1
|
Popecki MS, Rogers RL, Archer-Hartmann SA, Wares JP, Stanger-Hall KF. The role of pigments in light color variation of the firefly Photinus pyralis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614534. [PMID: 39386434 PMCID: PMC11463521 DOI: 10.1101/2024.09.23.614534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fireflies use bioluminescent signals to communicate with their mates. Luciferase has been thought to be the sole contributor to light color; however, populations of the Photinus pyralis firefly display variation in the color of their emitted signals yet have identical luciferase sequences. Here, we examined whether pigments could be present in the light organs of the twilight-active species P. pyralis and contribute to this variation. We detected patterns of expression that suggest ommochrome and pterin screening pigments are expressed in P. pyralis light organs and could filter light emitted by luciferase and play a role in signal tuning. There were no significant differences between the pigment gene expression of P. pyralis individuals with yellower and greener signals. Our study provides alternative mechanisms that could influence pigments in P. pyralis light organs that could also play a role in modifying signal color.
Collapse
|
2
|
Britton S, Davidowitz G. No evidence for the melanin desiccation hypothesis in a larval Lepidopteran. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104669. [PMID: 38936542 DOI: 10.1016/j.jinsphys.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024]
Abstract
Water regulation is an important physiological challenge for insects due to their small body sizes and large surface area to volume ratios. Adaptations for decreasing cuticular water loss, the largest avenue of loss, are especially important. The melanin desiccation hypothesis states that melanin molecules in the cuticle may help prevent water loss, thus offering protection from desiccation. This hypothesis has much empirical support in Drosophila species, but remains mostly untested in other taxa, including Lepidoptera. Because melanin has many other important functions in insects, its potential role in desiccation prevention is not always clear. In this study we investigated the role of melanin in desiccation prevention in the white-lined Sphinx moth, Hyles lineata (Lepidoptera, Sphingidae), which shows high plasticity in the degree of melanin pigmentation during the late larval instars. We took advantage of this plasticity and used density treatments to induce a wide range of cuticular melanization; solitary conditions induced low melanin pigmentation while crowded conditions induced high melanin pigmentation. We tested whether more melanic larvae from the crowded treatment were better protected from desiccation in three relevant responses: i) total water loss over a desiccation period, ii) change in hemolymph osmolality over a desiccation period, and iii) evaporation rate of water through the cuticle. We did not find support for the melanin desiccation hypothesis in this species. Although treatment influenced total water loss, this effect did not occur via degree of melanization. Interestingly, this implies that crowding, which was used to induce high melanin phenotypes, may have other physiological effects that influence water regulation. There were no differences between treatments in cuticular evaporative water loss or change in hemolymph osmolality. However, we conclude that osmolality may not sufficiently reflect water loss in this case. This study emphasizes the context dependency of melanin's role in desiccation prevention and the importance of considering how it may vary across taxa. In lepidopteran larvae that are constantly feeding phytophagous insects with soft cuticles, melanin may not be necessary for preventing cuticular water loss.
Collapse
Affiliation(s)
- Sarah Britton
- University of Arizona, Department of Ecology and Evolutionary Biology, USA.
| | - Goggy Davidowitz
- University of Arizona, Department of Ecology and Evolutionary Biology, USA; University of Arizona, Department of Entomology, USA
| |
Collapse
|
3
|
Dong Y, Xu X, Qian L, Kou Z, Andongma AA, Zhou L, Huang Y, Wang Y. Genome-wide identification of yellow gene family in Hermetia illucens and functional analysis of yellow-y by CRISPR/Cas9. INSECT SCIENCE 2024. [PMID: 38685755 DOI: 10.1111/1744-7917.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 05/02/2024]
Abstract
The yellow gene family plays a crucial role in insect pigmentation. It has potential for use as a visible marker gene in genetic manipulation and transgenic engineering in several model and non-model insects. Sadly, yellow genes have rarely been identified in Stratiomyidae species and the functions of yellow genes are relatively unknown. In the present study, we first manually annotated and curated 10 yellow genes in the black soldier fly (BSF), Hermetia illucens (Stratiomyidae). Then, the conserved amino acids in the major royal jelly proteins (MRJPs) domain, structural architecture and phylogenetic relationship of yellow genes in BSF were analyzed. We found that the BSF yellow-y, yellow-c and yellow-f genes are expressed at all developmental stages, especially in the prepupal stage. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we successfully disrupted yellow-y, yellow-c and yellow-f in the BSF. Consequently, the mutation of yellow-y clearly resulted in a pale-yellow body color in prepupae, pupae and adults, instead of the typical black body color of the wild type. However, the mutation of yellow-c or yellow-f genes did not result in any change in color of the insects, when compared with the wild type. Our study indicates that the BSF yellow-y gene plays a role in body pigmentation, providing an optimal marker gene for the genetic manipulation of BSF.
Collapse
Affiliation(s)
- Yongcheng Dong
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiaomiao Xu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lansa Qian
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, CAS, Shanghai, China
| | - Zongqing Kou
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, CAS, Shanghai, China
| | - Awawing A Andongma
- Insect and Parasite Ecology Group, Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Lijun Zhou
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yongping Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Li JL, Li SS, Luo ZJ, Lu J, Cai XM, Luo ZX, Bian L, Xiu CL, Fu NX, Liu NY, Li ZQ. CRISPR/Cas9-mediated ebony knockout causes melanin pigmentation and prevents moth Eclosion in Ectropis grisescens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105810. [PMID: 38582582 DOI: 10.1016/j.pestbp.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 04/08/2024]
Abstract
Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.
Collapse
Affiliation(s)
- Jia-Li Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China; East China Academy of Inventory and Planning of NFGA, Hangzhou 310008, People's Republic of China
| | - Shun-Si Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China; Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, People's Republic of China
| | - Zi-Jun Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Ji Lu
- East China Academy of Inventory and Planning of NFGA, Hangzhou 310008, People's Republic of China
| | - Xiao-Ming Cai
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Zong-Xiu Luo
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Lei Bian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Chun-Li Xiu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Nan-Xia Fu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, People's Republic of China.
| | - Zhao-Qun Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, People's Republic of China.
| |
Collapse
|
5
|
Bachem K, Li X, Ceolin S, Mühling B, Hörl D, Harz H, Leonhardt H, Arnoult L, Weber S, Matarlo B, Prud’homme B, Gompel N. Regulatory evolution tuning pigmentation intensity quantitatively in Drosophila. SCIENCE ADVANCES 2024; 10:eadl2616. [PMID: 38266088 PMCID: PMC10807792 DOI: 10.1126/sciadv.adl2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Quantitative variation in attributes such as color, texture, or stiffness dominates morphological diversification. It results from combinations of alleles at many Mendelian loci. Here, we identify an additional source of quantitative variation among species, continuous evolution in a gene regulatory region. Specifically, we examined the modulation of wing pigmentation in a group of fly species and showed that inter-species variation correlated with the quantitative expression of the pigmentation gene yellow. This variation results from an enhancer of yellow determining darkness through species-specific activity. We mapped the divergent activities between two sister species and found the changes to be broadly distributed along the enhancer. Our results demonstrate that enhancers can act as dials fueling quantitative morphological diversification by modulating trait properties.
Collapse
Affiliation(s)
- Katharina Bachem
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Xinyi Li
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Stefano Ceolin
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Bettina Mühling
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - David Hörl
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Hartmann Harz
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Heinrich Leonhardt
- Human Biology and Bioimaging, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Laurent Arnoult
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, Marseille 13288, France
| | - Sabrina Weber
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Blair Matarlo
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
| | - Benjamin Prud’homme
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, Marseille 13288, France
| | - Nicolas Gompel
- Department of Evolutionary Ecology, Ludwig-Maximilians Universität München, München 82152, Germany
- Bonn Institute for Organismic Biology, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
6
|
Johansen M, Saenko S, Schilthuizen M, Blaxter M, Davison A. Fine mapping of the Cepaea nemoralis shell colour and mid-banded loci using a high-density linkage map. Heredity (Edinb) 2023; 131:327-337. [PMID: 37758900 PMCID: PMC10673960 DOI: 10.1038/s41437-023-00648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Molluscs are a highly speciose phylum that exhibits an astonishing array of colours and patterns, yet relatively little progress has been made in identifying the underlying genes that determine phenotypic variation. One prominent example is the land snail Cepaea nemoralis for which classical genetic studies have shown that around nine loci, several physically linked and inherited together as a 'supergene', control the shell colour and banding polymorphism. As a first step towards identifying the genes involved, we used whole-genome resequencing of individuals from a laboratory cross to construct a high-density linkage map, and then trait mapping to identify 95% confidence intervals for the chromosomal region that contains the supergene, specifically the colour locus (C), and the unlinked mid-banded locus (U). The linkage map is made up of 215,593 markers, ordered into 22 linkage groups, with one large group making up ~27% of the genome. The C locus was mapped to a ~1.3 cM region on linkage group 11, and the U locus was mapped to a ~0.7 cM region on linkage group 15. The linkage map will serve as an important resource for further evolutionary and population genomic studies of C. nemoralis and related species, as well as the identification of candidate genes within the supergene and for the mid-banding phenotype.
Collapse
Affiliation(s)
- Margrethe Johansen
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Suzanne Saenko
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden, 2333BE, The Netherlands
| | - Menno Schilthuizen
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden, 2333BE, The Netherlands
| | - Mark Blaxter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
7
|
Llaurens V. A colourful duplication. eLife 2023; 12:e92763. [PMID: 37917141 PMCID: PMC10622141 DOI: 10.7554/elife.92763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
A genetic duplication event during evolution allowed male wood tiger moths to have either yellow or white patterns on their wings.
Collapse
Affiliation(s)
- Violaine Llaurens
- Centre national de la recherche scientifique (CNRS)ParisFrance
- Muséum national d'Histoire naturelleParisFrance
| |
Collapse
|
8
|
Brien MN, Orteu A, Yen EC, Galarza JA, Kirvesoja J, Pakkanen H, Wakamatsu K, Jiggins CD, Mappes J. Colour polymorphism associated with a gene duplication in male wood tiger moths. eLife 2023; 12:e80116. [PMID: 37902626 PMCID: PMC10635649 DOI: 10.7554/elife.80116] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Colour is often used as an aposematic warning signal, with predator learning expected to lead to a single colour pattern within a population. However, there are many puzzling cases where aposematic signals are also polymorphic. The wood tiger moth, Arctia plantaginis, displays bright hindwing colours associated with unpalatability, and males have discrete colour morphs which vary in frequency between localities. In Finland, both white and yellow morphs can be found, and these colour morphs also differ in behavioural and life-history traits. Here, we show that male colour is linked to an extra copy of a yellow family gene that is only present in the white morphs. This white-specific duplication, which we name valkea, is highly upregulated during wing development. CRISPR targeting valkea resulted in editing of both valkea and its paralog, yellow-e, and led to the production of yellow wings. We also characterise the pigments responsible for yellow, white, and black colouration, showing that yellow is partly produced by pheomelanins, while black is dopamine-derived eumelanin. Our results add to a growing number of studies on the genetic architecture of complex and seemingly paradoxical polymorphisms, and the role of gene duplications and structural variation in adaptive evolution.
Collapse
Affiliation(s)
- Melanie N Brien
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
| | - Anna Orteu
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Eugenie C Yen
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Juan A Galarza
- Ecology and Genetics Research Unit, University of OuluOuluFinland
| | - Jimi Kirvesoja
- Department of Biological and Environmental Science, University of JyväskyläJyväskyläFinland
| | - Hannu Pakkanen
- Department of Chemistry, University of JyväskyläJyväskyläFinland
| | | | - Chris D Jiggins
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Johanna Mappes
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
- Department of Biological and Environmental Science, University of JyväskyläJyväskyläFinland
| |
Collapse
|
9
|
Khodursky S, Zheng EB, Svetec N, Durkin SM, Benjamin S, Gadau A, Wu X, Zhao L. The evolution and mutational robustness of chromatin accessibility in Drosophila. Genome Biol 2023; 24:232. [PMID: 37845780 PMCID: PMC10578003 DOI: 10.1186/s13059-023-03079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The evolution of genomic regulatory regions plays a critical role in shaping the diversity of life. While this process is primarily sequence-dependent, the enormous complexity of biological systems complicates the understanding of the factors underlying regulation and its evolution. Here, we apply deep neural networks as a tool to investigate the sequence determinants underlying chromatin accessibility in different species and tissues of Drosophila. RESULTS We train hybrid convolution-attention neural networks to accurately predict ATAC-seq peaks using only local DNA sequences as input. We show that our models generalize well across substantially evolutionarily diverged species of insects, implying that the sequence determinants of accessibility are highly conserved. Using our model to examine species-specific gains in accessibility, we find evidence suggesting that these regions may be ancestrally poised for evolution. Using in silico mutagenesis, we show that accessibility can be accurately predicted from short subsequences in each example. However, in silico knock-out of these sequences does not qualitatively impair classification, implying that accessibility is mutationally robust. Subsequently, we show that accessibility is predicted to be robust to large-scale random mutation even in the absence of selection. Conversely, simulations under strong selection demonstrate that accessibility can be extremely malleable despite its robustness. Finally, we identify motifs predictive of accessibility, recovering both novel and previously known motifs. CONCLUSIONS These results demonstrate the conservation of the sequence determinants of accessibility and the general robustness of chromatin accessibility, as well as the power of deep neural networks to explore fundamental questions in regulatory genomics and evolution.
Collapse
Affiliation(s)
- Samuel Khodursky
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Eric B Zheng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Sylvia M Durkin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
- Present Address: Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Sigi Benjamin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Alice Gadau
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Xia Wu
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Auradkar A, Guichard A, Kaduwal S, Sneider M, Bier E. tgCRISPRi: efficient gene knock-down using truncated gRNAs and catalytically active Cas9. Nat Commun 2023; 14:5587. [PMID: 37696787 PMCID: PMC10495392 DOI: 10.1038/s41467-023-40836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14-15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression.
Collapse
Affiliation(s)
- Ankush Auradkar
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Annabel Guichard
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Saluja Kaduwal
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Marketta Sneider
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA.
- Tata Institute for Genetics and Society - UCSD, La Jolla, USA.
| |
Collapse
|
11
|
Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y. Ovariole-specific Yellow-g and Yellow-g2 proteins are required for fecundity and egg chorion rigidity in the red flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103984. [PMID: 37391088 DOI: 10.1016/j.ibmb.2023.103984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Most insects reproduce by laying eggs that have an eggshell/chorion secreted by follicle cells, which serves as a protective barrier for developing embryos. Thus, eggshell formation is vital for reproduction. Insect yellow family genes encode for secreted extracellular proteins that perform different, context-dependent functions in different tissues at various stages of development involving, for example, cuticle/eggshell coloration and morphology, molting, courtship behavior and embryo hatching. In this study we investigated the function of two of this family's genes, yellow-g (TcY-g) and yellow-g2 (TcY-g2), on the formation and morphology of the eggshell of the red flour beetle, Tribolium castaneum. Real-time PCR analysis revealed that both TcY-g and TcY-g2 were specifically expressed in the ovarioles of adult females. Loss of function produced by injection of double-stranded RNA (dsRNA) for either TcY-g or TcY-g2 gene resulted in failure of oviposition. There was no effect on maternal survival. Ovaries dissected from those dsRNA-treated females exhibited ovarioles containing not only developing oocytes but also mature eggs in their egg chambers. However, the ovulated eggs were collapsed and ruptured, resulting in swollen lateral oviducts and calyxes. TEM analysis showed that lateral oviducts were filled with electron-dense material, presumably from some cellular content leakage out of the collapsed eggs. In addition, morphological abnormalities in lateral oviduct epithelial cells and the tubular muscle sheath were evident. These results support the hypothesis that both TcY-g and TcY-g2 proteins are required for maintaining the rigidity and integrity of the chorion, which is critical for resistance to mechanical stress and/or rehydration during ovulation and egg activation in the oviducts of T. castaneum. Because Yellow-g and Yellow-g2 are highly conserved among insect species, both genes are potential targets for development of gene-based insect pest population control methods.
Collapse
Affiliation(s)
- Mi Young Noh
- Department of Forest Resources, AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, South Korea.
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
12
|
Khodursky S, Zheng EB, Svetec N, Durkin SM, Benjamin S, Gadau A, Wu X, Zhao L. The evolution and mutational robustness of chromatin accessibility in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546587. [PMID: 37425760 PMCID: PMC10327059 DOI: 10.1101/2023.06.26.546587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The evolution of regulatory regions in the genome plays a critical role in shaping the diversity of life. While this process is primarily sequence-dependent, the enormous complexity of biological systems has made it difficult to understand the factors underlying regulation and its evolution. Here, we apply deep neural networks as a tool to investigate the sequence determinants underlying chromatin accessibility in different tissues of Drosophila. We train hybrid convolution-attention neural networks to accurately predict ATAC-seq peaks using only local DNA sequences as input. We show that a model trained in one species has nearly identical performance when tested in another species, implying that the sequence determinants of accessibility are highly conserved. Indeed, model performance remains excellent even in distantly-related species. By using our model to examine species-specific gains in chromatin accessibility, we find that their orthologous inaccessible regions in other species have surprisingly similar model outputs, suggesting that these regions may be ancestrally poised for evolution. We then use in silico saturation mutagenesis to reveal evidence of selective constraint acting specifically on inaccessible chromatin regions. We further show that chromatin accessibility can be accurately predicted from short subsequences in each example. However, in silico knock-out of these sequences does not qualitatively impair classification, implying that chromatin accessibility is mutationally robust. Subsequently, we demonstrate that chromatin accessibility is predicted to be robust to large-scale random mutation even in the absence of selection. We also perform in silico evolution experiments under the regime of strong selection and weak mutation (SSWM) and show that chromatin accessibility can be extremely malleable despite its mutational robustness. However, selection acting in different directions in a tissue-specific manner can substantially slow adaptation. Finally, we identify motifs predictive of chromatin accessibility and recover motifs corresponding to known chromatin accessibility activators and repressors. These results demonstrate the conservation of the sequence determinants of accessibility and the general robustness of chromatin accessibility, as well as the power of deep neural networks as tools to answer fundamental questions in regulatory genomics and evolution.
Collapse
Affiliation(s)
- Samuel Khodursky
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
- These authors contributed equally
| | - Eric B Zheng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
- These authors contributed equally
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Sylvia M Durkin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
- Current Address: Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Sigi Benjamin
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Alice Gadau
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Xia Wu
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
13
|
Méndez-González ID, Williams TM, Rebeiz M. Changes in locus wide repression underlie the evolution of Drosophila abdominal pigmentation. PLoS Genet 2023; 19:e1010722. [PMID: 37134121 PMCID: PMC10184908 DOI: 10.1371/journal.pgen.1010722] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/15/2023] [Accepted: 03/28/2023] [Indexed: 05/04/2023] Open
Abstract
Changes in gene regulation represent an important path to generate developmental differences affecting anatomical traits. Interspecific divergence in gene expression often results from changes in transcription-stimulating enhancer elements. While gene repression is crucial for precise spatiotemporal expression patterns, the relative contribution of repressive transcriptional silencers to regulatory evolution remains to be addressed. Here, we show that the Drosophila pigmentation gene ebony has mainly evolved through changes in the spatial domains of silencers patterning its abdominal expression. By precisely editing the endogenous ebony locus of D. melanogaster, we demonstrate the requirement of two redundant abdominal enhancers and three silencers that repress the redundant enhancers in a patterned manner. We observe a role for changes in these silencers in every case of ebony evolution observed to date. Our findings suggest that negative regulation by silencers likely has an under-appreciated role in gene regulatory evolution.
Collapse
Affiliation(s)
- Iván D Méndez-González
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas M Williams
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
14
|
Murugesan SN, Monteiro A. Evolution of modular and pleiotropic enhancers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:105-115. [PMID: 35334158 DOI: 10.1002/jez.b.23131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 11/05/2022]
Abstract
Cis-regulatory elements (CREs), or enhancers, are segments of noncoding DNA that regulate the spatial and temporal expression of nearby genes. Sometimes, genes are expressed in more than one tissue, and this can be driven by two main types of CREs: tissue-specific "modular" CREs, where different CREs drive expression of the gene in the different tissues, or by "pleiotropic" CREs, where the same CRE drives expression in the different tissues. In this perspective, we will discuss some of the ways (i) modular and pleiotropic CREs might originate; (ii) propose that modular CREs might derive from pleiotropic CREs via a process of duplication, degeneration, and complementation (the CRE-DDC model); and (iii) propose that hotspot loci of evolution are associated with the origin of modular CREs belonging to any gene in a regulatory network.
Collapse
Affiliation(s)
- Suriya N Murugesan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore.,Division of Science, Yale-NUS College, Singapore
| |
Collapse
|
15
|
Hughes JT, Williams ME, Rebeiz M, Williams TM. Widespread cis- and trans-regulatory evolution underlies the origin, diversification, and loss of a sexually dimorphic fruit fly pigmentation trait. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:143-161. [PMID: 34254440 DOI: 10.1002/jez.b.23068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022]
Abstract
Changes in gene expression are a prominent feature of morphological evolution. These changes occur to hierarchical gene regulatory networks (GRNs) of transcription factor genes that regulate the expression of trait-building differentiation genes. While changes in the expression of differentiation genes are essential to phenotypic evolution, they can be caused by mutations within cis-regulatory elements (CREs) that drive their expression (cis-evolution) or within genes for CRE-interacting transcription factors (trans-evolution). Locating these mutations remains a challenge, especially when experiments are limited to one species that possesses the ancestral or derived phenotype. We investigated CREs that control the expression of the differentiation genes tan and yellow, the expression of which evolved during the gain, modification, and loss of dimorphic pigmentation among Sophophora fruit flies. We show these CREs to be necessary components of a pigmentation GRN, as deletion from Drosophila melanogaster (derived dimorphic phenotype) resulted in lost expression and lost male-specific pigmentation. We evaluated the ability of orthologous CRE sequences to drive reporter gene expression in species with modified (Drosophila auraria), secondarily lost (Drosophila ananassae), and ancestrally absent (Drosophila willistoni) pigmentation. We show that the transgene host frequently determines CRE activity, implicating trans-evolution as a significant factor for this trait's diversity. We validated the gain of dimorphic Bab transcription factor expression as a trans-change contributing to the dimorphic trait. Our findings suggest an amenability to change for the landscape of trans-regulators and begs for an explanation as to why this is so common compared to the evolution of differentiation gene CREs.
Collapse
Affiliation(s)
- Jesse T Hughes
- Department of Biology, University of Dayton, Dayton, Ohio, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, Dayton, Ohio, USA.,The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, USA
| |
Collapse
|
16
|
Ling L, Mühling B, Jaenichen R, Gompel N. Increased chromatin accessibility promotes the evolution of a transcriptional silencer in Drosophila. SCIENCE ADVANCES 2023; 9:eade6529. [PMID: 36800429 PMCID: PMC9937571 DOI: 10.1126/sciadv.ade6529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The loss of discrete morphological traits, the most common evolutionary transition, is typically driven by changes in developmental gene expression. Mutations accumulating in regulatory elements of these genes can disrupt DNA binding sites for transcription factors patterning their spatial expression, or delete entire enhancers. Regulatory elements, however, may be silenced through changes in chromatin accessibility or the emergence of repressive elements. Here, we show that increased chromatin accessibility at the gene yellow, combined with the gain of a repressor site, underlies the loss of a wing spot pigmentation pattern in a Drosophila species. The gain of accessibility of this repressive element is regulated by E93, a transcription factor governing the progress of metamorphosis. This convoluted evolutionary scenario contrasts with the parsimonious mutational paths generally envisioned and often documented for morphological losses. It illustrates how evolutionary changes in chromatin accessibility may directly contribute to morphological diversification.
Collapse
|
17
|
Raja KKB, Shittu MO, Nouhan PME, Steenwinkel TE, Bachman EA, Kokate PP, McQueeney A, Mundell EA, Armentrout AA, Nugent A, Werner T. The regulation of a pigmentation gene in the formation of complex color patterns in Drosophila abdomens. PLoS One 2022; 17:e0279061. [PMID: 36534652 PMCID: PMC9762589 DOI: 10.1371/journal.pone.0279061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Changes in the control of developmental gene expression patterns have been implicated in the evolution of animal morphology. However, the genetic mechanisms underlying complex morphological traits remain largely unknown. Here we investigated the molecular mechanisms that induce the pigmentation gene yellow in a complex color pattern on the abdomen of Drosophila guttifera. We show that at least five developmental genes may collectively activate one cis-regulatory module of yellow in distinct spot rows and a dark shade to assemble the complete abdominal pigment pattern of Drosophila guttifera. One of these genes, wingless, may play a conserved role in the early phase of spot pattern development in several species of the quinaria group. Our findings shed light on the evolution of complex animal color patterns through modular changes of gene expression patterns.
Collapse
Affiliation(s)
- Komal K. B. Raja
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mujeeb O. Shittu
- Department of Biotechnical and Clinical Laboratory Science, Jacobs School of Medicine and Biomedical Science, University at Buffalo, The State University of New York (SUNY), New York, United States of America
| | - Peter M. E. Nouhan
- McCourt School of Public Policy, Georgetown University, Washington, D.C., United States of America
| | - Tessa E. Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Evan A. Bachman
- Michigan State University, College of Human Medicine, East Lansing, Michigan, United States of America
| | - Prajakta P. Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Alexander McQueeney
- School of Medicine, Eberhard Karls University of Tübingen, Geschwister-Scholl-Platz, Tübingen, Germany
| | - Elizabeth A. Mundell
- School of Technology, Michigan Technological University, Houghton, Michigan, United States of America
| | - Alexandri A. Armentrout
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Amber Nugent
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yusuf LH, Tyukmaeva V, Hoikkala A, Ritchie MG. Divergence and introgression among the virilis group of Drosophila. Evol Lett 2022; 6:537-551. [PMID: 36579165 PMCID: PMC9783487 DOI: 10.1002/evl3.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Speciation with gene flow is now widely regarded as common. However, the frequency of introgression between recently diverged species and the evolutionary consequences of gene flow are still poorly understood. The virilis group of Drosophila contains 12 species that are geographically widespread and show varying levels of prezygotic and postzygotic isolation. Here, we use de novo genome assemblies and whole-genome sequencing data to resolve phylogenetic relationships and describe patterns of introgression and divergence across the group. We suggest that the virilis group consists of three, rather than the traditional two, subgroups. Some genes undergoing rapid sequence divergence across the group were involved in chemical communication and desiccation tolerance, and may be related to the evolution of sexual isolation and adaptation. We found evidence of pervasive phylogenetic discordance caused by ancient introgression events between distant lineages within the group, and more recent gene flow between closely related species. When assessing patterns of genome-wide divergence in species pairs across the group, we found no consistent genomic evidence of a disproportionate role for the X chromosome as has been found in other systems. Our results show how ancient and recent introgressions confuse phylogenetic reconstruction, but may play an important role during early radiation of a group.
Collapse
Affiliation(s)
- Leeban H. Yusuf
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| | - Venera Tyukmaeva
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| | - Anneli Hoikkala
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Michael G. Ritchie
- Centre for Biological Diversity, School of BiologyUniversity of St AndrewsSt AndrewsKY16 9THUnited Kingdom
| |
Collapse
|
19
|
De Pasqual C, Suisto K, Kirvesoja J, Gordon S, Ketola T, Mappes J. Heterozygote advantage and pleiotropy contribute to intraspecific color trait variability. Evolution 2022; 76:2389-2403. [PMID: 35984008 PMCID: PMC9805086 DOI: 10.1111/evo.14597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 01/22/2023]
Abstract
The persistence of intrapopulation phenotypic variation typically requires some form of balancing selection because drift and directional selection eventually erode genetic variation. Heterozygote advantage remains a classic explanation for the maintenance of genetic variation in the face of selection. However, examples of heterozygote advantage, other than those associated with disease resistance, are rather uncommon. Across most of its distribution, males of the aposematic moth Arctia plantaginis have two hindwing phenotypes determined by a heritable one locus-two allele polymorphism (genotypes: WW/Wy = white morph, yy = yellow morph). Using genotyped moths, we show that the presence of one or two copies of the yellow allele affects several life-history traits. Reproductive output of both males and females and female mating success are negatively affected by two copies of the yellow allele. Females carrying one yellow allele (i.e., Wy) have higher fertility, hatching success, and offspring survival than either homozygote, thus leading to strong heterozygote advantage. Our results indicate strong female contribution especially at the postcopulatory stage in maintaining the color polymorphism. The interplay between heterozygote advantage, yellow allele pleiotropic effect, and morph-specific predation pressure may exert balancing selection on the color locus, suggesting that color polymorphism may be maintained through complex interactions between natural and sexual selection.
Collapse
Affiliation(s)
- Chiara De Pasqual
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
- Organismal and Evolutionary Biology Research ProgramUniversity of HelsinkiHelsinki00014Finland
| | - Kaisa Suisto
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Jimi Kirvesoja
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Swanne Gordon
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York14853
| | - Tarmo Ketola
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Johanna Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
- Organismal and Evolutionary Biology Research ProgramUniversity of HelsinkiHelsinki00014Finland
| |
Collapse
|
20
|
Gu H, Wang L, Lv X, Yang W, Chen Y, Li K, Zhang J, Jia Y, Ning Z, Qu L. RNA-Seq Analysis Reveals Expression Regulatory Divergence of W-Linked Genes between Two Contrasting Chicken Breeds. Animals (Basel) 2022; 12:ani12091218. [PMID: 35565645 PMCID: PMC9103786 DOI: 10.3390/ani12091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Understanding the mode of gene expression and regulation is essential for understanding the evolutionary process. Many previous studies tried to explain regulatory changes at the autosomal level, but little research has extended these explorations to the field of sex chromosomes due to their complex sex-limit features. Here, we first adopted an innovative method of identifying regulatory divergence of W-linked genes. Compared with cis-regulatory divergence, trans acting genes were more extensive in the W chromosome. We also found that divergent sex specific selection cannot strongly affect the expression evolution of the W chromosome. This insensitivity to selection may be one of the reasons why regulatory divergence is so small between autosomal and sex chromosomes. Abstract The regulation of gene expression is a complex process involving organism function and phenotypic diversity, and is caused by cis- and trans- regulation. While prior studies identified the regulatory pattern of the autosome rewiring in hybrids, the role of gene regulation in W sex chromosomes is not clear due to their degradation and sex-limit expression. Here, we developed reciprocal crosses of two chicken breeds, White Leghorn and Cornish Game, which exhibited broad differences in gender-related traits, and assessed the expression of the genes on the W chromosome to disentangle the contribution of cis- and trans-factors to expression divergence. We found that female-specific selection does not have a significant effect on W chromosome gene-expression patterns. For different tissues, there were most parental divergence expression genes in muscle, and also more heterosis compared with two other tissues. Notably, a broader pattern of trans regulation in the W chromosome was observed, which is consistent with autosomes. Taken together, this work describes the regulatory divergence of W-linked genes between two contrasting breeds and indicates sex chromosomes have a unique regulation and expression mechanism.
Collapse
Affiliation(s)
- Hongchang Gu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.G.); (Z.N.)
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Kaiyang Li
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Jianwei Zhang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.G.); (Z.N.)
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.G.); (Z.N.)
- Correspondence:
| |
Collapse
|
21
|
Akiyama N, Sato S, Tanaka KM, Sakai T, Takahashi A. The role of the epidermis enhancer element in positive and negative transcriptional regulation of ebony in Drosophila melanogaster. G3 (BETHESDA, MD.) 2022; 12:jkac010. [PMID: 35100378 PMCID: PMC8895987 DOI: 10.1093/g3journal/jkac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/15/2022]
Abstract
The spatiotemporal regulation of gene expression is essential to ensure robust phenotypic outcomes. Pigmentation patterns in Drosophila are determined by pigments biosynthesized in the developing epidermis and the cis-regulatory elements of the genes involved in this process are well-characterized. Here, we report that the known primary epidermal enhancer is dispensable for the transcriptional activation of ebony (involved in light-colored pigment synthesis) in the developing epidermis of Drosophila melanogaster. The evidence was obtained by introducing an approximately 1 kbp deletion at the primary epidermal enhancer by genome editing. The effect of the primary epidermal enhancer deletion on pigmentation and on the endogenous expression pattern of a mCherry-fused ebony allele was examined in the abdomen. The expression levels of the mCherry-fused ebony in the primary epidermal enhancer-deleted strains were slightly higher than that of the control strain, indicating that the sequences outside the primary epidermal enhancer have an ability to drive an expression of this gene in the epidermis. Interestingly, the primary epidermal enhancer deletion resulted in a derepression of this gene in the dorsal midline of the abdominal tergites, where dark pigmentation is present in the wild-type individuals. This indicated that the primary epidermal enhancer fragment contains a silencer. Furthermore, the endogenous expression pattern of ebony in the 2 additional strains with partially deleted primary epidermal enhancer revealed that the silencer resides within a 351-bp fragment in the 5' portion of the primary epidermal enhancer. These results demonstrated that deletion assays combined with reporter assays are highly effective in detecting the presence of positively and negatively regulating sequences within and outside the focal cis-regulatory elements.
Collapse
Affiliation(s)
- Noriyoshi Akiyama
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Shoma Sato
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Kentaro M Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| |
Collapse
|
22
|
Barek H, Zhao H, Heath K, Veraksa A, Sugumaran M. Drosophila yellow-h encodes dopaminechrome tautomerase: A new enzyme in the eumelanin biosynthetic pathway. Pigment Cell Melanoma Res 2022; 35:26-37. [PMID: 34388859 DOI: 10.1111/pcmr.13008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Melanin is a widely distributed phenolic pigment that is biosynthesized from tyrosine and its hydroxylated product, dopa, in all animals. However, recent studies reveal a significant deviation from this paradigm, as insects appear to use dopamine rather than dopa as the major precursor of melanin. This observation calls for a reconsideration of the insect melanogenic pathway. While phenoloxidases and laccases can oxidize dopamine for dopaminechrome production, the fate of dopaminechrome remains undetermined. Dopachrome decarboxylase/tautomerase, encoded by yellow-f/f2 of Drosophila melanogaster, can convert dopaminechrome into 5,6-dihydroxyindole, but the same enzyme from other organisms does not act on dopaminechrome, suggesting the existence of a specific dopaminechrome tautomerase (DPT). We now report the identification of this novel enzyme that biosynthesizes 5,6-dihydroxyindole from dopaminechrome in Drosophila. Dopaminechrome tautomerase acted on both dopaminechrome and N-methyl dopaminechrome but not on dopachrome or other aminochromes tested. Our biochemical and molecular studies reveal that this enzyme is encoded by the yellow-h gene, a member of the yellow gene family, and advance our understanding of the physiological functions of this gene family. Identification and characterization of DPT clarifies the precursor for melanin biosynthetic pathways and proves the existence of an independent melanogenic pathway in insects that utilizes dopamine as the primary precursor.
Collapse
Affiliation(s)
- Hanine Barek
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Katerina Heath
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Dion WA, Steenwinkel TE, Werner T. From Aedes to Zeugodacus: a review of dipteran body coloration studies regarding evolutionary developmental biology, pest control, and species discovery. Curr Opin Genet Dev 2021; 69:35-41. [PMID: 33578125 PMCID: PMC8349939 DOI: 10.1016/j.gde.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Over the past two decades, evo-devo (evolution of development) studies have elucidated genetic mechanisms underlying novel dipteran body color patterns. Here we review the most recent developments, which show some departure from the model organism Drosophila melanogaster, leading the field into the investigation of more complex color patterns. We also discuss how the robust application of transgenic techniques has facilitated the study of many non-model pest species. Furthermore, we see that subtle pigmentation differences guide the discovery and description of new dipterans. Therefore, we argue that the existence of new field guides and the prevalence of pigmentation studies in non-model flies will enable scientists to adopt uninvestigated species into the lab, allowing them to study novel morphologies.
Collapse
Affiliation(s)
- William A Dion
- Integrative Systems Biology Graduate Program, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15213, United States; Aging Institute of UPMC, University of Pittsburgh School of Medicine, Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, United States
| | - Tessa E Steenwinkel
- Department of Biological Sciences, Michigan Technological University, 740 Dow Building, Houghton, MI, 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, 740 Dow Building, Houghton, MI, 49931, United States.
| |
Collapse
|
24
|
Song B, Buckler ES, Wang H, Wu Y, Rees E, Kellogg EA, Gates DJ, Khaipho-Burch M, Bradbury PJ, Ross-Ibarra J, Hufford MB, Romay MC. Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Res 2021; 31:1245-1257. [PMID: 34045362 PMCID: PMC8256870 DOI: 10.1101/gr.266528.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/21/2021] [Indexed: 01/16/2023]
Abstract
Thousands of species will be sequenced in the next few years; however, understanding how their genomes work, without an unlimited budget, requires both molecular and novel evolutionary approaches. We developed a sensitive sequence alignment pipeline to identify conserved noncoding sequences (CNSs) in the Andropogoneae tribe (multiple crop species descended from a common ancestor ∼18 million years ago). The Andropogoneae share similar physiology while being tremendously genomically diverse, harboring a broad range of ploidy levels, structural variation, and transposons. These contribute to the potential of Andropogoneae as a powerful system for studying CNSs and are factors we leverage to understand the function of maize CNSs. We found that 86% of CNSs were comprised of annotated features, including introns, UTRs, putative cis-regulatory elements, chromatin loop anchors, noncoding RNA (ncRNA) genes, and several transposable element superfamilies. CNSs were enriched in active regions of DNA replication in the early S phase of the mitotic cell cycle and showed different DNA methylation ratios compared to the genome-wide background. More than half of putative cis-regulatory sequences (identified via other methods) overlapped with CNSs detected in this study. Variants in CNSs were associated with gene expression levels, and CNS absence contributed to loss of gene expression. Furthermore, the evolution of CNSs was associated with the functional diversification of duplicated genes in the context of maize subgenomes. Our results provide a quantitative understanding of the molecular processes governing the evolution of CNSs in maize.
Collapse
Affiliation(s)
- Baoxing Song
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853, USA
| | - Hai Wang
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yaoyao Wu
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Evan Rees
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | - Daniel J Gates
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Merritt Khaipho-Burch
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Peter J Bradbury
- Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
- Center for Population Biology and Genome Center, University of California Davis, Davis, California 95616, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
25
|
Nie HY, Liang LQ, Li QF, Li ZHQ, Zhu YN, Guo YK, Zheng QL, Lin Y, Yang DL, Li ZG, Su SK. CRISPR/Cas9 mediated knockout of Amyellow-y gene results in melanization defect of the cuticle in adult Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104264. [PMID: 34081960 DOI: 10.1016/j.jinsphys.2021.104264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Visible genetic markers are critical to gene function studies using genome editing technology in insects. However, there is no report about visible phenotypic markers in Apis mellifera, which extremely influences the application of genomic editing in honey bees. Here, we cloned and characterized the Amyellow-y gene in A. mellifera. Stage expression profiles showed that Amyellow-y gene was highly expressed in 2-, 4-day-old pupae, and newly emerged bees, and a high expression level was detected in the leg, thorax, wing and sting. To understand its functional role in pigmentation, Amyellow-y edited honeybees were created using CRISPR/Cas9, and it was found that the black pigment was decreased in the cuticle of mosaic workers and mutant drones. In particular, mutant drones manifested an overall appearance of yellowish cuticle in the body and appendages, including antennae, wings and legs, indicating that mutagenesis induced by disruption of Amyellow-y with CRISPR/Cas9 are heritable. Furthermore, the expression levels of genes associated with melanin pigmentation was investigated in mutant and wild-type drones using quantitative reverse transcription PCR. Transcription levels of Amyellow-y and aaNAT decreased markedly in mutant drones than that in wild-type ones, whereas laccase 2 was significantly up-regulated. Our results provide the first evidence, to our knowledge, that CRISPR/Cas9 edited G1 mutant drones of A. mellifera have a dramatic body pigmentation defect that can be visualized in adults, suggesting that Amyellow-y may serve as a promising visible phenotypic marker for genome editing in honey bees.
Collapse
Affiliation(s)
- Hong-Yi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Qiang Liang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiu-Fang Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zheng-Han-Qing Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Nan Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Kang Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiu-Lan Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong-Lin Yang
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Guo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song-Kun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
26
|
Highly Efficient Temperature Inducible CRISPR-Cas9 Gene Targeting in Drosophila suzukii. Int J Mol Sci 2021; 22:ijms22136724. [PMID: 34201604 PMCID: PMC8268499 DOI: 10.3390/ijms22136724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
The spotted-wing Drosophila (Drosophila suzukii Matsumura) is native to eastern Asia, but has become a global threat to fruit production. In recent years, CRISPR/Cas9 targeting was established in this species allowing for functional genomic and genetic control studies. Here, we report the generation and characterization of Cas9-expressing strains of D. suzukii. Five independent transgenic lines were generated using a piggyBac construct containing the EGFP fluorescent marker gene and the Cas9 gene under the control of the D. melanogaster heat shock protein 70 promoter and 3’UTR. Heat-shock (HS) treated embryos were analyzed by reverse transcriptase PCR, revealing strong heat inducibility of the transgenic Cas9 expression. By injecting gRNA targeting EGFP into one selected line, 50.0% of G0 flies showed mosaic loss-of-fluorescence phenotype, and 45.5% of G0 flies produced G1 mutants without HS. Such somatic and germline mutagenesis rates were increased to 95.4% and 85.7%, respectively, by applying a HS. Parental flies receiving HS resulted in high inheritance of the mutation (92%) in their progeny. Additionally, targeting the endogenous gene yellow led to the lack of pigmentation and male lethality. We discuss the potential use of these efficient and temperature-dependent Cas9-expressing strains for the genetic studies in D. suzukii.
Collapse
|
27
|
Bhatia N, Runions A, Tsiantis M. Leaf Shape Diversity: From Genetic Modules to Computational Models. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:325-356. [PMID: 34143649 DOI: 10.1146/annurev-arplant-080720-101613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant leaves display considerable variation in shape. Here, we introduce key aspects of leaf development, focusing on the morphogenetic basis of leaf shape diversity. We discuss the importance of the genetic control of the amount, duration, and direction of cellular growth for the emergence of leaf form. We highlight how the combined use of live imaging and computational frameworks can help conceptualize how regulated cellular growth is translated into different leaf shapes. In particular, we focus on the morphogenetic differences between simple and complex leaves and how carnivorous plants form three-dimensional insect traps. We discuss how evolution has shaped leaf diversity in the case of complex leaves, by tinkering with organ-wide growth and local growth repression, and in carnivorous plants, by modifying the relative growth of the lower and upper sides of the leaf primordium to create insect-digesting traps.
Collapse
Affiliation(s)
- Neha Bhatia
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Adam Runions
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Current affiliation: Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| |
Collapse
|
28
|
Lafuente E, Alves F, King JG, Peralta CM, Beldade P. Many ways to make darker flies: Intra- and interspecific variation in Drosophila body pigmentation components. Ecol Evol 2021; 11:8136-8155. [PMID: 34188876 PMCID: PMC8216949 DOI: 10.1002/ece3.7646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo-devo model, into distinct measurable traits related to color and color pattern. We investigate intra- and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show that evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.
Collapse
Affiliation(s)
- Elvira Lafuente
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Swiss Federal Institute of Aquatic Science and TechnologyDepartment of Aquatic EcologyDübendorfSwitzerland
| | | | - Jessica G. King
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Carolina M. Peralta
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Patrícia Beldade
- Instituto Gulbenkian de CiênciaOeirasPortugal
- CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of SciencesUniversity of LisbonLisbonPortugal
| |
Collapse
|
29
|
Generalovic TN, McCarthy SA, Warren IA, Wood JMD, Torrance J, Sims Y, Quail M, Howe K, Pipan M, Durbin R, Jiggins CD. A high-quality, chromosome-level genome assembly of the Black Soldier Fly (Hermetia illucens L.). G3 (BETHESDA, MD.) 2021; 11:jkab085. [PMID: 33734373 PMCID: PMC8104945 DOI: 10.1093/g3journal/jkab085] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023]
Abstract
Hermetia illucens L. (Diptera: Stratiomyidae), the Black Soldier Fly (BSF) is an increasingly important species for bioconversion of organic material into animal feed. We generated a high-quality chromosome-scale genome assembly of the BSF using Pacific Bioscience, 10X Genomics linked read and high-throughput chromosome conformation capture sequencing technology. Scaffolding the final assembly with Hi-C data produced a highly contiguous 1.01 Gb genome with 99.75% of scaffolds assembled into pseudochromosomes representing seven chromosomes with 16.01 Mb contig and 180.46 Mb scaffold N50 values. The highly complete genome obtained a Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness of 98.6%. We masked 67.32% of the genome as repetitive sequences and annotated a total of 16,478 protein-coding genes using the BRAKER2 pipeline. We analyzed an established lab population to investigate the genomic variation and architecture of the BSF revealing six autosomes and an X chromosome. Additionally, we estimated the inbreeding coefficient (1.9%) of the lab population by assessing runs of homozygosity. This provided evidence for inbreeding events including long runs of homozygosity on chromosome 5. The release of this novel chromosome-scale BSF genome assembly will provide an improved resource for further genomic studies, functional characterization of genes of interest and genetic modification of this economically important species.
Collapse
Affiliation(s)
| | - Shane A McCarthy
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ian A Warren
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Jonathan M D Wood
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - James Torrance
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ying Sims
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Michael Quail
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Miha Pipan
- Better Origin, Entomics Biosystems Limited, Cambridge CB3 0ES, UK
| | - Richard Durbin
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
30
|
Liu XL, Han WK, Ze LJ, Peng YC, Yang YL, Zhang J, Yan Q, Dong SL. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Protein 9 Mediated Knockout Reveals Functions of the yellow-y Gene in Spodoptera litura. Front Physiol 2021; 11:615391. [PMID: 33519520 PMCID: PMC7839173 DOI: 10.3389/fphys.2020.615391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Yellow genes are thought to be involved in the melanin biosynthetic pathway and play a crucial role in pigmentation reactions in insects. However, little research has been done on yellow genes in lepidopteran pests. To clarify the function of one of the yellow genes (yellow-y) in Spodoptera litura, we cloned the full-length of yellow-y, and investigated its spatial and temporal expression profiles by quantitative real-time PCR (qPCR). It revealed that yellow-y was highly expressed in larva of fourth, fifth, and sixth instars, as well as in epidermis (Ep), fat bodies (FB), Malpighian tubes (MT), and midguts (MG) of the larvae; whereas it was expressed in very low levels in different tissues of adults, and was almost undetected in pupa. This expression profile suggests an important role of yellow-y in larvae, minor role in adults, and no role in pupae. To confirm this, we disrupted yellow-y using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, and obtained G0 insects with mutation in yellow-y. The mutation in yellow-y clearly rendered the larvae body, a color yellower than that of wide type insects, and in addition, the mutation resulted in abnormal segmentation and molting for older larvae. The mutation of yellow-y also made various adult tissues (antennae, proboscis, legs, and wings) yellowish. However, the mutation had no effect on pigmentation of the pupal cuticle. Taken together, our study clearly demonstrated the role of yellow-y not only in the body pigmentation of larvae and adults, and but also in segmentation and molting of larvae, providing new insights into the physiology of larval development, as well as a useful marker gene for genome editing based studies.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Long-Ji Ze
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ying-Chuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Yi-Lin Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Shirai Y, Ohde T, Daimon T. Functional conservation and diversification of yellow-y in lepidopteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103515. [PMID: 33387638 DOI: 10.1016/j.ibmb.2020.103515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The diverse colors and patterns found in Lepidoptera are important for success of these species. Similar to the wings of adult butterflies, lepidopteran larvae exhibit diverse color variations to adapt to their habitats. Compared with butterfly wings, however, less attention has been paid to larval body colorations and patterns. In the present study, we focus on the yellow-y gene, which participates in the melanin synthesis pathway. We conducted CRISPR/Cas9-mediated targeted mutagenesis of yellow-y in the tobacco cutworm Spodoptera litura. We analyzed the role of S. litura yellow-y in pigmentation by morphological observation and discovered that yellow-y is necessary for normal black pigmentation in S. litura. We also showed species- and tissue-specific requirements of yellow-y in pigmentation in comparison with those of Bombyx mori yellow-y mutants. Furthermore, we found that almost none of the yellow-y mutant embryos hatched unaided. We provide evidence that S. litura yellow-y has a novel important function in egg hatching, in addition to pigmentation. The present study will enable a greater understanding of the functions and diversification of the yellow-y gene in insects.
Collapse
Affiliation(s)
- Yu Shirai
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takahiro Ohde
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takaaki Daimon
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
32
|
Vaulin OV, Karagodin DA, Novgorodova TA, Glupov VV. Analysis of Anopheles messeae s.l. intron gene polymorphism associated with imidacloprid resistance. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:220-232. [PMID: 33207047 DOI: 10.1111/jvec.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Due to their high solubility and stability, neonicotinoid insecticides are able to accumulate in water bodies, affecting aquatic organisms. The aims of this study were to evaluate resistance (LC50 ) of Anopheles messeae s.l. (Anopheles messeae and An. daciae) to the neonicotinoid imidacloprid and to search for genetic markers associated with insecticide resistance. The LC50 values of these species in the collections during 2017 and 2018 were indistinguishable and were in the range of 0.027-0.051 mg/l. In general, the LC50 values of the mosquitoes were comparable with values of other mosquito species of the Anopheles and Culex genera. Gene polymorphisms of the variations in intron lengths and the presence of restriction sites in introns that were potentially associated with the metabolism of insecticides were studied. Polymorphisms of the studied genes in the pair of closely related species considered overlapped, but allele frequencies were different. Part of the genetic variants arose due to insertions of repetitive elements of the genome. Two variants of the cytochrome P450 gene Cyp6AG1 in An. daciae were associated with increased resistance to imidacloprid. Possible side effects of selection on insecticide resistance in blood-sucking mosquitoes are discussed.
Collapse
Affiliation(s)
- Oleg V Vaulin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry A Karagodin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatiana A Novgorodova
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
33
|
Mugal CF, Wang M, Backström N, Wheatcroft D, Ålund M, Sémon M, McFarlane SE, Dutoit L, Qvarnström A, Ellegren H. Tissue-specific patterns of regulatory changes underlying gene expression differences among Ficedula flycatchers and their naturally occurring F 1 hybrids. Genome Res 2020; 30:1727-1739. [PMID: 33144405 PMCID: PMC7706733 DOI: 10.1101/gr.254508.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Changes in interacting cis- and trans-regulatory elements are important candidates for Dobzhansky-Muller hybrid incompatibilities and may contribute to hybrid dysfunction by giving rise to misexpression in hybrids. To gain insight into the molecular mechanisms and determinants of gene expression evolution in natural populations, we analyzed the transcriptome from multiple tissues of two recently diverged Ficedula flycatcher species and their naturally occurring F1 hybrids. Differential gene expression analysis revealed that the extent of differentiation between species and the set of differentially expressed genes varied across tissues. Common to all tissues, a higher proportion of Z-linked genes than autosomal genes showed differential expression, providing evidence for a fast-Z effect. We further found clear signatures of hybrid misexpression in brain, heart, kidney, and liver. However, while testis showed the highest divergence of gene expression among tissues, it showed no clear signature of misexpression in F1 hybrids, even though these hybrids were found to be sterile. It is therefore unlikely that incompatibilities between cis-trans regulatory changes explain the observed sterility. Instead, we found evidence that cis-regulatory changes play a significant role in the evolution of gene expression in testis, which illustrates the tissue-specific nature of cis-regulatory evolution bypassing constraints associated with pleiotropic effects of genes.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Mi Wang
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Niclas Backström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - David Wheatcroft
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marie Sémon
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,ENS de Lyon, Laboratory of Biology and Modelling of the Cell, Lyon University, 69364 Lyon Cedex 07, France
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Ludovic Dutoit
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
34
|
Vásquez-Procopio J, Rajpurohit S, Missirlis F. Cuticle darkening correlates with increased body copper content in Drosophila melanogaster. Biometals 2020; 33:293-303. [PMID: 33026606 PMCID: PMC7538679 DOI: 10.1007/s10534-020-00245-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Insect epidermal cells secrete a cuticle that serves as an exoskeleton providing mechanical rigidity to each individual, but also insulation, camouflage or communication within their environment. Cuticle deposition and hardening (sclerotization) and pigment synthesis are parallel processes requiring tyrosinase activity, which depends on an unidentified copper-dependent enzyme component in Drosophila melanogaster. We determined the metallomes of fly strains selected for lighter or darker cuticles in a laboratory evolution experiment, asking whether any specific element changed in abundance in concert with pigment deposition. The results showed a correlation between total iron content and strength of pigmentation, which was further corroborated by ferritin iron quantification. To ask if the observed increase in iron body content along with increased pigment deposition could be generalizable, we crossed yellow and ebony alleles causing light and dark pigmentation, respectively, into similar genetic backgrounds and measured their metallomes. Iron remained unaffected in the various mutants providing no support for a causative link between pigmentation and iron content. In contrast, the combined analysis of both experiments suggested instead a correlation between pigment deposition and total copper body content, possibly due to increased demand for epidermal tyrosinase activity.
Collapse
Affiliation(s)
- Johana Vásquez-Procopio
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico
| | - Subhash Rajpurohit
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, India
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico.
| |
Collapse
|
35
|
Abstract
Form diversity is fueled by changes in the expression of genes that build organisms. New expression often results from the emergence of new DNA switches, known as transcriptional enhancers. Many enhancers are thought to appear through the recycling of older enhancers, a process called evolutionary co-option. Enhancer co-option is difficult to assess, and the molecular mechanisms explaining its prevalence are elusive. Using state-of-the-art quantification and analyses, we reveal that the sequences of an ancestral and a derived enhancer overlap extensively. They contain specific binding sites for regulators imparting spatial activities. We found that the two enhancers also share a site facilitating access to chromatin in a region where they overlap. The diversity of forms in multicellular organisms originates largely from the spatial redeployment of developmental genes [S. B. Carroll, Cell 134, 25–36 (2008)]. Several scenarios can explain the emergence of cis-regulatory elements that govern novel aspects of a gene expression pattern [M. Rebeiz, M. Tsiantis, Curr. Opin. Genet. Dev. 45, 115–123 (2017)]. One scenario, enhancer co-option, holds that a DNA sequence producing an ancestral regulatory activity also becomes the template for a new regulatory activity, sharing regulatory information. While enhancer co-option might fuel morphological diversification, it has rarely been documented [W. J. Glassford et al., Dev. Cell 34, 520–531 (2015)]. Moreover, if two regulatory activities are borne from the same sequence, their modularity, considered a defining feature of enhancers [J. Banerji, L. Olson, W. Schaffner, Cell 33, 729–740 (1983)], might be affected by pleiotropy. Sequence overlap may thereby play a determinant role in enhancer function and evolution. Here, we investigated this problem with two regulatory activities of the Drosophila gene yellow, the novel spot enhancer and the ancestral wing blade enhancer. We used precise and comprehensive quantification of each activity in Drosophila wings to systematically map their sequences along the locus. We show that the spot enhancer has co-opted the sequences of the wing blade enhancer. We also identified a pleiotropic site necessary for DNA accessibility of a shared regulatory region. While the evolutionary steps leading to the derived activity are still unknown, such pleiotropy suggests that enhancer accessibility could be one of the molecular mechanisms seeding evolutionary co-option.
Collapse
|
36
|
Foquet B, Song H. There is no magic bullet: the importance of testing reference gene stability in RT-qPCR experiments across multiple closely related species. PeerJ 2020; 8:e9618. [PMID: 32832268 PMCID: PMC7409783 DOI: 10.7717/peerj.9618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR) is the current gold standard tool for the study of gene expression. This technique is highly dependent on the validation of reference genes, which exhibit stable expression levels among experimental conditions. Often, reference genes are assumed to be stable a priori without a rigorous test of gene stability. However, such an oversight can easily lead to misinterpreting expression levels of target genes if the references genes are in fact not stable across experimental conditions. Even though most gene expression studies focus on just one species, comparative studies of gene expression among closely related species can be very informative from an evolutionary perspective. In our study, we have attempted to find stable reference genes for four closely related species of grasshoppers (Orthoptera: Acrididae) that together exhibit a spectrum of density-dependent phenotypic plasticity. Gene stability was assessed for eight reference genes in two tissues, two experimental conditions and all four species. We observed clear differences in the stability ranking of these reference genes, both between tissues and between species. Additionally, the choice of reference genes clearly influenced the results of a gene expression experiment. We offer suggestions for the use of reference genes in further studies using these four species, which should be taken as a cautionary tale for future studies involving RT-qPCR in a comparative framework.
Collapse
Affiliation(s)
- Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
37
|
Noh MY, Kim SH, Gorman MJ, Kramer KJ, Muthukrishnan S, Arakane Y. Yellow-g and Yellow-g2 proteins are required for egg desiccation resistance and temporal pigmentation in the Asian tiger mosquito, Aedes albopictus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103386. [PMID: 32315743 DOI: 10.1016/j.ibmb.2020.103386] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Eggs from Aedes mosquitoes exhibit desiccation resistance that helps them to survive and spread as human disease vectors throughout the world. Previous studies have suggested that eggshell/chorion melanization and/or serosal cuticle formation are important for desiccation resistance. In this study, using dsRNAs for target genes, we analyzed the functional importance of two ovary-specific yellow genes, AalY-g and AalY-g2, in the resistance to egg desiccation of the Asian tiger mosquito, Aedes albopictus, a species in which neither the timing of the melanization nor temporal development of the serosal cuticle is correlated with desiccation resistance. Injections of dsAalY-g, dsAalY-g2 or dsAalY-g/g2 (co-injection) into adult females have no effect on their fecundity. However, initial melanization is delayed by 1-2 h with the eggshells eventually becoming black similar to that observed in eggs from dsEGFP-injected control females. In addition, the shape of the eggs from dsAalY-g, -g2 and -g/g2-treated females is abnormally crescent-shaped and the outermost exochorion is more fragile and partially peeled off. dsEGFP control eggs, like those from the wild-type strain, acquire resistance to desiccation between 18 and 24 h after oviposition (HAO). In contrast, ~80% of the 24 HAO dsAalY-g and dsAalY-g2 eggs collapse when they are transferred to a low humidity environment. In addition, there is no electron-dense outer endochorion evident in either dsAalY-g or dsAalY-g2 eggs. These results support the hypothesis that AalY-g and AalY-g2 regulate the timing of eggshell darkening and are required for integrity of the exochorion as well as for rigidity, normal morphology and formation of the outer endochorion, a structure that apparently is critical for desiccation resistance of the Ae. albopictus egg.
Collapse
Affiliation(s)
- Mi Young Noh
- Department of Forestry, Chonnam National University, Gwangju, 500-757, South Korea.
| | - Sung Hyun Kim
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea.
| |
Collapse
|
38
|
Massey JH, Rice GR, Firdaus AS, Chen CY, Yeh SD, Stern DL, Wittkopp PJ. Co-evolving wing spots and mating displays are genetically separable traits in Drosophila. Evolution 2020; 74:1098-1111. [PMID: 32363590 DOI: 10.1111/evo.13990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The evolution of sexual traits often involves correlated changes in morphology and behavior. For example, in Drosophila, divergent mating displays are often accompanied by divergent pigment patterns. To better understand how such traits co-evolve, we investigated the genetic basis of correlated divergence in wing pigmentation and mating display between the sibling species Drosophila elegans and Drosophila gunungcola. Drosophila elegans males have an area of black pigment on their wings known as a wing spot and appear to display this spot to females by extending their wings laterally during courtship. By contrast, D. gunungcola lost both of these traits. Using Multiplexed Shotgun Genotyping (MSG), we identified a ∼440 kb region on the X chromosome that behaves like a genetic switch controlling the presence or absence of male-specific wing spots. This region includes the candidate gene optomotor-blind (omb), which plays a critical role in patterning the Drosophila wing. The genetic basis of divergent wing display is more complex, with at least two loci on the X chromosome and two loci on autosomes contributing to its evolution. Introgressing the X-linked region affecting wing spot development from D. gunungcola into D. elegans reduced pigmentation in the wing spots but did not affect the wing display, indicating that these are genetically separable traits. Consistent with this observation, broader sampling of wild D. gunungcola populations confirmed that the wing spot and wing display are evolving independently: some D. gunungcola males performed wing displays similar to D. elegans despite lacking wing spots. These data suggest that correlated selection pressures rather than physical linkage or pleiotropy are responsible for the coevolution of these morphological and behavioral traits. They also suggest that the change in morphology evolved prior to the change in behavior.
Collapse
Affiliation(s)
- Jonathan H Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Gavin R Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Anggun S Firdaus
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Chi-Yang Chen
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Shu-Dan Yeh
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
39
|
Affenzeller S, Wolkenstein K, Frauendorf H, Jackson DJ. Challenging the concept that eumelanin is the polymorphic brown banded pigment in Cepaea nemoralis. Sci Rep 2020; 10:2442. [PMID: 32051478 PMCID: PMC7016172 DOI: 10.1038/s41598-020-59185-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
The common grove snail Cepaea nemoralis displays a stable pigmentation polymorphism in its shell that has held the attention of scientists for decades. While the details of the molecular mechanisms that generate and maintain this diversity remain elusive, it has long been employed as a model system to address questions related to ecology, population genetics and evolution. In order to contribute to the ongoing efforts to identify the genes that generate this polymorphism we have tested the long-standing assumption that melanin is the pigment that comprises the dark-brown bands. Surprisingly, using a newly established analytical chemical method, we find no evidence that eumelanin is differentially distributed within the shells of C. nemoralis. Furthermore, genes known to be responsible for melanin deposition in other metazoans are not differentially expressed within the shell-forming mantle tissue of C. nemoralis. These results have implications for the continuing search for the supergene that generates the various pigmentation morphotypes.
Collapse
Affiliation(s)
- Susanne Affenzeller
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077, Göttingen, Germany
| | - Klaus Wolkenstein
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077, Göttingen, Germany
| | - Holm Frauendorf
- Institute of Organic & Biomolecular Chemistry, Georg-August University of Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077, Göttingen, Germany.
| |
Collapse
|
40
|
Kowalko J. Utilizing the blind cavefish Astyanax mexicanus to understand the genetic basis of behavioral evolution. J Exp Biol 2020; 223:223/Suppl_1/jeb208835. [DOI: 10.1242/jeb.208835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT
Colonization of novel habitats often results in the evolution of diverse behaviors. Comparisons between individuals from closely related populations that have evolved divergent behaviors in different environments can be used to investigate behavioral evolution. However, until recently, functionally connecting genotypes to behavioral phenotypes in these evolutionarily relevant organisms has been difficult. The development of gene editing tools will facilitate functional genetic analysis of genotype–phenotype connections in virtually any organism, and has the potential to significantly transform the field of behavioral genetics when applied to ecologically and evolutionarily relevant organisms. The blind cavefish Astyanax mexicanus provides a remarkable example of evolution associated with colonization of a novel habitat. These fish consist of a single species that includes sighted surface fish that inhabit the rivers of Mexico and southern Texas and at least 29 populations of blind cavefish from the Sierra Del Abra and Sierra de Guatemala regions of Northeast Mexico. Although eye loss and albinism have been studied extensively in A. mexicanus, derived behavioral traits including sleep loss, alterations in foraging and reduction in social behaviors are now also being investigated in this species to understand the genetic and neural basis of behavioral evolution. Astyanax mexicanus has emerged as a powerful model system for genotype–phenotype mapping because surface and cavefish are interfertile. Further, the molecular basis of repeated trait evolution can be examined in this species, as multiple cave populations have independently evolved the same traits. A sequenced genome and the implementation of gene editing in A. mexicanus provides a platform for gene discovery and identification of the contributions of naturally occurring variation to behaviors. This review describes the current knowledge of behavioral evolution in A. mexicanus with an emphasis on the molecular and genetic underpinnings of evolved behaviors. Multiple avenues of new research that can be pursued using gene editing tools are identified, and how these will enhance our understanding of behavioral evolution is discussed.
Collapse
Affiliation(s)
- Johanna Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Program of Neurogenetics, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
41
|
Martin SH, Singh KS, Gordon IJ, Omufwoko KS, Collins S, Warren IA, Munby H, Brattström O, Traut W, Martins DJ, Smith DAS, Jiggins CD, Bass C, ffrench-Constant RH. Whole-chromosome hitchhiking driven by a male-killing endosymbiont. PLoS Biol 2020; 18:e3000610. [PMID: 32108180 PMCID: PMC7046192 DOI: 10.1371/journal.pbio.3000610] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
Neo-sex chromosomes are found in many taxa, but the forces driving their emergence and spread are poorly understood. The female-specific neo-W chromosome of the African monarch (or queen) butterfly Danaus chrysippus presents an intriguing case study because it is restricted to a single 'contact zone' population, involves a putative colour patterning supergene, and co-occurs with infection by the male-killing endosymbiont Spiroplasma. We investigated the origin and evolution of this system using whole genome sequencing. We first identify the 'BC supergene', a broad region of suppressed recombination across nearly half a chromosome, which links two colour patterning loci. Association analysis suggests that the genes yellow and arrow in this region control the forewing colour pattern differences between D. chrysippus subspecies. We then show that the same chromosome has recently formed a neo-W that has spread through the contact zone within approximately 2,200 years. We also assembled the genome of the male-killing Spiroplasma, and find that it shows perfect genealogical congruence with the neo-W, suggesting that the neo-W has hitchhiked to high frequency as the male-killer has spread through the population. The complete absence of female crossing-over in the Lepidoptera causes whole-chromosome hitchhiking of a single neo-W haplotype, carrying a single allele of the BC supergene and dragging multiple non-synonymous mutations to high frequency. This has created a population of infected females that all carry the same recessive colour patterning allele, making the phenotypes of each successive generation highly dependent on uninfected male immigrants. Our findings show how hitchhiking can occur between the physically unlinked genomes of host and endosymbiont, with dramatic consequences.
Collapse
Affiliation(s)
- Simon H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Kumar Saurabh Singh
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Ian J. Gordon
- Center of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye, Rwanda
| | - Kennedy Saitoti Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States of America
- Mpala Research Centre, Nanyuki, Kenya
| | - Steve Collins
- African Butterfly Research Institute, Nairobi, Kenya
| | - Ian A. Warren
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Munby
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Oskar Brattström
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Walther Traut
- Institut für Biologie, Universität Lübeck, Lübeck, Germany
| | - Dino J. Martins
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States of America
- Mpala Research Centre, Nanyuki, Kenya
| | | | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | | |
Collapse
|
42
|
Mun S, Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y. Gene functions in adult cuticle pigmentation of the yellow mealworm, Tenebrio molitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103291. [PMID: 31812474 DOI: 10.1016/j.ibmb.2019.103291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
In many arthropod species including insects, the cuticle tanning pathway for both pigmentation and sclerotization begins with tyrosine and is responsible for production of both melanin- and quinoid-type pigments, some of which are major pigments for body coloration. In this study we identified and cloned cDNAs of the yellow mealworm, Tenebrio molitor, encoding seven key enzymes involved in this pathway including tyrosine hydroxylase (TmTH), DOPA decarboxylase (TmDDC), laccase 2 (TmLac2), Yellow-y (TmY-y), arylalkylamine N-acetyltransferase (TmAANAT1), aspartate 1-decarboxylase (TmADC) and N-β-alanyldopamine synthase (Tmebony). Expression profiles of these genes during development were analyzed by real-time PCR, revealing development-specific patterns of expression. Loss of function mediated by RNAi of either 1) TmTH or TmLac2, 2) TmDDC or TmY-y, and 3) TmAANAT1, TmADC or Tmebony resulted in pale/white, light yellow/brown and dark/black adult body coloration, respectively. In addition, there are three distinct layer/regional pigmentation differences in rigid types of adult cuticle, a brownish outer exocuticle (EX), a dark pigmented middle mesocuticle (ME) and a transparent inner endocuticle (EN). Decreases in pigmentation of the EX and/or ME layers were observed after RNAi of TmDDC or TmY-y. In TmADC- or Tmebony-deficient adults, a darker pigmented EX layer was observed. In TmAANAT1-deficient adults, trabeculae formed between the dorsal and ventral elytral cuticles as well as the transparent EN layer became highly pigmented. These results demonstrate that knocking down the level of gene expression of specific enzymes of this tyrosine metabolic pathway leads to abnormal pigmentation in individual layers and substructure of the rigid adult exoskeleton of T. molitor.
Collapse
Affiliation(s)
- Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Mi Young Noh
- Department of Forestry, Chonnam National University, Gwangju, 500-757, South Korea.
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea.
| |
Collapse
|
43
|
|
44
|
Liu T, Yang WQ, Xie YG, Liu PW, Xie LH, Lin F, Li CY, Gu JB, Wu K, Yan GY, Chen XG. Construction of an efficient genomic editing system with CRISPR/Cas9 in the vector mosquito Aedes albopictus. INSECT SCIENCE 2019; 26:1045-1054. [PMID: 30311353 DOI: 10.1111/1744-7917.12645] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/04/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Aedes (Stegomyia) albopictus, also known as the Asian tiger mosquito, is a mosquito which originated in Asia. In recent years, it has become increasingly rampant throughout the world. This mosquito can transmit several arboviruses, including dengue, Zika and chikungunya viruses, and is considered a public health threat. Despite the urgent need of genome engineering to analyze specific gene functions, progress in genetical manipulation of Ae. albopictus has been slow due to a lack of efficient methods and genetic markers. In the present study, we established targeted disruptions in two genes, kynurenine hydroxylase (kh) and dopachrome conversion enzyme (yellow), to analyze the feasibility of generating visible phenotypes with genome editing by the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) system in Ae. albopictus. Following Cas9 single guide RNA ribonucleoprotein injection into the posterior end of pre-blastoderm embryos, 30%-50% of fertile survivors produced alleles that failed to complement existing kh and yellow mutations. Complete eye and body pigmentation defects were readily observed in G1 pupae and adults, indicating successful generation of highly heritable mutations. We conclude that the CRISPR/Cas9-mediated gene editing system can be used in Ae. albopictus and that it can be adopted as an efficient tool for genome-scale analysis and biological study.
Collapse
Affiliation(s)
- Tong Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Qiang Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu-Gu Xie
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei-Wen Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li-Hua Xie
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Feng Lin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chen-Ying Li
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jin-Bao Gu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Gui-Yun Yan
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Tayler A, Heschuk D, Giesbrecht D, Park JY, Whyard S. Efficiency of RNA interference is improved by knockdown of dsRNA nucleases in tephritid fruit flies. Open Biol 2019; 9:190198. [PMID: 31795920 PMCID: PMC6936256 DOI: 10.1098/rsob.190198] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) in insects is routinely used to ascertain gene function, but also has potential as a technology to control pest species. For some insects, such as beetles, ingestion of small quantities of double-stranded RNA (dsRNA) is able to knock down a targeted gene's expression. However, in other species, ingestion of dsRNA can be ineffective owing to the presence of nucleases within the gut, which degrade dsRNA before it reaches target cells. In this study, we observed that nucleases within the gut of the Queensland fruit fly (Bactrocera tryoni) rapidly degrade dsRNA and reduce RNAi efficacy. By complexing dsRNA with liposomes within the adult insect's diet, RNAi-mediated knockdown of a melanin synthesis gene, yellow, was improved significantly, resulting in strong RNAi phenotypes. RNAi efficiency was also enhanced by feeding both larvae and adults for several days on dsRNAs that targeted two different dsRNase gene transcripts. Co-delivery of both dsRNase-specific dsRNAs and yellow dsRNA resulted in almost complete knockdown of the yellow transcripts. These findings show that the use of liposomes or co-feeding of nuclease-specific dsRNAs significantly improves RNAi inhibition of gene expression in B. tryoni and could be a useful strategy to improve RNAi-based control in other insect species.
Collapse
Affiliation(s)
| | | | | | | | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
| |
Collapse
|
46
|
Bi HL, Xu J, He L, Zhang Y, Li K, Huang YP. CRISPR/Cas9-mediated ebony knockout results in puparium melanism in Spodoptera litura. INSECT SCIENCE 2019; 26:1011-1019. [PMID: 30688002 DOI: 10.1111/1744-7917.12663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Insect body pigmentation and coloration are critical to adaption to the environment. To explore the mechanisms that drive pigmentation, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing system to target the ebony gene in the non-model insect Spodoptera litura. Ebony is crucial to melanin synthesis in insects. By directly injecting Cas9 messenger RNA and ebony-specific guide RNAs into S. litura embryos, we successfully induced a typical ebony-deficient phenotype of deep coloration of the puparium and induction of melanin formation during the pupal stage. Polymerase chain reaction-based genotype analysis demonstrated that various mutations had occurred at the sites targeted in ebony. Our study clearly demonstrates the function of ebony in the puparium coloration and also provides a potentially useful marker gene for functional studies in S. litura as well as other lepidopteran pests.
Collapse
Affiliation(s)
- Hong-Lun Bi
- College of Life Sciences, East China Normal University, Shanghai, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin He
- College of Life Sciences, East China Normal University, Shanghai, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Kai Li
- College of Life Sciences, East China Normal University, Shanghai, China
| | - Yong-Ping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
47
|
Liu Y, Ramos-Womack M, Han C, Reilly P, Brackett KL, Rogers W, Williams TM, Andolfatto P, Stern DL, Rebeiz M. Changes throughout a Genetic Network Mask the Contribution of Hox Gene Evolution. Curr Biol 2019; 29:2157-2166.e6. [PMID: 31257142 DOI: 10.1016/j.cub.2019.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Hox genes pattern the anterior-posterior axis of animals and are posited to drive animal body plan evolution, yet their precise role in evolution has been difficult to determine. Here, we identified evolutionary modifications in the Hox gene Abd-B that dramatically altered its expression along the body plan of Drosophila santomea. Abd-B is required for pigmentation in Drosophila yakuba, the sister species of D. santomea, and changes to Abd-B expression would be predicted to make large contributions to the loss of body pigmentation in D. santomea. However, manipulating Abd-B expression in current-day D. santomea does not affect pigmentation. We attribute this epistatic interaction to four other genes within the D. santomea pigmentation network, three of which have evolved expression patterns that do not respond to Abd-B. Our results demonstrate how body plans may evolve through small evolutionary steps distributed throughout Hox-regulated networks. Polygenicity and epistasis may hinder efforts to identify genes and mechanisms underlying macroevolutionary traits.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Margarita Ramos-Womack
- Department of Ecology Evolution and Behavior, Princeton University, Princeton, NJ 08544, USA
| | - Clair Han
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Patrick Reilly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | - William Rogers
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, Sherman Fairchild Center for Life Sciences, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
48
|
Zhang Y, Li H, Du J, Zhang J, Shen J, Cai W. Three Melanin Pathway Genes, TH, yellow, and aaNAT, Regulate Pigmentation in the Twin-Spotted Assassin Bug, Platymeris biguttatus (Linnaeus). Int J Mol Sci 2019; 20:ijms20112728. [PMID: 31163651 PMCID: PMC6600426 DOI: 10.3390/ijms20112728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/04/2022] Open
Abstract
Pigmentation plays a vital role in insect survival and reproduction. Many melanin pathway genes have been studied in holometabolous insects; however, they have only been studied in two hemimetabolous insect genera, Oncopeltus and Periplaneta. Here we analyzed three melanin pathway genes (TH, yellow, and aaNAT) using RNA interference (RNAi) in another hemimetabolous insect, namely the twin-spotted assassin bug, Platymeris biguttatus. TH was highly expressed in freshly molted nymphs and adults. TH RNAi resulted in a complete loss of black pigment, with yellow coloration maintained. Therefore, black pigment in this assassin bug is solely generated from the melanin pathway, whereas yellow pigment is generated from other unknown pigmentation pathways. yellow and aaNAT were highly expressed in the white spot of the hemelytra. Downregulation of yellow caused a brown phenotype with high mortality, indicating an important role of yellow functions in cuticle formation and in the process of converting melanin from brown to black. Interestingly, aaNAT RNAi caused not only loss of white pigment, but also loss of yellow and red pigments. This phenotype of aaNAT has not been reported in other insects. Our results provide new information for understanding the melanin pathway in which aaNAT is essential for the formation of colorless patterns.
Collapse
Affiliation(s)
- Yinqiao Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
49
|
Fernandez-Valverde SL, Aguilera F, Ramos-Díaz RA. Inference of Developmental Gene Regulatory Networks Beyond Classical Model Systems: New Approaches in the Post-genomic Era. Integr Comp Biol 2019; 58:640-653. [PMID: 29917089 DOI: 10.1093/icb/icy061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The advent of high-throughput sequencing (HTS) technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules, and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyze cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in HTS technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.
Collapse
Affiliation(s)
- Selene L Fernandez-Valverde
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - René Alexander Ramos-Díaz
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| |
Collapse
|
50
|
Redundant and Cryptic Enhancer Activities of the Drosophila yellow Gene. Genetics 2019; 212:343-360. [PMID: 30842209 DOI: 10.1534/genetics.119.301985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 11/18/2022] Open
Abstract
Cis-regulatory sequences known as enhancers play a key role in regulating gene expression. Evolutionary changes in these DNA sequences contribute to phenotypic evolution. The Drosophila yellow gene, which is required for pigmentation, has emerged as a model system for understanding how cis-regulatory sequences evolve, providing some of the most detailed insights available into how activities of orthologous enhancers have diverged between species. Here, we examine the evolution of yellow cis-regulatory sequences on a broader scale, by comparing the distribution and function of yellow enhancer activities throughout the 5' intergenic and intronic sequences of Drosophila melanogaster, D. pseudoobscura, and D. willistoni We find that cis-regulatory sequences driving expression in a particular tissue are not as modular as previously described, but rather have many redundant and cryptic enhancer activities distributed throughout the regions surveyed. Interestingly, cryptic enhancer activities of sequences from one species often drove patterns of expression observed in other species, suggesting that the frequent evolutionary changes in yellow expression observed among Drosophila species may be facilitated by gaining and losing repression of preexisting cis-regulatory sequences.
Collapse
|