1
|
Gowripriya T, Yashwanth R, James Prabhanand B, Suresh R, Balamurugan K. Klebsiella aerogenes ingestion elicits behavioral changes and innate immunity in the host, Caenorhabditis elegans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105138. [PMID: 38286197 DOI: 10.1016/j.dci.2024.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Klebsiella aerogenes (previously known as Enterobacter aerogenes) is a common opportunistic pathogen that infect the respiratory tract and central nervous system. However, how it interferes the host regulatory mechanism has not been previously described. When C. elegans were exposed to K. aerogenes, they exhibited a shorter lifespan compared to those fed with E. coli OP50. The time required for 50 % of L4 hermaphrodite nematodes to die when exposed to K. aerogenes was approximately 9 days, whereas it was about 18 days when fed with E. coli OP50. The interaction with K. aerogenes also affected the physical activity of C. elegans. Parameters like pharyngeal pumping, head thrashing, body bending, and swimming showed a gradual decline during infection. The expression of serotonin-mediated axon regeneration K. aerogenes infection led to increased levels of reactive oxygen species (ROS) in C. elegans compared to E. coli OP50-fed worms. The nematodes activated antioxidant mechanisms, including the expression of SODs, to counteract elevated ROS levels. The interaction with K. aerogenes activated immune regulatory pathways in C. elegans, including the mTOR signaling pathway downstream player SGK-1. Lifespan regulatory pathways, such as pha-4 and pmk-1, were also affected, likely contributing to the nematode ability to survive in a pathogenic environment. K. aerogenes infection has a detrimental impact on the healthspan and lifespan of C. elegans, affecting physical activity, intestinal health, serotonin regulation, ROS levels, and immune responses. These findings provide insights into the complex interactions between K. aerogenes and host organisms.
Collapse
Affiliation(s)
- Thirumugam Gowripriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India.
| | - Radhakrishnan Yashwanth
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | - Bhaskar James Prabhanand
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | - Ramamurthi Suresh
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | | |
Collapse
|
2
|
Zhang J, Pandey M, Awe A, Lue N, Kittock C, Fikse E, Degner K, Staples J, Mokhasi N, Chen W, Yang Y, Adikaram P, Jacob N, Greenfest-Allen E, Thomas R, Bomeny L, Zhang Y, Petros TJ, Wang X, Li Y, Simonds WF. The association of GNB5 with Alzheimer disease revealed by genomic analysis restricted to variants impacting gene function. Am J Hum Genet 2024; 111:473-486. [PMID: 38354736 PMCID: PMC10940018 DOI: 10.1016/j.ajhg.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gβ5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.
Collapse
Affiliation(s)
- Jianhua Zhang
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mritunjay Pandey
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam Awe
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Lue
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claire Kittock
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma Fikse
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Degner
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenna Staples
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neha Mokhasi
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiping Chen
- Genomic Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8/Rm 1A11, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanqin Yang
- Laboratory of Transplantation Genomics, National Heart Lung and Blood Institute, Bldg. 10/Rm 7S261, National Institutes of Health, Bethesda, MD 20892, USA
| | - Poorni Adikaram
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nirmal Jacob
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Greenfest-Allen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Thomas
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Bomeny
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Bldg. 35/Rm 3B 1002, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Bldg. 35/Rm 3B 1002, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaowen Wang
- Partek Incorporated, 12747 Olive Boulevard, St. Louis, MO 63141, USA
| | - Yulong Li
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Simonds
- Metabolic Diseases Branch, Bldg. 10/Rm 8C-101, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
4
|
Kumar S, Olson AC, Koelle MR. The neural G protein Gαo tagged with GFP at an internal loop is functional in C. elegans. G3-GENES GENOMES GENETICS 2021; 11:6277897. [PMID: 34003969 PMCID: PMC8496287 DOI: 10.1093/g3journal/jkab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022]
Abstract
Gαo is the alpha subunit of the major heterotrimeric G protein in neurons and mediates signaling by every known neurotransmitter, yet the signaling mechanisms activated by Gαo remain to be fully elucidated. Genetic analysis in Caenorhabditis elegans has shown that Gαo signaling inhibits neuronal activity and neurotransmitter release, but studies of the molecular mechanisms underlying these effects have been limited by lack of tools to complement genetic studies with other experimental approaches. Here, we demonstrate that inserting the green fluorescent protein (GFP) into an internal loop of the Gαo protein results in a tagged protein that is functional in vivo and that facilitates cell biological and biochemical studies of Gαo. Transgenic expression of Gαo-GFP rescues the defects caused by loss of endogenous Gαo in assays of egg laying and locomotion behaviors. Defects in body morphology caused by loss of Gαo are also rescued by Gαo-GFP. The Gαo-GFP protein is localized to the plasma membrane of neurons, mimicking localization of endogenous Gαo. Using GFP as an epitope tag, Gαo-GFP can be immunoprecipitated from C. elegans lysates to purify Gαo protein complexes. The Gαo-GFP transgene reported in this study enables studies involving in vivo localization and biochemical purification of Gαo to compliment the already well-developed genetic analysis of Gαo signaling.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 USA
| | - Andrew C Olson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 USA
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
5
|
BRCA1-BARD1 Regulates Axon Regeneration in Concert with the Gqα-DAG Signaling Network. J Neurosci 2021; 41:2842-2853. [PMID: 33593852 PMCID: PMC8018897 DOI: 10.1523/jneurosci.1806-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
The breast cancer susceptibility protein BRCA1 and its partner BRCA1-associated RING domain protein 1 (BARD1) form an E3-ubiquitin (Ub) ligase complex that acts as a tumor suppressor in mitotic cells. However, the roles of BRCA1–BARD1 in postmitotic cells, such as neurons, remain poorly defined. Here, we report that BRC-1 and BRD-1, the Caenorhabditis elegans orthologs of BRCA1 and BARD1, are required for adult-specific axon regeneration, which is positively regulated by the EGL-30 Gqα–diacylglycerol (DAG) signaling pathway. This pathway is downregulated by DAG kinase (DGK), which converts DAG to phosphatidic acid (PA). We demonstrate that inactivation of DGK-3 suppresses the brc-1 brd-1 defect in axon regeneration, suggesting that BRC-1–BRD-1 inhibits DGK-3 function. Indeed, we show that BRC-1–BRD-1 poly-ubiquitylates DGK-3 in a manner dependent on its E3 ligase activity, causing DGK-3 degradation. Furthermore, we find that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. These results suggest that the BRC-1–BRD-1 complex regulates axon regeneration in concert with the Gqα–DAG signaling network. Thus, this study describes a new role for breast cancer proteins in fully differentiated neurons and the molecular mechanism underlying the regulation of axon regeneration in response to nerve injury. SIGNIFICANCE STATEMENT BRCA1–BRCA1-associated RING domain protein 1 (BARD1) is an E3-ubiquitin (Ub) ligase complex acting as a tumor suppressor in mitotic cells. The roles of BRCA1–BARD1 in postmitotic cells, such as neurons, remain poorly defined. We show here that Caenorhabditis elegans BRC-1/BRCA1 and BRD-1/BARD1 are required for adult-specific axon regeneration, a process that requires high diacylglycerol (DAG) levels in injured neurons. The DAG kinase (DGK)-3 inhibits axon regeneration by reducing DAG levels. We find that BRC-1–BRD-1 poly-ubiquitylates and degrades DGK-3, thereby keeping DAG levels elevated and promoting axon regeneration. Furthermore, we demonstrate that axon injury causes the translocation of BRC-1 from the nucleus to the cytoplasm, where DGK-3 is localized. Thus, this study describes a new role for BRCA1–BARD1 in fully-differentiated neurons.
Collapse
|
6
|
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2018; 2018:1-52. [PMID: 26937633 PMCID: PMC5010795 DOI: 10.1895/wormbook.1.75.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.
Collapse
Affiliation(s)
- Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA
| |
Collapse
|
7
|
Pellacani C, Bucciarelli E, Renda F, Hayward D, Palena A, Chen J, Bonaccorsi S, Wakefield JG, Gatti M, Somma MP. Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation. eLife 2018; 7:40325. [PMID: 30475206 PMCID: PMC6287947 DOI: 10.7554/elife.40325] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.
Collapse
Affiliation(s)
- Claudia Pellacani
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Elisabetta Bucciarelli
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - Daniel Hayward
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Antonella Palena
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| | - Jack Chen
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - James G Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Maurizio Gatti
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy.,Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Roma, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
8
|
Huang H, Zhu CT, Skuja LL, Hayden DJ, Hart AC. Genome-Wide Screen for Genes Involved in Caenorhabditis elegans Developmentally Timed Sleep. G3 (BETHESDA, MD.) 2017; 7:2907-2917. [PMID: 28743807 PMCID: PMC5592919 DOI: 10.1534/g3.117.300071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/21/2017] [Indexed: 12/24/2022]
Abstract
In Caenorhabditis elegans, Notch signaling regulates developmentally timed sleep during the transition from L4 larval stage to adulthood (L4/A) . To identify core sleep pathways and to find genes acting downstream of Notch signaling, we undertook the first genome-wide, classical genetic screen focused on C. elegans developmentally timed sleep. To increase screen efficiency, we first looked for mutations that suppressed inappropriate anachronistic sleep in adult hsp::osm-11 animals overexpressing the Notch coligand OSM-11 after heat shock. We retained suppressor lines that also had defects in L4/A developmentally timed sleep, without heat shock overexpression of the Notch coligand. Sixteen suppressor lines with defects in developmentally timed sleep were identified. One line carried a new allele of goa-1; loss of GOA-1 Gαo decreased C. elegans sleep. Another line carried a new allele of gpb-2, encoding a Gβ5 protein; Gβ5 proteins have not been previously implicated in sleep. In other scenarios, Gβ5 GPB-2 acts with regulators of G protein signaling (RGS proteins) EAT-16 and EGL-10 to terminate either EGL-30 Gαq signaling or GOA-1 Gαo signaling, respectively. We found that loss of Gβ5 GPB-2 or RGS EAT-16 decreased L4/A sleep. By contrast, EGL-10 loss had no impact. Instead, loss of RGS-1 and RGS-2 increased sleep. Combined, our results suggest that, in the context of L4/A sleep, GPB-2 predominantly acts with EAT-16 RGS to inhibit EGL-30 Gαq signaling. These results confirm the importance of G protein signaling in sleep and demonstrate that these core sleep pathways function genetically downstream of the Notch signaling events promoting sleep.
Collapse
Affiliation(s)
- Huiyan Huang
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Chen-Tseh Zhu
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Lukas L Skuja
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Dustin J Hayden
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
9
|
Renda F, Pellacani C, Strunov A, Bucciarelli E, Naim V, Bosso G, Kiseleva E, Bonaccorsi S, Sharp DJ, Khodjakov A, Gatti M, Somma MP. The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure. PLoS Genet 2017; 13:e1006784. [PMID: 28505193 PMCID: PMC5448806 DOI: 10.1371/journal.pgen.1006784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/30/2017] [Accepted: 04/27/2017] [Indexed: 12/01/2022] Open
Abstract
INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV), and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6) results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP) demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC). Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A) accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.
Collapse
Affiliation(s)
- Fioranna Renda
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Claudia Pellacani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Anton Strunov
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | | | - Valeria Naim
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Giuseppe Bosso
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Elena Kiseleva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - David J. Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | | |
Collapse
|
10
|
Jung SK, Aleman-Meza B, Riepe C, Zhong W. QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays. PLoS One 2014; 9:e84830. [PMID: 24416295 PMCID: PMC3885606 DOI: 10.1371/journal.pone.0084830] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.
Collapse
Affiliation(s)
- Sang-Kyu Jung
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Boanerges Aleman-Meza
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Celeste Riepe
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Weiwei Zhong
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| |
Collapse
|
11
|
Krzyzanowski MC, Brueggemann C, Ezak MJ, Wood JF, Michaels KL, Jackson CA, Juang BT, Collins KD, Yu MC, L'Etoile ND, Ferkey DM. The C. elegans cGMP-dependent protein kinase EGL-4 regulates nociceptive behavioral sensitivity. PLoS Genet 2013; 9:e1003619. [PMID: 23874221 PMCID: PMC3708839 DOI: 10.1371/journal.pgen.1003619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/23/2013] [Indexed: 11/25/2022] Open
Abstract
Signaling levels within sensory neurons must be tightly regulated to allow cells to integrate information from multiple signaling inputs and to respond to new stimuli. Herein we report a new role for the cGMP-dependent protein kinase EGL-4 in the negative regulation of G protein-coupled nociceptive chemosensory signaling. C. elegans lacking EGL-4 function are hypersensitive in their behavioral response to low concentrations of the bitter tastant quinine and exhibit an elevated calcium flux in the ASH sensory neurons in response to quinine. We provide the first direct evidence for cGMP/PKG function in ASH and propose that ODR-1, GCY-27, GCY-33 and GCY-34 act in a non-cell-autonomous manner to provide cGMP for EGL-4 function in ASH. Our data suggest that activated EGL-4 dampens quinine sensitivity via phosphorylation and activation of the regulator of G protein signaling (RGS) proteins RGS-2 and RGS-3, which in turn downregulate Gα signaling and behavioral sensitivity.
Collapse
Affiliation(s)
- Michelle C. Krzyzanowski
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
| | - Meredith J. Ezak
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jordan F. Wood
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Kerry L. Michaels
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Christopher A. Jackson
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Bi-Tzen Juang
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
| | - Kimberly D. Collins
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
| | - Michael C. Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Noelle D. L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, California, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
12
|
Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbé JC, Miller GJ, Hébert TE. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev 2013; 65:545-77. [PMID: 23406670 DOI: 10.1124/pr.111.005603] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gβγ subunits from heterotrimeric G proteins perform a vast array of functions in cells with respect to signaling, often independently as well as in concert with Gα subunits. However, the eponymous term "Gβγ" does not do justice to the fact that 5 Gβ and 12 Gγ isoforms have evolved in mammals to serve much broader roles beyond their canonical roles in cellular signaling. We explore the phylogenetic diversity of Gβγ subunits with a view toward understanding these expanded roles in different cellular organelles. We suggest that the particular content of distinct Gβγ subunits regulates cellular activity, and that the granularity of individual Gβ and Gγ action is only beginning to be understood. Given the therapeutic potential of targeting Gβγ action, this larger view serves as a prelude to more specific development of drugs aimed at individual isoforms.
Collapse
Affiliation(s)
- Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tzur YB, Egydio de Carvalho C, Nadarajan S, Van Bostelen I, Gu Y, Chu DS, Cheeseman IM, Colaiácovo MP. LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol 2012; 10:e1001378. [PMID: 22927794 PMCID: PMC3424243 DOI: 10.1371/journal.pbio.1001378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
At the onset of the first meiotic division, the protein LAB-1 recruits the PP1 phosphatase to cohesion complexes, preventing Aurora B kinase from targeting cohesins for degradation prematurely and thereby ensuring proper progression of meiotic events in C. elegans. Successful execution of the meiotic program depends on the timely establishment and removal of sister chromatid cohesion. LAB-1 has been proposed to act in the latter by preventing the premature removal of the meiosis-specific cohesin REC-8 at metaphase I in C. elegans, yet the mechanism and scope of LAB-1 function remained unknown. Here we identify an unexpected earlier role for LAB-1 in promoting the establishment of sister chromatid cohesion in prophase I. LAB-1 and REC-8 are both required for the chromosomal association of the cohesin complex subunit SMC-3. Depletion of lab-1 results in partial loss of sister chromatid cohesion in rec-8 and coh-4 coh-3 mutants and further enhanced chromatid dissociation in worms where all three kleisins are mutated. Moreover, lab-1 depletion results in increased Aurora B kinase (AIR-2) signals in early prophase I nuclei, coupled with a parallel decrease in signals for the PP1 homolog, GSP-2. Finally, LAB-1 directly interacts with GSP-1 and GSP-2. We propose that LAB-1 targets the PP1 homologs to the chromatin at the onset of meiosis I, thereby antagonizing AIR-2 and cooperating with the cohesin complex to promote sister chromatid association and normal progression of the meiotic program. A critical step for achieving successful cell division is the regulation of how the cohesin complexes that bind sister chromatids are initially deposited, then maintained, and finally removed to allow the chromatids to separate into daughter cells. This is particularly challenging during meiosis, when the sister chromatids must remain partially connected to each other through the first division. In organisms that have a single focal centromere on each chromosome, such as mammals and flies, cohesin is protected through the first meiotic division by the protein Shugoshin, which binds the PP2A phosphatase. PP2A counteracts phosphorylation by the Aurora B kinase; if certain cohesins are phosphorylated by Aurora B they become targeted for removal, which allows the chromatids to separate. In the nematode C. elegans, the chromosomes lack a localized centromere and the predicted Shugoshin homolog is not required for protection of cohesins; instead, this function is executed in metaphase of the first meiotic division by the protein LAB-1. But it is not completely understood what leads to the deposition of cohesin prior to entry into meiosis and to its maintenance throughout early meiosis I. In this study, we show that LAB-1 is also required for the loading and maintenance of the cohesin complex. LAB-1 ensures that the chromatids are not separated prematurely, and thus enables the proper progression of events through prophase I of meiosis. We propose that LAB-1 may act at the onset of meiosis in a manner akin to Shugoshin, by recruiting the PP1 phosphatase to counteract Aurora B kinase, thereby ensuring sister chromatid cohesion.
Collapse
Affiliation(s)
- Yonatan B. Tzur
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Saravanapriah Nadarajan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivo Van Bostelen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yanjie Gu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Wood JF, Wang J, Benovic JL, Ferkey DM. Structural domains required for Caenorhabditis elegans G protein-coupled receptor kinase 2 (GRK-2) function in vivo. J Biol Chem 2012; 287:12634-44. [PMID: 22375004 PMCID: PMC3339999 DOI: 10.1074/jbc.m111.336818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) are key regulators of signal transduction that specifically phosphorylate activated G protein-coupled receptors (GPCRs) to terminate signaling. Biochemical and crystallographic studies have provided great insight into mammalian GRK2/3 interactions and structure. However, despite extensive in vitro characterization, little is known about the in vivo contribution of these described GRK structural domains and interactions to proper GRK function in signal regulation. We took advantage of the disrupted chemosensory behavior characteristic of Caenorhabditis elegans grk-2 mutants to discern the interactions required for proper in vivo Ce-GRK-2 function. Informed by mammalian crystallographic and biochemical data, we introduced amino acid substitutions into the Ce-grk-2 coding sequence that are predicted to selectively disrupt GPCR phosphorylation, Gα(q/11) binding, Gβγ binding, or phospholipid binding. Changing the most amino-terminal residues, which have been shown in mammalian systems to be required specifically for GPCR phosphorylation but not phosphorylation of alternative substrates or recruitment to activated GPCRs, eliminated the ability of Ce-GRK-2 to restore chemosensory signaling. Disrupting interaction between the predicted Ce-GRK-2 amino-terminal α-helix and kinase domain, posited to stabilize GRKs in their active ATP- and GPCR-bound conformation, also eliminated Ce-GRK-2 chemosensory function. Finally, although changing residues within the RH domain, predicted to disrupt interaction with Gα(q/11), did not affect Ce-GRK-2 chemosensory function, disruption of the predicted PH domain-mediated interactions with Gβγ and phospholipids revealed that both contribute to Ce-GRK-2 function in vivo. Combined, we have demonstrated functional roles for broadly conserved GRK2/3 structural domains in the in vivo regulation of organismal behavior.
Collapse
Affiliation(s)
- Jordan F. Wood
- From the Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260 and
| | - Jianjun Wang
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jeffrey L. Benovic
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Denise M. Ferkey
- From the Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260 and
| |
Collapse
|
15
|
Wang Q, Levay K, Chanturiya T, Dvoriantchikova G, Anderson KL, Bianco SDC, Ueta CB, Molano RD, Pileggi A, Gurevich EV, Gavrilova O, Slepak VZ. Targeted deletion of one or two copies of the G protein β subunit Gβ5 gene has distinct effects on body weight and behavior in mice. FASEB J 2011; 25:3949-57. [PMID: 21804131 DOI: 10.1096/fj.11-190157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigated the physiological role of Gβ5, a unique G protein β subunit that dimerizes with regulators of G protein signaling (RGS) proteins of the R7 family instead of Gγ. Gβ5 is essential for stability of these complexes, so that its knockout (KO)causes degradation of the entire Gβ5-R7 family. We report that the Gβ5-KO mice remain leaner than the wild type (WT) throughout their lifetime and are resistant to a high-fat diet. They have a 5-fold increase in locomotor activity, increased thermogenesis, and lower serum insulin, all of which correlate with a higher level of secreted epinephrine. Heterozygous (HET) mice are 2-fold more active than WT mice. Surprisingly, with respect to body weight, the HET mice display a phenotype opposite to that of the KO mice: by the age of 6 mo, they are ≥ 15% heavier than the WT and have increased adiposity, insulin resistance, and liver steatosis. These changes occur in HET mice fed a normal diet and without apparent hyperphagia, mimicking basic characteristics of human metabolic syndrome. We conclude that even a partial reduction in Gβ5-R7 level can perturb normal animal metabolism and behavior. Our data on Gβ5 haploinsufficient mice may explain earlier observations of genetic linkage between R7 family mutations and obesity in humans.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Esposito G, Amoroso MR, Bergamasco C, Di Schiavi E, Bazzicalupo P. The G protein regulators EGL-10 and EAT-16, the Giα GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents. BMC Biol 2010; 8:138. [PMID: 21070627 PMCID: PMC2996360 DOI: 10.1186/1741-7007-8-138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus useful models for the nociceptive neurons of mammals. While several molecules affecting signal generation and transduction in ASH have been identified, less is known about transmission of the signal from ASH to downstream neurons and about the molecules involved in its modulation. RESULTS We discovered that the regulator of G protein signalling (RGS) protein, EGL-10, is required for appropriate avoidance responses to noxious stimuli sensed by ASH. As it does for other behaviours in which it is also involved, egl-10 interacts genetically with the G(o)/(i)α protein GOA-1, the G(q)α protein EGL-30 and the RGS EAT-16. Genetic, behavioural and Ca²(+) imaging analyses of ASH neurons in live animals demonstrate that, within ASH, EGL-10 and GOA-1 act downstream of stimulus-evoked signal transduction and of the main transduction channel OSM-9. EGL-30 instead appears to act upstream by regulating Ca²(+) transients in response to aversive stimuli. Analysis of the delay in the avoidance response, of the frequency of spontaneous inversions and of the genetic interaction with the diacylglycerol kinase gene, dgk-1, indicate that EGL-10 and GOA-1 do not affect signal transduction and neuronal depolarization in response to aversive stimuli but act in ASH to modulate downstream transmission of the signal. CONCLUSIONS The ASH polymodal nociceptive sensory neurons can be modulated not only in their capacity to detect stimuli but also in the efficiency with which they respond to them. The Gα and RGS molecules studied in this work are conserved in evolution and, for each of them, mammalian orthologs can be identified. The discovery of their role in the modulation of signal transduction and signal transmission of nociceptors may help us to understand how pain is generated and how its control can go astray (such as chronic pain) and may suggest new pain control therapies.
Collapse
Affiliation(s)
- Giovanni Esposito
- Istituto di Genetica e Biofisica A, IGB, CNR, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | | | | | | | | |
Collapse
|
17
|
Porter MY, Xie K, Pozharski E, Koelle MR, Martemyanov KA. A conserved protein interaction interface on the type 5 G protein beta subunit controls proteolytic stability and activity of R7 family regulator of G protein signaling proteins. J Biol Chem 2010; 285:41100-12. [PMID: 20959458 DOI: 10.1074/jbc.m110.163600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gβ5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gβ5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gβ5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gβ5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gβ5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gβ5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gβ5-DEP interface are key to controlling the stability of R7 RGS protein complexes.
Collapse
Affiliation(s)
- Morwenna Y Porter
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
18
|
Laroche G, Giguère PM, Roth BL, Trejo J, Siderovski DP. RNA interference screen for RGS protein specificity at muscarinic and protease-activated receptors reveals bidirectional modulation of signaling. Am J Physiol Cell Physiol 2010; 299:C654-64. [PMID: 20573995 PMCID: PMC2944319 DOI: 10.1152/ajpcell.00441.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 06/23/2010] [Indexed: 01/08/2023]
Abstract
Regulator of G protein signaling (RGS) proteins are considered key modulators of G protein-coupled receptor (GPCR)-mediated signal transduction. These proteins act directly on Galpha subunits in vitro to increase their intrinsic rate of GTP hydrolysis; this activity is central to the prevailing view of RGS proteins as negative regulators of agonist-initiated GPCR signaling. However, the specificities of action of particular RGS proteins toward specific GPCRs in an integrated cellular context remain unclear. Here, we developed a medium-throughput assay to address this question in a wholly endogenous context using RNA interference. We performed medium-throughput calcium mobilization assays of agonist-stimulated muscarinic acetylcholine and protease-activated receptors in human embryonic kidney 293 (HEK293) cells transfected with individual members of a "pooled duplex" short interfering RNA library targeting all conventional human RGS transcripts. Only knockdown of RGS11 increased both carbachol-mediated calcium mobilization and inositol phosphate accumulation. Surprisingly, we found that knockdown of RGS8 and RGS9, but not other conventional RGS proteins, significantly decreased carbachol-mediated calcium mobilization, whereas only RGS8 knockdown decreased protease-activated receptor-1 (PAR-1)-mediated calcium mobilization. Loss of responsiveness toward carbachol and PAR-1 agonist peptide upon RGS8 knockdown appears due, at least in part, to a loss in respective receptor cell surface expression, although this is not the case for RGS9 knockdown. Our data suggest a cellular role for RGS8 in the stable surface expression of M3 muscarinic acetylcholine receptor and PAR-1, as well as a specific and opposing set of functions for RGS9 and RGS11 in modulating carbachol responsiveness similar to that seen in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Geneviève Laroche
- Department of Pharmacology, Univ. of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
19
|
Sandiford SL, Wang Q, Levay K, Buchwald P, Slepak VZ. Molecular organization of the complex between the muscarinic M3 receptor and the regulator of G protein signaling, Gbeta(5)-RGS7. Biochemistry 2010; 49:4998-5006. [PMID: 20443543 DOI: 10.1021/bi100080p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complex of the regulator of G protein signaling (RGS), Gbeta(5)-RGS7, can inhibit signal transduction via the M3 muscarinic acetylcholine receptor (M3R). RGS7 consists of three distinct structural entities: the DEP domain and its extension DHEX, the Ggamma-like (GGL) domain, which is permanently bound to Gbeta subunit Gbeta(5), and the RGS domain responsible for the interaction with Galpha subunits. Inhibition of the M3R by Gbeta(5)-RGS7 is independent of the RGS domain but requires binding of the DEP domain to the third intracellular loop of the receptor. Recent studies identified the dynamic intramolecular interaction between the Gbeta(5) and DEP domains, which suggested that the Gbeta(5)-RGS7 dimer could alternate between the "open" and "closed" conformations. Here, we identified point mutations that weaken DEP-Gbeta(5) binding, presumably stabilizing the open state, and tested their effects on the interaction of Gbeta(5)-RGS7 with the M3R. We found that these mutations facilitated binding of Gbeta(5)-RGS7 to the recombinant third intracellular loop of the M3R but did not enhance its ability to inhibit M3R-mediated Ca(2+) mobilization. This led us to the idea that the M3R can effectively induce the Gbeta(5)-RGS7 dimer to open; such a mechanism would require a region of the receptor distinct from the third loop. Indeed, we found that the C-terminus of M3R interacts with Gbeta(5)-RGS7. Truncation of the C-terminus rendered the M3R insensitive to inhibition by wild-type Gbeta(5)-RGS7; however, the open mutant of Gbeta(5)-RGS7 was able to inhibit signaling by the truncated M3R. The GST fusion of the M3R C-tail could not bind to wild-type Gbeta(5)-RGS7 but could associate with its open mutant as well as with the separated recombinant DEP domain or Gbeta(5). Taken together, our data are consistent with the following model: interaction of the M3R with Gbeta(5)-RGS7 causes the DEP domain and Gbeta(5) to dissociate from each other and bind to the C-tail, and the DEP domain also binds to the third loop, thereby inhibiting M3R-mediated signaling.
Collapse
Affiliation(s)
- Simone L Sandiford
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
20
|
Porter MY, Koelle MR. RSBP-1 is a membrane-targeting subunit required by the Galpha(q)-specific but not the Galpha(o)-specific R7 regulator of G protein signaling in Caenorhabditis elegans. Mol Biol Cell 2010; 21:232-43. [PMID: 19923320 PMCID: PMC2808233 DOI: 10.1091/mbc.e09-07-0642] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins inhibit G protein signaling by activating Galpha GTPase activity, but the mechanisms that regulate RGS activity are not well understood. The mammalian R7 binding protein (R7BP) can interact with all members of the R7 family of RGS proteins, and palmitoylation of R7BP can target R7 RGS proteins to the plasma membrane in cultured cells. However, whether endogenous R7 RGS proteins in neurons require R7BP or membrane localization for function remains unclear. We have identified and knocked out the only apparent R7BP homolog in Caenorhabditis elegans, RSBP-1. Genetic studies show that loss of RSBP-1 phenocopies loss of the R7 RGS protein EAT-16, but does not disrupt function of the related R7 RGS protein EGL-10. Biochemical analyses find that EAT-16 coimmunoprecipitates with RSBP-1 and is predominantly plasma membrane-associated, whereas EGL-10 does not coimmunoprecipitate with RSBP-1 and is not predominantly membrane-associated. Mutating the conserved membrane-targeting sequence in RSBP-1 disrupts both the membrane association and function of EAT-16, demonstrating that membrane targeting by RSBP-1 is essential for EAT-16 activity. Our analysis of endogenous R7 RGS proteins in C. elegans neurons reveals key differences in the functional requirements for membrane targeting between members of this protein family.
Collapse
Affiliation(s)
- Morwenna Y Porter
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8024, USA
| | | |
Collapse
|
21
|
Sandiford SL, Slepak VZ. The Gbeta5-RGS7 complex selectively inhibits muscarinic M3 receptor signaling via the interaction between the third intracellular loop of the receptor and the DEP domain of RGS7. Biochemistry 2009; 48:2282-9. [PMID: 19182865 DOI: 10.1021/bi801989c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Regulators of G protein signaling (RGS) make up a diverse family primarily known as GTPase-activating proteins (GAPs) for heterotrimeric G proteins. In addition to the RGS domain, which is responsible for GAP activity, most RGS proteins contain other distinct structural motifs. For example, members of the R7 family of RGS proteins contain a DEP, GGL, and novel DHEX domain and are obligatory dimers with G protein beta subunit Gbeta5. Here we show that the Gbeta5-RGS7 complex can inhibit Ca2+ mobilization elicited by muscarinic acetylcholine receptor type 3 (M3R), but not by other Gq-coupled receptors such as M1, M5, histamine H1, and GNRH receptors. The isolated DEP domain of RGS7 is sufficient for the inhibition of M3R signaling, whereas the deletion of the DEP domain renders the Gbeta5-RGS7 complex ineffective. Deletion of a portion of the third intracellular loop allowed the receptor (M3R-short) to signal but rendered it insensitive to the effect of the Gbeta5-RGS7 complex. Accordingly, the recombinant DEP domain bound in vitro to the GST-fused i3 loop of the M3R. These results identify a novel molecular mechanism that can impart receptor subtype selectivity on signal transduction via Gq-coupled muscarinic receptors.
Collapse
Affiliation(s)
- Simone L Sandiford
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami School of Medicine, 1600 NW 10 Avenue, R-189, Miami, Florida 33136, USA
| | | |
Collapse
|
22
|
Caenorhabditis elegans HIM-18/SLX-4 interacts with SLX-1 and XPF-1 and maintains genomic integrity in the germline by processing recombination intermediates. PLoS Genet 2009; 5:e1000735. [PMID: 19936019 PMCID: PMC2770170 DOI: 10.1371/journal.pgen.1000735] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is essential for the repair of blocked or collapsed replication forks and for the production of crossovers between homologs that promote accurate meiotic chromosome segregation. Here, we identify HIM-18, an ortholog of MUS312/Slx4, as a critical player required in vivo for processing late HR intermediates in Caenorhabditis elegans. DNA damage sensitivity and an accumulation of HR intermediates (RAD-51 foci) during premeiotic entry suggest that HIM-18 is required for HR–mediated repair at stalled replication forks. A reduction in crossover recombination frequencies—accompanied by an increase in HR intermediates during meiosis, germ cell apoptosis, unstable bivalent attachments, and subsequent chromosome nondisjunction—support a role for HIM-18 in converting HR intermediates into crossover products. Such a role is suggested by physical interaction of HIM-18 with the nucleases SLX-1 and XPF-1 and by the synthetic lethality of him-18 with him-6, the C. elegans BLM homolog. We propose that HIM-18 facilitates processing of HR intermediates resulting from replication fork collapse and programmed meiotic DSBs in the C. elegans germline. Homologous recombination (HR) is a process that provides for the accurate and efficient repair of DNA double-strand breaks (DSBs) incurred by cells, thereby maintaining genomic integrity. Proper processing of HR intermediates is critical for biological processes ranging from replication fork restart to the accurate partitioning of chromosomes during meiotic cell divisions. This is further emphasized by the fact that impaired processing of HR intermediates in both mitotic and meiotic cells can result in tumorigenesis and congenital defects. Therefore, the identification of components involved in HR is essential to understand the molecular mechanism of HR. Here, we identify HIM-18/SLX-4 in C. elegans, a protein conserved from yeast to humans that interacts with the nucleases SLX-1 and XPF-1 and is required for DSB repair in the germline. Impaired HIM-18 function results in increased DNA damage sensitivity, the accumulation of recombination intermediates, decreased meiotic crossover frequencies, altered late meiotic chromosome remodeling, the formation of fragile connections between homologs, and an increased chromosome nondisjunction. Finally, HIM-18 is localized to both mitotic and meiotic nuclei in wild-type germlines. We propose that HIM-18 function is required during the processing of late HR intermediates resulting from replication fork collapse and meiotic DSBs.
Collapse
|
23
|
Porter MY, Koelle MR. Insights into RGS protein function from studies in Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:15-47. [PMID: 20374712 DOI: 10.1016/s1877-1173(09)86002-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nematode worm, Caenorhabditis elegans, contains orthologs of most regulator of G protein signaling (RGS) protein subfamilies and all four G protein α-subunit subfamilies found in mammals. Every C. elegans RGS and Gα gene has been knocked out, and the in vivo functions and Gα targets of a number of RGS proteins have been characterized in detail. This has revealed a complex relationship between the RGS and Gα proteins, in which multiple RGS proteins can regulate the same Gα protein, either by acting redundantly or by exerting control over signaling under different circumstances or in different cells. RGS proteins that are coexpressed can also show specificity for distinct Gα targets in vivo, and the determinants of such specificity can reside outside of the RGS domain. This review will discuss how analysis in C. elegans may aid us in achieving a full understanding of the physiological functions of RGS proteins.
Collapse
Affiliation(s)
- Morwenna Y Porter
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, SHM CE30, New Haven, Connecticut 06520‐8024, USA
| | | |
Collapse
|
24
|
Slepak VZ. Structure, function, and localization of Gβ5-RGS complexes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:157-203. [PMID: 20374716 DOI: 10.1016/s1877-1173(09)86006-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Members of the R7 subfamily of regulator of G protein signaling (RGS) proteins (RGS6, 7, 9, and 11) exist as heterodimers with the G protein beta subunit Gβ5. These protein complexes are only found in neurons and are defined by the presence of three domains: DEP/DHEX, Gβ5/GGL, and RGS. This article summarizes published work in the following areas: (1) the functional significance of structural organization of Gβ5-R7 complexes, (2) regional distribution of Gβ5-R7 in the nervous system and regulation of R7 family expression, (3) subcellular localization of Gβ5-R7 complexes, and (4) novel binding partners of Gβ5-R7 proteins. The review points out some contradictions between observations made by different research groups and highlights the importance of using alternative experimental approaches to obtain conclusive information about Gβ5-R7 function in vivo.
Collapse
Affiliation(s)
- Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology and the Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
25
|
The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/beta-catenin asymmetry pathway. Dev Biol 2009; 328:234-44. [PMID: 19298786 DOI: 10.1016/j.ydbio.2009.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 12/25/2022]
Abstract
Dishevelleds are modular proteins that lie at the crossroads of divergent Wnt signaling pathways. The DIX domain of dishevelleds modulates a beta-catenin destruction complex, and thereby mediates cell fate decisions through differential activation of Tcf transcription factors. The DEP domain of dishevelleds mediates planar polarity of cells within a sheet through regulation of actin modulators. In Caenorhabditis elegans asymmetric cell fate decisions are regulated by asymmetric localization of signaling components in a pathway termed the Wnt/beta-catenin asymmetry pathway. Which domain(s) of Disheveled regulate this pathway is unknown. We show that C. elegans embryos from dsh-2(or302) mutant mothers fail to successfully undergo morphogenesis, but transgenes containing either the DIX or the DEP domain of DSH-2 are sufficient to rescue the mutant phenotype. Embryos lacking zygotic function of SYS-1/beta-catenin, WRM-1/beta-catenin, or POP-1/Tcf show defects similar to dsh-2 mutants, including a loss of asymmetry in some cell fate decisions. Removal of two dishevelleds (dsh-2 and mig-5) leads to a global loss of POP-1 asymmetry, which can be rescued by addition of transgenes containing either the DIX or DEP domain of DSH-2. These results indicate that either the DIX or DEP domain of DSH-2 is capable of activating the Wnt/beta-catenin asymmetry pathway and regulating anterior-posterior fate decisions required for proper morphogenesis.
Collapse
|
26
|
Chapter 11 Identification of Ligands Targeting RGS Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:335-56. [DOI: 10.1016/s1877-1173(09)86011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
27
|
Perez-Mansilla B, Nurrish S. A network of G-protein signaling pathways control neuronal activity in C. elegans. ADVANCES IN GENETICS 2009; 65:145-192. [PMID: 19615533 DOI: 10.1016/s0065-2660(09)65004-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Caenorhabditis elegans neuromuscular junction (NMJ) is one of the best studied synapses in any organism. A variety of genetic screens have identified genes required both for the essential steps of neurotransmitter release from motorneurons as well as the signaling pathways that regulate rates of neurotransmitter release. A number of these regulatory genes encode proteins that converge to regulate neurotransmitter release. In other cases genes are known to regulate signaling at the NMJ but how they act remains unknown. Many of the proteins that regulate activity at the NMJ participate in a network of heterotrimeric G-protein signaling pathways controlling the release of synaptic vesicles and/or dense-core vesicles (DCVs). At least four heterotrimeric G-proteins (Galphaq, Galpha12, Galphao, and Galphas) act within the motorneurons to control the activity of the NMJ. The Galphaq, Galpha12, and Galphao pathways converge to control production and destruction of the lipid-bound second messenger diacylglycerol (DAG) at sites of neurotransmitter release. DAG acts via at least two effectors, MUNC13 and PKC, to control the release of both neurotransmitters and neuropeptides from motorneurons. The Galphas pathway converges with the other three heterotrimeric G-protein pathways downstream of DAG to regulate neuropeptide release. Released neurotransmitters and neuropeptides then act to control contraction of the body-wall muscles to control locomotion. The lipids and proteins involved in these networks are conserved between C. elegans and mammals. Thus, the C. elegans NMJ acts as a model synapse to understand how neuronal activity in the human brain is regulated.
Collapse
Affiliation(s)
- Borja Perez-Mansilla
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN, Knecht JE, Miller KG. A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 2008; 6:e198. [PMID: 18687026 PMCID: PMC2494560 DOI: 10.1371/journal.pbio.0060198] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/09/2008] [Indexed: 11/19/2022] Open
Abstract
For many organisms the ability to transduce light into cellular signals is crucial for survival. Light stimulates DNA repair and metabolism changes in bacteria, avoidance responses in single-cell organisms, attraction responses in plants, and both visual and nonvisual perception in animals. Despite these widely differing responses, in all of nature there are only six known families of proteins that can transduce light. Although the roundworm Caenorhabditis elegans has none of the known light transduction systems, we show here that C. elegans strongly accelerates its locomotion in response to blue or shorter wavelengths of light, with maximal responsiveness to ultraviolet light. Our data suggest that C. elegans uses this light response to escape the lethal doses of sunlight that permeate its habitat. Short-wavelength light drives locomotion by bypassing two critical signals, cyclic adenosine monophosphate (cAMP) and diacylglycerol (DAG), that neurons use to shape and control behaviors. C. elegans mutants lacking these signals are paralyzed and unresponsive to harsh physical stimuli in ambient light, but short-wavelength light rapidly rescues their paralysis and restores normal levels of coordinated locomotion. This light response is mediated by LITE-1, a novel ultraviolet light receptor that acts in neurons and is a member of the invertebrate Gustatory receptor (Gr) family. Heterologous expression of the receptor in muscle cells is sufficient to confer light responsiveness on cells that are normally unresponsive to light. Our results reveal a novel molecular solution for ultraviolet light detection and an unusual sensory modality in C. elegans that is unlike any previously described light response in any organism.
Collapse
Affiliation(s)
- Stacey L Edwards
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Nicole K Charlie
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Marie C Milfort
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Brandon S Brown
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Christen N Gravlin
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Jamie E Knecht
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kenneth G Miller
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
de Carvalho CE, Zaaijer S, Smolikov S, Gu Y, Schumacher JM, Colaiácovo MP. LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev 2008; 22:2869-85. [PMID: 18923084 PMCID: PMC2569883 DOI: 10.1101/gad.1691208] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/18/2008] [Indexed: 11/24/2022]
Abstract
The Shugoshin/Aurora circuitry that controls the timely release of cohesins from sister chromatids in meiosis and mitosis is widely conserved among eukaryotes, although little is known about its function in organisms whose chromosomes lack a localized centromere. Here we show that Caenorhabditis elegans chromosomes rely on an alternative mechanism to protect meiotic cohesin that is shugoshin-independent and instead involves the activity of a new chromosome-associated protein named LAB-1 (Long Arm of the Bivalent). LAB-1 preserves meiotic sister chromatid cohesion by restricting the localization of the C. elegans Aurora B kinase, AIR-2, to the interface between homologs via the activity of the PP1/Glc7 phosphatase GSP-2. The localization of LAB-1 to chromosomes of dividing embryos and the suppression of mitotic-specific defects in air-2 mutant embryos with reduced LAB-1 activity support a global role of LAB-1 in antagonizing AIR-2 in both meiosis and mitosis. Although the localization of a GFP fusion and the analysis of mutants and RNAi-mediated knockdowns downplay a role for the C. elegans shugoshin protein in cohesin protection, shugoshin nevertheless helps to ensure the high fidelity of chromosome segregation at metaphase I. We propose that, in C. elegans, a LAB-1-mediated mechanism evolved to offset the challenges of providing protection against separase activity throughout a larger chromosome area.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Amino Acid Sequence
- Animals
- Aurora Kinase B
- Aurora Kinases
- Caenorhabditis elegans
- Caenorhabditis elegans Proteins/antagonists & inhibitors
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Cell Cycle Proteins/metabolism
- Chromatids/genetics
- Chromatids/metabolism
- Chromosomal Proteins, Non-Histone/antagonists & inhibitors
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Segregation
- DNA-Binding Proteins/metabolism
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Fluorescent Antibody Technique
- Gene Expression Regulation, Developmental
- Immunoglobulin G/immunology
- Meiosis/physiology
- Meiotic Prophase I/physiology
- Mitosis/physiology
- Molecular Sequence Data
- Multiprotein Complexes/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Sister Chromatid Exchange
- Cohesins
Collapse
Affiliation(s)
| | - Sophie Zaaijer
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sarit Smolikov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yanjie Gu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jill M. Schumacher
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
Williams SL, Lutz S, Charlie NK, Vettel C, Ailion M, Coco C, Tesmer JJG, Jorgensen EM, Wieland T, Miller KG. Trio's Rho-specific GEF domain is the missing Galpha q effector in C. elegans. Genes Dev 2007; 21:2731-46. [PMID: 17942708 DOI: 10.1101/gad.1592007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Galpha(q) pathway is essential for animal life and is a central pathway for driving locomotion, egg laying, and growth in Caenorhabditis elegans, where it exerts its effects through EGL-8 (phospholipase Cbeta [PLCbeta]) and at least one other effector. To find the missing effector, we performed forward genetic screens to suppress the slow growth and hyperactive behaviors of mutants with an overactive Galpha(q) pathway. Four suppressor mutations disrupted the Rho-specific guanine-nucleotide exchange factor (GEF) domain of UNC-73 (Trio). The mutations produce defects in neuronal function, but not neuronal development, that cause sluggish locomotion similar to animals lacking EGL-8 (PLCbeta). Strains containing null mutations in both EGL-8 (PLCbeta) and UNC-73 (Trio RhoGEF) have strong synthetic phenotypes that phenocopy the arrested growth and near-complete paralysis of Galpha(q)-null mutants. Using cell-based and biochemical assays, we show that activated C. elegans Galpha(q) synergizes with Trio RhoGEF to activate RhoA. Activated Galpha(q) and Trio RhoGEF appear to be part of a signaling complex, because they coimmunoprecipitate when expressed together in cells. Our results show that Trio's Rho-specific GEF domain is a major Galpha(q) effector that, together with PLCbeta, mediates the Galpha(q) signaling that drives the locomotion, egg laying, and growth of the animal.
Collapse
Affiliation(s)
- Stacey L Williams
- Program in Molecular, Cell, and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Narayanan V, Sandiford SL, Wang Q, Keren-Raifman T, Levay K, Slepak VZ. Intramolecular interaction between the DEP domain of RGS7 and the Gbeta5 subunit. Biochemistry 2007; 46:6859-70. [PMID: 17511476 DOI: 10.1021/bi700524w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The R7 family of RGS proteins (RGS6, -7, -9, -11) is characterized by the presence of three domains: DEP, GGL, and RGS. The RGS domain interacts with Galpha subunits and exhibits GAP activity. The GGL domain permanently associates with Gbeta5. The DEP domain interacts with the membrane anchoring protein, R7BP. Here we provide evidence for a novel interaction within this complex: between the DEP domain and Gbeta5. GST fusion of the RGS7 DEP domain (GST-R7DEP) binds to both native and recombinant Gbeta5-RGS7, recombinant Gbetagamma complexes, and monomeric Gbeta5 and Gbeta1 subunits. Co-immunoprecipitation and FRET assays supported the GST pull-down experiments. GST-R7DEP reduced FRET between CFP-Gbeta5 and YFP-RGS7, indicating that the DEP-Gbeta5 interaction is dynamic. In transfected cells, R7BP had no effect on the Gbeta5/RGS7 pull down by GST-R7DEP. The DEP domain of RGS9 did not bind to Gbeta5. Substitution of RGS7 Glu-73 and Asp-74 for the corresponding Ser and Gly residues (ED/SG mutation) of RGS9 diminished the DEP-Gbeta5 interaction. In the absence of R7BP both the wild-type RGS7 and the ED/SG mutant attenuated muscarinic M3 receptor-mediated Ca2+ mobilization. In the presence of R7BP, wild-type RGS7 lost this inhibitory activity, whereas the ED/SG mutant remained active. Taken together, our results are consistent with the following model. The Gbeta5-RGS7 molecule can exist in two conformations: "closed" and "open", when the DEP domain and Gbeta5 subunit either do or do not interact. The closed conformation appears to be less active with respect to its effect on Gq-mediated signaling than the open conformation.
Collapse
Affiliation(s)
- Vijaya Narayanan
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
32
|
Wilkie TM, Kinch L. New roles for Galpha and RGS proteins: communication continues despite pulling sisters apart. Curr Biol 2006; 15:R843-54. [PMID: 16243026 DOI: 10.1016/j.cub.2005.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Large G protein alpha subunits and their attendant regulators of G-protein signaling (RGS) proteins control both intercellular signaling and asymmetric cell divisions by distinct pathways. The classical pathway, found throughout higher eukaryotic organisms, mediates intercellular communication via hormone binding to G-protein-coupled receptors (GPCRs). Recent studies have led to the discovery of GPCR-independent activation of Galpha subunits by the guanine nucleotide exchange factor RIC-8 in both asymmetric cell division and synaptic vesicle priming in metazoan organisms. Protein-protein interactions and protein function in each pathway are driven through the cycle of GTP binding and hydrolysis by the Galpha subunit. This review builds a conceptual framework for understanding RIC-8-mediated pathways by comparison with the mechanism of classical G-protein activation and inhibition in GPCR signaling.
Collapse
Affiliation(s)
- Thomas M Wilkie
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
33
|
Fitzgerald K, Tertyshnikova S, Moore L, Bjerke L, Burley B, Cao J, Carroll P, Choy R, Doberstein S, Dubaquie Y, Franke Y, Kopczynski J, Korswagen H, Krystek SR, Lodge NJ, Plasterk R, Starrett J, Stouch T, Thalody G, Wayne H, van der Linden A, Zhang Y, Walker SG, Cockett M, Wardwell-Swanson J, Ross-Macdonald P, Kindt RM. Chemical genetics reveals an RGS/G-protein role in the action of a compound. PLoS Genet 2006; 2:e57. [PMID: 16683034 PMCID: PMC1440875 DOI: 10.1371/journal.pgen.0020057] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 03/01/2006] [Indexed: 12/02/2022] Open
Abstract
We report here on a chemical genetic screen designed to address the mechanism of action of a small molecule. Small molecules that were active in models of urinary incontinence were tested on the nematode Caenorhabditis elegans, and the resulting phenotypes were used as readouts in a genetic screen to identify possible molecular targets. The mutations giving resistance to compound were found to affect members of the RGS protein/G-protein complex. Studies in mammalian systems confirmed that the small molecules inhibit muscarinic G-protein coupled receptor (GPCR) signaling involving G-αq (G-protein alpha subunit). Our studies suggest that the small molecules act at the level of the RGS/G-αq signaling complex, and define new mutations in both RGS and G-αq, including a unique hypo-adapation allele of G-αq. These findings suggest that therapeutics targeted to downstream components of GPCR signaling may be effective for treatment of diseases involving inappropriate receptor activation. The authors have utilized Caenorhabditis elegans, and yeast genetics, combined with mammalian tissue and cell culture experiments to investigate the mechanism of action of a unique set of small molecules. These molecules are active in tissue models of urinary incontinence and allow for increased bladder filling. In the course of studying sensitivity and resistance to these compounds, Fitzgerald et al. uncovered novel alleles of RGS and Gq proteins. Further characterization of one such allele identified that its action conferred a hypo-adaptive phenotype on yeast during pheromone signaling assays. Their data as a whole indicate that these small molecules are able to diminish signaling from G-protein coupled receptors (GPCR) downstream of the receptors themselves. Since GPCR signaling is very important in many diseases in humans, the novel mechanism of these compounds may offer new ways to treat human disease.
Collapse
Affiliation(s)
- Kevin Fitzgerald
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Svetlana Tertyshnikova
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Lisa Moore
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Lynn Bjerke
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Ben Burley
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Jian Cao
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Pamela Carroll
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Robert Choy
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Steve Doberstein
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Yves Dubaquie
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Yvonne Franke
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Jenny Kopczynski
- Exelixis Incorporated, South San Francisco, California, United States of America
| | - Hendrik Korswagen
- Hubrecht Laboratory, Centre for Biomedical Genetics, Utrecht, Netherlands
| | - Stanley R Krystek
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Nicholas J Lodge
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Ronald Plasterk
- Hubrecht Laboratory, Centre for Biomedical Genetics, Utrecht, Netherlands
| | - John Starrett
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Terry Stouch
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - George Thalody
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Honey Wayne
- Exelixis Incorporated, South San Francisco, California, United States of America
| | | | - Yongmei Zhang
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Stephen G Walker
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Mark Cockett
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Judi Wardwell-Swanson
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
| | - Petra Ross-Macdonald
- Bristol-Myers Squibb Pharmaceutical Research Institute, Pennington, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| | - Rachel M Kindt
- Exelixis Incorporated, South San Francisco, California, United States of America
| |
Collapse
|
34
|
Matsuki M, Kunitomo H, Iino Y. Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2006; 103:1112-7. [PMID: 16418272 PMCID: PMC1347976 DOI: 10.1073/pnas.0506954103] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heterotrimeric G protein G(o) is abundantly expressed in the mammalian nervous system and modulates neural activities in response to various ligands. However, G(o)'s functions in living animals are less well understood. Here, we demonstrate that GOA-1 G(o)alpha has a fundamental role in olfactory adaptation in Caenorhabditis elegans. Impairment of GOA-1 G(o)alpha function and excessive activation of EGL-30 G(q)alpha cause a defect in adaptation to AWC-sensed odorants. These pathways antagonistically modulate olfactory adaptation in AWC chemosensory neurons. Wild-type animals treated with phorbol esters and double-mutant animals of diacylglycerol (DAG) kinases, dgk-3; dgk-1, also have a defect in adaptation, suggesting that elevated DAG signals disrupt normal adaptation. Constitutively active GOA-1 can suppress the adaptation defect of dgk-3; dgk-1 double mutants, whereas it fails to suppress the adaptation defect of animals with constitutively active EGL-30, implying that GOA-1 acts upstream of EGL-30 in olfactory adaptation. Our results suggest that down-regulation of EGL-30-DAG signaling by GOA-1 underlies olfactory adaptation and plasticity of chemotaxis.
Collapse
Affiliation(s)
- Masahiro Matsuki
- Molecular Genetics Research Laboratory and Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
35
|
Charlie NK, Schade MA, Thomure AM, Miller KG. Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network. Genetics 2005; 172:943-61. [PMID: 16272411 PMCID: PMC1456257 DOI: 10.1534/genetics.105.049577] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
C. elegans mutants lacking the dense-core vesicle priming protein UNC-31 (CAPS) share highly similar phenotypes with mutants lacking a neuronal G alpha(s) pathway, including strong paralysis despite exhibiting near normal levels of steady-state acetylcholine release as indicated by drug sensitivity assays. Our genetic analysis shows that UNC-31 and neuronal G alpha(s) are different parts of the same pathway and that the UNC-31/G alpha(s) pathway is functionally distinct from the presynaptic G alpha(q) pathway with which it interacts. UNC-31 acts upstream of G alpha(s) because mutations that activate the G alpha(s) pathway confer similar levels of strongly hyperactive, coordinated locomotion in both unc-31 null and (+) backgrounds. Using cell-specific promoters, we show that both UNC-31 and the G alpha(s) pathway function in cholinergic motor neurons to regulate locomotion rate. Using immunostaining we show that UNC-31 is often concentrated at or near active zones of cholinergic motor neuron synapses. Our data suggest that presynaptic UNC-31 activity, likely acting via dense-core vesicle exocytosis, is required to locally activate the neuronal G alpha(s) pathway near synaptic active zones.
Collapse
Affiliation(s)
- Nicole K Charlie
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
36
|
Jovelin R, Phillips PC. Functional constraint and divergence in the G protein family in Caenorhabditis elegans and Caenorhabditis briggsae. Mol Genet Genomics 2005; 273:299-310. [PMID: 15856303 DOI: 10.1007/s00438-004-1105-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
Part of the challenge of the post-genomic world is to identify functional elements within the wide array of information generated by genome sequencing. Although cross-species comparisons and investigation of rates of sequence divergence are an efficient approach, the relationship between sequence divergence and functional conservation is not clear. Here, we use a comparative approach to examine questions of evolutionary rates and conserved function within the guanine nucleotide-binding protein (G protein) gene family in nematodes of the genus Caenorhabditis. In particular, we show that, in cases where the Caenorhabditis elegans ortholog shows a loss-of-function phenotype, G protein genes of C. elegans and Caenorhabditis briggsae diverge on average three times more slowly than G protein genes that do not exhibit any phenotype when mutated in C. elegans, suggesting that genes with loss of function phenotypes are subject to stronger selective constraints in relation to their function in both species. Our results also indicate that selection is as strong on G proteins involved in environmental perception as it is on those controlling other important processes. Finally, using phylogenetic footprinting, we identify a conserved non-coding motif present in multiple copies in the genomes of four species of Caenorhabditis. The presence of this motif in the same intron in the gpa-1 genes of C. elegans, C. briggsae and Caenorhabditis remanei suggests that it plays a role in the regulation of gpa-1, as well as other loci.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR, 97403-5289, USA
| | | |
Collapse
|
37
|
Steger KA, Avery L. The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 2005; 167:633-43. [PMID: 15238517 PMCID: PMC1470925 DOI: 10.1534/genetics.103.020230] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscarinic acetylcholine receptors regulate the activity of neurons and muscle cells through G-protein-coupled cascades. Here, we identify a pathway through which the GAR-3 muscarinic receptor regulates both membrane potential and excitation-contraction coupling in the Caenorhabditis elegans pharyngeal muscle. GAR-3 signaling is enhanced in worms overexpressing gar-3 or lacking GPB-2, a G-protein beta-subunit involved in RGS-mediated inhibition of G(o)alpha- and G(q)alpha-linked pathways. High levels of signaling through GAR-3 inhibit pharyngeal muscle relaxation and impair feeding--but do not block muscle repolarization--when worms are exposed to arecoline, a muscarinic agonist. Loss of gar-3 function results in shortened action potentials and brief muscle contractions in the pharyngeal terminal bulb. High levels of calcium entry through voltage-gated channels also impair terminal bulb relaxation and sensitize worms to the toxic effects of arecoline. Mutation of gar-3 reverses this sensitivity, suggesting that GAR-3 regulates calcium influx or calcium-dependent processes. Because the effects of GAR-3 signaling on membrane depolarization and muscle contraction can be separated, we conclude that GAR-3 regulates multiple calcium-dependent processes in the C. elegans pharyngeal muscle.
Collapse
Affiliation(s)
- Katherine A Steger
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | |
Collapse
|
38
|
Siderovski DP, Willard FS. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 2005; 1:51-66. [PMID: 15951850 PMCID: PMC1142213 DOI: 10.7150/ijbs.1.51] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 02/01/2005] [Indexed: 12/21/2022] Open
Abstract
The heterotrimeric G-protein alpha subunit has long been considered a bimodal, GTP-hydrolyzing switch controlling the duration of signal transduction by seven-transmembrane domain (7TM) cell-surface receptors. In 1996, we and others identified a superfamily of “regulator of G-protein signaling” (RGS) proteins that accelerate the rate of GTP hydrolysis by Gα subunits (dubbed GTPase-accelerating protein or “GAP” activity). This discovery resolved the paradox between the rapid physiological timing seen for 7TM receptor signal transduction in vivo and the slow rates of GTP hydrolysis exhibited by purified Gα subunits in vitro. Here, we review more recent discoveries that have highlighted newly-appreciated roles for RGS proteins beyond mere negative regulators of 7TM signaling. These new roles include the RGS-box-containing, RhoA-specific guanine nucleotide exchange factors (RGS-RhoGEFs) that serve as Gα effectors to couple 7TM and semaphorin receptor signaling to RhoA activation, the potential for RGS12 to serve as a nexus for signaling from tyrosine kinases and G-proteins of both the Gα and Ras-superfamilies, the potential for R7-subfamily RGS proteins to couple Gα subunits to 7TM receptors in the absence of conventional Gβγ dimers, and the potential for the conjoint 7TM/RGS-box Arabidopsis protein AtRGS1 to serve as a ligand-operated GAP for the plant Gα AtGPA1. Moreover, we review the discovery of novel biochemical activities that also impinge on the guanine nucleotide binding and hydrolysis cycle of Gα subunits: namely, the guanine nucleotide dissociation inhibitor (GDI) activity of the GoLoco motif-containing proteins and the 7TM receptor-independent guanine nucleotide exchange factor (GEF) activity of Ric‑8/synembryn. Discovery of these novel GAP, GDI, and GEF activities have helped to illuminate a new role for Gα subunit GDP/GTP cycling required for microtubule force generation and mitotic spindle function in chromosomal segregation.
Collapse
Affiliation(s)
- David P Siderovski
- Department of Pharmacology, UNC Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, CB#7365, 1106 M.E. Jones Building, Chapel Hill, NC 27599-7365 USA.
| | | |
Collapse
|
39
|
Hawasli AH, Saifee O, Liu C, Nonet ML, Crowder CM. Resistance to volatile anesthetics by mutations enhancing excitatory neurotransmitter release in Caenorhabditis elegans. Genetics 2005; 168:831-43. [PMID: 15514057 PMCID: PMC1448830 DOI: 10.1534/genetics.104.030502] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The molecular mechanisms whereby volatile general anesthetics (VAs) disrupt behavior remain undefined. In Caenorhabditis elegans mutations in the gene unc-64, which encodes the presynaptic protein syntaxin 1A, produce large allele-specific differences in VA sensitivity. UNC-64 syntaxin normally functions to mediate fusion of neurotransmitter vesicles with the presynaptic membrane. The precise role of syntaxin in the VA mechanism is as yet unclear, but a variety of results suggests that a protein interacting with syntaxin to regulate neurotransmitter release is essential for VA action in C. elegans. To identify additional proteins that function with syntaxin to control neurotransmitter release and VA action, we screened for suppressors of the phenotypes produced by unc-64 reduction of function. Loss-of-function mutations in slo-1, which encodes a Ca(2+)-activated K+ channel, and in unc-43, which encodes CaM-kinase II, and a gain-of-function mutation in egl-30, which encodes Gqalpha, were isolated as syntaxin suppressors. The slo-1 and egl-30 mutations conferred resistance to VAs, but unc-43 mutations did not. The effects of slo-1 and egl-30 on VA sensitivity can be explained by their actions upstream or parallel to syntaxin to increase the level of excitatory neurotransmitter release. These results strengthen the link between transmitter release and VA action.
Collapse
Affiliation(s)
- Ammar H Hawasli
- Department of Anesthesiology, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
40
|
Lans H, Rademakers S, Jansen G. A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Genetics 2005; 167:1677-87. [PMID: 15342507 PMCID: PMC1470997 DOI: 10.1534/genetics.103.024786] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The two pairs of sensory neurons of C. elegans, AWA and AWC, that mediate odorant attraction, express six Galpha-subunits, suggesting that olfaction is regulated by a complex signaling network. Here, we describe the cellular localization and functions of the six olfactory Galpha-subunits: GPA-2, GPA-3, GPA-5, GPA-6, GPA-13, and ODR-3. All except GPA-6 localize to sensory cilia, suggesting a direct role in sensory transduction. GPA-2, GPA-3, GPA-5, and GPA-6 are also present in cell bodies and axons and GPA-5 specifically localizes to synaptic sites. Analysis of animals with single- to sixfold loss-of-function mutations shows that olfaction involves a balance between multiple stimulatory and inhibitory signals. ODR-3 constitutes the main stimulatory signal and is sufficient for the detection of odorants. GPA-3 forms a second stimulatory signal in the AWA and AWC neurons, also sufficient for odorant detection. In AWA, signaling is suppressed by GPA-5. In AWC, GPA-2 and GPA-13 negatively and positively regulate signaling, respectively. Finally, we show that only ODR-3 plays a role in cilia morphogenesis. Defects in this process are, however, independent of olfactory behavior. Our findings reveal the existence of a complex signaling network that controls odorant detection by C. elegans.
Collapse
Affiliation(s)
- Hannes Lans
- MGC Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Cronin CJ, Mendel JE, Mukhtar S, Kim YM, Stirbl RC, Bruck J, Sternberg PW. An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet 2005; 6:5. [PMID: 15698479 PMCID: PMC549551 DOI: 10.1186/1471-2156-6-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 02/07/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nematode sinusoidal movement has been used as a phenotype in many studies of C. elegans development, behavior and physiology. A thorough understanding of the ways in which genes control these aspects of biology depends, in part, on the accuracy of phenotypic analysis. While worms that move poorly are relatively easy to describe, description of hyperactive movement and movement modulation presents more of a challenge. An enhanced capability to analyze all the complexities of nematode movement will thus help our understanding of how genes control behavior. RESULTS We have developed a user-friendly system to analyze nematode movement in an automated and quantitative manner. In this system nematodes are automatically recognized and a computer-controlled microscope stage ensures that the nematode is kept within the camera field of view while video images from the camera are stored on videotape. In a second step, the images from the videotapes are processed to recognize the worm and to extract its changing position and posture over time. From this information, a variety of movement parameters are calculated. These parameters include the velocity of the worm's centroid, the velocity of the worm along its track, the extent and frequency of body bending, the amplitude and wavelength of the sinusoidal movement, and the propagation of the contraction wave along the body. The length of the worm is also determined and used to normalize the amplitude and wavelength measurements. To demonstrate the utility of this system, we report here a comparison of movement parameters for a small set of mutants affecting the Go/Gq mediated signaling network that controls acetylcholine release at the neuromuscular junction. The system allows comparison of distinct genotypes that affect movement similarly (activation of Gq-alpha versus loss of Go-alpha function), as well as of different mutant alleles at a single locus (null and dominant negative alleles of the goa-1 gene, which encodes Go-alpha). We also demonstrate the use of this system for analyzing the effects of toxic agents. Concentration-response curves for the toxicants arsenite and aldicarb, both of which affect motility, were determined for wild-type and several mutant strains, identifying P-glycoprotein mutants as not significantly more sensitive to either compound, while cat-4 mutants are more sensitive to arsenite but not aldicarb. CONCLUSIONS Automated analysis of nematode movement facilitates a broad spectrum of experiments. Detailed genetic analysis of multiple alleles and of distinct genes in a regulatory network is now possible. These studies will facilitate quantitative modeling of C. elegans movement, as well as a comparison of gene function. Concentration-response curves will allow rigorous analysis of toxic agents as well as of pharmacological agents. This type of system thus represents a powerful analytical tool that can be readily coupled with the molecular genetics of nematodes.
Collapse
Affiliation(s)
- Christopher J Cronin
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Jane E Mendel
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Saleem Mukhtar
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - Young-Mee Kim
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA, USA
- 21018 Wendy Drive, Torrance, CA 90503, USA
| | | | - Jehoshua Bruck
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - Paul W Sternberg
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
42
|
Jose AM, Koelle MR. Domains, amino acid residues, and new isoforms of Caenorhabditis elegans diacylglycerol kinase 1 (DGK-1) important for terminating diacylglycerol signaling in vivo. J Biol Chem 2004; 280:2730-6. [PMID: 15563467 PMCID: PMC2048986 DOI: 10.1074/jbc.m409460200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diacylglycerol kinases (DGKs) inhibit diacylglycerol (DAG) signaling by phosphorylating DAG. DGK-1, the Caenorhabditis elegans ortholog of human neuronal DGK, inhibits neurotransmission to control behavior. DGK-1, like DGK, has three cysteine-rich domains (CRDs), a pleckstrin homology domain, and a kinase domain. To identify DGK domains and amino acid residues critical for terminating DAG signaling in vivo, we analyzed 20 dgk-1 mutants defective in DGK-1-controlled behaviors. We found by sequencing that the mutations included nine amino acid substitutions and seven premature stop codons that impair the physiological functions of DGK-1. All nine amino acid substitutions are in the second CRD, the third CRD, or the kinase domain. Thus, these domains are important for the termination of DAG signaling by DGK-1 in vivo. Seven of the substituted amino acid residues are present in all human DGKs and likely define key residues required for the function of all DGKs. An ATP-binding site mutation expected to inactivate the kinase domain retained very little physiological function, but we found two stop codon mutants predicted to truncate DGK-1 before its kinase domain that retained significantly more function. We detected novel splice forms of dgk-1 that can reconcile this apparent conflict, as they skip exons containing the stop codons to produce DGK-1 isoforms that contain the kinase domain. Two of these isoforms lack an intact pleckstrin homology domain and yet appear to have significant function. Additional novel isoform(s) account for all of the DGK-1 function necessary for one behavior, dopamine response.
Collapse
Affiliation(s)
- Antony M. Jose
- Departments of Molecular, Cellular, and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Michael R. Koelle
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
- ¶ To whom correspondence should be addressed: Dept. of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar St., SHM CE-30, New Haven, CT 06520. Tel.: 203-737-5808; Fax: 203-785-6404; E-mail:
| |
Collapse
|
43
|
Ajit SK, Young KH. Enhancement of pheromone response by RGS9 and Gβ5 in yeast. Biochem Biophys Res Commun 2004; 324:686-91. [PMID: 15474482 DOI: 10.1016/j.bbrc.2004.09.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Indexed: 11/18/2022]
Abstract
The G-protein gamma-subunit-like (GGL) domain present within a subfamily of RGS proteins binds specifically to Gbeta5. This interaction and resulting biological effect impacts the standard model of heterotrimeric G-protein signaling. It has been hypothesized that the RGS/Gbeta5 may potentially substitute for Gbetagamma in the heterotrimeric complex. Saccharomyces cerevisiae pheromone responsive mating signaling pathway is primarily driven by Gbetagamma. We evaluated GGL containing RGS9 and RGS7 for functional complementation in a RGS (sst2Delta) knockout yeast strain. The potential of Gbeta5 to augment the function of these RGS proteins was also evaluated. While Gbeta5 had no effect on RGS7, coexpression of Gbeta5 with RGS9 enhanced cell cycle arrest, suggesting that under certain conditions, RGS9 and Gbeta5 may possibly function as betagamma dimer. Furthermore, we demonstrate that Gbeta5 can complement a ste4Delta, the yeast beta-subunit, thus providing the first evidence of functional complementation of a mammalian Gbeta.
Collapse
Affiliation(s)
- Seena K Ajit
- Neuroscience Discovery Research, Wyeth Research, Princeton, NJ 08543, USA
| | | |
Collapse
|
44
|
Reynolds NK, Schade MA, Miller KG. Convergent, RIC-8-dependent Galpha signaling pathways in the Caenorhabditis elegans synaptic signaling network. Genetics 2004; 169:651-70. [PMID: 15489511 PMCID: PMC1449085 DOI: 10.1534/genetics.104.031286] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used gain-of-function and null synaptic signaling network mutants to investigate the relationship of the G alpha(q) and G alpha(s) pathways to synaptic vesicle priming and to each other. Genetic epistasis studies using G alpha(q) gain-of-function and null mutations, along with a mutation that blocks synaptic vesicle priming and the synaptic vesicle priming stimulator phorbol ester, suggest that the G alpha(q) pathway generates the core, obligatory signals for synaptic vesicle priming. In contrast, the G alpha(s) pathway is not required for the core priming function, because steady-state levels of neurotransmitter release are not significantly altered in animals lacking a neuronal G alpha(s) pathway, even though these animals are strongly paralyzed as a result of functional (nondevelopmental) defects. However, our genetic analysis indicates that these two functionally distinct pathways converge and that they do so downstream of DAG production. Further linking the two pathways, our epistasis analysis of a ric-8 null mutant suggests that RIC-8 (a receptor-independent G alpha guanine nucleotide exchange factor) is required to maintain both the G alpha(q) vesicle priming pathway and the neuronal G alpha(s) pathway in a functional state. We propose that the neuronal G alpha(s) pathway transduces critical positional information onto the core G alpha(q) pathway to stabilize the priming of selected synapses that are optimal for locomotion.
Collapse
Affiliation(s)
- Nicole K Reynolds
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
45
|
Schade MA, Reynolds NK, Dollins CM, Miller KG. Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (synembryn) mutants activate the G alpha(s) pathway and define a third major branch of the synaptic signaling network. Genetics 2004; 169:631-49. [PMID: 15489510 PMCID: PMC1449092 DOI: 10.1534/genetics.104.032334] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify hypothesized missing components of the synaptic G alpha(o)-G alpha(q) signaling network, which tightly regulates neurotransmitter release, we undertook two large forward genetic screens in the model organism C. elegans and focused first on mutations that strongly rescue the paralysis of ric-8(md303) reduction-of-function mutants, previously shown to be defective in G alpha(q) pathway activation. Through high-resolution mapping followed by sequence analysis, we show that these mutations affect four genes. Two activate the G alpha(q) pathway through gain-of-function mutations in G alpha(q); however, all of the remaining mutations activate components of the G alpha(s) pathway, including G alpha(s), adenylyl cyclase, and protein kinase A. Pharmacological assays suggest that the G alpha(s) pathway-activating mutations increase steady-state neurotransmitter release, and the strongly impaired neurotransmitter release of ric-8(md303) mutants is rescued to greater than wild-type levels by the strongest G alpha(s) pathway activating mutations. Using transgene induction studies, we show that activating the G alpha(s) pathway in adult animals rapidly induces hyperactive locomotion and rapidly rescues the paralysis of the ric-8 mutant. Using cell-specific promoters we show that neuronal, but not muscle, G alpha(s) pathway activation is sufficient to rescue ric-8(md303)'s paralysis. Our results appear to link RIC-8 (synembryn) and a third major G alpha pathway, the G alpha(s) pathway, with the previously discovered G alpha(o) and G alpha(q) pathways of the synaptic signaling network.
Collapse
Affiliation(s)
- Michael A Schade
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
46
|
Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 2004; 7:1096-103. [PMID: 15378064 DOI: 10.1038/nn1316] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 07/28/2004] [Indexed: 11/10/2022]
Abstract
D1-like and D2-like dopamine receptors have synergistic and antagonistic effects on behavior. To understand the mechanisms underlying these effects, we studied dopamine signaling genetically in Caenorhabditis elegans. Knocking out a D2-like receptor, DOP-3, caused locomotion defects similar to those observed in animals lacking dopamine. Knocking out a D1-like receptor, DOP-1, reversed the defects of the DOP-3 knockout. DOP-3 and DOP-1 have their antagonistic effects on locomotion by acting in the same motor neurons, which coexpress the receptors and which are not postsynaptic to dopaminergic neurons. In a screen for mutants unable to respond to dopamine, we identified four genes that encode components of the antagonistic Galpha(o) and Galpha(q) signaling pathways, including Galpha(o) itself and two subunits of the regulator of G protein signaling (RGS) complex that inhibits Galpha(q). Our results indicate that extrasynaptic dopamine regulates C. elegans locomotion through D1- and D2-like receptors that activate the antagonistic Galpha(q) and Galpha(o) signaling pathways, respectively.
Collapse
|
47
|
Natochin M, Artemyev NO. A point mutation uncouples transducin-alpha from the photoreceptor RGS and effector proteins. J Neurochem 2003; 87:1262-71. [PMID: 14622106 DOI: 10.1046/j.1471-4159.2003.02103.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel gain-of-function mutation, R243Q, has been recently identified in the Candida elegans Gqalpha protein EGL-30. The position corresponding to Arg243 in EGL-30 is absolutely conserved among heterotrimeric G proteins. This mutation appears to be the first gain-of-function mutation in the switch III region of Galpha subunits. To investigate consequences of the R-->Q mutation we introduced the corresponding R238Q mutation into transducin-like Gtalpha* subunit. The mutant retained intact interactions with Gtbetagamma and rhodopsin but exhibited a twofold reduction in the kcat value for guanosine 5'-triphosphate (GTP) hydrolysis. The GTPase activity of R238Q was not accelerated by the RGS domain of the visual GTPase-activating protein, RGS9-1. In addition, R238Q displayed a significant impairment in the effector function. Our data and the crystal structures of transducin suggest that the major reason for the reduced intrinsic GTPase activity of R238Q and the lack of RGS9 function is the break of the conserved ionic contact between Arg238 and Glu39, which apparently stabilizes the transitional state for GTP hydrolysis. We hypothesize that the R243Q mutation in EGL-30 severs the ionic interaction of Arg243 with Glu43, leading to a defective inactivation of the mutant by the C. elegans RGS protein EAT-16.
Collapse
Affiliation(s)
- Michael Natochin
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
48
|
Yau DM, Yokoyama N, Goshima Y, Siddiqui ZK, Siddiqui SS, Kozasa T. Identification and molecular characterization of the G alpha12-Rho guanine nucleotide exchange factor pathway in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2003; 100:14748-53. [PMID: 14657363 PMCID: PMC299794 DOI: 10.1073/pnas.2533143100] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Indexed: 11/18/2022] Open
Abstract
G alpha 12/13-mediated pathways have been shown to be involved in various fundamental cellular functions in mammalian cells such as axonal guidance, apoptosis, and chemotaxis. Here, we identified a homologue of Rho-guanine nucleotide exchange factor (GEF) in Caenorhabditis elegans (CeRhoGEF), which functions downstream of gpa-12, the C. elegans homologue of G alpha 12/13. CeRhoGEF contains a PSD-95/Dlg/ZO-1 domain and a regulator of G protein signaling (RGS) domain upstream of the Dbl homology-pleckstrin homology region similar to mammalian RhoGEFs with RGS domains, PSD-95/Dlg/ZO-1-RhoGEF and leukemia-associated RhoGEF. It has been shown in mammalian cells that these RhoGEFs interact with activated forms of G alpha 12 or G alpha 13 through their RGS domains. We demonstrated by coimmunoprecipitation that the RGS domain of CeRhoGEF interacts with GPA-12 in an AIF4- activation-dependent manner and confirmed that the Dbl homology-pleckstrin homology domain of CeRhoGEF was capable of Rho-dependent signaling. These results proved conservation of the G alpha 12-RhoGEF pathway in C. elegans. Expression of DsRed or GFP under the control of the promoter of CeRhoGEF or gpa-12 revealed an overlap of their expression patterns in ventral cord motor neurons and several neurons in the head. RNA-mediated gene interference for CeRhoGEF and gpa-12 resulted in similar phenotypes such as embryonic lethality and sensory and locomotive defects in adults. Thus, the G alpha 12/13-RhoGEF pathway is likely to be involved in embryonic development and neuronal function in C. elegans.
Collapse
Affiliation(s)
- Douglas M Yau
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
49
|
Chen CK, Eversole-Cire P, Zhang H, Mancino V, Chen YJ, He W, Wensel TG, Simon MI. Instability of GGL domain-containing RGS proteins in mice lacking the G protein beta-subunit Gbeta5. Proc Natl Acad Sci U S A 2003; 100:6604-9. [PMID: 12738888 PMCID: PMC164494 DOI: 10.1073/pnas.0631825100] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RGS (regulator of G protein signaling) proteins containing the G protein gamma-like (GGL) domain (RGS6, RGS7, RGS9, and RGS11) interact with the fifth member of the G protein beta-subunit family, Gbeta5. This interaction is necessary for the stability of both the RGS protein and for Gbeta5. Consistent with this notion, we have found that elevation of RGS9-1 mRNA levels by transgene expression does not increase RGS9-1 protein level in the retina, suggesting that Gbeta5 levels may be limiting. To examine further the interactions of Gbeta5 and the GGL domain-containing RGS proteins, we inactivated the Gbeta5 gene. We found that the levels of GGL domain-containing RGS proteins in retinas and in striatum are eliminated or reduced drastically, whereas the levels of Ggamma2 and RGS4 proteins remain normal in the absence of Gbeta5. The homozygous Gbeta5 knockout (Gbeta5-/-) mice derived from heterozygous knockout mating are runty and exhibit a high preweaning mortality rate. We concluded that complex formation between GGL domain-containing RGS proteins and the Gbeta5 protein is necessary to maintain their mutual stability in vivo. Furthermore, in the absence of Gbeta5 and all four RGS proteins that form protein complexes with Gbeta5, the animals that survive into adulthood are viable and have no gross defects in brain or retinal morphology.
Collapse
Affiliation(s)
- Ching-Kang Chen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Jovelin R, Ajie BC, Phillips PC. Molecular evolution and quantitative variation for chemosensory behaviour in the nematode genus Caenorhabditis. Mol Ecol 2003; 12:1325-37. [PMID: 12694294 DOI: 10.1046/j.1365-294x.2003.01805.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caenorhabditis elegans is a model organism in biology, yet despite the tremendous information generated from genetic, genomic and functional analyses, C. elegans has rarely been used to address questions in ecological genetics. Here, we analyse genetic variation for chemosensory behaviour, an ecologically important trait that is also genetically well characterized, at both the phenotypic and molecular levels within three species of the genus Caenorhabditis. We show that the G-protein ODR-3 plays an important role in chemosensory avoidance behaviour and identify orthologues of odr-3 in C. briggsae and C. remanei. Both quantitative genetic analysis of chemosensory behaviour and molecular population genetic analysis of odr-3 show that there is little genetic variation among a worldwide collection of isolates of the primarily selfing C. elegans, whereas there is substantially more variation within a single population of the outcrossing C. remanei. Although there are a large number of substitutions at silent sites within odr-3 among the three species, molecular evolution at the protein level is extremely conserved, suggesting that odr-3 plays an important role in cell signalling during chemosensation and/or neuronal cilia development in C. remanei and in C. briggsae as it does in C. elegans. Our results suggest that C. remanei may be a more suitable subject for ecological and evolutionary genetic studies than C. elegans.
Collapse
Affiliation(s)
- R Jovelin
- Center for Ecology and Evolutionary Biology, 5289 University of Oregon, Eugene, OR 97403-5289, USA
| | | | | |
Collapse
|