrophages is central to the muscle regenerative response to injury. Here the authors show that the function of infiltrating macrophages is also important as notexin-induced muscle injury in mice is rescued by CX3CR1 knockout owing to enhanced ApoE production.
Collapse
Affiliation(s)
- Ludovic Arnold
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Hélène Perrin
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Camille Baudesson de Chanville
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Marielle Saclier
- Inserm, U1016, Institut Cochin, 22 Rue Méchain, F-75014 Paris, France.,CNRS, UMR8104, 22 Rue Méchain, F-75014 Paris, France.,University of Paris Descartes, Sorbonne Paris Cite, F-75006 Paris, France
| | - Patricia Hermand
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Lucie Poupel
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Elodie Guyon
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Fabrice Licata
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Wassila Carpentier
- Sorbonne Universités, UPMC Univ Paris 06, Plateforme Post-Génomique de la Pitié-Salpêtrière (P3S), UMS2 Omique, INSERM US029, 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - José Vilar
- Paris Centre de Recherche Cardiovasculaire (PARCC) - HEGP, 56 Rue Leblanc, F-75015 Paris, France
| | - Rémi Mounier
- Inserm, U1016, Institut Cochin, 22 Rue Méchain, F-75014 Paris, France.,CNRS, UMR8104, 22 Rue Méchain, F-75014 Paris, France.,University of Paris Descartes, Sorbonne Paris Cite, F-75006 Paris, France
| | - Bénédicte Chazaud
- Inserm, U1016, Institut Cochin, 22 Rue Méchain, F-75014 Paris, France.,CNRS, UMR8104, 22 Rue Méchain, F-75014 Paris, France.,University of Paris Descartes, Sorbonne Paris Cite, F-75006 Paris, France
| | - Nora Benhabiles
- CEA, List institute CEA Saclay, Digitéo Labs, PC192, F-91191 Gif-sur-Yvette, Cedex, France
| | - Alexandre Boissonnas
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Béhazine Combadiere
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Christophe Combadiere
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| |
Collapse
|
25
|
Ceco E, Bogdanovich S, Gardner B, Miller T, DeJesus A, Earley JU, Hadhazy M, Smith LR, Barton ER, Molkentin JD, McNally EM. Targeting latent TGFβ release in muscular dystrophy. Sci Transl Med 2015; 6:259ra144. [PMID: 25338755 DOI: 10.1126/scitranslmed.3010018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Latent transforming growth factor-β (TGFβ) binding proteins (LTBPs) bind to inactive TGFβ in the extracellular matrix. In mice, muscular dystrophy symptoms are intensified by a genetic polymorphism that changes the hinge region of LTBP, leading to increased proteolytic susceptibility and TGFβ release. We have found that the hinge region of human LTBP4 was also readily proteolysed and that proteolysis could be blocked by an antibody to the hinge region. Transgenic mice were generated to carry a bacterial artificial chromosome encoding the human LTBP4 gene. These transgenic mice displayed larger myofibers, increased damage after muscle injury, and enhanced TGFβ signaling. In the mdx mouse model of Duchenne muscular dystrophy, the human LTBP4 transgene exacerbated muscular dystrophy symptoms and resulted in weaker muscles with an increased inflammatory infiltrate and greater LTBP4 cleavage in vivo. Blocking LTBP4 cleavage may be a therapeutic strategy to reduce TGFβ release and activity and decrease inflammation and muscle damage in muscular dystrophy.
Collapse
Affiliation(s)
- Ermelinda Ceco
- Committee on Cell Physiology, The University of Chicago, Chicago, IL 60637, USA
| | - Sasha Bogdanovich
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Brandon Gardner
- Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Tamari Miller
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Adam DeJesus
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Judy U Earley
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Michele Hadhazy
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Lucas R Smith
- Department of Anatomy and Cell Biology, School of Dental Medicine, Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Elizabeth M McNally
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
Statland J, Donlin-Smith CM, Tapscott SJ, van der Maarel S, Tawil R. Multiplex Screen of Serum Biomarkers in Facioscapulohumeral Muscular Dystrophy. J Neuromuscul Dis 2015; 1:181-190. [PMID: 25705588 PMCID: PMC4332410 DOI: 10.3233/jnd-140034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Recent studies have proposed a unified genetic model for Facioscapulohumeral muscular dystrophy (FSHD), identifying potential therapeutic targets for future clinical trials. Serum biomarkers related to disease activity will be important for proof of concept or early phase clinical studies. OBJECTIVE To identify potential serum biomarkers in FSHD for possible use in future clinical trials. METHODS We performed a prospective cross-sectional study of serum biomarkers in 22 FSHD patients (19 FSHD1, 3 FSHD2) compared to 23 age and gender-matched healthy controls using a commercial multiplex, microsphere-based immune-fluorescent assay of 243 markers (Myriad, Human Discovery MAP 250, v2.0). RESULTS 169 markers had values sufficient for analysis. Correction for multiple testing identified 7 biomarkers below a 5% false discovery rate: creatine kinase MB fraction (CKMB, 6.52 fold change, P<0.0001), tissue-type plasminogen activator (PLAT, 1.64 fold change, P<0.0001), myoglobin (2.23 fold change, P=0.0001), epidermal growth factor (EGF, 2.33 fold change, P=0.0004), chemokine (C-C motif) ligand 2 (1.48 fold change, P=0.0004), CD 40 ligand (1.89 fold change, P=0.001), and vitronectin (VTN, 1.28 fold change, P=0.001). Moderate correlations to measures of FSHD disease were seen for CKMB, PLAT, and EGF. Markers in the plasminogen pathway (PLAT, serpin peptidase inhibitor, and VTN) were correlated with each other in FSHD but not healthy controls. CONCLUSIONS Commercial multiplex immune-fluorescent screening is a potentially powerful tool for identifying biomarkers for future FSHD therapeutic trials. Biomarkers identified in this study warrant further study in a larger prospective validation study.
Collapse
Affiliation(s)
- Jeffrey Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | | | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
27
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|
28
|
A mathematical model of skeletal muscle disease and immune response in the mdx mouse. BIOMED RESEARCH INTERNATIONAL 2014; 2014:871810. [PMID: 25013809 PMCID: PMC4071953 DOI: 10.1155/2014/871810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/19/2014] [Indexed: 01/26/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease that results in the death of affected boys by early adulthood. The genetic defect responsible for DMD has been known for over 25 years, yet at present there is neither cure nor effective treatment for DMD. During early disease onset, the mdx mouse has been validated as an animal model for DMD and use of this model has led to valuable but incomplete insights into the disease process. For example, immune cells are thought to be responsible for a significant portion of muscle cell death in the mdx mouse; however, the role and time course of the immune response in the dystrophic process have not been well described. In this paper we constructed a simple mathematical model to investigate the role of the immune response in muscle degeneration and subsequent regeneration in the mdx mouse model of Duchenne muscular dystrophy. Our model suggests that the immune response contributes substantially to the muscle degeneration and regeneration processes. Furthermore, the analysis of the model predicts that the immune system response oscillates throughout the life of the mice, and the damaged fibers are never completely cleared.
Collapse
|
29
|
Bobadilla M, Sainz N, Abizanda G, Orbe J, Rodriguez JA, Páramo JA, Prósper F, Pérez-Ruiz A. The CXCR4/SDF1 axis improves muscle regeneration through MMP-10 activity. Stem Cells Dev 2014; 23:1417-27. [PMID: 24548137 DOI: 10.1089/scd.2013.0491] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The CXCR4/SDF1 axis participates in various cellular processes, including cell migration, which is essential for skeletal muscle repair. Although increasing evidence has confirmed the role of CXCR4/SDF1 in embryonic muscle development, the function of this pathway during adult myogenesis remains to be fully elucidated. In addition, a role for CXCR4 signaling in muscle maintenance and repair has only recently emerged. Here, we have demonstrated that CXCR4 and stromal cell-derived factor-1 (SDF1) are up-regulated in injured muscle, suggesting their involvement in the repair process. In addition, we found that notexin-damaged muscles showed delayed muscle regeneration on treatment with CXCR4 agonist (AMD3100). Accordingly, small-interfering RNA-mediated silencing of SDF1 or CXCR4 in injured muscles impaired muscle regeneration, whereas the addition of SDF1 ligand accelerated repair. Furthermore, we identified that CXCR4/SDF1-regulated muscle repair was dependent on matrix metalloproteinase-10 (MMP-10) activity. Thus, our findings support a model in which MMP-10 activity modulates CXCR4/SDF1 signaling, which is essential for efficient skeletal muscle regeneration.
Collapse
Affiliation(s)
- Miriam Bobadilla
- 1 Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kolmus K, Van Troys M, Van Wesemael K, Ampe C, Haegeman G, Tavernier J, Gerlo S. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms. PLoS One 2014; 9:e90649. [PMID: 24603712 PMCID: PMC3946252 DOI: 10.1371/journal.pone.0090649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/04/2014] [Indexed: 02/04/2023] Open
Abstract
The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1) and β2-adrenoreceptors (β2-ARs). TNF-α activated the canonical Nuclear Factor-κB (NF-κB) pathway and Mitogen-Activated Protein Kinases (MAPKs), culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6) and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB), CREB-binding protein (CBP) and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.
Collapse
Affiliation(s)
- Krzysztof Kolmus
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | | | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Guy Haegeman
- Department of Physiology, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Sarah Gerlo
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
31
|
De Paepe B, De Bleecker JL. Cytokines and chemokines as regulators of skeletal muscle inflammation: presenting the case of Duchenne muscular dystrophy. Mediators Inflamm 2013; 2013:540370. [PMID: 24302815 PMCID: PMC3835490 DOI: 10.1155/2013/540370] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/09/2013] [Indexed: 01/09/2023] Open
Abstract
Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratory for Myopathology, Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jan L. De Bleecker
- Laboratory for Myopathology, Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
32
|
Shin J, Tajrishi MM, Ogura Y, Kumar A. Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 2013; 45:2266-79. [PMID: 23669245 DOI: 10.1016/j.biocel.2013.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 12/11/2022]
Abstract
Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Jonghyun Shin
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
33
|
Raschke S, Eckardt K, Bjørklund Holven K, Jensen J, Eckel J. Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS One 2013; 8:e62008. [PMID: 23637948 PMCID: PMC3634789 DOI: 10.1371/journal.pone.0062008] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/17/2013] [Indexed: 12/15/2022] Open
Abstract
Proteins secreted by skeletal muscle, so called myokines, have been shown to affect muscle physiology and additionally exert systemic effects on other tissues and organs. Although recent profiling studies have identified numerous myokines, the amount of overlap from these studies indicates that the secretome of skeletal muscle is still incompletely characterized. One limitation of the models used is the lack of contraction, a central characteristic of muscle cells. Here we aimed to characterize the secretome of primary human myotubes by cytokine antibody arrays and to identify myokines regulated by contraction, which was induced by electrical pulse stimulation (EPS). In this study, we validated the regulation and release of two selected myokines, namely pigment epithelium derived factor (PEDF) and dipeptidyl peptidase 4 (DPP4), which were recently described as adipokines. This study reveals that both factors, DPP4 and PEDF, are secreted by primary human myotubes. PEDF is a contraction-regulated myokine, although PEDF serum levels from healthy young men decrease after 60 min cycling at VO2max of 70%. Most interestingly, we identified 52 novel myokines which have not been described before to be secreted by skeletal muscle cells. For 48 myokines we show that their release is regulated by contractile activity. This profiling study of the human skeletal muscle secretome expands the number of myokines, identifies novel contraction-regulated myokines and underlines the overlap between proteins which are adipokines as well as myokines.
Collapse
Affiliation(s)
- Silja Raschke
- Paul-Langerhans-Group of Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Kristin Eckardt
- Paul-Langerhans-Group of Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | | | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jürgen Eckel
- Paul-Langerhans-Group of Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| |
Collapse
|
34
|
Pillon NJ, Bilan PJ, Fink LN, Klip A. Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab 2013; 304:E453-65. [PMID: 23277185 DOI: 10.1152/ajpendo.00553.2012] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles contain resident immune cell populations and their abundance and type is altered in inflammatory myopathies, endotoxemia or different types of muscle injury/insult. Within tissues, monocytes differentiate into macrophages and polarize to acquire pro- or anti-inflammatory phenotypes. Skeletal muscle macrophages play a fundamental role in repair and pathogen clearance. These events require a precisely regulated cross-talk between myofibers and immune cells, involving paracrine/autocrine and contact interactions. Skeletal muscle also undergoes continuous repair as a result of contractile activity that involves participation of myokines and anti-inflammatory input. Finally, skeletal muscle is the major site of dietary glucose disposal; therefore, muscle insulin resistance is essential to the development of whole body insulin resistance. Notably, muscle inflammation is emerging as a potential contributor to insulin resistance. Recent reports show that inflammatory macrophage numbers within muscle are elevated during obesity and that muscle cells in vitro can mount autonomous inflammatory responses under metabolic challenge. Here, we review the nature of skeletal muscle inflammation associated with muscle exercise, damage, and regeneration, endotoxin presence, and myopathies, as well as the new evidence of local inflammation arising with obesity that potentially contributes to insulin resistance.
Collapse
Affiliation(s)
- Nicolas J Pillon
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
35
|
De Paepe B, Creus KK, Martin JJ, De Bleecker JL. Upregulation of chemokines and their receptors in Duchenne muscular dystrophy: potential for attenuation of myofiber necrosis. Muscle Nerve 2013; 46:917-25. [PMID: 23225384 DOI: 10.1002/mus.23481] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2012] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In Duchenne muscular dystrophy (DMD), the infiltration of skeletal muscle by immune cells aggravates disease, yet the precise mechanisms behind these inflammatory responses remain poorly understood. Chemotactic cytokines, or chemokines, are considered essential recruiters of inflammatory cells to the tissues. METHODS We assayed chemokine and chemokine receptor expression in DMD muscle biopsies (n = 9, average age 7 years) using immunohistochemistry, immunofluorescence, and in situ hybridization. RESULTS CXCL1, CXCL2, CXCL3, CXCL8, and CXCL11, absent from normal muscle fibers, were induced in DMD myofibers. CXCL11, CXCL12, and the ligand-receptor couple CCL2-CCR2 were upregulated on the blood vessel endothelium of DMD patients. CD68(+) macrophages expressed high levels of CXCL8, CCL2, and CCL5. CONCLUSIONS Our data suggest a possible beneficial role for CXCR1/2/4 ligands in managing muscle fiber damage control and tissue regeneration. Upregulation of endothelial chemokine receptors and CXCL8, CCL2, and CCL5 expression by cytotoxic macrophages may regulate myofiber necrosis.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratory for Myopathology, Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
36
|
Chun JL, O'Brien R, Song MH, Wondrasch BF, Berry SE. Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn-/- but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl Med 2012; 2:68-80. [PMID: 23283493 DOI: 10.5966/sctm.2012-0107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy. DMD patients lack dystrophin protein and develop skeletal muscle pathology and dilated cardiomyopathy (DCM). Approximately 20% succumb to cardiac involvement. We hypothesized that mesoangioblast stem cells (aorta-derived mesoangioblasts [ADMs]) would restore dystrophin and alleviate or prevent DCM in animal models of DMD. ADMs can be induced to express cardiac markers, including Nkx2.5, cardiac tropomyosin, cardiac troponin I, and α-actinin, and adopt cardiomyocyte morphology. Transplantation of ADMs into the heart of mdx/utrn(-/-) mice prior to development of DCM prevented onset of cardiomyopathy, as measured by echocardiography, and resulted in significantly higher CD31 expression, consistent with new vessel formation. Dystrophin-positive cardiomyocytes and increased proliferation of endogenous Nestin(+) cardiac stem cells were detected in ADM-injected heart. Nestin(+) striated cells were also detected in four of five mdx/utrn(-/-) hearts injected with ADMs. In contrast, when ADMs were injected into the heart of aged mdx mice with advanced fibrosis, no functional improvement was detected by echocardiography. Instead, ADMs exacerbated some features of DCM. No dystrophin protein, increase in CD31 expression, or increase in Nestin(+) cell proliferation was detected following ADM injection in aged mdx heart. Dystrophin was observed following transplantation of ADMs into the hearts of young mdx mice, however, suggesting that pathology in aged mdx heart may alter the fate of donor stem cells. In summary, ADMs delay or prevent development of DCM in dystrophin-deficient heart, but timing of stem cell transplantation may be critical for achieving benefit with cell therapy in DMD cardiac muscle.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, Differentiation/metabolism
- Aorta/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Cell Proliferation
- Cells, Cultured
- Coronary Vessels/metabolism
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Dystrophin/metabolism
- Humans
- Intermediate Filament Proteins/metabolism
- Mice
- Mice, Inbred mdx
- Mice, Knockout
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Neovascularization, Physiologic
- Nerve Tissue Proteins/metabolism
- Nestin
- Stem Cell Transplantation
- Stem Cells/metabolism
- Stem Cells/physiology
- Utrophin/genetics
Collapse
Affiliation(s)
- Ju Lan Chun
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
37
|
Mathers JL, Farnfield MM, Garnham AP, Caldow MK, Cameron-Smith D, Peake JM. Early inflammatory and myogenic responses to resistance exercise in the elderly. Muscle Nerve 2012; 46:407-12. [PMID: 22907232 DOI: 10.1002/mus.23317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION AND METHODS This study compared changes in myokine and myogenic genes following resistance exercise (3 sets of 12 repetitions of maximal unilateral knee extension) in 20 elderly men (67.8 ± 1.0 years) and 15 elderly women (67.2 ± 1.5 years). RESULTS Monocyte chemotactic protein (MCP)-1, macrophage inhibitory protein (MIP)-1β, interleukin (IL)-6 and MyoD mRNA increased significantly (P < 0.05), whereas myogenin and myostatin mRNA decreased significantly after exercise in both groups. Macrophage-1 (Mac-1) and MCP-3 mRNA did not change significantly after exercise in either group. MIP-1β, Mac-1 and myostatin mRNA were significantly higher before and after exercise in men compared with women. In contrast, MCP-3 and myogenin mRNA were significantly higher before and after exercise in the women compared with the men. CONCLUSIONS In elderly individuals, gender influences the mRNA expression of certain myokines and growth factors, both at rest and after resistance exercise. These differences may influence muscle regeneration following muscle injury.
Collapse
Affiliation(s)
- Jessica L Mathers
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Jahnke VE, Van Der Meulen JH, Johnston HK, Ghimbovschi S, Partridge T, Hoffman EP, Nagaraju K. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model. Skelet Muscle 2012; 2:16. [PMID: 22908954 PMCID: PMC3482394 DOI: 10.1186/2044-5040-2-16] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/23/2012] [Indexed: 11/21/2022] Open
Abstract
Background Duchenne muscular dystrophy is a genetic disease involving a severe muscle wasting that is characterized by cycles of muscle degeneration/regeneration and culminates in early death in affected boys. Mitochondria are presumed to be involved in the regulation of myoblast proliferation/differentiation; enhancing mitochondrial activity with exercise mimetics (AMPK and PPAR-delta agonists) increases muscle function and inhibits muscle wasting in healthy mice. We therefore asked whether metabolic remodeling agents that increase mitochondrial activity would improve muscle function in mdx mice. Methods Twelve-week-old mdx mice were treated with two different metabolic remodeling agents (GW501516 and AICAR), separately or in combination, for 4 weeks. Extensive systematic behavioral, functional, histological, biochemical, and molecular tests were conducted to assess the drug(s)' effects. Results We found a gain in body and muscle weight in all treated mice. Histologic examination showed a decrease in muscle inflammation and in the number of fibers with central nuclei and an increase in fibers with peripheral nuclei, with significantly fewer activated satellite cells and regenerating fibers. Together with an inhibition of FoXO1 signaling, these results indicated that the treatments reduced ongoing muscle damage. Conclusions The three treatments produced significant improvements in disease phenotype, including an increase in overall behavioral activity and significant gains in forelimb and hind limb strength. Our findings suggest that triggering mitochondrial activity with exercise mimetics improves muscle function in dystrophin-deficient mdx mice.
Collapse
Affiliation(s)
- Vanessa E Jahnke
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Nakagaki WR, Camilli JA. Spontaneous Healing Capacity of Calvarial Bone Defects in mdx Mice. Anat Rec (Hoboken) 2012; 295:590-6. [DOI: 10.1002/ar.22412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/20/2011] [Indexed: 11/09/2022]
|
40
|
Levinger P, Caldow MK, Feller JA, Bartlett JR, Bergman NR, McKenna MJ, Cameron-Smith D, Levinger I. Association between skeletal muscle inflammatory markers and walking pattern in people with knee osteoarthritis. Arthritis Care Res (Hoboken) 2012; 63:1715-21. [PMID: 21905256 DOI: 10.1002/acr.20625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Patients with knee osteoarthritis (OA) are characterized by increased muscle inflammation and altered gait. We investigated the association between proinflammatory mediators in the vastus lateralis and physical function and gait in patients with knee OA. METHODS Nineteen patients with knee OA underwent gait analysis, assessment of self-reported pain and physical function (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]), and a muscle biopsy that was taken during their knee replacement surgery. Muscle was analyzed for cellular protein inflammatory mediators, interleukin-6, monocyte chemotactic protein 1 (MCP-1), p65 NF-κB, signal transducer and activator of transcription 3 (STAT-3), and JNK-1. Sagittal plane knee function, including early stance knee range of motion (ROM) and knee sagittal plane impulse, was measured using a motion analysis system. Pearson's correlation was used to assess relationships between selected variables. RESULTS Significant positive correlations were found between MCP-1 and self-perceived stiffness, physical function, and the total WOMAC score (P < 0.05). MCP-1 was also negatively correlated with early stance knee ROM (r = -0.52, P = 0.023). Reduced velocity was associated with elevated levels of p65 NF-κB and STAT-3 (P < 0.05). Knee sagittal plane impulse was negatively correlated with JNK-1 (P = 0.02), indicating reduction in knee impulse with an increased level of JNK-1. CONCLUSION Increased levels of several proinflammatory mediators were correlated with altered knee function during walking as well as greater physical disability and slower gait velocity. Identification of the cellular and molecular mechanisms associated with muscle inflammation is important to better understand the underlying mechanism responsible for altered gait and function in patients with knee OA.
Collapse
|
41
|
Ahmad N, Welch I, Grange R, Hadway J, Dhanvantari S, Hill D, Lee TY, Hoffman LM. Use of imaging biomarkers to assess perfusion and glucose metabolism in the skeletal muscle of dystrophic mice. BMC Musculoskelet Disord 2011; 12:127. [PMID: 21639930 PMCID: PMC3141608 DOI: 10.1186/1471-2474-12-127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 06/04/2011] [Indexed: 11/10/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate the use of imaging biomarkers (muscle perfusion and metabolism) in a longitudinal assessment of skeletal muscle degeneration/regeneration in two murine models of muscular dystrophy. Methods Wild-type (w.t.) and dystrophic mice (weakly-affected mdx mice that are characterized by a point mutation in dystrophin; severely-affected mdx:utrn-/- (udx) mice that lack functional dystrophin and are null for utrophin) were exercised three times a week for 30 minutes. To follow the progression of DMD, accumulation of 18 F-FDG, a measure of glucose metabolism, in both wild-type and affected mice was measured with a small animal PET scanner (GE eXplore Vista). To assess changes in blood flow and blood volume in the hind limb skeletal muscle, mice were injected intravenously with a CT contrast agent, and imaged with a small animal CT scanner (GE eXplore Ultra). Results In hind limb skeletal muscle of both weakly-affected mdx mice and in severely-affected udx mice, we demonstrate an early, transient increase in both 18F-FDG uptake, and in blood flow and blood volume. Histological analysis of H&E-stained tissue collected from parallel littermates demonstrates the presence of both inflammatory infiltrate and centrally-located nuclei, a classic hallmark of myofibrillar regeneration. In both groups of affected mice, the early transient response was succeeded by a progressive decline in muscle perfusion and metabolism; this was also evidenced histologically. Conclusions The present study demonstrates the utility of non-invasive imaging biomarkers in characterizing muscle degeneration/regeneration in murine models of DMD. These techniques may now provide a promising alternative for assessing both disease progression and the efficacy of new therapeutic treatments in patients.
Collapse
Affiliation(s)
- Nabeel Ahmad
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London N6A4V2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Markert CD, Ambrosio F, Call JA, Grange RW. Exercise and Duchenne muscular dystrophy: toward evidence-based exercise prescription. Muscle Nerve 2011; 43:464-78. [PMID: 21404285 DOI: 10.1002/mus.21987] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To develop a rational framework for answering questions about the role of exercise in Duchenne muscular dystrophy (DMD), we focused on five pathophysiological mechanisms and offer brief hypotheses regarding how exercise may beneficially modulate pertinent cellular and molecular pathways. We aimed to provide an integrative overview of mechanisms of DMD pathology that may improve or worsen as a result of exercise. We also sought to stimulate discussion of what outcomes/dependent variables most appropriately measure these mechanisms, with the purpose of defining criteria for well-designed, controlled studies of exercise in DMD. The five mechanisms include pathways that are both intrinsic and extrinsic to the diseased muscle cells.
Collapse
Affiliation(s)
- Chad D Markert
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
43
|
Henningsen J, Pedersen BK, Kratchmarova I. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. ACTA ACUST UNITED AC 2011; 7:311-21. [DOI: 10.1039/c0mb00209g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Aoki Y, Nakamura A, Yokota T, Saito T, Okazawa H, Nagata T, Takeda S. In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther 2010; 18:1995-2005. [PMID: 20823833 DOI: 10.1038/mt.2010.186] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A promising therapeutic approach for Duchenne muscular dystrophy (DMD) is exon skipping using antisense oligonucleotides (AOs). In-frame deletions of the hinge 3 region of the dystrophin protein, which is encoded by exons 50 and 51, are predicted to cause a variety of phenotypes. Here, we performed functional analyses of muscle in the exon 52-deleted mdx (mdx52) mouse, to predict the function of in-frame dystrophin following exon 51-skipping, which leads to a protein lacking most of hinge 3. A series of AOs based on phosphorodiamidate morpholino oligomers was screened by intramuscular injection into mdx52 mice. The highest splicing efficiency was generated by a two-oligonucleotide cocktail targeting both the 5' and 3' splice sites of exon 51. After a dose-escalation study, we systemically delivered this cocktail into mdx52 mice seven times at weekly intervals. This induced 20-30% of wild-type (WT) dystrophin expression levels in all muscles, and was accompanied by amelioration of the dystrophic pathology and improvement of skeletal muscle function. Because the structure of the restored in-frame dystrophin resembles human dystrophin following exon 51-skipping, our results are encouraging for the ongoing clinical trials for DMD. Moreover, the therapeutic dose required can provide a suggestion of the theoretical equivalent dose for humans.
Collapse
Affiliation(s)
- Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Griffin CA, Apponi LH, Long KK, Pavlath GK. Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci 2010; 123:3052-60. [PMID: 20736301 DOI: 10.1242/jcs.066241] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult regenerative myogenesis is vital for restoring normal tissue structure after muscle injury. Muscle regeneration is dependent on progenitor satellite cells, which proliferate in response to injury, and their progeny differentiate and undergo cell-cell fusion to form regenerating myofibers. Myogenic progenitor cells must be precisely regulated and positioned for proper cell fusion to occur. Chemokines are secreted proteins that share both leukocyte chemoattractant and cytokine-like behavior and affect the physiology of a number of cell types. We investigated the steady-state mRNA levels of 84 chemokines, chemokine receptors and signaling molecules, to obtain a comprehensive view of chemokine expression by muscle cells during myogenesis in vitro. A large number of chemokines and chemokine receptors were expressed by primary mouse muscle cells, especially during times of extensive cell-cell fusion. Furthermore, muscle cells exhibited different migratory behavior throughout myogenesis in vitro. One receptor-ligand pair, CXCR4-SDF-1alpha (CXCL12), regulated migration of both proliferating and terminally differentiated muscle cells, and was necessary for proper fusion of muscle cells. Given the large number of chemokines and chemokine receptors directly expressed by muscle cells, these proteins might have a greater role in myogenesis than previously appreciated.
Collapse
Affiliation(s)
- Christine A Griffin
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
46
|
Chahbouni M, Escames G, Venegas C, Sevilla B, García JA, López LC, Muñoz-Hoyos A, Molina-Carballo A, Acuña-Castroviejo D. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J Pineal Res 2010; 48:282-289. [PMID: 20210854 DOI: 10.1111/j.1600-079x.2010.00752.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD), a lethal disorder characterized by dystrophin absence, courses with chronic inflammation, sarcolemmal damage, and skeletal muscle degeneration. Among the multiple pathogenic mechanisms proposed for DMD, oxidative stress and inflammation are directly involved in the dystrophic process. Unfortunately, there is no current treatment for DMD, and the inflammatory process is an important target for therapies. Based on the antioxidant and anti-inflammatory properties of melatonin, we investigated whether melatonin treatment may reduce the dystrophic process. Ten DMD patients aged 12.8 +/- 0.98 yr, were treated with melatonin (60 mg at 21:00 hr plus 10 mg at 09:00 hr), and plasma levels of lipid peroxidation (LPO), nitrites (NO(x)), interleukin (IL)-1beta, IL-2, IL-6, tumor necrosis factor-alpha, interferon-gamma, and plasma markers of muscle injury, were determined at 3, 6 and 9 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results show a significant increase in LPO, NO(x), and cytokine levels in plasma of DMD patients compared with controls. Melatonin administration reduced these values to control levels at 3 months of treatment, decreasing further 9 months later. In parallel, melatonin also reduced plasma levels of creatine kinase (CK; 50%), lactate dehydrogenase (28%), aspartate aminotransferase (28%), alanine aminotransferase (20%), and myoglobin (13%). These findings strongly support the conclusion that melatonin administration significantly reduced the hyperoxidative and inflammatory process in DMD patients, reducing the muscle degenerative process.
Collapse
Affiliation(s)
- Mariam Chahbouni
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Armilla, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Armilla, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Carmen Venegas
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Armilla, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Belén Sevilla
- Unidad de Gestión Clínica de Pediatría, Hospital Universitario San Cecilio, Granada, Spain
| | - José Antonio García
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Armilla, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Luis C López
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Armilla, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Antonio Muñoz-Hoyos
- Unidad de Gestión Clínica de Pediatría, Hospital Universitario San Cecilio, Granada, Spain
| | | | - Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Armilla, Granada, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Análisis Clínicos, Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
47
|
Salgado DM, Eltit JM, Mansfield K, Panqueba C, Castro D, Vega MR, Xhaja K, Schmidt D, Martin KJ, Allen PD, Rodriguez JA, Dinsmore JH, López JR, Bosch I. Heart and skeletal muscle are targets of dengue virus infection. Pediatr Infect Dis J 2010; 29:238-42. [PMID: 20032806 PMCID: PMC2833338 DOI: 10.1097/inf.0b013e3181bc3c5b] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dengue fever is one of the most significant re-emerging tropical diseases, despite our expanding knowledge of the disease, viral tropism is still not known to target heart tissues or muscle. METHODS A prospective pediatric clinical cohort of 102 dengue hemorrhagic fever patients from Colombia, South America, was followed for 1 year. Clinical diagnosis of myocarditis was routinely performed. Electrocardiograph and echocardiograph analysis were performed to confirm those cases. Immunohistochemistry for detection of dengue virus and inflammatory markers was performed on autopsied heart tissue. In vitro studies of human striated skeletal fibers (myotubes) infected with dengue virus were used as a model for myocyte infection. Measurements of intracellular Ca2+ concentration as well as immunodetection of dengue virus and inflammation markers in infected myotubes were performed. RESULTS Eleven children with dengue hemorrhagic fever presented with symptoms of myocarditis. Widespread viral infection of the heart, myocardial endothelium, and cardiomyocytes, accompanied by inflammation was observed in 1 fatal case. Immunofluorescence confocal microscopy showed that myotubes were infected by dengue virus and had increased expression of the inflammatory genes and protein IP-10. The infected myotubes also had increases in intracellular Ca2+ concentration. CONCLUSIONS Vigorous infection of heart tissues in vivo and striated skeletal cells in vitro are demonstrated. Derangements of Ca2+ storage in the infected cells may directly contribute to the presentation of myocarditis in pediatric patients.
Collapse
Affiliation(s)
- Doris Martha Salgado
- Universidad Surcolombiana and Pediatric Unit, Hospital Universitario de Neiva, Neiva, Colombia
| | - José Miguel Eltit
- Department of Anesthesia, Brigham and Women's Hospital, Boston, MA,Programa de Biología Molecular y Celular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Keith Mansfield
- Department of Pathology, Harvard University, Southborough, MA
| | - César Panqueba
- Universidad Surcolombiana and Pediatric Unit, Hospital Universitario de Neiva, Neiva, Colombia
| | - Dolly Castro
- Universidad Surcolombiana and Pediatric Unit, Hospital Universitario de Neiva, Neiva, Colombia
| | - Martha Rocio Vega
- Universidad Surcolombiana and Pediatric Unit, Hospital Universitario de Neiva, Neiva, Colombia
| | - Kris Xhaja
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA
| | - Diane Schmidt
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA
| | | | - Paul D. Allen
- Department of Anesthesia, Brigham and Women's Hospital, Boston, MA
| | - Jairo Antonio Rodriguez
- Universidad Surcolombiana and Pediatric Unit, Hospital Universitario de Neiva, Neiva, Colombia
| | | | | | - Irene Bosch
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
48
|
Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion RDN, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260:75-82. [PMID: 19917503 DOI: 10.1016/j.cellimm.2009.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/13/2009] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked musculodegenerative condition consisting of an underlying genetic defect whose manifestation is augmented by inflammatory mechanisms. Previous treatment approaches using gene replacement, exon-skipping or allogeneic cell therapy have been relatively unsuccessful. The only intervention to mediate improvement in survival, albeit minor, is glucocorticoid treatment. Given this modality appears to function via suppression of underlying inflammation; we focus this review on the inflammatory response as a target for mesenchymal stem cell (MSC) therapy. In contrast to other cell based therapies attempted in DMD, MSC have the advantages of (a) ability to fuse with and genetically complement dystrophic muscle; (b) possess anti-inflammatory activities; and (c) produce trophic factors that may augment activity of endogenous repair cells. We conclude by describing one practical scenario of stem cell therapy for DMD.
Collapse
|
49
|
Evans NP, Misyak SA, Robertson JL, Bassaganya-Riera J, Grange RW. Immune-mediated mechanisms potentially regulate the disease time-course of duchenne muscular dystrophy and provide targets for therapeutic intervention. PM R 2009; 1:755-68. [PMID: 19695529 DOI: 10.1016/j.pmrj.2009.04.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 11/19/2022]
Abstract
Duchenne muscular dystrophy is a lethal muscle-wasting disease that affects boys. Mutations in the dystrophin gene result in the absence of the dystrophin glycoprotein complex (DGC) from muscle plasma membranes. In healthy muscle fibers, the DGC forms a link between the extracellular matrix and the cytoskeleton to protect against contraction-induced membrane lesions and to regulate cell signaling. The absence of the DGC results in aberrant regulation of inflammatory signaling cascades. Inflammation is a key pathological characteristic of dystrophic muscle lesion formation. However, the role and regulation of this process in the disease time-course has not been sufficiently examined. The transcription factor nuclear factor-kappaB has been shown to contribute to the disease process and is likely involved with increased inflammatory gene expression, including cytokines and chemokines, found in dystrophic muscle. These aberrant signaling processes may regulate the early time-course of inflammatory events that contribute to the onset of disease. This review critically evaluates the possibility that dystrophic muscle lesions in both patients with Duchenne muscular dystrophy and mdx mice are the result of immune-mediated mechanisms that are regulated by inflammatory signaling and also highlights new therapeutic directions.
Collapse
Affiliation(s)
- Nicholas P Evans
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0002, USA.
| | | | | | | | | |
Collapse
|
50
|
Evans NP, Call JA, Bassaganya-Riera J, Robertson JL, Grange RW. Green tea extract decreases muscle pathology and NF-kappaB immunostaining in regenerating muscle fibers of mdx mice. Clin Nutr 2009; 29:391-8. [PMID: 19897286 DOI: 10.1016/j.clnu.2009.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/09/2009] [Accepted: 10/08/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND & AIMS Duchenne muscular dystrophy is a debilitating genetic disorder characterized by severe muscle wasting and early death in afflicted boys. The primary cause of this disease is mutations in the dystrophin gene resulting in massive muscle degeneration and inflammation. The purpose of this study was to determine if dystrophic muscle pathology and inflammation were decreased by pre-natal and early dietary intervention with green tea extract. METHODS Mdx breeder mice and pups were fed diets containing 0.25% or 0.5% green tea extract and compared to untreated mdx and C57BL/6J mice. Serum creatine kinase was assessed as a systemic indicator of muscle damage. Quantitative histopathological and immunohistochemical techniques were used to determine muscle pathology, macrophage infiltration, and NF-kappaB localization. RESULTS Early treatment of mdx mice with green tea extract significantly decreased serum creatine kinase by approximately 85% at age 42 days (P< or =0.05). In these mice, the area of normal fiber morphology was increased by as much as approximately 32% (P< or =0.05). The primary histopathological change was a approximately 21% decrease in the area of regenerating fibers (P< or =0.05). NF-kappaB staining in regenerating muscle fibers was also significantly decreased in green tea extract-treated mdx mice when compared to untreated mdx mice (P< or =0.05). CONCLUSION Early treatment with green tea extract decreases dystrophic muscle pathology potentially by regulating NF-kappaB activity in regenerating muscle fibers.
Collapse
MESH Headings
- Aging
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Biomarkers/blood
- Dose-Response Relationship, Drug
- Female
- Macrophages/drug effects
- Male
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/blood
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/prevention & control
- NF-kappa B/metabolism
- Necrosis/pathology
- Necrosis/prevention & control
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Pregnancy
- Prenatal Exposure Delayed Effects
- Random Allocation
- Regeneration/drug effects
- Tea/chemistry
Collapse
Affiliation(s)
- Nicholas P Evans
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, 338 Wallace Hall, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|