1
|
Xing X, Zhou Z, Peng H, Cheng S. Anticancer role of flubendazole: Effects and molecular mechanisms (Review). Oncol Lett 2024; 28:558. [PMID: 39355784 PMCID: PMC11443308 DOI: 10.3892/ol.2024.14691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Flubendazole, an anthelmintic agent with a well-established safety profile, has emerged as a promising anticancer drug that has demonstrated efficacy against a spectrum of cancer types over the past decade. Its anticancer properties encompass a multifaceted mechanism of action, including the inhibition of cancer cell proliferation, disruption of microtubule dynamics, regulation of cell cycle, autophagy, apoptosis, suppression of cancer stem cell characteristics, promotion of ferroptosis and inhibition of angiogenesis. The present review aimed to provide a comprehensive overview of the molecular underpinnings of the anticancer activity of flubendazole, highlighting key molecules and regulatory pathways. Given the breadth of the potential of flubendazole, further research is imperative to identify additional cancer types sensitive to flubendazole, refine experimental methodologies for enhancing its reliability, uncover synergistic drug combinations, improve its bioavailability and explore innovative administration methods. The present review provided a foundation for future studies on the role of flubendazole in oncology and described its molecular mechanisms of action.
Collapse
Affiliation(s)
- Xing Xing
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Zongning Zhou
- Human Genetic Resources Preservation Center of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hongwei Peng
- Human Genetic Resources Preservation Center of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shaoping Cheng
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
2
|
Sharma S, Sharma P, Singh J, Bahel S, Dutta R, Vig AP, Katnoria JK. Assessing cell viability and genotoxicity in Trigonella foenum-graecum L. exposed to 2100 MHz and 2300 MHz electromagnetic field radiations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109311. [PMID: 39612822 DOI: 10.1016/j.plaphy.2024.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The escalating utilization of wireless electronic devices, notably cellular phones, has led to a substantial augmentation in the levels of electromagnetic field radiation (EMF-r) within the environment. Consequently, an imperative arises to investigate the impact of these radiations on biological systems, specifically on plants. In this study, we examined the genotoxic and cytotoxic effects of 2100 MHz and 2300 MHz EMF-r on the Trigonella foenum-graecum L. test system, evaluating parameters such as percentage germination, growth characteristics, biochemical activities, cell viability and chromosomal aberrations. The roots and shoots of T. foenum-graecum L. were exposed to 2100 MHz and 2300 MHz EMF-r for varied exposure durations (0.5 h, 1 h, 2 h, 4 h and 8 h/day) (at a power density of 10.0 dBm). Substantial reductions in root and shoot lengths were observed after a exposure period of 4 h and 8 h at a frequency of 2100 MHz and 2300 MHz. Genotoxic studies revealed both physiological and clastogenic effects of EMF-r, as evidenced by an increase in chromosomal aberrations (CAs). Biochemical analyses demonstrated elevated malondialdehyde levels and activities of various antioxidative enzymes following 2 h and 4 h per day exposure to 2100 MHz and 2300 MHz EMF-r. Chromosomal aberrations increased by 2.88%-14.86% and 2.84%-18.49% (0.5 h-8 h per day) exposure to 2100 MHz and 2300 MHz, respectively when compared to that of the control group. Exposure to electromagnetic fields (EMF-r) at both 2100 MHz and 2300 MHz resulted in reduced cell viability. This study examines the impact of electromagnetic fields (EMF-r) at 2100 MHz and 2300 MHz on plant root meristems. The results reveal more pronounced genotoxic effects at 2100 MHz, highlighting the frequency-dependent nature of EMF-r impacts. By providing insights into these frequency-specific effects, this research addresses a critical gap in understanding how EMF-r influences plant cellular health and offers guidance for mitigating potential environmental risks from mobile communication technologies.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Priyanka Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Joat Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shalini Bahel
- Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India
| | - Rahil Dutta
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Kaur Katnoria
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
3
|
Sharma S, Bahel S, Kaur Katnoria J. Evaluation of oxidative stress and genotoxicity of 900 MHz electromagnetic radiations using Trigonella foenum-graecum test system. PROTOPLASMA 2023; 260:209-224. [PMID: 35546647 DOI: 10.1007/s00709-022-01768-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Unprecedented growth in the communication sector and expanded usage of the number of wireless devices in the past few decades have resulted in a tremendous increase in emissions of non-ionizing electromagnetic radiations (EMRs) in the environment. The widespread EMRs have induced many significant changes in biological systems leading to oxidative stress as well as DNA damage. Considering this, the present study was planned to study the effects of EMRs at 900 MHz frequency with the power density of 10.0 dBm (0.01 W) at variable exposure periods (0.5 h, 1 h, 2 h, 4 h, and 8 h per day for 7 days) on percentage germination, morphological characteristics, protein content, lipid peroxidation in terms of malondialdehyde content (MDA), and antioxidant defense system of Trigonella foenum-graecum test system. The genotoxicity was also evaluated using similar conditions. It was observed that EMRs significantly decreased the germination percentage at an exposure time of 4 h and 8 h. Fresh weight and dry weight of root and shoot did not show significant variations, while the root and shoot length have shown significant variations for 4 h and 8 h exposure period. Further, EMRs enhanced MDA indicating lipid peroxidation. In response to exposure of EMRs, there was a significant up-regulation in the activities of enzymes such as ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione-S-transferase (GST), guaiacol peroxidase (POD), and glutathione reductase (GR) in the roots and shoots of Trigonella-foenum graecum. The genotoxicity study showed the induction of chromosomal aberrations in root tip cells of the Trigonella foenum-graecum test system. The present study revealed the induction of oxidative stress and genotoxicity of EMRs exposure in the test system.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shalini Bahel
- Department of Electronics Technology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Jatinder Kaur Katnoria
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
4
|
Development of Pyrimidine- Cinnamamide Hybrids as Potential Anticancer agents: A Rational Design Approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Lockhead S, Moskaleva A, Kamenz J, Chen Y, Kang M, Reddy AR, Santos SDM, Ferrell JE. The Apparent Requirement for Protein Synthesis during G2 Phase Is due to Checkpoint Activation. Cell Rep 2021; 32:107901. [PMID: 32668239 PMCID: PMC7802425 DOI: 10.1016/j.celrep.2020.107901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Protein synthesis inhibitors (e.g., cycloheximide) block mitotic entry, suggesting that cell cycle progression requires protein synthesis until right before mitosis. However, cycloheximide is also known to activate p38 mitogen-activated protein kinase (MAPK), which can delay mitotic entry through a G2/M checkpoint. Here, we ask whether checkpoint activation or a requirement for protein synthesis is responsible for the cycloheximide effect. We find that p38 inhibitors prevent cycloheximide-treated cells from arresting in G2 phase and that G2 duration is normal in approximately half of these cells. The Wee1 inhibitor MK-1775 and Wee1/Myt1 inhibitor PD0166285 also prevent cycloheximide from blocking mitotic entry, raising the possibility that Wee1 and/or Myt1 mediate the cycloheximide-induced G2 arrest. Thus, protein synthesis during G2 phase is not required for mitotic entry, at least when the p38 checkpoint pathway is abrogated. However, M phase progression is delayed in cycloheximide-plus-kinase-inhibitor-treated cells, emphasizing the different requirements of protein synthesis for timely entry and completion of mitosis. Protein synthesis inhibitors have long been known to prevent G2 phase cells from entering mitosis. Lockhead et al. demonstrate that this G2 arrest is due to the activation of p38 MAPK, not insufficient protein synthesis, arguing that protein synthesis in G2 phase is not absolutely required for mitotic entry.
Collapse
Affiliation(s)
- Sarah Lockhead
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Alisa Moskaleva
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Julia Kamenz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.
| | - Yuxin Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Minjung Kang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Anay R Reddy
- Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Silvia D M Santos
- Quantitative Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
6
|
The Spindle Assembly Checkpoint Functions during Early Development in Non-Chordate Embryos. Cells 2020; 9:cells9051087. [PMID: 32354040 PMCID: PMC7290841 DOI: 10.3390/cells9051087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, a spindle assembly checkpoint (SAC) ensures accurate chromosome segregation, by monitoring proper attachment of chromosomes to spindle microtubules and delaying mitotic progression if connections are erroneous or absent. The SAC is thought to be relaxed during early embryonic development. Here, we evaluate the checkpoint response to lack of kinetochore-spindle microtubule interactions in early embryos of diverse animal species. Our analysis shows that there are two classes of embryos, either proficient or deficient for SAC activation during cleavage. Sea urchins, mussels, and jellyfish embryos show a prolonged delay in mitotic progression in the absence of spindle microtubules from the first cleavage division, while ascidian and amphioxus embryos, like those of Xenopus and zebrafish, continue mitotic cycling without delay. SAC competence during early development shows no correlation with cell size, chromosome number, or kinetochore to cell volume ratio. We show that SAC proteins Mad1, Mad2, and Mps1 lack the ability to recognize unattached kinetochores in ascidian embryos, indicating that SAC signaling is not diluted but rather actively silenced during early chordate development.
Collapse
|
7
|
Jang SM, Nathans JF, Fu H, Redon CE, Jenkins LM, Thakur BL, Pongor LS, Baris AM, Gross JM, OʹNeill MJ, Indig FE, Cappell SD, Aladjem MI. The RepID-CRL4 ubiquitin ligase complex regulates metaphase to anaphase transition via BUB3 degradation. Nat Commun 2020; 11:24. [PMID: 31911655 PMCID: PMC6946706 DOI: 10.1038/s41467-019-13808-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The spindle assembly checkpoint (SAC) prevents premature chromosome segregation by inactivating the anaphase promoting complex/cyclosome (APC/C) until all chromosomes are properly attached to mitotic spindles. Here we identify a role for Cullin–RING ubiquitin ligase complex 4 (CRL4), known for modulating DNA replication, as a crucial mitotic regulator that triggers the termination of the SAC and enables chromosome segregation. CRL4 is recruited to chromatin by the replication origin binding protein RepID/DCAF14/PHIP. During mitosis, CRL4 dissociates from RepID and replaces it with RB Binding Protein 7 (RBBP7), which ubiquitinates the SAC mediator BUB3 to enable mitotic exit. During interphase, BUB3 is protected from CRL4-mediated degradation by associating with promyelocytic leukemia (PML) nuclear bodies, ensuring its availability upon mitotic onset. Deficiencies in RepID, CRL4 or RBBP7 delay mitotic exit, increase genomic instability and enhance sensitivity to paclitaxel, a microtubule stabilizer and anti-tumor drug. The spindle assembly checkpoint (SAC) safeguards chromosome segregation by regulating the anaphase promoting complex/cyclosome (APC/C), allowing chromosomes to correctly attach to mitotic spindles. Here the authors reveal a role for Cullin–RING ubiquitin ligase complex 4 (CRL4) in regulating metaphase to anaphase transition via BUB3 degradation.
Collapse
Affiliation(s)
- Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Jenny F Nathans
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Lőrinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Adrian M Baris
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Jacob M Gross
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Maura J OʹNeill
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| |
Collapse
|
8
|
Chandel S, Kaur S, Issa M, Singh HP, Batish DR, Kohli RK. Appraisal of immediate and late effects of mobile phone radiations at 2100 MHz on mitotic activity and DNA integrity in root meristems of Allium cepa. PROTOPLASMA 2019; 256:1399-1407. [PMID: 31115694 DOI: 10.1007/s00709-019-01386-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
The present study evaluated the potential of 2100 MHz radiofrequency radiations to act as cytotoxic and genotoxic agent. Fresh onion (Allium cepa L.) roots were exposed to electromagnetic field radiations (EMF-r) for different durations (1 h and 4 h) and evaluated for mitotic index (MI), phase index, chromosomal aberrations, and DNA damage. DNA damage was investigated with the help of the comet assay by assessing various parameters like % head DNA (HDNA), % tail DNA (TDNA), tail moment (TM), and olive tail moment (OTM). Effects of EMF-r exposure were also compared with that of methyl methanesulfonate (MMS; 90 μM), which acted as a positive control. The post-exposure effects of EMF-r after providing the test plants with an acclimatization period of 24 h were also evaluated. Compared to the control, a significant increase in the MI and aberration percentage was recorded upon 4 h of exposure. However, no specific trend of phase index in response to exposure was detected. EMF-r exposure incited DNA damage with a significant decrease in HDNA accompanied by an increase in TDNA upon exposure of 4 h. However, TM and OTM did not change significantly upon exposure as compared to that of control. Analysis of the post-exposure effects of EMF-r did not show any significant change/recovery. Our data, thus, suggest the potential cytotoxic and genotoxic nature of 2100 MHz EMF-r. Our study bears great significance in view of the swiftly emergent EMF-r in the surrounding environment and their potential for inciting aberrations at the chromosomal level, thus posing a genetic hazard.
Collapse
Affiliation(s)
- Shikha Chandel
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Mohd Issa
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | | | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160014, India
- Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
9
|
Arroyo M, Kuriyama R, Guerrero I, Keifenheim D, Cañuelo A, Calahorra J, Sánchez A, Clarke DJ, Marchal JA. MCPH1 is essential for cellular adaptation to the G 2-phase decatenation checkpoint. FASEB J 2019; 33:8363-8374. [PMID: 30964711 DOI: 10.1096/fj.201802009rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular checkpoints controlling entry into mitosis monitor the integrity of the DNA and delay mitosis onset until the alteration is fully repaired. However, this canonical response can weaken, leading to a spontaneous bypass of the checkpoint, a process referred to as checkpoint adaptation. Here, we have investigated the contribution of microcephalin 1 (MCPH1), mutated in primary microcephaly, to the decatenation checkpoint, a less-understood G2 pathway that delays entry into mitosis until chromosomes are properly disentangled. Our results demonstrate that, although MCPH1 function is dispensable for activation and maintenance of the decatenation checkpoint, it is required for the adaptive response that bypasses the topoisomerase II inhibition----mediated G2 arrest. MCPH1, however, does not confer adaptation to the G2 arrest triggered by the ataxia telangiectasia mutated- and ataxia telangiectasia and rad3 related-based DNA damage checkpoint. In addition to revealing a new role for MCPH1 in cell cycle control, our study provides new insights into the genetic requirements that allow cellular adaptation to G2 checkpoints, a process that remains poorly understood.-Arroyo, M., Kuriyama, R., Guerrero, I., Keifenheim, D., Cañuelo, A., Calahorra, J., Sánchez, A., Clarke, D. J., Marchal, J. A. MCPH1 is essential for cellular adaptation to the G2-phase decatenation checkpoint.
Collapse
Affiliation(s)
- María Arroyo
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Ryoko Kuriyama
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Minneapolis, Minneapolis, Minnesota, USA
| | - Israel Guerrero
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA Centro El Toruño), El Puerto de Santa María, Spain
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Minneapolis, Minneapolis, Minnesota, USA
| | - Ana Cañuelo
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Jesús Calahorra
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Antonio Sánchez
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| | - Duncan J Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Minneapolis, Minneapolis, Minnesota, USA
| | - J Alberto Marchal
- Departamento de Biología Experimental, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
10
|
Gasic I, Boswell SA, Mitchison TJ. Tubulin mRNA stability is sensitive to change in microtubule dynamics caused by multiple physiological and toxic cues. PLoS Biol 2019; 17:e3000225. [PMID: 30964857 PMCID: PMC6474637 DOI: 10.1371/journal.pbio.3000225] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/19/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
The localization, mass, and dynamics of microtubules are important in many processes. Cells may actively monitor the state of their microtubules and respond to perturbation, but how this occurs outside mitosis is poorly understood. We used gene-expression analysis in quiescent cells to analyze responses to subtle and strong perturbation of microtubules. Genes encoding α-, β, and γ-tubulins (TUBAs, TUBBs, and TUBGs), but not δ- or ε-tubulins (TUBDs or TUBEs), exhibited the strongest differential expression response to microtubule-stabilizing versus destabilizing drugs. Quantitative PCR of exon versus intron sequences confirmed that these changes were caused by regulation of tubulin mRNA stability and not transcription. Using tubulin mRNA stability as a signature to query the Gene Expression Omnibus (GEO) database, we find that tubulin genes respond to toxins known to damage microtubules. Importantly, we find many other experimental perturbations, including multiple signaling and metabolic inputs that trigger tubulin differential expression, suggesting their novel, to our knowledge, role in the regulation of the microtubule cytoskeleton. Mechanistic follow-up confirms that one important physiological signal, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activity, indeed regulates tubulin mRNA stability via changes in microtubule dynamics. We propose that tubulin gene expression is regulated as part of many coordinated biological responses, with wide implications in physiology and toxicology. Furthermore, we present a new way to discover microtubule regulation using transcriptomics.
Collapse
Affiliation(s)
- Ivana Gasic
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarah A. Boswell
- Department of Systems Biology, Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Timothy J. Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Parida PK, Mahata B, Santra A, Chakraborty S, Ghosh Z, Raha S, Misra AK, Biswas K, Jana K. Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis. Cell Death Dis 2018; 9:448. [PMID: 29670107 PMCID: PMC5906627 DOI: 10.1038/s41419-018-0476-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 01/02/2023]
Abstract
Resveratrol, a trans-stilbene polyphenolic compound and its synthetic analogs are widely used bioactive molecules due to their remarkable chemo-preventive potential. Here, we have identified a novel synthetic trans-stilbene compound, Z-DAN-11 ((Z)-3-(3, 4-dimethoxyphenyl)-2-(3, 4, 5-trimethoxyphenyl) acrylonitrile) which shows remarkable efficacy in blocking tumor growth and progression both in vitro and in vivo. Z-DAN-11 inhibits proliferation of cancer cells in vitro through microtubule depolymerization that induced G2/M arrest and consequently leads to apoptotic cell death. More importantly, Z-DAN-11 shows limited cytotoxicity to normal cells as compared to cancer cells. Quite interestingly, we have found that Z-DAN-11-mediated ROS production helps in dramatic alteration in the mitochondrial redox status which critically contributes to the apoptosis. Mechanistic studies reveal that Z-DAN-11 induces the expression of pro-apoptotic proteins and decreases anti-apoptotic protein expression that decisively helps in the activation of caspase 8, caspase 9, and caspase 3, leading to cleavage of PARP1 and cell death via intrinsic and extrinsic pathways of apoptosis. Moreover, Z-DAN-11-mediated apoptosis of cancer cells is through a partial p53-dependent pathway, since both HCT116 p53-/- cells as well as p53-silenced cells (siRNA) were able to block apoptosis partially but significantly. Importantly, Z-DAN-11 also imparts its anti-tumorigenic effect by inhibiting clonogenic property and anchorage-independent growth potential of cancer cells at concentrations at least 10 times lower than that required for inducing apoptosis. Finally, in vivo study with immuno-competent syngeneic mice shows Z-DAN-11 to be able to impede tumor progression without any adverse side-effects. Hence, we identified a novel, synthetic trans-stilbene derivative with anti-tumorigenic potential which might tremendously help in devising potential therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Pravat Kumar Parida
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Barun Mahata
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Abhisek Santra
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Sohini Chakraborty
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Zhumur Ghosh
- The Bioinformatics Center, Bose Institute, Kolkata, West Bengal, 700054, India
| | | | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12, C.I.T. Scheme VIIM, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
12
|
Dilworth D, Gudavicius G, Xu X, Boyce AKJ, O’Sullivan C, Serpa JJ, Bilenky M, Petrochenko EV, Borchers CH, Hirst M, Swayne LA, Howard P, Nelson CJ. The prolyl isomerase FKBP25 regulates microtubule polymerization impacting cell cycle progression and genomic stability. Nucleic Acids Res 2018; 46:2459-2478. [PMID: 29361176 PMCID: PMC5861405 DOI: 10.1093/nar/gky008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/14/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022] Open
Abstract
FK506 binding proteins (FKBPs) catalyze the interconversion of cis-trans proline conformers in proteins. Importantly, FK506 drugs have anti-cancer and neuroprotective properties, but the effectors and mechanisms underpinning these properties are not well understood because the cellular function(s) of most FKBP proteins are unclear. FKBP25 is a nuclear prolyl isomerase that interacts directly with nucleic acids and is associated with several DNA/RNA binding proteins. Here, we show the catalytic FKBP domain binds microtubules (MTs) directly to promote their polymerization and stabilize the MT network. Furthermore, FKBP25 associates with the mitotic spindle and regulates entry into mitosis. This interaction is important for mitotic spindle dynamics, as we observe increased chromosome instability in FKBP25 knockdown cells. Finally, we provide evidence that FKBP25 association with chromatin is cell-cycle regulated by Protein Kinase C phosphorylation. This disrupts FKBP25-DNA contacts during mitosis while maintaining its interaction with the spindle apparatus. Collectively, these data support a model where FKBP25 association with chromatin and MTs is carefully choreographed to ensure faithful genome duplication. Additionally, they highlight that FKBP25 is a MT-associated FK506 receptor and potential therapeutic target in MT-associated diseases.
Collapse
Affiliation(s)
- David Dilworth
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Geoff Gudavicius
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Xiaoxue Xu
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Connor O’Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Jason J Serpa
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Misha Bilenky
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Evgeniy V Petrochenko
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, BC, V8Z 7X8, Canada
| | - Martin Hirst
- BC Cancer Agency Genome Sciences Centre and the Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Perry Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Christopher J Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
13
|
Brown DM, Chan YA, Desai PJ, Grzesik P, Oldfield LM, Vashee S, Way JC, Silver PA, Glass JI. Efficient size-independent chromosome delivery from yeast to cultured cell lines. Nucleic Acids Res 2017; 45:e50. [PMID: 27980064 PMCID: PMC5397165 DOI: 10.1093/nar/gkw1252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023] Open
Abstract
The delivery of large DNA vectors (>100 000 bp) remains a limiting step in the engineering of mammalian cells and the development of human artificial chromosomes (HACs). Yeast is commonly used to assemble genetic constructs in the megabase size range, and has previously been used to transfer constructs directly into cultured cells. We improved this method to efficiently deliver large (1.1 Mb) synthetic yeast centromeric plasmids (YCps) to cultured cell lines at rates similar to that of 12 kb YCps. Synchronizing cells in mitosis improved the delivery efficiency by 10-fold and a statistical design of experiments approach was employed to boost the vector delivery rate by nearly 300-fold from 1/250 000 to 1/840 cells, and subsequently optimize the delivery process for multiple mammalian, avian, and insect cell lines. We adapted this method to rapidly deliver a 152 kb herpes simplex virus 1 genome cloned in yeast into mammalian cells to produce infectious virus.
Collapse
Affiliation(s)
- David M Brown
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yujia A Chan
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Prashant J Desai
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins, Viral Oncology Program, Baltimore, MD 21231, USA
| | - Peter Grzesik
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins, Viral Oncology Program, Baltimore, MD 21231, USA
| | - Lauren M Oldfield
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - John I Glass
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| |
Collapse
|
14
|
Feringa FM, Krenning L, Koch A, van den Berg J, van den Broek B, Jalink K, Medema RH. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat Commun 2016; 7:12618. [PMID: 27561326 PMCID: PMC5007458 DOI: 10.1038/ncomms12618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Activation of the DNA-damage response can lead to the induction of an arrest at various stages in the cell cycle. These arrests are reversible in nature, unless the damage is too excessive. Here we find that checkpoint reversibility is lost in cells that are in very late G2, but not yet fully committed to enter mitosis (antephase). We show that antephase cells exit the cell cycle and enter senescence at levels of DNA damage that induce a reversible arrest in early G2. We show that checkpoint reversibility critically depends on the presence of the APC/C inhibitor Emi1, which is degraded just before mitosis. Importantly, ablation of the cell cycle withdrawal mechanism in antephase promotes cell division in the presence of broken chromosomes. Thus, our data uncover a novel, but irreversible, DNA-damage response in antephase that is required to prevent the propagation of DNA damage during cell division.
Collapse
Affiliation(s)
- Femke M Feringa
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lenno Krenning
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands.,Hubrecht Institute, The Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht 3584CT, The Netherlands
| | - André Koch
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Jeroen van den Berg
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - René H Medema
- Division of Cell Biology I and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
15
|
Ferrari S, Gentili C. Maintaining Genome Stability in Defiance of Mitotic DNA Damage. Front Genet 2016; 7:128. [PMID: 27493659 PMCID: PMC4954828 DOI: 10.3389/fgene.2016.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| | - Christian Gentili
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| |
Collapse
|
16
|
Fong CS, Mazo G, Das T, Goodman J, Kim M, O'Rourke BP, Izquierdo D, Tsou MFB. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife 2016; 5. [PMID: 27371829 PMCID: PMC4946878 DOI: 10.7554/elife.16270] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/01/2016] [Indexed: 01/05/2023] Open
Abstract
Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency. DOI:http://dx.doi.org/10.7554/eLife.16270.001
Collapse
Affiliation(s)
- Chii Shyang Fong
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Gregory Mazo
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tuhin Das
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | | | - Minhee Kim
- BCMB Graduate Program, Weill Cornell Medical School, New York, United States
| | - Brian P O'Rourke
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Denisse Izquierdo
- BCMB Graduate Program, Weill Cornell Medical School, New York, United States
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,BCMB Graduate Program, Weill Cornell Medical School, New York, United States
| |
Collapse
|
17
|
CDK-1 Inhibition in G2 Stabilizes Kinetochore-Microtubules in the following Mitosis. PLoS One 2016; 11:e0157491. [PMID: 27281342 PMCID: PMC4900577 DOI: 10.1371/journal.pone.0157491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022] Open
Abstract
Cell proliferation is driven by cyclical activation of cyclin-dependent kinases (CDKs), which produce distinct biochemical cell cycle phases. Mitosis (M phase) is orchestrated by CDK-1, complexed with mitotic cyclins. During M phase, chromosomes are segregated by a bipolar array of microtubules called the mitotic spindle. The essential bipolarity of the mitotic spindle is established by the kinesin-5 Eg5, but factors influencing the maintenance of spindle bipolarity are not fully understood. Here, we describe an unexpected link between inhibiting CDK-1 before mitosis and bipolar spindle maintenance. Spindles in human RPE-1 cells normally collapse to monopolar structures when Eg5 is inhibited at metaphase. However, we found that inhibition of CDK-1 in the G2 phase of the cell cycle improved the ability of RPE-1 cells to maintain spindle bipolarity without Eg5 activity in the mitosis immediately after release from CDK-1 inhibition. This improved bipolarity maintenance correlated with an increase in the stability of kinetochore-microtubules, the subset of microtubules that link chromosomes to the spindle. The improvement in bipolarity maintenance after CDK-1 inhibition in G2 required both the kinesin-12 Kif15 and increased stability of kinetochore-microtubules. Consistent with increased kinetochore-microtubule stability, we find that inhibition of CDK-1 in G2 impairs mitotic fidelity by increasing the incidence of lagging chromosomes in anaphase. These results suggest that inhibition of CDK-1 in G2 causes unpredicted effects in mitosis, even after CDK-1 inhibition is relieved.
Collapse
|
18
|
Depletion of the LINC complex disrupts cytoskeleton dynamics and meiotic resumption in mouse oocytes. Sci Rep 2016; 6:20408. [PMID: 26842404 PMCID: PMC4740751 DOI: 10.1038/srep20408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/04/2016] [Indexed: 01/17/2023] Open
Abstract
The SUN (Sad-1/UNC-84) and KASH (Klarsicht/ANC-1/Syne/homology) proteins constitute the linker of nucleoskeleton and cytoskeleton (LINC) complex on the nuclear envelope. To date, the SUN1/KASH5 complex is known to function as meiotic-specific factors. In this study, gene-silencing methods were used to explore the roles of SUN1 and KASH5 in mouse oocytes after prophase. SUN1 was detected throughout the nucleus; however, KASH5 was dispersed through the cell. After germinal vesicle breakdown (GVBD), SUN1 and KASH5 migrated during spindle formation and localized to the spindle poles at the MII stage. Most oocytes were arrested at the germinal vesicle (GV) stage after depletion of either SUN1 or KASH5. The DNA damage response was triggered in SUN1-depleted oocytes and thus gave rise to the G2/M checkpoint protein, p-CHK1. Oocytes that underwent GVBD had relatively small and abnormal spindles and lower levels of cytoplasm F-actin mesh. Immunofluorescence results also indicated the dislocation of pericentrin and P150Glued after SUN1 or KASH5 depletion. Furthermore, KASH5 localized exclusively near the oocyte cortex after SUN1 depletion, but SUN1 localization was unaffected in KASH5-depleted oocytes. Taken together, the results suggest that SUN1 and KASH5 are essential factors in the regulation of meiotic resumption and spindle formation.
Collapse
|
19
|
Silva VC, Cassimeris L. Stathmin and microtubules regulate mitotic entry in HeLa cells by controlling activation of both Aurora kinase A and Plk1. Mol Biol Cell 2013; 24:3819-31. [PMID: 24152729 PMCID: PMC3861079 DOI: 10.1091/mbc.e13-02-0108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
Depletion of stathmin, a microtubule (MT) destabilizer, delays mitotic entry by ∼4 h in HeLa cells. Stathmin depletion reduced the activity of CDC25 and its upstream activators, Aurora A and Plk1. Chemical inhibition of both Aurora A and Plk1 was sufficient to delay mitotic entry by 4 h, while inhibiting either kinase alone did not cause a delay. Aurora A and Plk1 are likely regulated downstream of stathmin, because the combination of stathmin knockdown and inhibition of Aurora A and Plk1 was not additive and again delayed mitotic entry by 4 h. Aurora A localization to the centrosome required MTs, while stathmin depletion spread its localization beyond that of γ-tubulin, indicating an MT-dependent regulation of Aurora A activation. Plk1 was inhibited by excess stathmin, detected in in vitro assays and cells overexpressing stathmin-cyan fluorescent protein. Recruitment of Plk1 to the centrosome was delayed in stathmin-depleted cells, independent of MTs. It has been shown that depolymerizing MTs with nocodazole abrogates the stathmin-depletion induced cell cycle delay; in this study, depolymerization with nocodazole restored Plk1 activity to near normal levels, demonstrating that MTs also contribute to Plk1 activation. These data demonstrate that stathmin regulates mitotic entry, partially via MTs, to control localization and activation of both Aurora A and Plk1.
Collapse
Affiliation(s)
- Victoria C. Silva
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
20
|
La Regina G, Bai R, Rensen WM, Di Cesare E, Coluccia A, Piscitelli F, Famiglini V, Reggio A, Nalli M, Pelliccia S, Pozzo ED, Costa B, Granata I, Porta A, Maresca B, Soriani A, Iannitto ML, Santoni A, Li J, Cona MM, Chen F, Ni Y, Brancale A, Dondio G, Vultaggio S, Varasi M, Mercurio C, Martini C, Hamel E, Lavia P, Novellino E, Silvestri R. Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors. J Med Chem 2013; 56:123-49. [PMID: 23214452 PMCID: PMC3563301 DOI: 10.1021/jm3013097] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
New arylthioindole derivatives having different cyclic substituents at position 2 of the indole were synthesized as anticancer agents. Several compounds inhibited tubulin polymerization at submicromolar concentration and inhibited cell growth at low nanomolar concentrations. Compounds 18 and 57 were superior to the previously synthesized 5. Compound 18 was exceptionally potent as an inhibitor of cell growth: it showed IC₅₀ = 1.0 nM in MCF-7 cells, and it was uniformly active in the whole panel of cancer cells and superior to colchicine and combretastatin A-4. Compounds 18, 20, 55, and 57 were notably more potent than vinorelbine, vinblastine, and paclitaxel in the NCI/ADR-RES and Messa/Dx5 cell lines, which overexpress P-glycoprotein. Compounds 18 and 57 showed initial vascular disrupting effects in a tumor model of liver rhabdomyosarcomas at 15 mg/kg intravenous dosage. Derivative 18 showed water solubility and higher metabolic stability than 5 in human liver microsomes.
Collapse
Affiliation(s)
- Giuseppe La Regina
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Whilelmina Maria Rensen
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Sapienza Università di Roma, Via degli Apuli 4, I-00185 Roma, Italy
| | - Erica Di Cesare
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Sapienza Università di Roma, Via degli Apuli 4, I-00185 Roma, Italy
| | - Antonio Coluccia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Francesco Piscitelli
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Valeria Famiglini
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Alessia Reggio
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Marianna Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Sveva Pelliccia
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Via Domenico Montesano 49, I-80131, Napoli, Italy
| | - Eleonora Da Pozzo
- Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Barbara Costa
- Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Ilaria Granata
- Dipartimento di Scienze Farmaceutiche, Sezione Biomedica, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano, Salerno, Italy
| | - Amalia Porta
- Dipartimento di Scienze Farmaceutiche, Sezione Biomedica, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano, Salerno, Italy
| | - Bruno Maresca
- Dipartimento di Scienze Farmaceutiche, Sezione Biomedica, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Soriani
- Dipartimento di Medicina Sperimentale e Patologia, Sapienza Università di Roma, Viale Regina Elena 324, I-00161 Roma, Italy
| | - Maria Luisa Iannitto
- Dipartimento di Medicina Sperimentale e Patologia, Sapienza Università di Roma, Viale Regina Elena 324, I-00161 Roma, Italy
| | - Angela Santoni
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Sapienza Università di Roma, Via degli Apuli 4, I-00185 Roma, Italy
- Dipartimento di Medicina Sperimentale e Patologia, Sapienza Università di Roma, Viale Regina Elena 324, I-00161 Roma, Italy
| | - Junjie Li
- Theragnostic Laboratory, Department of Imaging and Pathology, Faculty of Medicine, Biomedical Sciences Group, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Marlein Miranda Cona
- Theragnostic Laboratory, Department of Imaging and Pathology, Faculty of Medicine, Biomedical Sciences Group, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Feng Chen
- Theragnostic Laboratory, Department of Imaging and Pathology, Faculty of Medicine, Biomedical Sciences Group, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Yicheng Ni
- Theragnostic Laboratory, Department of Imaging and Pathology, Faculty of Medicine, Biomedical Sciences Group, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Andrea Brancale
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, U.K
| | - Giulio Dondio
- NiKem Research Srl, Via Zambeletti 25, I-20021 Baranzate, Milano, Italy
| | | | - Mario Varasi
- European Institute of Oncology, Via Adamello 16, I-20139 Milano, Italy
| | - Ciro Mercurio
- Genextra Group, DAC SRL, Via Adamello 16, I-20139 Milano, Italy
| | - Claudia Martini
- Department of Psychiatry, Neurobiology, Pharmacology, and Biotechnology, University of Pisa, Via Bonanno Pisano 6, I-56126 Pisa, Italy
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, c/o Sapienza Università di Roma, Via degli Apuli 4, I-00185 Roma, Italy
| | - Ettore Novellino
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Via Domenico Montesano 49, I-80131, Napoli, Italy
| | - Romano Silvestri
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur—Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
21
|
Thayer MJ. Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes. Bioessays 2012; 34:760-70. [PMID: 22706734 DOI: 10.1002/bies.201200035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes.
Collapse
Affiliation(s)
- Mathew J Thayer
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
22
|
c-Jun N-terminal kinase mediates microtubule-depolymerizing agent-induced microtubule depolymerization and G2/M arrest in MCF-7 breast cancer cells. Anticancer Drugs 2012; 23:98-107. [PMID: 21968419 DOI: 10.1097/cad.0b013e32834bc978] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microtubule-binding agents (MBAs) form one of the most important anticancer-drug families, but their molecular mechanisms are poorly understood. MBAs such as paclitaxel (PTX) stabilize microtubules, whereas XRP44X (a novel pyrazole) and combretastatins A4 (CA4) destabilize microtubules. These two different types of MBAs have potent antitumor activity. Comparisons of their effects on signal transduction and cellular responses will help uncover the molecular mechanism by which MBAs affect tumor cells. We used MCF-7 cells to compare the effects of the three MBAs on the cytoskeleton, cell cycle distribution, and activation of the three major mitogen-activated protein kinase (MAPK) signaling cascades [extracellular signal-related kinases, c-Jun N-terminal kinase (JNK), and p38 MAPK] using pharmacological inhibitors. The G2/M phase arrest was induced following polymerization of microtubules by PTX and depolymerization by XRP44X and CA4. The three major MAPKs were rapidly activated by XRP44X, and extracellular signal-related kinases and p38 by PTX, whereas JNK did not quickly respond to PTX. Pharmacological inhibitors indicated that activation of JNK is principally required for XRP44X- and CA4-induced microtubule depolymerization and G2/M phase arrest. Our results suggest that early phosphorylation of JNK is a specific mechanism involved in microtubule depolymerization by certain MBAs.
Collapse
|
23
|
Carney BK, Caruso Silva V, Cassimeris L. The microtubule cytoskeleton is required for a G2 cell cycle delay in cancer cells lacking stathmin and p53. Cytoskeleton (Hoboken) 2012; 69:278-89. [PMID: 22407961 DOI: 10.1002/cm.21024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 02/24/2012] [Accepted: 02/29/2012] [Indexed: 12/25/2022]
Abstract
In several cancer cell lines, depleting the microtubule (MT)-destabilizing protein stathmin/oncoprotein18 leads to a G2 cell cycle delay and apoptosis. These phenotypes are observed only in synergy with low levels of p53, but the pathway(s) activated by stathmin depletion to delay the cell cycle are unknown. We found that stathmin depletion caused greater MT stability in synergy with loss of p53, measured by the levels of acetylated α-tubulin and the rate of centrosomal MT nucleation. Nocodazole or vinblastine-induced MT depolymerization abrogated the stathmin-depletion induced G2 delay, measured by the percentage of cells staining positive for several markers (TPX2, CDK1 with inhibitory phosphorylation), indicating that MTs are required to lengthen G2. Live cell imaging showed that stathmin depletion increased time in G2 without an impact on the duration of mitosis, indicating that the longer interphase duration is not simply a consequence of a previous slowed mitosis. In contrast, stabilization of MTs with paclitaxel (8 nM) slowed mitosis without lengthening the duration of interphase, demonstrating that increased MT stability alone is not sufficient to delay cells in G2.
Collapse
Affiliation(s)
- Bruce K Carney
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | |
Collapse
|
24
|
Place SP, Smith BW. Effects of seawater acidification on cell cycle control mechanisms in Strongylocentrotus purpuratus embryos. PLoS One 2012; 7:e34068. [PMID: 22479526 PMCID: PMC3313954 DOI: 10.1371/journal.pone.0034068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 02/24/2012] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown fertilization and development of marine species can be significantly inhibited when the pH of sea water is artificially lowered. Little mechanistic understanding of these effects exists to date, but previous work has linked developmental inhibition to reduced cleavage rates in embryos. To explore this further, we tested whether common cell cycle checkpoints were involved using three cellular biomarkers of cell cycle progression: (1) the onset of DNA synthesis, (2) production of a mitotic regulator, cyclin B, and (3) formation of the mitotic spindle. We grew embryos of the purple sea urchin, Strongylocentrotus purpuratus, in seawater artifically buffered to a pH of ∼7.0, 7.5, and 8.0 by CO(2) infusion. Our results suggest the reduced rates of mitotic cleavage are likely unrelated to common cell cycle checkpoints. We found no significant differences in the three biomarkers assessed between pH treatments, indicating the embryos progress through the G(1)/S, G(2)/M and metaphase/anaphase transitions at relatively similar rates. These data suggest low pH environments may not impact developmental programs directly, but may act through secondary mechanisms such as cellular energetics.
Collapse
Affiliation(s)
- Sean P Place
- Department of Biological Sciences and The Environment and Sustainability Program, University of South Carolina, Columbia, South Carolina, United States of America.
| | | |
Collapse
|
25
|
Abstract
Diverse cell types have been used to study various aspects of mitosis. Early investigators focused primarily on cells that were suited to morphological studies. More recently, experimental systems have been developed to study both morphology and the molecular basis of chromosome motion and cell-cycle regulation. This article briefly reviews cell types that have been used to study mitosis in live cells. It then discusses cell lines that have been used to examine mitosis in cultured mammalian cells and summarizes the methods that are used to culture and study these cells.
Collapse
|
26
|
Oberoi J, Richards MW, Crumpler S, Brown N, Blagg J, Bayliss R. Structural basis of poly(ADP-ribose) recognition by the multizinc binding domain of checkpoint with forkhead-associated and RING Domains (CHFR). J Biol Chem 2010; 285:39348-58. [PMID: 20880844 PMCID: PMC2998101 DOI: 10.1074/jbc.m110.159855] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/26/2010] [Indexed: 01/07/2023] Open
Abstract
Cellular stress in early mitosis activates the antephase checkpoint, resulting in the decondensation of chromosomes and delayed mitotic progression. Checkpoint with forkhead-associated and RING domains (CHFR) is central to this checkpoint, and its activity is ablated in many tumors and cancer cell lines through promoter hypermethylation or mutation. The interaction between the PAR-binding zinc finger (PBZ) of CHFR and poly(ADP-ribose) (PAR) is crucial for a functional antephase checkpoint. We determined the crystal structure of the cysteine-rich region of human CHFR (amino acids 425-664) to 1.9 Å resolution, which revealed a multizinc binding domain of elaborate topology within which the PBZ is embedded. The PBZ of CHFR closely resembles the analogous motifs from aprataxin-like factor and CG1218-PA, which lie within unstructured regions of their respective proteins. Based on co-crystal structures of CHFR bound to several different PAR-like ligands (adenosine 5'-diphosphoribose, adenosine monophosphate, and P(1)P(2)-diadenosine 5'-pyrophosphate), we made a model of the CHFR-PAR interaction, which we validated using site-specific mutagenesis and surface plasmon resonance. The PBZ motif of CHFR recognizes two adenine-containing subunits of PAR and the phosphate backbone that connects them. More generally, PBZ motifs may recognize different numbers of PAR subunits as required to carry out their functions.
Collapse
Affiliation(s)
- Jasmeen Oberoi
- From the Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom and
| | - Mark W. Richards
- From the Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom and
| | - Simon Crumpler
- the Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Nathan Brown
- the Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Julian Blagg
- the Cancer Research UK Cancer Therapeutics Unit, Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | - Richard Bayliss
- From the Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom and
| |
Collapse
|
27
|
Uetake Y, Sluder G. Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol 2010; 20:1666-71. [PMID: 20832310 DOI: 10.1016/j.cub.2010.08.018] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 06/15/2010] [Accepted: 08/09/2010] [Indexed: 01/11/2023]
Abstract
The mitotic checkpoint maintains genomic stability by blocking the metaphase-anaphase transition until all kinetochores attach to spindle microtubules [1, 2]. However, some defects are not detected by this checkpoint. With low concentrations of microtubule-targeting agents, the checkpoint eventually becomes satisfied, though the spindles may be short and/or multipolar [3, 4] and the fidelity of chromosome distribution and cleavage completion are compromised. In real life, environmental toxins, radiation, or chemotherapeutic agents may lead to completed but inaccurate mitoses. It has been assumed that once the checkpoint is satisfied and cells divide, the daughter cells would proliferate regardless of prometaphase duration. However, when continuously exposed to microtubule inhibitors, untransformed cells eventually slip out of mitosis after 12-48 hr and arrest in G1 [5-8] (see also [9]). Interestingly, transient but prolonged treatments with nocodazole allow completion of mitosis, but the daughter cells arrest in interphase [10, 11] (see also [9, 12]). Here we characterize the relationship between prometaphase duration and the proliferative capacity of daughter cells. Our results reveal the existence of a mechanism that senses prometaphase duration; if prometaphase lasts >1.5 hr, this mechanism triggers a durable p38- and p53-dependent G1 arrest of the daughter cells despite normal division of their mothers.
Collapse
Affiliation(s)
- Yumi Uetake
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, 01605, USA
| | | |
Collapse
|
28
|
Banerjee M, Singh P, Panda D. Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS J 2010; 277:3437-48. [PMID: 20646066 DOI: 10.1111/j.1742-4658.2010.07750.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, curcumin, a potential anticancer agent, was found to dampen the dynamic instability of individual microtubules in living MCF-7 cells. It strongly reduced the rate and extent of shortening states, and modestly reduced the rate and extent of growing states. In addition, curcumin decreased the fraction of time microtubules spent in the growing state and strongly increased the time microtubules spent in the pause state. Brief treatment with curcumin depolymerized mitotic microtubules, perturbed microtubule-kinetochore attachment and disturbed the mitotic spindle structure. Curcumin also perturbed the localization of the kinesin protein Eg5 and induced monopolar spindle formation. Further, curcumin increased the accumulation of Mad2 and BubR1 at the kinetochores, indicating that it activated the mitotic checkpoint. In addition, curcumin treatment increased the metaphase/anaphase ratio, indicating that it can delay mitotic progression from the metaphase to anaphase. We provide evidence suggesting that the affected cells underwent apoptosis via the p53-dependent apoptotic pathway. The results support the idea that kinetic stabilization of microtubule dynamics assists in the nuclear translocation of p53. Curcumin exerted additive effects when combined with vinblastine, a microtubule depolymerizing drug, whereas the combination of curcumin with paclitaxel, a microtubule-stabilizing drug, produced an antagonistic effect on the inhibition of MCF-7 cell proliferation. The results together suggested that curcumin inhibited MCF-7 cell proliferation by inhibiting the assembly dynamics of microtubules.
Collapse
Affiliation(s)
- Mithu Banerjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | |
Collapse
|
29
|
Abstract
Maintenance of genomic stability is needed for cells to survive many rounds of division throughout their lifetime. Key to the proper inheritance of intact genome is the tight temporal and spatial coordination of cell cycle events. Moreover, checkpoints are present that function to monitor the proper execution of cell cycle processes. For instance, the DNA damage and spindle assembly checkpoints ensure genomic integrity by delaying cell cycle progression in the presence of DNA or spindle damage, respectively. A checkpoint that has recently been gaining attention is the antephase checkpoint that acts to prevent cells from entering mitosis in response to a range of stress agents. We review here what is known about the pathway that monitors the status of the cells at the brink of entry into mitosis when cells are exposed to insults that threaten the proper inheritance of chromosomes. We highlight issues which are unresolved in terms of our understanding of the antephase checkpoint and provide some perspectives on what lies ahead in the understanding of how the checkpoint functions.
Collapse
|
30
|
Brooks L, Heimsath EG, Loring GL, Brenner C. FHA-RING ubiquitin ligases in cell division cycle control. Cell Mol Life Sci 2008; 65:3458-66. [PMID: 18597043 PMCID: PMC2588411 DOI: 10.1007/s00018-008-8220-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Despite the common occurrence of forkhead associated (FHA) phosphopeptide-binding domains and really interesting new gene (RING) E3 ubiquitin ligase domains, gene products containing both an N-terminal FHA domain and C-terminal RING domain constitute a highly distinctive intersection. Characterized FHA-RING ligases include the two vertebrate proteins, Checkpoint with FHA and RING (Chfr) and RING finger 8 (Rnf8), as well as three fungal proteins, Defective in mitosis (Dma1), Chf1 and Chf2. These FHA-RING ligases play roles in negative regulation of the cell division cycle, apparently by coupling protein phosphorylation events to specific ubiquitylation of target proteins. Here, the available data on upstream and downstream regulation of and by FHA-RING ligases are reviewed.
Collapse
Affiliation(s)
- L. Brooks
- Departments of Genetics and Biochemistry and Norris Cotton Cancer Center, Dartmouth Medical School, Rubin 733–HB7937, Lebanon, NH 03756 USA
| | - E. G. Heimsath
- Departments of Genetics and Biochemistry and Norris Cotton Cancer Center, Dartmouth Medical School, Rubin 733–HB7937, Lebanon, NH 03756 USA
| | | | - C. Brenner
- Departments of Genetics and Biochemistry and Norris Cotton Cancer Center, Dartmouth Medical School, Rubin 733–HB7937, Lebanon, NH 03756 USA
| |
Collapse
|
31
|
Sak A, Fegers I, Groneberg M, Stuschke M. Effect of separase depletion on ionizing radiation-induced cell cycle checkpoints and survival in human lung cancer cell lines. Cell Prolif 2008; 41:660-70. [PMID: 18616699 PMCID: PMC6496864 DOI: 10.1111/j.1365-2184.2008.00540.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 11/26/2007] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES This study is to evaluate the effect of separase depletion on cell cycle progression of irradiated and non-irradiated cells through the G(2)/M phases and consecutive cell survival. MATERIALS AND METHODS Separase was depleted with siRNA in two human non-small cell lung carcinoma (NSCLC) cell lines. Cell cycle progression, mitotic fraction, DNA repair, apoptotic and clonogenic cell death were determined. RESULTS By depletion of endogenous separase with siRNA in NSCLCs, we showed that separase affects progression through the G(2) phase. In non-irradiated exponentially growing cells, separase depletion led to an increased G(2) accumulation from 17.2% to 29.1% in H460 and from 15.7% to 30.9% in A549 cells and a decrease in mitotic cells. Depletion of separase significantly (P < 0.01) increased the fraction of radiation-induced G(2) arrested cells 30-56 h after irradiation and led to decrease in the mitotic fraction. This was associated with increased double-strand break repair as measured by gamma-H2AX foci kinetics in H460 cells and to a lesser extent in A549 cells. In addition, a decrease in the expression of mitotic linked cell death after irradiation was found. CONCLUSIONS These results indicate that separase has additional targets involved in regulation of G(2) to M progression after DNA damage. Prolonged G(2) phase arrest in the absence of separase has consequences on repair of damaged DNA and cell death.
Collapse
Affiliation(s)
- A Sak
- Department of Radiotherapy, University Hospital Essen, Essen, Germany.
| | | | | | | |
Collapse
|
32
|
Abstract
Chfr is a checkpoint protein that plays an important function in cell cycle progression and tumor suppression, although its exact role and regulation are unclear. Previous studies have utilized overexpression of Chfr to determine the signaling pathway of this protein in vivo. In this study, we demonstrate, by using three different antibodies against Chfr, that the endogenous and highly overexpressed ectopic Chfr protein is localized and regulated differently in cells. Endogenous and lowly expressed ectopic Chfr are cytoplasmic and localize to the spindle during mitosis. Higher expression of ectopic Chfr correlates with a shift in the localization of this protein to the nucleus/PML bodies, and with a block of cell proliferation. In addition, endogenous and lowly expressed ectopic Chfr is stable throughout the cell cycle, whereas when highly expressed, ectopic Chfr is actively degraded during S-G2/M phases in an autoubiquitination and proteasome-dependent manner. A two-hybrid screen identified TCTP as a possible Chfr-interacting partner. Biochemical analysis with the endogenous proteins confirmed this interaction and identified beta-tubulin as an additional partner for Chfr, supporting the mitotic spindle localization of Chfr. The Chfr-TCTP interaction was stable throughout the cell cycle, but it could be diminished by the complete depolymerization of the microtubules, providing a possible mechanism where Chfr could be the sensor that detects microtubule disruption and then activates the prophase checkpoint.
Collapse
|
33
|
Taylor BF, McNeely SC, Miller HL, States JC. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization. Toxicol Appl Pharmacol 2008; 230:235-46. [PMID: 18485433 DOI: 10.1016/j.taap.2008.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
Abstract
Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of alpha-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of alpha-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. gamma-tubulin staining showed that cells treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.
Collapse
Affiliation(s)
- B Frazier Taylor
- Department of Pharmacology and Toxicology, Center for Environmental Genomics and Integrative Biology, Center for Genetics and Molecular Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
34
|
Uetake Y, Sluder G. Cell-cycle progression without an intact microtuble cytoskeleton. Curr Biol 2008; 17:2081-6. [PMID: 18060787 DOI: 10.1016/j.cub.2007.10.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/24/2007] [Accepted: 10/26/2007] [Indexed: 12/21/2022]
Abstract
For mammalian somatic cells, the importance of microtubule cytoskeleton integrity during interphase cell-cycle progression is uncertain. The loss, suppression, or stabilization of the microtubule cytoskeleton has been widely reported to cause a G1 arrest in a variable, and often high, proportion of cell populations, suggesting the existence of a "microtubule damage," "microtubule integrity," or "postmitotic" checkpoint in G1 or G2. We found that when normal human cells (hTERT RPE1 and primary fibroblasts) are continuously exposed to nocodazole, they remain in mitosis for 10-48 hr before they slip out of mitosis and arrest in G1; this finding is consistent with previous reports. To eliminate the persistent effects of prolonged mitosis, we isolated anaphase-telophase cells that were just finishing a mitosis of normal duration, then we rapidly and completely disassembled microtubules by chilling the preparations to 0 degrees C for 10 minutes in the continuous presence of nocodazole or colcemid treatment to ensure that the cells entered G1 without a microtubule cytoskeleton. Without microtubules, cells progressed from anaphase to a subsequent mitosis with essentially normal kinetics. Similar results were obtained for cells in which the microtubule cytoskeleton was partially diminished by lower nocodazole doses or augmented and stabilized with taxol. Thus, after a preceding mitosis of normal duration, the integrity of the microtubule cytoskeleton is not subject to checkpoint surveillance, nor is it required for the normal human cell to progress through G1 and the remainder of interphase.
Collapse
Affiliation(s)
- Yumi Uetake
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
35
|
Mikhailov A, Patel D, McCance DJ, Rieder CL. The G2 p38-mediated stress-activated checkpoint pathway becomes attenuated in transformed cells. Curr Biol 2007; 17:2162-8. [PMID: 18060783 DOI: 10.1016/j.cub.2007.11.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/30/2007] [Accepted: 11/09/2007] [Indexed: 12/16/2022]
Abstract
When human cells are stressed during G2, they are delayed from entering mitosis via a checkpoint mediated by the p38 kinase, and this delay can be modeled by the selective activation of p38 with anisomycin. Here, we report, on the basis of live-cell studies, that 75 nM anisomycin transiently (1 hr) activates p38 which, in turn, rapidly and completely blocks entry into mitosis for at least 4 hr in all primary, telomerase- or spontaneously immortalized (p53+ and pRB+) human cells. However, the same treatment does not delay entry into mitosis in cancer cells, or the delay in entering mitosis is shortened, even though it induces a similar transient and comparable (or stronger) activation of p38. Because the primary substrate of p38, the MK2 kinase, is also transiently (1-2 hr) activated by anisomycin in both normal and cancer cells, checkpoint disruption in transformed cells occurs downstream of MK2. Finally, observations on isogenic lines reveal that the duration of the stress checkpoint is shortened in cells lacking both p53 and pRb and that the constitutive expression of an active H-Ras oncogene in these cells further attenuates the checkpoint via an ERK1/2-dependent manner. Thus, transformation leads to attenuation of the p38-mediated stress checkpoint. This outcome is likely selected for during transformation because it confers the ability to outgrow normal cells under stressful in vitro (culture) or in vivo (tumor) environments. Our data caution against using cancer cells to study how p38 produces a G2 arrest.
Collapse
Affiliation(s)
- Alexei Mikhailov
- Laboratory of Cell Regulation, Division of Molecular Medicine, New York State Department of Health, Wadsworth Center, P.O. Box 509, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
36
|
Prager-Khoutorsky M, Goncharov I, Rabinkov A, Mirelman D, Geiger B, Bershadsky AD. Allicin inhibits cell polarization, migration and division via its direct effect on microtubules. ACTA ACUST UNITED AC 2007; 64:321-37. [PMID: 17323373 DOI: 10.1002/cm.20185] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Allicin (diallyl thiosulfinate) is a major biologically active component of garlic that is known to inhibit cell proliferation and induce apoptosis. The effects of allicin are attributed to its ability to react with thiol groups. However, the mechanism underlying the cytostatic activity of allicin, as well as the identity of the relevant subcellular targets, are not known. In the present study, we found that the effects of allicin on cell polarization, migration, and mitosis are similar to the effects of microtubule-depolymerizing drugs such as nocodazole. Moreover, treatment of cultured fibroblasts with micromolar doses of allicin results in microtubule depolymerization in cells within minutes of its application, without disrupting the actin cytoskeleton or inducing direct cytotoxic effects. Furthermore, allicin blocks the polymerization of pure tubulin in vitro in a concentration-dependent manner, suggesting that it acts directly on tubulin dimers. Sulfhydryl (SH)-reducing reagents such as 2-mercaptoethanol and dithiothreitol abolish the effect of allicin on microtubule polymerization. Thus, allicin is a potent microtubule-disrupting reagent interfering with tubulin polymerization by reaction with tubulin SH groups.
Collapse
|
37
|
Banerjee S, Brooks WS, Crawford DF. Inactivation of the ubiquitin conjugating enzyme UBE2Q2 causes a prophase arrest and enhanced apoptosis in response to microtubule inhibiting agents. Oncogene 2007; 26:6509-17. [PMID: 17471241 DOI: 10.1038/sj.onc.1210471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A putative ubiquitin conjugating enzyme known as UBE2Q2 was previously identified in a microarray screen for mitotic regulatory proteins. UBE2Q2 is very similar to another human protein, UBE2Q1 and orthologs from other higher eukaryotic species. In these studies, we demonstrate that UBE2Q2 can covalently bind ubiquitin on the active site cysteine in vitro and show that inhibition of this protein in vivo causes an early mitotic arrest and increased cytotoxicity when cells are treated with microtubule inhibiting agents (MIAs). Changes in cell cycle progression and viability are not observed in the absence of MIA treatment, indicating that UBE2Q2 is involved in the response to MIAs rather than performing a more general function in mitosis. Inhibition of the UBE2Q2 protein causes cells to undergo a prolonged prophase arrest suggesting that UBE2Q2 normally functions to antagonize an early mitotic checkpoint. Furthermore, UBE2Q2 inhibition sensitizes cells to the cytotoxic effects of MIAs through caspase-mediated apoptosis that is correlated with PARP-1 cleavage. These data provide insights into the cellular response to MIAs and demonstrate that inhibition of UBE2Q2 protein function may be useful in the treatment of malignancies.
Collapse
Affiliation(s)
- S Banerjee
- Department of Pediatrics, University of Alabama, Birmingham 35233, USA
| | | | | |
Collapse
|
38
|
Khodjakov A, Rieder CL. Imaging the division process in living tissue culture cells. Methods 2006; 38:2-16. [PMID: 16343936 PMCID: PMC2590767 DOI: 10.1016/j.ymeth.2005.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2005] [Indexed: 12/23/2022] Open
Abstract
We detail some of the pitfalls encountered when following live cultured somatic cells by light microscopy during mitosis. Principle difficulties in this methodology arise from the necessity to compromise between maintaining the health of the cell while achieving the appropriate temporal and spatial resolutions required for the study. Although the quality of the data collected from fixed cells is restricted only by the quality of the imaging system and the optical properties of the specimen, the major limiting factor when viewing live cells is radiation damage induced during illumination. We discuss practical considerations for minimizing this damage, and for maintaining the general health of the cell, while it is being followed by multi-mode or multi-dimensional light microscopy.
Collapse
Affiliation(s)
- Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
39
|
Howe O, O'Malley K, Lavin M, Gardner RA, Seymour C, Lyng F, Mulvin D, Quinlan DM, Mothersill C. Cell death mechanisms associated with G2 radiosensitivity in patients with prostate cancer and benign prostatic hyperplasia. Radiat Res 2005; 164:627-34. [PMID: 16238439 DOI: 10.1667/rr3454.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cells respond to genotoxic insults such as ionizing radiation by halting in the G2 phase of the cell cycle. Delayed cell death (mitotic death) can occur when the cell is released from G2, and specific spindle defects form endopolyploid cells (endoreduplication/tetraploidy). Enhanced G2 chromosomal radiosensitivity has been observed in many cancers and genomic instability syndromes, and it is manifested by radiation-induced chromatid aberrations observed in lymphocytes of patients. Here we compare the G2 chromosomal radiosensitivity in prostate patients with benign prostatic hyperplasia (BPH) or prostate cancer with disease-free controls. We also investigated whether there is a correlation between G2 chromosomal radiosensitivity and aneuploidy (tetraploidy and endoreduplication), which are indicative of mitotic cell death. The G2 assay was carried out on all human blood samples. Metaphase analysis was conducted on the harvested chromosomes by counting the number of aberrations and the mitotic errors (endoreduplication/tetraploidy) separately per 100 metaphases. A total of 1/14 of the controls were radiosensitive in G2 compared to 6/15 of the BPH patients and 15/17 of the prostate cancer patients. Radiation-induced mitotic inhibition was assessed to determine the efficacy of G2 checkpoint control in the prostate patients. There was no significant correlation of G2 radiosensitivity scores and mitotic inhibition in BPH patients (P = 0.057), in contrast to prostate cancer patients, who showed a small but significant positive correlation (P = 0.029). Furthermore, there was no significant correlation between G2 radiosensitivity scores of BPH patients and endoreduplication/ tetraploidy (P = 0.136), which contrasted with an extremely significant correlation observed in prostate cancer patients (P < 0.0001). In conclusion, cells from prostate cancer patients show increased sensitivity to the induction of G2 aberrations from ionizing radiation exposure but paradoxically show reduced mitotic indices and aneuploidy as a function of aberration frequency.
Collapse
Affiliation(s)
- Orla Howe
- Radiation and Environmental Science Centre, Focus Institute, Dublin Institute of Technology, Dublin 8, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wadsworth P, Rusan NM, Tulu US, Fagerstrom C. Stable expression of fluorescently tagged proteins for studies of mitosis in mammalian cells. Nat Methods 2005; 2:981-7. [PMID: 16299485 DOI: 10.1038/nmeth1205-981] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Summers MK, Bothos J, Halazonetis TD. The CHFR mitotic checkpoint protein delays cell cycle progression by excluding Cyclin B1 from the nucleus. Oncogene 2005; 24:2589-98. [PMID: 15674323 DOI: 10.1038/sj.onc.1208428] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CHFR, a novel checkpoint gene inactivated in human cancer, delays chromosome condensation in cells treated with microtubule poisons. To understand the molecular mechanism for this delay, we characterized cells with inactivated CHFR and stably transfected derivatives expressing the wild-type gene. After exposure to microtubule poisons, the CHFR-expressing cells arrested transiently in early prophase with a characteristic ruffled morphology of the nuclear envelope and no signs of chromosome condensation. Several markers suggested that Cyclin A/Cdc2 had been activated, whereas Aurora-A and -B and Cyclin B1/Cdc2 were inactive. Further, Cyclin B1 was excluded from the nucleus. Ectopic expression of Cyclin B1 with a mutant nuclear export sequence induced chromosome condensation, and thus overcame the CHFR checkpoint. We conclude that the mechanism by which CHFR delays chromosome condensation involves inhibition of accumulation of Cyclin B1 in the nucleus.
Collapse
Affiliation(s)
- Matthew K Summers
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104-4268, USA
| | | | | |
Collapse
|
42
|
Hochwagen A, Wrobel G, Cartron M, Demougin P, Niederhauser-Wiederkehr C, Boselli MG, Primig M, Amon A. Novel response to microtubule perturbation in meiosis. Mol Cell Biol 2005; 25:4767-81. [PMID: 15899877 PMCID: PMC1140642 DOI: 10.1128/mcb.25.11.4767-4781.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the mitotic cell cycle, microtubule depolymerization leads to a cell cycle arrest in metaphase, due to activation of the spindle checkpoint. Here, we show that under microtubule-destabilizing conditions, such as low temperature or the presence of the spindle-depolymerizing drug benomyl, meiotic budding yeast cells arrest in G(1) or G(2), instead of metaphase. Cells arrest in G(1) if microtubule perturbation occurs as they enter the meiotic cell cycle and in G(2) if cells are already undergoing premeiotic S phase. Concomitantly, cells down-regulate genes required for cell cycle progression, meiotic differentiation, and spore formation in a highly coordinated manner. Decreased expression of these genes is likely to be responsible for halting both cell cycle progression and meiotic development. Our results point towards the existence of a novel surveillance mechanism of microtubule integrity that may be particularly important during specialized cell cycles when coordination of cell cycle progression with a developmental program is necessary.
Collapse
Affiliation(s)
- Andreas Hochwagen
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Prasad TK, Rangaraj N, Rao NM. Quantitative aspects of endocytic activity in lipid-mediated transfections. FEBS Lett 2005; 579:2635-42. [PMID: 15862302 DOI: 10.1016/j.febslet.2005.03.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/14/2005] [Accepted: 03/30/2005] [Indexed: 11/17/2022]
Abstract
Variation in transfection efficiency observed in different cell-types is poorly understood. To investigate the influence of endocytic activity on lipid-mediated transfections, we have monitored both the processes in 12 different cell-types. The endocytic activity shows a strong positive correlation (P < 0.01), with transfection efficiency. Treatment with wortmannin resulted in cell-type-dependent inhibition of transfection. Studies on M-phase cells by confocal microscopy show that compared to interphase cells, uptake of cationic liposomes was substantially reduced. In addition, transfection efficiency of cells in mitotic phase was inhibited by >70% compared to controls. Our study based on several cell-types demonstrates for the first time that quantitative aspects of endocytosis have decisive influence on the overall process of lipid-mediated transgene expression.
Collapse
|
44
|
Barnes EA, Heidtman KJ, Donoghue DJ. Constitutive activation of the shh-ptc1 pathway by a patched1 mutation identified in BCC. Oncogene 2005; 24:902-15. [PMID: 15592520 DOI: 10.1038/sj.onc.1208240] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the transmembrane receptor patched1 (ptc1) are responsible for the majority of basal cell carcinoma (BCC) cases. Many of these mutations, including ptc1-Q688X, result in premature truncation of the ptc1 protein. ptc1-Q688X has been identified in patients with both BCC and nevoid basal cell carcinoma syndrome, an inheritable disorder causing a predisposition to cancer susceptibility. Here we describe a mechanism by which ptc1-Q688X causes constitutive cellular signaling. Cells expressing ptc1-Q688X demonstrate an increase in cell cycle progression and induce cell transformation. The ptc1-Q688X mutant enhances Gli1 activity, a downstream reporter of sonic hedgehog (shh)-ptc1 signaling, independent of shh stimulation. In contrast to wild-type ptc1, ptc1-Q688X fails to associate with endogenous cyclin B1. Expression of nuclear-targeted cyclin B1 derivatives promotes Gli1-dependent transcription, which correlates temporally with cyclin B1-cdk1 kinase activity. Coexpression of wild-type ptc1 with a nuclear-targeted cyclin B1 derivative, mutated to mimic constitutive phosphorylation, dramatically decreases Gli1 activity. In addition, the coexpression of this constitutively nuclear cyclin B1 derivative with ptc1-Q688X substantially enhances foci formation. These studies therefore describe a molecular mechanism for the aberrant activity of ptc1-Q688X that includes the premature activation of the transcription factor Gli1.
Collapse
Affiliation(s)
- Elizabeth A Barnes
- Department of Chemistry and Biochemistry, Center for Molecular Genetics, University of California, 9500 Gilman Drive, Urey Hall-6114, San Diego, La Jolla, CA 92093-0367, USA
| | | | | |
Collapse
|
45
|
Abstract
How cells behave as they divide in the presence of chromosome (DNA) damage is only just beginning to be explored. It appears to depend on the cell type and organism, the stage of development, how extensive the damage is and when it occurs. The existing data support the conclusion that vertebrate somatic cells lack a conventional DNA damage checkpoint during mitosis, and that when damaged DNA does prolong mitosis it is mediated by the spindle assembly checkpoint. As a rule, in the presence of DNA damage cells ultimately undergo an aberrant mitosis and enter the ensuing G1. They then either die, via apoptosis or mitotic catastrophe, or survive with an altered genome. To avoid these outcomes, cells with DNA damage are normally prevented from entering mitosis by a number of G2 checkpoint control pathways.
Collapse
Affiliation(s)
- Ciaran Morrison
- Department of Biochemistry/NCBES, National University of Ireland-Galway, University Road, Galway, Ireland.
| | | |
Collapse
|
46
|
Daniels MJ, Marson A, Venkitaraman AR. PML bodies control the nuclear dynamics and function of the CHFR mitotic checkpoint protein. Nat Struct Mol Biol 2004; 11:1114-21. [PMID: 15467728 DOI: 10.1038/nsmb837] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/03/2004] [Indexed: 11/09/2022]
Abstract
Nuclear foci containing the promyelocytic leukemia protein (PML bodies), which occur in most cells, play a role in tumor suppression. Here, we demonstrate that CHFR, a mitotic checkpoint protein frequently inactivated in human cancers, is a dynamic component of PML bodies. Intermolecular fluorescence resonance energy transfer analysis identified a distinct fraction of CHFR that interacts with PML in living cells. This interaction modulates the nuclear distribution and mobility of CHFR. A trans-dominant mutant of CHFR that inhibits checkpoint function also prevents colocalization and interaction with PML. Conversely, the distribution and mobility of CHFR are perturbed in PML(-/-) cells, accompanied by aberrations in mitotic entry and the response to spindle depolymerization. Thus, PML bodies control the distribution, dynamics and function of CHFR. Our findings implicate the interaction between these tumor suppressors in a checkpoint response to microtubule poisons, an important class of anticancer drugs.
Collapse
Affiliation(s)
- Matthew J Daniels
- University of Cambridge, Cancer Research UK Department of Oncology and The Medical Research Council Cancer Cell Unit, Hills Road, Cambridge CB2 2XZ, UK
| | | | | |
Collapse
|
47
|
Mikhailov A, Shinohara M, Rieder CL. Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway. ACTA ACUST UNITED AC 2004; 166:517-26. [PMID: 15302851 PMCID: PMC2172207 DOI: 10.1083/jcb.200405167] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
When early prophase PtK(1) or Indian muntjac cells are exposed to topoisomerase II (topo II) inhibitors that induce little if any DNA damage, they are delayed from entering mitosis. We show that this delay is overridden by inhibiting the p38, but not the ATM, kinase. Treating early prophase cells with hyperosmotic medium or a histone deacetylase inhibitor similarly delays entry into mitosis, and this delay can also be prevented by inhibiting p38. Together, these results reveal that agents or stresses that induce global changes in chromatin topology during G2 delay entry into mitosis, independent of the ATM-mediated DNA damage checkpoint, by activating the p38 MAPK checkpoint. The presence of this pathway obviates the necessity of postulating the existence of multiple "chromatin modification" checkpoints during G2. Lastly, cells that enter mitosis in the presence of topo II inhibitors form metaphase spindles that are delayed in entering anaphase via the spindle assembly, and not the p38, checkpoint.
Collapse
Affiliation(s)
- Alexei Mikhailov
- Division of Molecular Medicine, Wadsworth Center, P.O. Box 509, Albany, NY 12201-0509, USA
| | | | | |
Collapse
|
48
|
Matsusaka T, Pines J. Chfr acts with the p38 stress kinases to block entry to mitosis in mammalian cells. ACTA ACUST UNITED AC 2004; 166:507-16. [PMID: 15302856 PMCID: PMC2172205 DOI: 10.1083/jcb.200401139] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Entry into mitosis in vertebrate cells is guarded by a checkpoint that can be activated by a variety of insults, including chromosomal damage and disrupting microtubules (Rieder, C.L., and R.W. Cole. 1998. J. Cell Biol. 142:1013–1022; Rieder, C.L., and R.W. Cole. 2000. Curr. Biol. 10:1067–1070). This checkpoint acts at the end of interphase to delay cells from entering mitosis, causing cells in prophase to decondense their chromosomes and return to G2 phase. Here, we show that in response to microtubule poisons this “antephase” checkpoint is primarily mediated by the p38 stress kinases and requires the Chfr protein that is absent or inactive in several transformed cell lines (Scolnick, D.M., and T.D. Halazonetis. 2000. Nature. 406:430–435) and lung tumors (Mizuno, K., H. Osada, H. Konishi, Y. Tatematsu, Y. Yatabe, T. Mitsudomi, Y. Fujii, and T. Takahashi. 2002. Oncogene. 21:2328–2333). Furthermore, in contrast to previous reports, we find that the checkpoint requires ubiquitylation but not proteasome activity, which is in agreement with the recent demonstration that Chfr conjugates ubiquitin through lysine 63 and not lysine 48 (Bothos, J., M.K. Summers, M. Venere, D.M. Scolnick, and T.D. Halazonetis. 2003. Oncogene. 22:7101–7107).
Collapse
Affiliation(s)
- Takahiro Matsusaka
- Wellcome/Cancer Research UK Gurdon Institute, and Department of Zoology, Tennis Court Rd., University of Cambridge, Cambridge CB2 1QR, England, UK
| | | |
Collapse
|
49
|
Abstract
Dramatic changes of cell organisation occur at onset of mitosis. Genetic analysis of fission yeast and physiological studies of vertebrate and invertebrate oocytes showed that activation of cyclin B-cdc2 kinase triggers mitosis. Nevertheless, upstream mechanisms responsible for this activation remain largely unknown in somatic cells of higher eukaryotes. This review discusses possible pathways and mechanisms involved in triggering onset of mitosis in such cells, including inhibitory checkpoint mechanisms that detect defects in structural organisation of the cell.
Collapse
Affiliation(s)
- Marcel Dorée
- CRBM, UPR 1086-Cnrs, 1919, route de Mende, 34290 Montpellier, France.
| |
Collapse
|
50
|
Slupianek A, Hoser G, Majsterek I, Bronisz A, Malecki M, Blasiak J, Fishel R, Skorski T. Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol 2002; 22:4189-201. [PMID: 12024032 PMCID: PMC133854 DOI: 10.1128/mcb.22.12.4189-4201.2002] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fusion tyrosine kinases (FTKs) such as BCR/ABL, TEL/ABL, TEL/JAK2, TEL/PDGF beta R, TEL/TRKC(L), and NPM/ALK arise from reciprocal chromosomal translocations and cause acute and chronic leukemias and non-Hodgkin's lymphoma. FTK-transformed cells displayed drug resistance against the cytostatic drugs cisplatin and mitomycin C. These cells were not protected from drug-mediated DNA damage, implicating activation of the mechanisms preventing DNA damage-induced apoptosis. Various FTKs, except TEL/TRKC(L), can activate STAT5, which may be required to induce drug resistance. We show that STAT5 is essential for FTK-dependent upregulation of RAD51, which plays a central role in homology-dependent recombinational repair (HRR) of DNA double-strand breaks (DSBs). Elevated levels of Rad51 contributed to the induction of drug resistance and facilitation of the HRR in FTK-transformed cells. In addition, expression of antiapoptotic protein Bcl-xL was enhanced in cells transformed by the FTKs able to activate STAT5. Moreover, cells transformed by all examined FTKs displayed G(2)/M delay upon drug treatment. Individually, elevated levels of Rad51, Bcl-xL, or G(2)/M delay were responsible for induction of a modest drug resistance. Interestingly, combination of these three factors in nontransformed cells induced drug resistance of a magnitude similar to that observed in cells expressing FTKs activating STAT5. Thus, we postulate that RAD51-dependent facilitation of DSB repair, antiapoptotic activity of Bcl-xL, and delay in progression through the G(2)/M phase work in concert to induce drug resistance in FTK-positive leukemias and lymphomas.
Collapse
Affiliation(s)
- Artur Slupianek
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|