1
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Green RA, Khaliullin RN, Zhao Z, Ochoa SD, Hendel JM, Chow TL, Moon H, Biggs RJ, Desai A, Oegema K. Automated profiling of gene function during embryonic development. Cell 2024; 187:3141-3160.e23. [PMID: 38759650 PMCID: PMC11166207 DOI: 10.1016/j.cell.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Systematic functional profiling of the gene set that directs embryonic development is an important challenge. To tackle this challenge, we used 4D imaging of C. elegans embryogenesis to capture the effects of 500 gene knockdowns and developed an automated approach to compare developmental phenotypes. The automated approach quantifies features-including germ layer cell numbers, tissue position, and tissue shape-to generate temporal curves whose parameterization yields numerical phenotypic signatures. In conjunction with a new similarity metric that operates across phenotypic space, these signatures enabled the generation of ranked lists of genes predicted to have similar functions, accessible in the PhenoBank web portal, for ∼25% of essential development genes. The approach identified new gene and pathway relationships in cell fate specification and morphogenesis and highlighted the utilization of specialized energy generation pathways during embryogenesis. Collectively, the effort establishes the foundation for comprehensive analysis of the gene set that builds a multicellular organism.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Zhiling Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | | | | | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ronald J Biggs
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Bilal B, Azim MK. Nematicidal activity of paucimannose-type glycoconjugates from acacia honey. Exp Parasitol 2024; 259:108707. [PMID: 38336095 DOI: 10.1016/j.exppara.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Natural honey contains glycoconjugates as minor components. We characterized acacia honey glycoconjugates with molecular masses in the range of 2-5 kDa. The glycoconjugates were separated by RP-HPLC into three peaks (termed RP-2-5 k-I, RP-2-5 k-II, and RP-2-5 k-III) which demonstrated paralyzing effects on the model nematode C. elegans (ED50 of 50 ng glycoconjugates/μL). To examine molecular mechanisms underlying the nematicidal effects of honey glycoconjugates, expressional analyses of genes that are essential for the growth, development, reproduction, and movement of C. elegans were carried out. Quantitative PCR-based assays showed that these molecules moderately regulate the expression of genes involved in the citric acid cycle (mdh-1 and idhg-1) and cytoskeleton (act-1 and act-2). MALDI-ToF-MS/MS analysis of RP-HPLC peaks revealed the presence of paucimannose-like N-glycans which are known to play important roles in invertebrates e.g., worms and flies. These findings provided novel information regarding the structure and nematicidal function of honey glycoconjugates.
Collapse
Affiliation(s)
- Bushra Bilal
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - M Kamran Azim
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, Pakistan.
| |
Collapse
|
4
|
Maheshwari R, Rahman MM, Joseph-Strauss D, Cohen-Fix O. An RNAi screen for genes that affect nuclear morphology in Caenorhabditis elegans reveals the involvement of unexpected processes. G3 (BETHESDA, MD.) 2021; 11:jkab264. [PMID: 34849797 PMCID: PMC8527477 DOI: 10.1093/g3journal/jkab264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Aberration in nuclear morphology is one of the hallmarks of cellular transformation. However, the processes that, when mis-regulated, result aberrant nuclear morphology are poorly understood. In this study, we carried out a systematic, high-throughput RNAi screen for genes that affect nuclear morphology in Caenorhabditis elegans embryos. The screen employed over 1700 RNAi constructs against genes required for embryonic viability. Nuclei of early embryos are typically spherical, and their NPCs are evenly distributed. The screen was performed on early embryos expressing a fluorescently tagged component of the nuclear pore complex (NPC), allowing visualization of nuclear shape as well as the distribution of NPCs around the nuclear envelope. Our screen uncovered 182 genes whose downregulation resulted in one or more abnormal nuclear phenotypes, including multiple nuclei, micronuclei, abnormal nuclear shape, anaphase bridges, and abnormal NPC distribution. Many of these genes fall into common functional groups, including some that were not previously known to affect nuclear morphology, such as genes involved in mitochondrial function, the vacuolar ATPase, and the CCT chaperonin complex. The results of this screen add to our growing knowledge of processes that affect nuclear morphology and that may be altered in cancer cells that exhibit abnormal nuclear shape.
Collapse
Affiliation(s)
- Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammad M Rahman
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Daphna Joseph-Strauss
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Jasmer DP, Rosa BA, Tyagi R, Bulman CA, Beerntsen B, Urban JF, Sakanari J, Mitreva M. De novo identification of toxicants that cause irreparable damage to parasitic nematode intestinal cells. PLoS Negl Trop Dis 2020; 14:e0007942. [PMID: 32453724 PMCID: PMC7274465 DOI: 10.1371/journal.pntd.0007942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/05/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Efforts to identify new drugs for therapeutic and preventive treatments against parasitic nematodes have gained increasing interest with expanding pathogen omics databases and drug databases from which new anthelmintic compounds might be identified. Here, a novel approach focused on integrating a pan-Nematoda multi-omics data targeted to a specific nematode organ system (the intestinal tract) with evidence-based filtering and chemogenomic screening was undertaken. Based on de novo computational target prioritization of the 3,564 conserved intestine genes in A. suum, exocytosis was identified as a high priority pathway, and predicted inhibitors of exocytosis were tested using the large roundworm (Ascaris suum larval stages), a filarial worm (Brugia pahangi adult and L3), a whipworm (Trichuris muris adult), and the non-parasitic nematode Caenorhabditis elegans. 10 of 13 inhibitors were found to cause rapid immotility in A. suum L3 larvae, and five inhibitors were effective against the three phylogenetically diverse parasitic nematode species, indicating potential for a broad spectrum anthelmintics. Several distinct pathologic phenotypes were resolved related to molting, motility, or intestinal cell and tissue damage using conventional and novel histologic methods. Pathologic profiles characteristic for each inhibitor will guide future research to uncover mechanisms of the anthelmintic effects and improve on drug designs. This progress firmly validates the focus on intestinal cell biology as a useful resource to develop novel anthelmintic strategies.
Collapse
Affiliation(s)
- Douglas P Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rahul Tyagi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christina A Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Brenda Beerntsen
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Joseph F Urban
- U.S. Department of Agriculture, Northeast Area, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasite Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, Maryland, United States of America
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
6
|
Qiu X, Yang L, Ye J, Wang W, Zhao T, Hu H, Zhou G. Silencing of cyp-33C9 Gene Affects the Reproduction and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus. Int J Mol Sci 2019; 20:E4520. [PMID: 31547281 PMCID: PMC6770203 DOI: 10.3390/ijms20184520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Cytochrome P450 genes are very important for plant-parasitic nematodes to reproduce and to metabolize xenobiotic compounds generated by their host plants. The pine wood nematode (PWN), Bursaphelenchus xylophilus, causes very high annual economic losses by killing large numbers of pine trees across Asia and into Europe. In this study, we used RNA interference (RNAi) to analyze the function of the cyp-33C9 gene of PWN. Our results showed that expression of the cyp-33C9 gene was suppressed successfully after soaking nematodes for 24 h in cyp-33C9 double-stranded RNA (dsRNA). The silencing of the cyp-33C9 gene significantly decreased the feeding, reproduction, oviposition and egg hatch of B. xylophilus. Meanwhile, the migration speed of B. xylophilus in Pinus thunbergii was reduced in the early stages when the cyp-33C9 gene was silenced in the nematodes. Moreover, knockdown of the cyp-33C9 gene in B. xylophilus caused a decrease in pathogenicity to pine trees. These results suggest that the cyp-33C9 gene plays an important role in the reproduction and pathogenicity of B. xylophilus. This discovery identified several functions of the cyp-33C9 gene in B. xylophilus and provided useful information for understanding the molecular mechanism behind pine wilt disease caused by PWN.
Collapse
Affiliation(s)
- Xiuwen Qiu
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang 332005, Jiangxi, China.
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.
- Office of Mountain-River-Lake Development Committee of Jiangxi Province, Nanchang 330046, Jiangxi, China.
| | - Lili Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jianren Ye
- College of Forestry, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Wei Wang
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang 332005, Jiangxi, China.
| | - Tiantian Zhao
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang 332005, Jiangxi, China.
| | - Hao Hu
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang 332005, Jiangxi, China.
| | - Guixiang Zhou
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang 332005, Jiangxi, China.
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.
| |
Collapse
|
7
|
Jasmer DP, Rosa BA, Tyagi R, Mitreva M. Omics Driven Understanding of the Intestines of Parasitic Nematodes. Front Genet 2019; 10:652. [PMID: 31402928 PMCID: PMC6669237 DOI: 10.3389/fgene.2019.00652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
The biological and molecular complexity of nematodes has impeded research on development of new therapies for treatment and control. We have focused on the versatility of the nematode intestine as a target for new therapies. To that end, it is desirable to establish a broad and deep understanding of the molecular architecture underlying intestinal cell functions at the pan-Nematoda level. Multiomics data were generated to uncover the evolutionary principles underlying both conserved and adaptable features of the nematode intestine. Whole genomes were used to reveal the functional potential of the nematodes, tissue-specific transcriptomes provided a deep assessment of genes that are expressed in the adult nematode intestine, and comparison of selected core species was used to determine a first approximation of the pan-Nematoda intestinal transcriptome. Differentially expressed transcripts were also identified among intestinal regions, with the largest number expressed at significantly higher levels in the anterior region, identifying this region as the most functionally unique compared to middle and posterior regions. Profiling intestinal miRNAs targeting these genes identified the conserved intestinal miRNAs. Proteomics of intestinal cell compartments assigned proteins to several different intestinal cell compartments (intestinal tissue, the integral and peripheral intestinal membranes, and the intestinal lumen). Finally, advanced bioinformatic approaches were used to predict intestinal cell functional categories of seminal importance to parasite survival, which can now be experimentally tested and validated. The data provide the most comprehensive compilation of constitutively and differentially expressed genes, predicted gene regulators, and proteins of the nematode intestine. The information provides knowledge that is essential to understand molecular features of nematode intestinal cells and functions of fundamental importance to the intestine of many, if not all, parasitic nematodes.
Collapse
Affiliation(s)
- Douglas P Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University, St. Louis, St. Louis, MI, United States
| | - Rahul Tyagi
- McDonnell Genome Institute, Washington University, St. Louis, St. Louis, MI, United States
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University, St. Louis, St. Louis, MI, United States.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, MI, United States
| |
Collapse
|
8
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
9
|
Lissemore JL, Connors E, Liu Y, Qiao L, Yang B, Edgley ML, Flibotte S, Taylor J, Au V, Moerman DG, Maine EM. The Molecular Chaperone HSP90 Promotes Notch Signaling in the Germline of Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:1535-1544. [PMID: 29507057 PMCID: PMC5940146 DOI: 10.1534/g3.118.300551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
Abstract
In a genetic screen to identify genes that promote GLP-1/Notch signaling in Caenorhabditis elegans germline stem cells, we found a single mutation, om40, defining a gene called ego-3. ego-3(om40) causes several defects in the soma and the germline, including paralysis during larval development, sterility, delayed proliferation of germline stem cells, and ectopic germline stem cell proliferation. Whole genome sequencing identified om40 as an allele of hsp-90, previously known as daf-21, which encodes the C. elegans ortholog of the cytosolic form of HSP90. This protein is a molecular chaperone with a central position in the protein homeostasis network, which is responsible for proper folding, structural maintenance, and degradation of proteins. In addition to its essential role in cellular function, HSP90 plays an important role in stem cell maintenance and renewal. Complementation analysis using a deletion allele of hsp-90 confirmed that ego-3 is the same gene. hsp-90(om40) is an I→N conservative missense mutation of a highly conserved residue in the middle domain of HSP-90 RNA interference-mediated knockdown of hsp-90 expression partially phenocopied hsp-90(om40), confirming the loss-of-function nature of hsp-90(om40) Furthermore, reduced HSP-90 activity enhanced the effect of reduced function of both the GLP-1 receptor and the downstream LAG-1 transcription factor. Taken together, our results provide the first experimental evidence of an essential role for HSP90 in Notch signaling in development.
Collapse
Affiliation(s)
- James L Lissemore
- Biology Department, John Carroll University, University Heights, OH 44118
| | - Elyse Connors
- Department of Biology, Syracuse University, NY 13244
| | - Ying Liu
- Department of Biology, Syracuse University, NY 13244
| | - Li Qiao
- Department of Biology, Syracuse University, NY 13244
| | - Bing Yang
- Department of Biology, Syracuse University, NY 13244
| | - Mark L Edgley
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Jon Taylor
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Vinci Au
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
10
|
Hattersley N, Lara-Gonzalez P, Cheerambathur D, Gomez-Cavazos JS, Kim T, Prevo B, Khaliullin R, Lee KY, Ohta M, Green R, Oegema K, Desai A. Employing the one-cell C. elegans embryo to study cell division processes. Methods Cell Biol 2018; 144:185-231. [PMID: 29804670 DOI: 10.1016/bs.mcb.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The one-cell Caenorhabditis elegans embryo offers many advantages for mechanistic analysis of cell division processes. Conservation of key genes and pathways involved in cell division makes findings in C. elegans broadly relevant. A key technical advantage of this system is the ability to penetrantly deplete essential gene products by RNA interference (RNAi) and replace them with wild-type or mutant versions expressed at endogenous levels from single copy RNAi-resistant transgene insertions. This ability to precisely perturb essential genes is complemented by the inherently highly reproducible nature of the zygotic division that facilitates development of quantitative imaging assays. Here, we detail approaches to generate targeted single copy transgene insertions that are RNAi-resistant, to engineer variants of individual genes employing transgene insertions as well as at the endogenous locus, and to in situ tag genes with fluorophores/purification tags. We also describe imaging assays and common image analysis tools employed to quantitatively monitor phenotypic effects of specific perturbations on meiotic and mitotic chromosome segregation, centrosome assembly/function, and cortical dynamics/cytokinesis.
Collapse
Affiliation(s)
- Neil Hattersley
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Dhanya Cheerambathur
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - J Sebastian Gomez-Cavazos
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Bram Prevo
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Renat Khaliullin
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Kian-Yong Lee
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Midori Ohta
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Rebecca Green
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA, United States; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
11
|
Mullen TJ, Wignall SM. Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis. PLoS Genet 2017; 13:e1006986. [PMID: 28910277 PMCID: PMC5614648 DOI: 10.1371/journal.pgen.1006986] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/26/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
In many species, oocyte meiosis is carried out in the absence of centrioles. As a result, microtubule organization, spindle assembly, and chromosome segregation proceed by unique mechanisms. Here, we report insights into the principles underlying this specialized form of cell division, through studies of C. elegans KLP-15 and KLP-16, two highly homologous members of the kinesin-14 family of minus-end-directed kinesins. These proteins localize to the acentriolar oocyte spindle and promote microtubule bundling during spindle assembly; following KLP-15/16 depletion, microtubule bundles form but then collapse into a disorganized array. Surprisingly, despite this defect we found that during anaphase, microtubules are able to reorganize into a bundled array that facilitates chromosome segregation. This phenotype therefore enabled us to identify factors promoting microtubule organization during anaphase, whose contributions are normally undetectable in wild-type worms; we found that SPD-1 (PRC1) bundles microtubules and KLP-18 (kinesin-12) likely sorts those bundles into a functional orientation capable of mediating chromosome segregation. Therefore, our studies have revealed an interplay between distinct mechanisms that together promote spindle formation and chromosome segregation in the absence of structural cues such as centrioles.
Collapse
Affiliation(s)
- Timothy J. Mullen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- * E-mail:
| |
Collapse
|
12
|
Mori A, Holdorf AD, Walhout AJM. Many transcription factors contribute to C. elegans growth and fat storage. Genes Cells 2017; 22:770-784. [PMID: 28791781 DOI: 10.1111/gtc.12516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/10/2017] [Indexed: 12/17/2022]
Abstract
Reverse genetic screens by RNA interference (RNAi) in model organisms such as the nematode Caenorhabditis elegans have provided numerous insights into gene function, thereby connecting genotype to phenotype. However, genes that contribute only subtly are often missed because relatively large numbers of measurements and reliable quantification are required to overcome experimental and biological noise that may mask subtle phenotypic effects. Here, we address this challenge by focusing on two phenotypes in C. elegans: growth and fat storage. We carried out comprehensive RNAi knockdown of transcription factors (TFs), as these are known important regulators of biological processes during development and the maintenance of homeostasis. Microscopy images of TF knockdown animals stained with Oil Red O (ORO) were captured, and body size (proxy for growth) and ORO staining intensity (proxy for fat storage) were precisely quantified using a newly developed imaging tool we named IPPOME (Image Processing for Precise and Objective MEasurement). We found that a surprisingly large proportion of TFs contribute to growth and fat storage, but that most TFs have only subtle, yet significant effects. This study provides a blueprint for studies of other genes and phenotypes in C. elegans.
Collapse
Affiliation(s)
- Akihiro Mori
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Amy D Holdorf
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
13
|
Gigant E, Stefanutti M, Laband K, Gluszek-Kustusz A, Edwards F, Lacroix B, Maton G, Canman JC, Welburn JPI, Dumont J. Inhibition of ectopic microtubule assembly by the kinesin-13 KLP-7 prevents chromosome segregation and cytokinesis defects in oocytes. Development 2017; 144:1674-1686. [PMID: 28289130 DOI: 10.1242/dev.147504] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/07/2017] [Indexed: 01/02/2023]
Abstract
In most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative in vitro and in vivo functional assays in the C. elegans oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilization of the whole cellular microtubule network. By counteracting ectopic microtubule assembly and disorganization of the microtubule network, this function is strictly required for spindle organization, chromosome segregation and cytokinesis in meiotic cells. Strikingly, when centrosome activity was experimentally reduced, the absence of KLP-7 or the mammalian kinesin-13 protein MCAK (KIF2C) also resulted in ectopic microtubule asters during mitosis in C. elegans zygotes or HeLa cells, respectively. Our results highlight the general function of kinesin-13 microtubule depolymerases in preventing ectopic, spontaneous microtubule assembly when centrosome activity is defective or absent, which would otherwise lead to spindle microtubule disorganization and aneuploidy.
Collapse
Affiliation(s)
- Emmanuelle Gigant
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Marine Stefanutti
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Kimberley Laband
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Agata Gluszek-Kustusz
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Benjamin Lacroix
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Julie C Canman
- Columbia University, Department of Pathology and Cell Biology, New York, NY 10032, USA
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| |
Collapse
|
14
|
DNA interference-mediated screening of maternal factors in the chordate Oikopleura dioica. Sci Rep 2017; 7:44226. [PMID: 28281645 PMCID: PMC5345011 DOI: 10.1038/srep44226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/06/2017] [Indexed: 01/26/2023] Open
Abstract
The maternal contribution to the oocyte cytoplasm plays an important role during embryogenesis because it is involved in early cell fate specification and embryonic axis establishment. However, screening projects targeting maternal factors have only been conducted in a limited number of animal models, such as nematodes, fruit flies, and zebrafish, while few maternal genes have been analysed because of difficulties encountered in inhibiting gene products already expressed in the ovaries. Therefore, simple and efficient methods for large-scale maternal screening are necessary. The appendicularian Oikopleura dioica is a planktonic tunicate member of the chordates. Gonadal microinjection and a novel gene knockdown method, DNA interference (DNAi), have been developed for use in this animal with the aim of inhibiting gene functions during oogenesis within the gonad. In this study, we adapted these methods for large-scale maternal factor screening, and observed malformation phenotypes related to some maternal factors. Approximately 2000 (56.9%) ovary-enriched gene products were screened, of which the knockdown of seven encoding genes resulted in various abnormalities during embryonic development. Most of these were related to microtubules and cell adhesion-related proteins. We conclude that DNAi is a potentially powerful screening tool for the identification of novel maternal factors in chordates.
Collapse
|
15
|
Nucleotide-Free sB-Raf is Preferentially Bound by Hsp90 and Cdc37 In Vitro. J Mol Biol 2016; 428:4185-4196. [PMID: 27620500 DOI: 10.1016/j.jmb.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/27/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023]
Abstract
The molecular chaperone Hsp90 and its cofactor Cdc37 are required for the stability of protein kinases in the cellular environment. Upon pharmacological inhibition of Hsp90, the Hsp90-dependent kinases are degraded quickly by the proteasome. Clear physiological evidence for the formation of heterooligomeric complexes between the chaperone system and its kinase clients exist, but the mechanisms of client processing are still enigmatic. Here, we investigate the interaction of the chaperone system with a stabilized fragment of the Hsp90-dependent protein kinase B-Raf (sB-Raf). sB-Raf is aggregation prone at elevated temperatures. We find that nucleotide binding strongly stabilizes the folded state of sB-Raf and suppresses its aggregation. Also, Cdc37 and Hsp90 in combination can suppress sB-Raf aggregation while forming a ternary complex with the kinase. The presence of nucleotides leads to the dissociation of the kinase from the ternary chaperone complex, implying that the stabilization of the kinase by nucleotides reduces its affinity toward the chaperone machinery. Human Cdc37-Hsp90 complexes can bind to kinase, if the NM domain of the chaperone is present. Nematode Cdc37, which does not require the N-terminal Hsp90 domain for binding, can form a ternary complex with the MC construct of Hsp90, which lacks the aggregation propensity of sB-Raf. Like the full-length complex, this interaction is sensitive to ATP binding to sB-Raf. We thus find that the interaction between sB-Raf and the Hsp90 chaperone system is based on contacts with the M domain of Hsp90, which contributes in forming the ternary complex with CeCdc37 as long as the kinase is not stabilized by nucleotide.
Collapse
|
16
|
Fukuzono T, Pastuhov SI, Fukushima O, Li C, Hattori A, Iemura SI, Natsume T, Shibuya H, Hanafusa H, Matsumoto K, Hisamoto N. Chaperone complex BAG2-HSC70 regulates localization of Caenorhabditis elegans leucine-rich repeat kinase LRK-1 to the Golgi. Genes Cells 2016; 21:311-24. [PMID: 26853528 DOI: 10.1111/gtc.12338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Abstract
Mutations in LRRK2 are linked to autosomal dominant forms of Parkinson's disease. We identified two human proteins that bind to LRRK2: BAG2 and HSC70, which are known to form a chaperone complex. We characterized the role of their Caenorhabditis elegans homologues, UNC-23 and HSP-1, in the regulation of LRK-1, the sole homologue of human LRRK2. In C. elegans, LRK-1 determines the polarized sorting of synaptic vesicle (SV) proteins to the axons by excluding SV proteins from the dendrite-specific transport machinery in the Golgi. In unc-23 mutants, SV proteins are localized to both presynaptic and dendritic endings in neurons, a phenotype also observed in lrk-1 deletion mutants. Furthermore, we isolated mutations in the hsp-1 gene that can suppress the unc-23, but not the lrk-1 defect. We show that UNC-23 determines LRK-1 localization to the Golgi apparatus in cooperation with HSP-1. These results describe a chaperone-dependent mechanism through which LRK-1 localization is regulated.
Collapse
Affiliation(s)
- Takashi Fukuzono
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Strahil Iv Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Okinobu Fukushima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Chun Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Ayuna Hattori
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Shun-ichiro Iemura
- National Institutes of Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Molprof), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Tohru Natsume
- National Institutes of Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Molprof), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Hiroshi Shibuya
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hiroshi Hanafusa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
17
|
Rahmani P, Rogalski T, Moerman DG. The C. elegans UNC-23 protein, a member of the BCL-2-associated athanogene (BAG) family of chaperone regulators, interacts with HSP-1 to regulate cell attachment and maintain hypodermal integrity. WORM 2015; 4:e1023496. [PMID: 26435886 PMCID: PMC4590010 DOI: 10.1080/21624054.2015.1023496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/11/2015] [Accepted: 02/20/2015] [Indexed: 11/19/2022]
Abstract
Mutations in the unc-23 gene in the free-living nematode, Caenorhabditis elegans result in detachment and dystrophy of the anterior body wall musculature and a bent-head phenotype when grown on solid substrate. We have determined that the unc-23 gene product is the nematode ortholog of the human BAG-2 protein, a member of the Bcl-2 associated athanogene (BAG) family of molecular chaperone regulators. We show that a functional GFP-tagged UNC-23 protein is expressed throughout development in several tissues of the animal, including body wall muscle and hypodermis, and associates with adhesion complexes and attachment structures within these 2 tissues. In humans, the BAG protein family consists of 6 members that all contain a conserved 45 amino acid BAG domain near their C-termini. These proteins bind to and modulate the activity of the ATPase domain of the heat shock cognate protein 70, Hsc70. We have isolated missense mutations in the ATPase domain of the C. elegans heat shock 70 protein, HSP-1 that suppress the phenotype exhibited by unc-23(e25) mutant hermaphrodites and we show that UNC-23 and HSP-1 interact in a yeast-2-hybrid system. The interaction of UNC-23 with HSP-1 defines a role for HSP-1 function in the maintenance of muscle attachment during development.
Collapse
Affiliation(s)
- Poupak Rahmani
- Department of Zoology; University of British Columbia ; Vancouver, British Columbia, Canada
| | - Teresa Rogalski
- Department of Zoology; University of British Columbia ; Vancouver, British Columbia, Canada
| | - Donald G Moerman
- Department of Zoology; University of British Columbia ; Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Janwan P, Intapan PM, Laummaunwai P, Rodpai R, Wongkham C, Insawang T, Thanchomnang T, Sanpool O, Maleewong W. Proteomic analysis identification of antigenic proteins in Gnathostoma spinigerum larvae. Exp Parasitol 2015; 159:53-8. [PMID: 26318732 DOI: 10.1016/j.exppara.2015.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/31/2015] [Accepted: 08/16/2015] [Indexed: 01/04/2023]
Abstract
Gnathostoma spinigerum is the causative agent of human gnathostomiasis. The advanced third stage larva (AL3) of this nematode can migrate into the subcutaneous tissues, including vital organs, often producing severe pathological effects. This study performed immuno-proteomic analysis of antigenic spots, derived from G. spinigerum advanced third stage larva (GSAL3) and recognized by human gnathostomiasis sera, using two-dimensional (2-DE) gel electrophoresis based-liquid chromatography/tandem mass spectrometry (LC/MS-MS), and followed by the aid of a database search. The crude GSAL3 extract was fractionated using IPG strips (pH 3-11NL) and followed by SDS-PAGE in the second dimension. Each gel was stained with colloidal Coomassie blue or was electro-transferred onto a nitrocellulose membrane and probed with gnathostomiasis human sera by immunoblotting. Individual Coomassie-stained protein spots corresponding to the antigenic spots recognized by immunoblotting were excised and processed using LC/MS-MS. Of the 93 antigenic spots excised, 87 were identified by LC/MS-MS. Twenty-seven protein types were found, the most abundant being Ascaris suum37. Six spots showed good quality spectra, but could not be identified. This appears to be the first attempt to characterize antigenic proteins from GSAL3 using a proteomic approach. Immuno-proteomics shows promise to assist the search for candidate proteins for diagnosis and vaccine/drug design and may provide better understand of the host-parasite relationship in human gnathostomiasis.
Collapse
Affiliation(s)
- Penchom Janwan
- Department of Medical Technology, School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat 80161, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pewpan M Intapan
- Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Porntip Laummaunwai
- Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rutchanee Rodpai
- Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tonkla Insawang
- Khon Kaen University Research Instrument Center, Research Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tongjit Thanchomnang
- Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Oranuch Sanpool
- Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
19
|
Conte D, MacNeil LT, Walhout AJ, Mello CC. RNA Interference in Caenorhabditis elegans. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2015; 109:26.3.1-26.3.30. [PMID: 25559107 PMCID: PMC5396541 DOI: 10.1002/0471142727.mb2603s109] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNAi has become an essential tool in C. elegans research. This unit describes procedures for RNAi in C. elegans by microinjecting with dsRNA, feeding with bacteria expressing dsRNA, and soaking in dsRNA solution, as well as high-throughput methods for RNAi-based screens.
Collapse
Affiliation(s)
- Darryl Conte
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lesley T. MacNeil
- Programs in Systems Biology and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Albertha J.M. Walhout
- Programs in Systems Biology and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Craig C. Mello
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Howard Hughes Medical Institute
| |
Collapse
|
20
|
Khanna A, Johnson DL, Curran SP. Physiological roles for mafr-1 in reproduction and lipid homeostasis. Cell Rep 2014; 9:2180-91. [PMID: 25497095 DOI: 10.1016/j.celrep.2014.11.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/14/2014] [Accepted: 11/20/2014] [Indexed: 02/02/2023] Open
Abstract
Maf1 is a conserved repressor of RNA polymerase (Pol) III transcription; however, its physiological role in the context of a multicellular organism is not well understood. Here, we show that C. elegans MAFR-1 is functionally orthologous to human Maf1, represses the expression of both RNA Pol III and Pol II transcripts, and mediates organismal fecundity and lipid homeostasis. MAFR-1 impacts lipid transport by modulating intestinal expression of the vitellogenin family of proteins, resulting in cell-nonautonomous defects in the developing reproductive system. MAFR-1 levels inversely correlate with stored intestinal lipids, in part by influencing the expression of the lipogenesis enzymes fasn-1/FASN and pod-2/ACC1. Animals fed a high carbohydrate diet exhibit reduced mafr-1 expression and mutations in the insulin signaling pathway genes daf-18/PTEN and daf-16/FoxO abrogate the lipid storage defects associated with deregulated mafr-1 expression. Our results reveal physiological roles for mafr-1 in regulating organismal lipid homeostasis, which ensure reproductive success.
Collapse
Affiliation(s)
- Akshat Khanna
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Deborah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
21
|
Systematic targeted gene deletion using the gene-synthesis method in fission yeast. J Microbiol Methods 2014; 106:72-77. [DOI: 10.1016/j.mimet.2014.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 11/24/2022]
|
22
|
Abstract
Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno's hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive.
Collapse
|
23
|
Abstract
Nematodes are amongst the most successful and abundant organisms on the planet with approximately 30 000 species described, although the actual number of species is estimated to be one million or more. Despite sharing a relatively simple and invariant body plan, there is considerable diversity within the phylum. Nematodes have evolved to colonize most ecological niches, and can be free-living or can parasitize plants or animals to the detriment of the host organism. In this review we consider the role of heat shock protein 90 (Hsp90) in the nematode life cycle. We describe studies on Hsp90 in the free-living nematode Caenorhabditis elegans and comparative work on the parasitic species Brugia pahangi, and consider whether a dependence upon Hsp90 can be exploited for the control of parasitic species.
Collapse
|
24
|
Lee SG, Jez JM. Nematode phospholipid metabolism: an example of closing the genome-structure-function circle. Trends Parasitol 2014; 30:241-50. [PMID: 24685202 DOI: 10.1016/j.pt.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/03/2023]
Abstract
Parasitic nematodes that infect humans, animals, and plants cause health problems, livestock and agricultural losses, and economic damage worldwide and are important targets for drug development. The growing availability of nematode genomes supports the discovery of new pathways that differ from host organisms and are a starting point for structural and functional studies of novel antiparasitic targets. As an example of how genome data, structural biology, and biochemistry integrate into a research cycle targeting parasites, we summarize the discovery of the phosphobase methylation pathway for phospholipid synthesis in nematodes and compare the phosphoethanolamine methyltransferases (PMTs) from nematodes, plants, and Plasmodium. Crystallographic and biochemical studies of the PMTs in this pathway provide a foundation that guides the next steps that close the genome-structure-function circle.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA.
| |
Collapse
|
25
|
Strome S, Kelly WG, Ercan S, Lieb JD. Regulation of the X chromosomes in Caenorhabditis elegans. Cold Spring Harb Perspect Biol 2014; 6:6/3/a018366. [PMID: 24591522 DOI: 10.1101/cshperspect.a018366] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dosage compensation, which regulates the expression of genes residing on the sex chromosomes, has provided valuable insights into chromatin-based mechanisms of gene regulation. The nematode Caenorhabditis elegans has adopted various strategies to down-regulate and even nearly silence the X chromosomes. This article discusses the different chromatin-based strategies used in somatic tissues and in the germline to modulate gene expression from the C. elegans X chromosomes and compares these strategies to those used by other organisms to cope with similar X-chromosome dosage differences.
Collapse
Affiliation(s)
- Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| | | | | | | |
Collapse
|
26
|
The ubiquitin proteasome system in Caenorhabditis elegans and its regulation. Redox Biol 2014; 2:333-47. [PMID: 24563851 PMCID: PMC3926112 DOI: 10.1016/j.redox.2014.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 11/20/2022] Open
Abstract
Protein degradation constitutes a major cellular function that is responsible for maintenance of the normal cellular physiology either through the degradation of normal proteins or through the elimination of damaged proteins. The Ubiquitin–Proteasome System (UPS)1 is one of the main proteolytic systems that orchestrate protein degradation. Given that up- and down- regulation of the UPS system has been shown to occur in various normal (such as ageing) and pathological (such as neurodegenerative diseases) processes, the exogenous modulation of the UPS function and activity holds promise of (a) developing new therapeutic interventions against various diseases and (b) establishing strategies to maintain cellular homeostasis. Since the proteasome genes are evolutionarily conserved, their role can be dissected in simple model organisms, such as the nematode, Caenorhabditis elegans. In this review, we survey findings on the redox regulation of the UPS in C. elegans showing that the nematode is an instrumental tool in the identification of major players in the UPS pathway. Moreover, we specifically discuss UPS-related genes that have been modulated in the nematode and in human cells and have resulted in similar effects thus further exhibiting the value of this model in the study of the UPS. UPS is one of the main proteolytic systems that orchestrate protein degradation. Proteasome function can be dissected in Caenorhabditis elegans. Nematodes can be used in the identification of major players in the UPS pathway.
Collapse
|
27
|
Opposing activities of DRM and MES-4 tune gene expression and X-chromosome repression in Caenorhabditis elegans germ cells. G3-GENES GENOMES GENETICS 2014; 4:143-53. [PMID: 24281426 PMCID: PMC3887530 DOI: 10.1534/g3.113.007849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During animal development, gene transcription is tuned to tissue-appropriate levels. Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 (Maternal Effect Sterile-4) marks genes expressed in the germline with methylated lysine on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosome. The DRM transcription factor complex, named for its Dp/E2F, Retinoblastoma-like, and MuvB subunits, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 and the DRM subunit lin-54 oppositely skew the transcript levels of their common targets and cause sterility. A double mutant restores target gene transcript levels closer to wild type, and the concomitant loss of lin-54 suppresses the severe germline proliferation defect observed in mes-4 single mutants. Together, “yin-yang” regulation by MES-4 and DRM ensures transcript levels appropriate for germ-cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.
Collapse
|
28
|
Guérin TM, Palladino F, Robert VJ. Transgenerational functions of small RNA pathways in controlling gene expression in C. elegans. Epigenetics 2013; 9:37-44. [PMID: 24162759 DOI: 10.4161/epi.26795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA silencing processes use exogenous or endogenous RNA molecules to specifically and robustly regulate gene expression. In C. elegans, initial mechanistic descriptions of the different silencing processes focused on posttranscriptional regulation. In this review, we discuss recent work showing that, in this model organism, RNA silencing also controls the transcription of target genes by inducing heterochromatin formation. Specifically, it has been shown that ribonucleoprotein complexes containing small RNAs, either processed from exogenous dsRNA or synthesized from the genome itself, and proteins of the Argonaute family, mediate the deposition of repressive histone marks at the targeted loci. Interestingly, the accumulation of repressive marks is required for the inheritance of the silencing effect and the establishment of an epigenetic memory that discriminates self- from non-self-RNAs.
Collapse
Affiliation(s)
- Thomas M Guérin
- Ecole Normale Supérieure de Lyon; CNRS; Molecular biology of the Cell Laboratory/UMR5239; Université Claude Bernard Lyon; Lyon, France; Master Biosciences; Ecole Normale Supérieure de Lyon; Université Claude Bernard Lyon; Lyon, France
| | - Francesca Palladino
- Ecole Normale Supérieure de Lyon; CNRS; Molecular biology of the Cell Laboratory/UMR5239; Université Claude Bernard Lyon; Lyon, France
| | - Valérie J Robert
- Ecole Normale Supérieure de Lyon; CNRS; Molecular biology of the Cell Laboratory/UMR5239; Université Claude Bernard Lyon; Lyon, France
| |
Collapse
|
29
|
Kress E, Schwager F, Holtackers R, Seiler J, Prodon F, Zanin E, Eiteneuer A, Toya M, Sugimoto A, Meyer H, Meraldi P, Gotta M. The UBXN-2/p37/p47 adaptors of CDC-48/p97 regulate mitosis by limiting the centrosomal recruitment of Aurora A. ACTA ACUST UNITED AC 2013; 201:559-75. [PMID: 23649807 PMCID: PMC3653362 DOI: 10.1083/jcb.201209107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UBXN-2, a substrate adaptor of the AAA ATPase CDC-48/p97, is required to coordinate centrosome maturation timing with mitosis. Coordination of cell cycle events in space and time is crucial to achieve a successful cell division. Here, we demonstrate that UBXN-2, a substrate adaptor of the AAA ATPase Cdc48/p97, is required to coordinate centrosome maturation timing with mitosis. In UBXN-2–depleted Caenorhabditis elegans embryos, centrosomes recruited more AIR-1 (Aurora A), matured precociously, and alignment of the mitotic spindle with the axis of polarity was impaired. UBXN-2 and CDC-48 coimmunoprecipitated with AIR-1 and the spindle alignment defect was partially rescued by co-depleting AIR-1, indicating that UBXN-2 controls these processes via AIR-1. Similarly, depletion in human cells of the UBXN-2 orthologues p37/p47 resulted in an accumulation of Aurora A at centrosomes and a delay in centrosome separation. The latter defect was also rescued by inhibiting Aurora A. We therefore postulate that the role of this adaptor in cell cycle regulation is conserved.
Collapse
Affiliation(s)
- Elsa Kress
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Singh PK, Kushwaha S, Mohd S, Pathak M, Misra-Bhattacharya S. In vitro gene silencing of independent phosphoglycerate mutase (iPGM) in the filarial parasite Brugia malayi. Infect Dis Poverty 2013; 2:5. [PMID: 23849829 PMCID: PMC3707094 DOI: 10.1186/2049-9957-2-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/21/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The phosphoglycerate mutase (PGM) enzyme catalyzes the interconversion of 2- and 3-phosphoglycerate in the glycolytic /gluconeogenic pathways that are present in the majority of cellular organisms. They can be classified as cofactor-dependent PGM (dPGM) or cofactor-independent PGM (iPGM). Vertebrates, yeasts, and many bacteria have only dPGM, while higher plants, nematodes, archaea, and many other bacteria have only iPGM. A small number of bacteria, including Escherichia coli and certain archaea and protozoa, contain both forms. The silencing of ipgm in Caenorhabditis elegans (C. elegans) has demonstrated the importance of this enzyme in parasite viability and, therefore, its potential as an anthelmintic drug target. In this study, the role of the Brugia malayi (B. malayi) ipgm in parasite viability, microfilaria release, embryogenesis, and in vivo development of infective larvae post-gene silencing was explored by applying ribonucleic acid (RNA) interference studies. RESULTS The in vitro ipgm gene silencing by small interfering RNA (siRNA) leads to severe phenotypic deformities in the intrauterine developmental stages of female worms with a drastic reduction (~90%) in the motility of adult parasites and a significantly reduced (80%) release of microfilariae (mf) by female worms in vitro. Almost half of the in vitro-treated infective L3 displayed sluggish movement. The in vivo survival and development of siRNA-treated infective larvae (L3) was investigated in the peritoneal cavity of jirds where a ~45% reduction in adult worm establishment was observed. CONCLUSION The findings clearly suggest that iPGM is essential for both larval and adult stages of B. malayi parasite and that it plays a pivotal role in female worm embryogenesis. The results thus validate the Bm-iPGM as a putative anti-filarial drug target.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| | - Susheela Kushwaha
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| | - Shahab Mohd
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| | - Manisha Pathak
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| |
Collapse
|
31
|
Interface Molecules of Angiostrongylus cantonensis: Their Role in Parasite Survival and Modulation of Host Defenses. Int J Inflam 2012; 2012:512097. [PMID: 22536544 PMCID: PMC3321291 DOI: 10.1155/2012/512097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/23/2012] [Indexed: 01/21/2023] Open
Abstract
Angiostrongylus cantonensis is a nematode parasite that causes eosinophilic meningoencephalitis in humans. Disease presents following the ingestion of third-stage larvae residing in the intermediate mollusk host and disease manifests as an acute inflammation of the meninges characterized by eosinophil infiltrates which release a battery of proinflammatory and cytotoxic agents in response to the pathogen. As a mechanism of neutralizing these host defenses, A. cantonensis expresses different molecules with immunomodulatory properties that are excreted or secreted (ES). In this paper we discuss the role of ES proteins on disease exacerbation and their potential use as therapeutic targets.
Collapse
|
32
|
Milani L, Ghiselli F, Maurizii MG, Passamonti M. Doubly uniparental inheritance of mitochondria as a model system for studying germ line formation. PLoS One 2011; 6:e28194. [PMID: 22140544 PMCID: PMC3226660 DOI: 10.1371/journal.pone.0028194] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Doubly Uniparental Inheritance (DUI) of mitochondria occurs when both mothers and fathers are capable of transmitting mitochondria to their offspring, in contrast to the typical Strictly Maternal Inheritance (SMI). DUI was found in some bivalve molluscs, in which two mitochondrial genomes are inherited, one through eggs, the other through sperm. During male embryo development, spermatozoon mitochondria aggregate in proximity of the first cleavage furrow and end up in the primordial germ cells, while they are dispersed in female embryos. METHODOLOGY/PRINCIPAL FINDINGS We used MitoTracker, microtubule staining and transmission electron microscopy to examine the mechanisms of this unusual distribution of sperm mitochondria in the DUI species Ruditapes philippinarum. Our results suggest that in male embryos the midbody deriving from the mitotic spindle of the first division concurs in positioning the aggregate of sperm mitochondria. Furthermore, an immunocytochemical analysis showed that the germ line determinant Vasa segregates close to the first cleavage furrow. CONCLUSIONS/SIGNIFICANCE In DUI male embryos, spermatozoon mitochondria aggregate in a stable area on the animal-vegetal axis: in organisms with spiral segmentation this zone is not involved in cleavage, so the aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area in which also germ plasm is transferred. In 2-blastomere embryos, the segregation of sperm mitochondria in the same region with Vasa suggests their contribution in male germ line formation. In DUI male embryos, M-type mitochondria must be recognized by egg factors to be actively transferred in the germ line, where they become dominant replacing the Balbiani body mitochondria. The typical features of germ line assembly point to a common biological mechanism shared by DUI and SMI organisms. Although the molecular dynamics of the segregation of sperm mitochondria in DUI species are unknown, they could be a variation of the mechanism regulating the mitochondrial bottleneck in all metazoans.
Collapse
Affiliation(s)
- Liliana Milani
- Department of Biologia Evoluzionistica Sperimentale, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
33
|
Bolle C, Schneider A, Leister D. Perspectives on Systematic Analyses of Gene Function in Arabidopsis thaliana: New Tools, Topics and Trends. Curr Genomics 2011; 12:1-14. [PMID: 21886450 PMCID: PMC3129038 DOI: 10.2174/138920211794520187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/28/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022] Open
Abstract
Since the sequencing of the nuclear genome of Arabidopsis thaliana ten years ago, various large-scale analyses of gene function have been performed in this model species. In particular, the availability of collections of lines harbouring random T-DNA or transposon insertions, which include mutants for almost all of the ~27,000 A. thaliana genes, has been crucial for the success of forward and reverse genetic approaches. In the foreseeable future, genome-wide phenotypic data from mutant analyses will become available for Arabidopsis, and will stimulate a flood of novel in-depth gene-function analyses. In this review, we consider the present status of resources and concepts for systematic studies of gene function in A. thaliana. Current perspectives on the utility of loss-of-function and gain-of-function mutants will be discussed in light of the genetic and functional redundancy of many A. thaliana genes.
Collapse
Affiliation(s)
- C Bolle
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
34
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
35
|
Green RA, Kao HL, Audhya A, Arur S, Mayers JR, Fridolfsson HN, Schulman M, Schloissnig S, Niessen S, Laband K, Wang S, Starr DA, Hyman AA, Schedl T, Desai A, Piano F, Gunsalus KC, Oegema K. A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell 2011; 145:470-82. [PMID: 21529718 DOI: 10.1016/j.cell.2011.03.037] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 12/21/2010] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
High-content screening for gene profiling has generally been limited to single cells. Here, we explore an alternative approach-profiling gene function by analyzing effects of gene knockdowns on the architecture of a complex tissue in a multicellular organism. We profile 554 essential C. elegans genes by imaging gonad architecture and scoring 94 phenotypic features. To generate a reference for evaluating methods for network construction, genes were manually partitioned into 102 phenotypic classes, predicting functions for uncharacterized genes across diverse cellular processes. Using this classification as a benchmark, we developed a robust computational method for constructing gene networks from high-content profiles based on a network context-dependent measure that ranks the significance of links between genes. Our analysis reveals that multi-parametric profiling in a complex tissue yields functional maps with a resolution similar to genetic interaction-based profiling in unicellular eukaryotes-pinpointing subunits of macromolecular complexes and components functioning in common cellular processes.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tabuchi TM, Deplancke B, Osato N, Zhu LJ, Barrasa MI, Harrison MM, Horvitz HR, Walhout AJM, Hagstrom KA. Chromosome-biased binding and gene regulation by the Caenorhabditis elegans DRM complex. PLoS Genet 2011; 7:e1002074. [PMID: 21589891 PMCID: PMC3093354 DOI: 10.1371/journal.pgen.1002074] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 03/25/2011] [Indexed: 01/28/2023] Open
Abstract
DRM is a conserved transcription factor complex that includes E2F/DP and pRB family proteins and plays important roles in development and cancer. Here we describe new aspects of DRM binding and function revealed through genome-wide analyses of the Caenorhabditis elegans DRM subunit LIN-54. We show that LIN-54 DNA-binding activity recruits DRM to promoters enriched for adjacent putative E2F/DP and LIN-54 binding sites, suggesting that these two DNA-binding moieties together direct DRM to its target genes. Chromatin immunoprecipitation and gene expression profiling reveals conserved roles for DRM in regulating genes involved in cell division, development, and reproduction. We find that LIN-54 promotes expression of reproduction genes in the germline, but prevents ectopic activation of germline-specific genes in embryonic soma. Strikingly, C. elegans DRM does not act uniformly throughout the genome: the DRM recruitment motif, DRM binding, and DRM-regulated embryonic genes are all under-represented on the X chromosome. However, germline genes down-regulated in lin-54 mutants are over-represented on the X chromosome. We discuss models for how loss of autosome-bound DRM may enhance germline X chromosome silencing. We propose that autosome-enriched binding of DRM arose in C. elegans as a consequence of germline X chromosome silencing and the evolutionary redistribution of germline-expressed and essential target genes to autosomes. Sex chromosome gene regulation may thus have profound evolutionary effects on genome organization and transcriptional regulatory networks.
Collapse
Affiliation(s)
- Tomoko M. Tabuchi
- Program in Molecular Medicine and Program in Cell Dynamics, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Bart Deplancke
- Program in Gene Function and Expression and Program in Molecular
Medicine, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
| | - Naoki Osato
- Program in Gene Function and Expression and Program in Molecular
Medicine, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
| | - Lihua J. Zhu
- Program in Gene Function and Expression and Program in Molecular
Medicine, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
| | - M. Inmaculada Barrasa
- Program in Gene Function and Expression and Program in Molecular
Medicine, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
| | - Melissa M. Harrison
- Howard Hughes Medical Institute, Department of Biology, Massachusetts
Institute of Technology, Cambridge, Massachusetts, United States of
America
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts
Institute of Technology, Cambridge, Massachusetts, United States of
America
| | - Albertha J. M. Walhout
- Program in Gene Function and Expression and Program in Molecular
Medicine, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
| | - Kirsten A. Hagstrom
- Program in Molecular Medicine and Program in Cell Dynamics, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| |
Collapse
|
37
|
Sozzani R, Benfey PN. High-throughput phenotyping of multicellular organisms: finding the link between genotype and phenotype. Genome Biol 2011; 12:219. [PMID: 21457493 PMCID: PMC3129668 DOI: 10.1186/gb-2011-12-3-219] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-throughput phenotyping approaches (phenomics) are being combined with genome-wide genetic screens to identify alterations in phenotype that result from gene inactivation. Here we highlight promising technologies for 'phenome-scale' analyses in multicellular organisms.
Collapse
Affiliation(s)
- Rosangela Sozzani
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
38
|
Verbrugghe KJC, Chan RC. Imaging C. elegans embryos using an epifluorescent microscope and open source software. J Vis Exp 2011:2625. [PMID: 21490567 PMCID: PMC3197319 DOI: 10.3791/2625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples1,2. Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development. The Caenorhabiditis elegans embryo is light-transparent and has a rapid, invariant developmental program with a known cell lineage3, thus providing an ideal experiment model for studying questions in cell biology4,5and development6-9. C. elegans is amendable to genetic manipulation by forward genetics (based on random mutagenesis10,11) and reverse genetics to target specific genes (based on RNAi-mediated interference and targeted mutagenesis12-15). In addition, transgenic animals can be readily created to express fluorescently tagged proteins or reporters16,17. These traits combine to make it easy to identify the genetic pathways regulating fundamental cellular and developmental processes in vivo18-21. In this protocol we present methods for live imaging of C. elegans embryos using DIC optics or GFP fluorescence on a compound epifluorescent microscope. We demonstrate the ease with which readily available microscopes, typically used for fixed sample imaging, can also be applied for time-lapse analysis using open-source software to automate the imaging process.
Collapse
|
39
|
Li BW, Rush AC, Jiang DJ, Mitreva M, Abubucker S, Weil GJ. Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets. PLoS Negl Trop Dis 2011; 5:e947. [PMID: 21283610 PMCID: PMC3026763 DOI: 10.1371/journal.pntd.0000947] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022] Open
Abstract
Background A better understanding of reproductive processes in parasitic nematodes may lead to development of new anthelmintics and control strategies for combating disabling and disfiguring neglected tropical diseases such as lymphatic filariasis and onchocerciasis. Transcriptomatic analysis has provided important new insights into mechanisms of reproduction and development in other invertebrates. We have performed the first genome-wide analysis of gender-associated (GA) gene expression in a filarial nematode to improve understanding of key reproductive processes in these parasites. Methodology/Principal Findings The Version 2 Filarial Microarray with 18,104 elements representing ∼85% of the filarial genome was used to identify GA gene transcripts in adult Brugia malayi worms. Approximately 19% of 14,293 genes were identified as GA genes. Many GA genes have potential Caenorhabditis elegans homologues annotated as germline-, oogenesis-, spermatogenesis-, and early embryogenesis- enriched. The potential C. elegans homologues of the filarial GA genes have a higher frequency of severe RNAi phenotypes (such as lethal and sterility) than other C. elegans genes. Molecular functions and biological processes associated with GA genes were gender-segregated. Peptidase, ligase, transferase, regulator activity for kinase and transcription, and rRNA and lipid binding were associated with female GA genes. In contrast, catalytic activity from kinase, ATP, and carbohydrate binding were associated with male GA genes. Cell cycle, transcription, translation, and biological regulation were increased in females, whereas metabolic processes of phosphate and carbohydrate metabolism, energy generation, and cell communication were increased in males. Significantly enriched pathways in females were associated with cell growth and protein synthesis, whereas metabolic pathways such as pentose phosphate and energy production pathways were enriched in males. There were also striking gender differences in environmental information processing and cell communication pathways. Many proteins encoded by GA genes are secreted by Brugia malayi, and these encode immunomodulatory molecules such as antioxidants and host cytokine mimics. Expression of many GA genes has been recently reported to be suppressed by tetracycline, which blocks reproduction in female Brugia malayi. Our localization of GA transcripts in filarial reproductive organs supports the hypothesis that these genes encode proteins involved in reproduction. Conclusions/Significance Genome-wide expression profiling coupled with a robust bioinformatics analysis has greatly expanded our understanding of the molecular biology of reproduction in filarial nematodes. This study has highlighted key molecules and pathways associated with reproductive and other biological processes and identified numerous potential candidates for rational drug design to target reproductive processes. Lymphatic filariasis is a neglected tropical disease that is caused by thread-like parasitic worms that live and reproduce in lymphatic vessels of the human host. There are no vaccines to prevent filariasis, and available drugs are not effective against all stages of the parasite. In addition, recent reports suggest that the filarial nematodes may be developing resistance to key medications. Therefore, there is an urgent need to identify new drug targets in filarial worms. The purpose of this study was to perform a genome-wide analysis of gender-associated gene transcription to improve understanding of key reproductive processes in filarial nematodes. Our results indicate that thousands of genes are differentially expressed in male and female adult worms. Many of those genes are involved in specific reproductive processes such as embryogenesis and spermatogenesis. In addition, expression of some of those genes is suppressed by tetracycline, a drug that leads to sterilization of adult female worms in many filarial species. Thus, gender-associated genes represent priority targets for design of vaccines and drugs that interfere with reproduction of filarial nematodes. Additional work with this type of integrated systems biology approach should lead to important new tools for controlling filarial diseases.
Collapse
Affiliation(s)
- Ben-Wen Li
- Infectious Diseases Division, Washington University School of Medicine, St. Louis, Missouri, United States of America.
| | | | | | | | | | | |
Collapse
|
40
|
Schindelman G, Fernandes JS, Bastiani CA, Yook K, Sternberg PW. Worm Phenotype Ontology: integrating phenotype data within and beyond the C. elegans community. BMC Bioinformatics 2011; 12:32. [PMID: 21261995 PMCID: PMC3039574 DOI: 10.1186/1471-2105-12-32] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/24/2011] [Indexed: 02/02/2023] Open
Abstract
Background Caenorhabditis elegans gene-based phenotype information dates back to the 1970's, beginning with Sydney Brenner and the characterization of behavioral and morphological mutant alleles via classical genetics in order to understand nervous system function. Since then C. elegans has become an important genetic model system for the study of basic biological and biomedical principles, largely through the use of phenotype analysis. Because of the growth of C. elegans as a genetically tractable model organism and the development of large-scale analyses, there has been a significant increase of phenotype data that needs to be managed and made accessible to the research community. To do so, a standardized vocabulary is necessary to integrate phenotype data from diverse sources, permit integration with other data types and render the data in a computable form. Results We describe a hierarchically structured, controlled vocabulary of terms that can be used to standardize phenotype descriptions in C. elegans, namely the Worm Phenotype Ontology (WPO). The WPO is currently comprised of 1,880 phenotype terms, 74% of which have been used in the annotation of phenotypes associated with greater than 18,000 C. elegans genes. The scope of the WPO is not exclusively limited to C. elegans biology, rather it is devised to also incorporate phenotypes observed in related nematode species. We have enriched the value of the WPO by integrating it with other ontologies, thereby increasing the accessibility of worm phenotypes to non-nematode biologists. We are actively developing the WPO to continue to fulfill the evolving needs of the scientific community and hope to engage researchers in this crucial endeavor. Conclusions We provide a phenotype ontology (WPO) that will help to facilitate data retrieval, and cross-species comparisons within the nematode community. In the larger scientific community, the WPO will permit data integration, and interoperability across the different Model Organism Databases (MODs) and other biological databases. This standardized phenotype ontology will therefore allow for more complex data queries and enhance bioinformatic analyses.
Collapse
Affiliation(s)
- Gary Schindelman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
C. elegans is a powerful metazoan model system to address fundamental questions in cell and developmental biology. Research in C. elegans has traditionally focused on genetic, physiological, and cell biological approaches. However, C. elegans is also a facile system for biochemistry: worms are easy to grow in large quantities, the functionality of tagged fusion proteins can be assessed using mutants or RNAi, and the relevance of putative interaction partners can be rapidly tested in vivo. Combining biochemistry with function-based genetic and RNA interference screens can rapidly accelerate the delineation of protein networks and pathways in diverse contexts. In this chapter, we focus on two strategies to identify protein-protein interactions: single-step immunoprecipitation and tandem affinity purification. We describe methods for growth of worms in large-scale liquid culture, preparation of worm and embryo extracts, immunoprecipitation, and tandem affinity purification. In addition, we describe methods to test specificity of antibodies, strategies for optimizing starting material, and approaches to distinguish specific from non-specific interactions.
Collapse
|
42
|
Lee SG, Jez JM. The Phosphobase Methylation Pathway in Caernorhabditis elegans: A New Route to Phospholipids in Animals. CURRENT CHEMICAL BIOLOGY 2011; 5:183-188. [PMID: 34113540 PMCID: PMC8189325 DOI: 10.2174/2212796811105030183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasitic nematodes are a major cause of human health problems with an estimated 1 billion people infected worldwide by these organisms. Identifying biochemical targets that differ between the parasite and host species is essential for finding effective new anti-parasitic molecules. The free-living nematode Caenorhabditis elegans is a powerful model system for experiments in genetics and developmental biology needed to achieve this goal; however, in-depth understanding of metabolic processes in this organism is limited as it still contains unexplored biochemical pathways. Eukaryotes. including nematodes and humans, share many similar metabolic pathways, which makes specific targeting of nematode parasites challenging. Recent studies suggest that C. elegans and other nematodes may use a plant-like pathway as the major biosynthetic route to phosphatidylcholine. In this pathway, a pair of phosphoethanolamine methyltransferases (PMT) catalyze the sequential methylation of phosphoethanolamine to phosphocholine, which can be incorporated into phosphatidylcholine. RNAi experiments demonstrate that both PMT are required for normal growth and development of C. elegans. Because the PMT are highly conserved across nematode parasites of humans, livestock, and plants, as well as in protozoan parasites, understanding how these enzymes function and the identification of inhibitors will aid in the development of new anti-parasite compounds of potential medical, veterinary, and agricultural value.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Joseph M. Jez
- Department of Biology, Washington University, St. Louis, MO 63130
| |
Collapse
|
43
|
Cipriani PG, Piano F. RNAi methods and screening: RNAi based high-throughput genetic interaction screening. Methods Cell Biol 2011; 106:89-111. [PMID: 22118275 DOI: 10.1016/b978-0-12-544172-8.00004-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expanding on decades of mutational analyses, numerous genome-scale RNAi screens have now been performed in C. elegans, leading to estimates that the majority of genes with essential functions that can be revealed by single-gene perturbations have already been identified in this organism. To build on this basic foundation and uncover condition-dependent or combinatorial effects of non-essential genes will require even higher-scale screening. Here we describe a method for performing high-throughput RNAi-based screens in C. elegans in liquid in 96-well plates, and we explain how to systematically test for enhancement and suppression of temperature-sensitive mutations. This chapter covers our entire set of protocols, from setting up the experiment and screening schedule, to scoring the results. The rapid acquisition of high-quality images of each experiment allows the management of a large number of samples per screening cycle and opens up new possibilities for quantitative scoring, computerized image analysis, and the ability to review results independent of the time constraints that are associated with large-scale screening.
Collapse
Affiliation(s)
- Patricia G Cipriani
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | |
Collapse
|
44
|
Maine EM. Meiotic silencing in Caenorhabditis elegans. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:91-134. [PMID: 20630467 DOI: 10.1016/s1937-6448(10)82002-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In many animals and some fungi, mechanisms have been described that target unpaired chromosomes and chromosomal regions for silencing during meiotic prophase. These phenomena, collectively called "meiotic silencing," target sex chromosomes in the heterogametic sex, for example, the X chromosome in male nematodes and the XY-body in male mice, and also target any other chromosomes that fail to synapse due to mutation or chromosomal rearrangement. Meiotic silencing phenomena are hypothesized to maintain genome integrity and perhaps function in setting up epigenetic control of embryogenesis. This review focuses on meiotic silencing in the nematode, Caenorhabditis elegans, including its mechanism and function(s), and its relationship to other gene silencing processes in the germ line. One hallmark of meiotic silencing in C. elegans is that unpaired/unsynapsed chromosomes and chromosomal regions become enriched for a repressive histone modification, dimethylation of histone H3 on lysine 9 (H3K9me2). Accumulation and proper targeting of H3K9me2 rely on activity of an siRNA pathway, suggesting that histone methyltransferase activity may be targeted/regulated by a small RNA-based transcriptional silencing mechanism.
Collapse
Affiliation(s)
- Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
45
|
Schenk C, Bringmann H, Hyman AA, Cowan CR. Cortical domain correction repositions the polarity boundary to match the cytokinesis furrow in C. elegans embryos. Development 2010; 137:1743-53. [PMID: 20430749 DOI: 10.1242/dev.040436] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In asymmetrically dividing cells, a failure to coordinate cell polarity with the site of cell division can lead to cell fate transformations and tumorigenesis. Cell polarity in C. elegans embryos is defined by PAR proteins, which occupy reciprocal halves of the cell cortex. During asymmetric division, the boundary between the anterior and posterior PAR domains precisely matches the site of cell division, ensuring exclusive segregation of cell fate. The PAR domains determine the site of cell division by positioning the mitotic spindle, suggesting one means by which cell polarity and cell division might be coordinated. Here, we report that cell polarity and cell division are coordinated through an additional mechanism: the site of cell division repositions the PAR-2 boundary. Galpha-mediated microtubule-cortex interactions appear to direct cortical flows of PAR-2 and myosin toward the site of cell division, which acts as a PAR-2 and myosin sink. Embryos with defects in PAR-2 boundary correction undergo mis-segregation of cortical polarity and cytoplasmic determinants, suggesting that PAR domain correction might help prevent cell fate transformation.
Collapse
Affiliation(s)
- Christian Schenk
- Research Institute of Molecular Pathology, Dr Bohr Gasse 7, Vienna, Austria
| | | | | | | |
Collapse
|
46
|
Fridolfsson HN, Ly N, Meyerzon M, Starr DA. UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Dev Biol 2010; 338:237-50. [PMID: 20005871 PMCID: PMC2826220 DOI: 10.1016/j.ydbio.2009.12.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 11/19/2022]
Abstract
Nuclei migrate during many events, including fertilization, establishment of polarity, differentiation, and cell division. The Caenorhabditis elegans KASH protein UNC-83 localizes to the outer nuclear membrane where it recruits kinesin-1 to provide the major motor activity required for nuclear migration in embryonic hyp7 cells. Here we show that UNC-83 also recruits two dynein-regulating complexes to the cytoplasmic face of the nucleus that play a regulatory role. One consists of the NudE homolog NUD-2 and the NudF/Lis1/Pac1 homolog LIS-1, and the other includes dynein light chain DLC-1, the BicaudalD homolog BICD-1, and the Egalitarian homologue EGAL-1. Genetic disruption of any member of these two complexes caused nuclear migration defects that were enhanced in some double mutant animals, suggesting that BICD-1 and EGAL-1 function in parallel to NUD-2. Dynein heavy chain mutant animals also had a nuclear migration defect, suggesting these complexes function through dynein. Deletion analysis indicated that independent domains of UNC-83 interact with kinesin and dynein. These data suggest a model where UNC-83 acts as the cargo-specific adaptor between the outer nuclear membrane and the microtubule motors kinesin-1 and dynein. Kinesin-1 functions as the major force generator during nuclear migration, while dynein is involved in regulation of bidirectional transport of the nucleus.
Collapse
Affiliation(s)
- Heidi N. Fridolfsson
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Nina Ly
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Marina Meyerzon
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| |
Collapse
|
47
|
Ajjawi I, Lu Y, Savage LJ, Bell SM, Last RL. Large-scale reverse genetics in Arabidopsis: case studies from the Chloroplast 2010 Project. PLANT PHYSIOLOGY 2010; 152:529-40. [PMID: 19906890 PMCID: PMC2815874 DOI: 10.1104/pp.109.148494] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 11/09/2009] [Indexed: 05/18/2023]
Abstract
Traditionally, phenotype-driven forward genetic plant mutant studies have been among the most successful approaches to revealing the roles of genes and their products and elucidating biochemical, developmental, and signaling pathways. A limitation is that it is time consuming, and sometimes technically challenging, to discover the gene responsible for a phenotype by map-based cloning or discovery of the insertion element. Reverse genetics is also an excellent way to associate genes with phenotypes, although an absence of detectable phenotypes often results when screening a small number of mutants with a limited range of phenotypic assays. The Arabidopsis Chloroplast 2010 Project (www.plastid.msu.edu) seeks synergy between forward and reverse genetics by screening thousands of sequence-indexed Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutants for a diverse set of phenotypes. Results from this project are discussed that highlight the strengths and limitations of the approach. We describe the discovery of altered fatty acid desaturation phenotypes associated with mutants of At1g10310, previously described as a pterin aldehyde reductase in folate metabolism. Data are presented to show that growth, fatty acid, and chlorophyll fluorescence defects previously associated with antisense inhibition of synthesis of the family of acyl carrier proteins can be attributed to a single gene insertion in Acyl Carrier Protein4 (At4g25050). A variety of cautionary examples associated with the use of sequence-indexed T-DNA mutants are described, including the need to genotype all lines chosen for analysis (even when they number in the thousands) and the presence of tagged and untagged secondary mutations that can lead to the observed phenotypes.
Collapse
|
48
|
Elucidating ANTs in worms using genomic and bioinformatic tools--biotechnological prospects? Biotechnol Adv 2010; 28:49-60. [PMID: 19770033 DOI: 10.1016/j.biotechadv.2009.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/11/2009] [Accepted: 09/03/2009] [Indexed: 12/30/2022]
Abstract
Adenine nucleotide translocators (ANTs) belong to the mitochondrial carrier family (MCF) of proteins. ATP production and consumption are tightly linked to ANTs, the kinetics of which have been proposed to play a key regulatory role in mitochondrial oxidative phosphorylation. ANTs are also recognized as a central component of the mitochondrial permeability transition pore associated with apoptosis. Although ANTs have been investigated in a range of vertebrates, including human, mouse and cattle, and invertebrates, such as Drosophila melanogaster (vinegar fly), Saccharomyces cerevisiae (yeast) and Caenorhabditis elegans (free-living nematode), there has been a void of information on these molecules for parasitic nematodes of socio-economic importance. Exploring ANTs in nematodes has the potential lead to a better understanding of their fundamental roles in key biological pathways and might provide an avenue for the identification of targets for the rational design of nematocidal drugs. In the present article, we describe the discovery of an ANT from Haemonchus contortus (one of the most economically important parasitic nematodes of sheep and goats), conduct a comparative analysis of key ANTs and their genes (particularly ant-1.1) in nematodes and other organisms, predict the functional roles utilizing a combined genomic-bioinformatic approach and propose ANTs and associated molecules as possible drug targets, with the potential for biotechnological outcomes.
Collapse
|
49
|
Mehan MR, Nunez-Iglesias J, Dai C, Waterman MS, Zhou XJ. An integrative modular approach to systematically predict gene-phenotype associations. BMC Bioinformatics 2010; 11 Suppl 1:S62. [PMID: 20122238 PMCID: PMC3009536 DOI: 10.1186/1471-2105-11-s1-s62] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complex human diseases are often caused by multiple mutations, each of which contributes only a minor effect to the disease phenotype. To study the basis for these complex phenotypes, we developed a network-based approach to identify coexpression modules specifically activated in particular phenotypes. We integrated these modules, protein-protein interaction data, Gene Ontology annotations, and our database of gene-phenotype associations derived from literature to predict novel human gene-phenotype associations. Our systematic predictions provide us with the opportunity to perform a global analysis of human gene pleiotropy and its underlying regulatory mechanisms. RESULTS We applied this method to 338 microarray datasets, covering 178 phenotype classes, and identified 193,145 phenotype-specific coexpression modules. We trained random forest classifiers for each phenotype and predicted a total of 6,558 gene-phenotype associations. We showed that 40.9% genes are pleiotropic, highlighting that pleiotropy is more prevalent than previously expected. We collected 77 ChIP-chip datasets studying 69 transcription factors binding over 16,000 targets under various phenotypic conditions. Utilizing this unique data source, we confirmed that dynamic transcriptional regulation is an important force driving the formation of phenotype specific gene modules. CONCLUSION We created a genome-wide gene to phenotype mapping that has many potential implications, including providing potential new drug targets and uncovering the basis for human disease phenotypes. Our analysis of these phenotype-specific coexpression modules reveals a high prevalence of gene pleiotropy, and suggests that phenotype-specific transcription factor binding may contribute to phenotypic diversity. All resources from our study are made freely available on our online Phenotype Prediction Database.
Collapse
Affiliation(s)
- Michael R Mehan
- Program in Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles CA 90089, USA.
| | | | | | | | | |
Collapse
|
50
|
Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression. Nat Methods 2009; 6:745-51. [PMID: 19734907 PMCID: PMC2756031 DOI: 10.1038/nmeth.1370] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/10/2009] [Indexed: 11/08/2022]
Abstract
Caenorhabditis elegans is one of the most prominent model systems for embryogenesis, but collecting many precisely staged embryos has been impractical. Thus, early C. elegans embryogenesis has not been amenable to most high-throughput genomics or biochemistry assays. To overcome this problem, we devised a method to collect staged C. elegans embryos by fluorescence-activated cell sorting (eFACS). In a proof-of-principle experiment, we found that a single eFACS run routinely yielded tens of thousands of almost perfectly staged 1-cell stage embryos. As the earliest embryonic events are driven by posttranscriptional regulation, we combined eFACS with second-generation sequencing to profile the embryonic expression of small, noncoding RNAs. We discovered complex and orchestrated changes in the expression between and within almost all classes of small RNAs, including microRNAs and 26G-RNAs, during embryogenesis.
Collapse
|