1
|
Cyndari KI, Scorza BM, Zacharias ZR, Pessôa-Pereira D, Strand L, Mahachi K, Oviedo JM, Gibbs L, Butler KL, Ausdal G, Hendricks D, Yahashiri R, Elkins JM, Gulbrandsen T, Peterson AR, Willey MC, Fairfax KC, Petersen CA. Resident synovial macrophages in synovial fluid: Implications for immunoregulation. Clin Immunol 2025; 271:110422. [PMID: 39701169 DOI: 10.1016/j.clim.2024.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Resident synovial macrophages (RSMs) are anti-inflammatory, self-renewing macrophages that provide physical immune sequestration of the joint space from the peripheral immune system. Increased permeability of this structure is associated with peripheral immune cells in the synovial fluid (SF). Direct measures of synovial barrier integrity are possible with tissue histology, but after barrier breakdown, if these cells perpetuate or initiate chronic inflammation in SF remains unknown. We sought to identify RSM in human SF as an indirect measure of synovial barrier integrity. To validate findings, we created a novel ex vivo explant model using human synovium. scRNA-seq revealed these SF RSMs upregulated pro-fibrotic and pro-osteoclastic pathways in inflammatory arthritis, but not septic arthritis. Increased frequencies of RSMs in SF was associated with increased sRANKL regardless of underlying pathology. These findings suggest the frequency of RSMs in SF may correlate with synovial barrier damage and in turn, potential damage to joint structures.
Collapse
Affiliation(s)
- Karen I Cyndari
- Department of Emergency Medicine, University of Iowa, Iowa City, IA, United States of America; Center for Emerging Infectious Diseases, United States of America.
| | - Breanna M Scorza
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Zeb R Zacharias
- Human Immunology Core, University of Iowa, Iowa City, IA, United States of America; Holden Comprehensive Cancer Center, Iowa City, IA, United States of America
| | - Danielle Pessôa-Pereira
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Leela Strand
- Harvard University, Cambridge, MA, United States of America
| | - Kurayi Mahachi
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Juan Marcos Oviedo
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lisa Gibbs
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Katherine L Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Graham Ausdal
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Dylan Hendricks
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Rika Yahashiri
- Williams College, Williamstown, MA, United States of America
| | - Jacob M Elkins
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Trevor Gulbrandsen
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Andrew R Peterson
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Michael C Willey
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Keke C Fairfax
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christine A Petersen
- College of Veterinary Medicine, Ohio State University, OH, United States of America
| |
Collapse
|
2
|
Cyndari KI, Scorza BM, Zacharias ZR, Strand L, Mahachi K, Oviedo JM, Gibbs L, Pessoa-Pereira D, Ausdal G, Hendricks D, Yahashiri R, Elkins JM, Gulbrandsen T, Peterson AR, Willey MC, Fairfax KC, Petersen CA. Resident Synovial Macrophages in Synovial Fluid: Implications for Immunoregulation in Infectious and Inflammatory Arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560183. [PMID: 37873090 PMCID: PMC10592878 DOI: 10.1101/2023.09.29.560183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objectives Resident synovial macrophages (RSM) provide immune sequestration of the joint space and are likely involved in initiation and perpetuation of the joint-specific immune response. We sought to identify RSM in synovial fluid (SF) and demonstrate migratory ability, in additional to functional changes that may perpetuate a chronic inflammatory response within joint spaces. Methods We recruited human patients presenting with undifferentiated arthritis in multiple clinical settings. We used flow cytometry to identify mononuclear cells in peripheral blood and SF. We used a novel transwell migration assay with human ex-vivo synovium obtained intra-operatively to validate flow cytometry findings. We used single cell RNA-sequencing (scRNA-seq) to further identify macrophage/monocyte subsets. ELISA was used to evaluate the bone-resorption potential of SF. Results We were able to identify a rare population of CD14dim, OPG+, ZO-1+ cells consistent with RSM in SF via flow cytometry. These cells were relatively enriched in the SF during infectious processes, but absolutely decreased compared to healthy controls. Similar putative RSM were identified using ex vivo migration assays when MCP-1 and LPS were used as migratory stimulus. scRNA-seq revealed a population consistent with RSM transcriptionally related to CD56+ cytotoxic dendritic cells and IDO+ M2 macrophages. Conclusion We identified a rare cell population consistent with RSM, indicating these cells are likely migratory and able to initiate or coordinate both acute (septic) or chronic (autoimmune or inflammatory) arthritis. RSM analysis via scRNA-seq indicated these cells are M2 skewed, capable of antigen presentation, and have consistent functions in both septic and inflammatory arthritis.
Collapse
Affiliation(s)
- Karen I Cyndari
- Department of Emergency Medicine, University of Iowa, Iowa City, IA
- Center for Emerging Infectious Diseases
| | - Breanna M Scorza
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Zeb R Zacharias
- Human Immunology Core, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, Iowa City, IA
| | | | - Kurayi Mahachi
- Research and Analytics, Enterprise Analytics, Sentara Health
| | | | - Lisa Gibbs
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Danielle Pessoa-Pereira
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Graham Ausdal
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Dylan Hendricks
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | | | - Jacob M Elkins
- Department of Orthopedics, University of Iowa, Iowa City, IA
| | | | | | | | - Keke C Fairfax
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Christine A Petersen
- Center for Emerging Infectious Diseases
- Department of Epidemiology, University of Iowa, Iowa City, IA
| |
Collapse
|
3
|
Anghelache M, Voicu G, Deleanu M, Turtoi M, Safciuc F, Anton R, Boteanu D, Fenyo IM, Manduteanu I, Simionescu M, Calin M. Biomimetic Nanocarriers of Pro-Resolving Lipid Mediators for Resolution of Inflammation in Atherosclerosis. Adv Healthc Mater 2024; 13:e2302238. [PMID: 37852632 PMCID: PMC11469162 DOI: 10.1002/adhm.202302238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Atherosclerosis (ATH) is a systemic disease characterized by a chronic inflammatory process and lipid deposition in the arterial walls. The chronic inflammation within ATH lesions results, at least in part, from the failed resolution of inflammation. This process is controlled actively by specialized pro-resolving lipid mediators (SPMs), namely lipoxins, resolvins, protectins, and maresins. Herein, biomimetic nanocarriers are produced comprising a cocktail of SPMs-loaded lipid nanoemulsions (LN) covered with macrophage membranes (Bio-LN/SPMs). Bio-LN/SPMs retain on their surface the macrophage receptors involved in cellular interactions and the "marker of self" CD47, which impede their recognition and uptake by other macrophages. The binding of Bio-LN/SPMs to the surface of endothelial cells (EC) and smooth muscle cells (SMC) is facilitated by the receptors on the macrophage membranes and partly by SPMs receptors. In addition, Bio-LN/SPMs prove functional by reducing monocyte adhesion and transmigration to/through activated EC and by stimulating macrophage phagocytic activity. After intravenous administration, Bio-LN/SPMs accumulate in the aorta of ApoE-deficient mice at the level of atherosclerotic lesions. Also, the safety assessment testing reveals no side effects or immunotoxicity of Bio-LN/SPMs. Thus, the newly developed Bio-LN/SPMs represent a reliable targeted nanomedicine for the resolution of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Maria Anghelache
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Geanina Voicu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Mariana Deleanu
- Liquid and Gas Chromatography LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Mihaela Turtoi
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Florentina Safciuc
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Ruxandra Anton
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Delia Boteanu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Ioana Madalina Fenyo
- Gene Regulation and Molecular Therapies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Ileana Manduteanu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Maya Simionescu
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| | - Manuela Calin
- Medical and Pharmaceutical Bionanotechnologies LaboratoryInstitute of Cellular Biology and Pathology “Nicolae Simionescu”Romanian AcademyBucharest050568Romania
| |
Collapse
|
4
|
Chen M, Menon MC, Wang W, Fu J, Yi Z, Sun Z, Liu J, Li Z, Mou L, Banu K, Lee SW, Dai Y, Anandakrishnan N, Azeloglu EU, Lee K, Zhang W, Das B, He JC, Wei C. HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. Nat Commun 2023; 14:4297. [PMID: 37463911 PMCID: PMC10354075 DOI: 10.1038/s41467-023-40086-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Renal inflammation and fibrosis are the common pathways leading to progressive chronic kidney disease (CKD). We previously identified hematopoietic cell kinase (HCK) as upregulated in human chronic allograft injury promoting kidney fibrosis; however, the cellular source and molecular mechanisms are unclear. Here, using immunostaining and single cell sequencing data, we show that HCK expression is highly enriched in pro-inflammatory macrophages in diseased kidneys. HCK-knockout (KO) or HCK-inhibitor decreases macrophage M1-like pro-inflammatory polarization, proliferation, and migration in RAW264.7 cells and bone marrow-derived macrophages (BMDM). We identify an interaction between HCK and ATG2A and CBL, two autophagy-related proteins, inhibiting autophagy flux in macrophages. In vivo, both global or myeloid cell specific HCK-KO attenuates renal inflammation and fibrosis with reduces macrophage numbers, pro-inflammatory polarization and migration into unilateral ureteral obstruction (UUO) kidneys and unilateral ischemia reperfusion injury (IRI) models. Finally, we developed a selective boron containing HCK inhibitor which can reduce macrophage pro-inflammatory activity, proliferation, and migration in vitro, and attenuate kidney fibrosis in the UUO mice. The current study elucidates mechanisms downstream of HCK regulating macrophage activation and polarization via autophagy in CKD and identifies that selective HCK inhibitors could be potentially developed as a new therapy for renal fibrosis.
Collapse
Affiliation(s)
- Man Chen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Madhav C Menon
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Wenlin Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingyun Mou
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Khadija Banu
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Sui-Wan Lee
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Dai
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Section, James J. Peters VAMC, Bronx, NY, USA.
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Volkov DV, Stepanova VM, Rubtsov YP, Stepanov AV, Gabibov AG. Protein Tyrosine Phosphatase CD45 As an Immunity Regulator and a Potential Effector of CAR-T therapy. Acta Naturae 2023; 15:17-26. [PMID: 37908772 PMCID: PMC10615191 DOI: 10.32607/actanaturae.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
The leukocyte common antigen CD45 is a receptor tyrosine phosphatase and one of the most prevalent antigens found on the surface of blood cells. CD45 plays a crucial role in the initial stages of signal transmission from receptors of various immune cell types. Immunodeficiency, autoimmune disorders, and oncological diseases are frequently caused by gene expression disorders and imbalances in CD45 isoforms. Despite extensive research into the structure and functions of CD45, the molecular mechanisms behind its role in transmitting signals from T-cell receptors and chimeric antigen receptors remain not fully understood. It is of utmost importance to comprehend the structural features of CD45 and its function in regulating immune system cell activation to study oncological diseases and the impact of CD45 on lymphocytes and T cells modified by chimeric antigen receptors.
Collapse
Affiliation(s)
- D. V. Volkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - V. M. Stepanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - Y. P. Rubtsov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. V. Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. G. Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| |
Collapse
|
6
|
Luo S, Du S, Tao M, Cao J, Cheng P. Insights on hematopoietic cell kinase: An oncogenic player in human cancer. Biomed Pharmacother 2023; 160:114339. [PMID: 36736283 DOI: 10.1016/j.biopha.2023.114339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src family and is expressed in hematopoietic cells. By regulating multiple signaling pathways, HCK can interact with multiple receptors to regulate signaling events involved in cell adhesion, proliferation, migration, invasion, apoptosis, and angiogenesis. However, aberrant expression of Hck in various hematopoietic cells and solid tumors plays a crucial role in tumor-related properties, including cell proliferation and epithelial-mesenchymal transition. In addition, Hck signaling regulates the function of immune cells such as macrophages, contributing to an immunosuppressive tumor microenvironment. The clinical success of various kinase inhibitors targeting the Src kinase family has validated the efficacy of targeting Src, and therapies with highly selective Hck kinase inhibitors are in clinical trials. This article reviews Hck inhibition as an emerging cancer treatment strategy, focusing on the expressions and functions of Hck in tumors and its impact on the tumor microenvironment. It also explores preclinical and clinical pharmacological strategies for Hck targeting to shed light on Hck-targeted tumor therapy.
Collapse
Affiliation(s)
- Shuyan Luo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shaonan Du
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mei Tao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Jingyuan Cao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
7
|
Lv Z, Wang T, Cao X, Sun M, Qu Y. The role of receptor‐type protein tyrosine phosphatases in cancer. PRECISION MEDICAL SCIENCES 2023. [DOI: 10.1002/prm2.12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Zhengyuan Lv
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
- Central Laboratory, Translational Medicine Research Center The Affiliated Jiangning Hospital with Nanjing Medical University Nanjing China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science Nanjing Medical University Nanjing China
| | - Mengting Sun
- Biobank of Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research The Affiliated Cancer Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
8
|
Stevenson ER, Wilkinson ML, Abramova E, Guo C, Gow AJ. Intratracheal Administration of Acyl Coenzyme A Acyltransferase-1 Inhibitor K-604 Reduces Pulmonary Inflammation Following Bleomycin-Induced Lung Injury. J Pharmacol Exp Ther 2022; 382:356-365. [PMID: 35970601 PMCID: PMC9426763 DOI: 10.1124/jpet.122.001284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
Acute lung injury (ALI) is characterized by epithelial damage, barrier dysfunction, and pulmonary edema. Macrophage activation and failure to resolve play a role in ALI; thus, macrophage phenotype modulation is a rational target for therapeutic intervention. Large, lipid-laden macrophages have been observed in various injury models, including intratracheal bleomycin (ITB), suggesting that lipid storage may play a role in ALI severity. The endoplasmic reticulum-associated enzyme acyl coenzyme A acyltransferase-1 (Acat-1/Soat1) is highly expressed in macrophages, where it catalyzes the esterification of cholesterol, leading to intracellular lipid accumulation. We hypothesize that inhibition of Acat-1 will reduce macrophage activation and improve outcomes of lung injury in ITB. K-604, a selective inhibitor of Acat-1, was used to reduce cholesterol esterification and hence lipid accumulation in response to ITB. Male and female C57BL6/J mice (n = 16-21/group) were administered control, control + K-604, ITB, or ITB + K-604 on d0, control or K-604 on d3, and were sacrificed on day 7. ITB caused significant body weight loss and an increase in cholesterol accumulation in bronchoalveolar lavage cells. These changes were mitigated by Acat-1 inhibition. K-604 also significantly reduced ITB-induced alveolar thickening. Surfactant composition was normalized as indicated by a significant decrease in phospholipid: SP-B ratio in ITB+K-604 compared with ITB. K-604 administration preserved mature alveolar macrophages, decreased activation in response to ITB, and decreased the percentage mature and pro-fibrotic interstitial macrophages. These results show that inhibition of Acat-1 in the lung is associated with reduced inflammatory response to ITB-mediated lung injury. SIGNIFICANCE STATEMENT: Acyl coenzyme A acyltransferase-1 (Acat-1) is critical to lipid droplet formation, and thus inhibition of Acat-1 presents as a pharmacological target. Intratracheal administration of K-604, an Acat-1 inhibitor, reduces intracellular cholesterol ester accumulation in lung macrophages, attenuates inflammation and macrophage activation, and normalizes mediators of surface-active function after intratracheal bleomycin administration in a rodent model. The data presented within suggest that inhibition of Acat-1 in the lung improves acute lung injury outcomes.
Collapse
Affiliation(s)
- Emily R Stevenson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Melissa L Wilkinson
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Elena Abramova
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Changjiang Guo
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Andrew J Gow
- Ernest Mario School of Pharmacy, Department of Pharmacology & Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
9
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
10
|
Rudd CE. How the Discovery of the CD4/CD8-p56 lck Complexes Changed Immunology and Immunotherapy. Front Cell Dev Biol 2021; 9:626095. [PMID: 33791292 PMCID: PMC8005572 DOI: 10.3389/fcell.2021.626095] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
The past 25 years have seen enormous progress in uncovering the receptors and signaling mechanisms on T-cells that activate their various effecter functions. Until the late 1980s, most studies on T-cells had focused on the influx of calcium and the levels of cAMP/GMP in T-cells. My laboratory then uncovered the interaction of CD4 and CD8 co-receptors with the protein-tyrosine kinase p56lck which are now widely accepted as the initiators of the tyrosine phosphorylation cascade leading to T-cell activation. The finding explained how immune recognition receptors expressed by many immune cells, which lack intrinsic catalytic activity, can transduce activation signals via non-covalent association with non-receptor tyrosine kinases. The discovery also established the concept that a protein tyrosine phosphorylation cascade operated in T-cells. In this vein, we and others then showed that the CD4- and CD8-p56lck complexes phosphorylate the TCR complexes which led to the identification of other protein-tyrosine kinases such as ZAP-70 and an array of substrates that are now central to studies in T-cell immunity. Other receptors such as B-cell receptor, Fc receptors and others were also subsequently found to use src kinases to control cell growth. In T-cells, p56lck driven phosphorylation targets include co-receptors such as CD28 and CTLA-4 and immune cell-specific adaptor proteins such as LAT and SLP-76 which act to integrate signals proximal to surface receptors. CD4/CD8-p56lck regulated events in T-cells include intracellular calcium mobilization, integrin activation and the induction of transcription factors for gene expression. Lastly, the identification of the targets of p56lck in the TCR and CD28 provided the framework for the development of chimeric antigen receptor (CAR) therapy in the treatment of cancer. In this review, I outline a history of the development of events that led to the development of the "TCR signaling paradigm" and its implications to immunology and immunotherapy.
Collapse
Affiliation(s)
- Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Universite de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Distinction of Microglia and Macrophages in Glioblastoma: Close Relatives, Different Tasks? Int J Mol Sci 2020; 22:ijms22010194. [PMID: 33375505 PMCID: PMC7794706 DOI: 10.3390/ijms22010194] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
For decades, it has been known that the tumor microenvironment is significant for glioma progression, namely the infiltration of myeloid cells like microglia and macrophages. Hence, these cell types and their specific tasks in tumor progression are subject to ongoing research. However, the distribution of the brain resident microglia and the peripheral macrophages within the tumor tissue and their functional activity are highly debated. Results depend on the method used to discriminate between microglia and macrophages, whereby this specification is already difficult due to limited options to distinguish between these both cell populations that show mostly the same surface markers and morphology. Moreover, there are indications about various functions of microglia and macrophages but again varying on the method of discrimination. In our review, we summarize the current literature to determine which methods have been applied to differentiate the brain resident microglia from tumor-infiltrated macrophages. Furthermore, we compiled data about the proportion of microglia and macrophages in glioma tissues and ascertained if pro- or anti-tumoral effects could be allocated to one or the other myeloid cell population. Recent research made tremendous efforts to distinguish microglia from recruited macrophages. For future studies, it could be essential to verify which role these cells play in brain tumor pathology to proceed with novel immunotherapeutic strategies.
Collapse
|
12
|
Willmann EA, Pandurovic V, Jokinen A, Beckley D, Bohlson SS. Extracellular signal-regulated kinase 1/2 is required for complement component C1q and fibronectin dependent enhancement of Fcγ- receptor mediated phagocytosis in mouse and human cells. BMC Immunol 2020; 21:61. [PMID: 33317446 PMCID: PMC7734837 DOI: 10.1186/s12865-020-00393-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022] Open
Abstract
Background C1q is a soluble pattern recognition protein that regulates multiple leukocyte functions, and deficiency in C1q results in autoimmunity. C1q stimulates enhanced phagocytic function through multiple mechanisms including the rapid enhancement of Fcγ receptor (FcγR) -mediated phagocytosis. The molecular mechanism responsible for this rapid enhancement of phagocytic function is unknown. The purpose of this study was to investigate the molecular pathway required for C1q-dependent enhanced phagocytosis. Results Leukocyte associated immunoglobulin like receptor-1 (LAIR-1) is a receptor that mediates C1q-dependent activation of leukocytes; however, using LAIR-1 deficient mouse bone marrow derived macrophages (BMDM), we demonstrated that LAIR-1 was not required for C1q-dependent enhanced FcγR-mediated phagocytosis. A phospho-kinase array identified extracellular signal-regulated kinase (ERK) 1/2 as dysregulated following activation with C1q. Validation of the array in BMDM and the human monocyte cell line THP-1 demonstrated a decrease in basal ERK1/2 phosphorylation in C1q-stimulated cells compared to control cells. However, subsequent stimulation with immune complexes stimulated rapid upregulation of phosphorylation. The extracellular matrix protein fibronectin regulates enhanced phagocytic activity in macrophages similar to C1q, and both C1q and fibronectin-dependent enhanced phagocytosis required ERK1/2 since both were blocked by pharmacologic inhibition of ERK1/2. Furthermore, diminished C1q-dependent ERK1/2 phosphorylation was sustained after four-hour treatment with lipopolysaccharide and correlated with a significant reduction in TNFα production. Conclusions These data demonstrate that C1q and fibronectin utilize a similar ERK1/2-dependent mechanism for enhanced phagocytosis, which should lead to development of novel approaches to modulate C1q-dependent regulation of macrophage activation, inflammation and autoimmunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-020-00393-6.
Collapse
Affiliation(s)
- Emily A Willmann
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, USA
| | - Vesna Pandurovic
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, USA
| | - Anna Jokinen
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, USA
| | - Danielle Beckley
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, USA
| | - Suzanne S Bohlson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
13
|
Zhang Y, Li J, Wang L, Meng P, Zhao J, Han P, Xia J, Xu J, Wang L, Shen F, Zheng A, Zhou F, Fan R. Clinical significance of detecting circulating tumor cells in patients with esophageal squamous cell carcinoma by EpCAM‑independent enrichment and immunostaining‑fluorescence in situ hybridization. Mol Med Rep 2019; 20:1551-1560. [PMID: 31257510 PMCID: PMC6625432 DOI: 10.3892/mmr.2019.10420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/14/2019] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells present in the bloodstream, which originate from tumor sites, and are ultimately responsible for metastasis or relapse in several types of cancer. However, to the best of our knowledge, only a few studies have investigated these extremely rare cells in esophageal squamous cell carcinoma (ESCC). In the present study, 63 patients with ESCC and 50 healthy donors were recruited, and the potential clinical significance of CTCs was assessed using subtraction enrichment and immunostaining‑fluorescence in situ hybridization. Blood samples were collected at the following times: At first diagnosis, following neoadjuvant chemoradiotherapy, 24 h and 13 days post‑surgery, and every 3 months during follow‑up. Cytokeratin (CK)‑positive and clustered CTCs only accounted for 1% of total CTCs detected, whereas most CTCs were CK‑negative aneuploid cells. Patients with ESCC (n=63) had higher CTC counts compared with healthy donors (control group; n=50) (area under curve=0.807, median CTC count, 2 vs. 0). However, there was no statistical association between CTC counts and sex, age, pathological stage, tumor location, tumor depth or lymph node involvement (P>0.05). The association of tumor development with CTC status and other circulating biomarkers was monitored in patients for a further 2 years. The results revealed that a change in CTC counts between first diagnosis and 13 days post‑surgery (ΔCTC) of ≥2/7.5 ml peripheral blood could be applied for predicting progression‑free survival (hazard ratio, 3.922; 95% confidence interval, 0.907‑16.951; P<0.05) in patients with ESCC. In conclusion, ΔCTC evaluation may be a promising indicator for predicting tumor prognosis and the clinical efficacy of treatment in patients with ESCC.
Collapse
Affiliation(s)
- Yaowen Zhang
- The First Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Jian Li
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan 455000, P.R. China
| | - Lu Wang
- Department of Medicine, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, P.R. China
| | - Peng Meng
- Department of Medicine, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, P.R. China
| | - Jiangman Zhao
- Department of Medicine, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, P.R. China
| | - Peng Han
- Department of Pathology, Anyang Tumor Hospital, Anyang, Henan 455000, P.R. China
| | - Jin Xia
- The Fifth Department of Oncology, Anyang Tumor Hospital, Anyang, Henan 455000, P.R. China
| | - Jiangong Xu
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan 455000, P.R. China
| | - Lidong Wang
- Henan Key Laboratory for Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Fangfang Shen
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Anping Zheng
- The First Department of Radiation Oncology, Anyang Tumor Hospital, Anyang, Henan 455000, P.R. China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan 455000, P.R. China
| | - Ruitai Fan
- The First Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
14
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
15
|
Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev 2017; 273:156-79. [PMID: 27558334 DOI: 10.1111/imr.12439] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagocytosis, the regulated uptake of large particles (>0.5 μm in diameter), is essential for tissue homeostasis and is also an early, critical component of the innate immune response. Phagocytosis can be conceptually divided into three stages: phagosome, formation, maturation, and resolution. Each of these involves multiple reactions that require exquisite spatial and temporal orchestration. The molecular events underlying these stages are being unraveled and the current state of knowledge is briefly summarized in this article.
Collapse
Affiliation(s)
- Roni Levin
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Johnathan Canton
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
16
|
Wu Y, Hannigan M, Zhan L, Madri JA, Huang CK. -NOD Mice Having a Lyn Tyrosine Kinase Mutation Exhibit Abnormal Neutrophil Chemotaxis. J Cell Physiol 2017; 232:1689-1695. [PMID: 27591397 DOI: 10.1002/jcp.25583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Neutrophils from NOD (Non-Obese Diabetic) mice exhibited reduced migration speed, decreased frequency of directional changes, and loss of directionality during chemotaxis (compared to wild-type [WT] C57BL/6 mice). Additionally, F-actin of chemotaxing NOD neutrophils failed to orient toward the chemoattractant gradient and NOD neutrophil adhesion was impaired. A point mutation near the autophosphorylation site of Lyn in NOD mice was identified. Point mutations of G to A (G1412 in LynA and G1199 in LynB) cause a change of amino acid E393 (glutamic acid) to K (lysine) in LynA (E393 →K) (E372 of LynB), affecting fMLP-induced tyrosine phosphorylation. These data indicate that the Lyn mutation in NOD neutrophils is likely responsible for dysregulation of neutrophil adhesion and directed migration, implying the role of Lyn in modulating diabetic patient's susceptibility to bacterial and fungal infections. J. Cell. Physiol. 232: 1689-1695, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Hannigan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lijun Zhan
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Chi-Kuang Huang
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
17
|
Zaveri TD, Dolgova NV, Lewis JS, Hamaker K, Clare-Salzler MJ, Keselowsky BG. Macrophage integrins modulate response to ultra-high molecular weight polyethylene particles and direct particle-induced osteolysis. Biomaterials 2017; 115:128-140. [PMID: 27889664 PMCID: PMC5431751 DOI: 10.1016/j.biomaterials.2016.10.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/25/2022]
Abstract
Aseptic loosening due to peri-prosthetic osteolysis is one of the primary causes for failure of artificial joint replacements. Implant-derived wear particles, often ultra-high molecular weight polyethylene (UHMWPE) microparticles, initiate an inflammatory cascade upon phagocytosis by macrophages, which leads to osteoclast recruitment and activation, ultimately resulting in osteolysis. Investigation into integrin receptors, involved in cellular interactions with biomaterial-adsorbed adhesive proteins, is of interest to understand and modulate inflammatory processes. In this work, we investigate the role of macrophage integrins Mac-1 and RGD-binding integrins in response to UHMWPE wear particles. Using integrin knockout mice as well as integrin blocking techniques, reduction in macrophage phagocytosis and inflammatory cytokine secretion is demonstrated when these receptors are either absent or blocked. Along this line, various opsonizing proteins are shown to differentially modulate microparticle uptake and macrophage secretion of inflammatory cytokines. Furthermore, using a calvarial osteolysis model it is demonstrated that both Mac-1 integrin and RGD-binding integrins modulate the particle induced osteolysis response to UHMWPE microparticles, with a 40% decrease in the area of osteolysis by the absence or blocking of these integrins, in vivo. Altogether, these findings indicate Mac-1 and RGD-binding integrins are involved in macrophage-directed inflammatory responses to UHMWPE and may serve as therapeutic targets to mitigate wear particle induced peri-prosthetic osteolysis for improved performance of implanted joints.
Collapse
Affiliation(s)
- Toral D Zaveri
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Natalia V Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95618, USA
| | - Kiri Hamaker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
18
|
Thiel N, Keyser KA, Lemmermann NAW, Oduro JD, Wagner K, Elsner C, Halenius A, Lenac Roviš T, Brinkmann MM, Jonjić S, Cicin-Sain L, Messerle M. The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages. PLoS Pathog 2016; 12:e1006057. [PMID: 27926943 PMCID: PMC5142792 DOI: 10.1371/journal.ppat.1006057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/11/2016] [Indexed: 01/28/2023] Open
Abstract
The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 deletion mutant lower viral titers were observed in all tissues examined when compared to wildtype MCMV, indicating an important role of m42 for viral replication in vivo. The m42 gene product was identified as an 18 kDa protein expressed with early kinetics and is predicted to be a tail-anchored membrane protein. Tracking of surface-resident CD45 molecules revealed that m42 induces internalization and degradation of CD45. The observation that the amounts of the E3 ubiquitin ligases Itch and Nedd4 were diminished in cells expressing m42 and that disruption of a PY motif in the N-terminal part of m42 resulted in loss of function, suggest that m42 acts as an activator or adaptor for these Nedd4-like ubiquitin ligases, which mark CD45 for lysosomal degradation. In conclusion, the down-modulation of CD45 expression in MCMV-infected myeloid cells represents a novel pathway of virus-host interaction. Human cytomegalovirus (HCMV) is a tenacious pathogen, which can be life-threatening for immunocompromised patients and immunologically immature newborns. The pathogenicity of HCMV is owed to a plethora of immunomodulatory functions that interfere with host defense mechanisms. Such viral functions can teach us about viral pathogenesis mechanisms, and also about the functioning of immune cells. In this study we report that the mouse cytomegalovirus (MCMV)–a close relative of HCMV–influences surface expression of the cellular protein CD45 on macrophages and we identified the viral gene m42 mediating this effect. CD45 has long been known to be essential for the functioning of lymphocytes, however, its role in macrophages is less well understood. Growth analysis of a viral mutant indicated that the m42 gene confers a replication advantage to MCMV in vivo. We found that the m42 protein induces internalization of CD45 from the plasma membrane and degradation in lysosomes—most likely triggered by interaction of m42 with a ubiquitin ligase. In our study we detected a new element in the complex interaction of cytomegaloviruses with host cells, and further investigation into this mechanism may provide us with new insights into the functions of CD45 in myeloid cells.
Collapse
Affiliation(s)
- Nadine Thiel
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kirsten A Keyser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Niels A W Lemmermann
- Institute of Virology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Carina Elsner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Tihana Lenac Roviš
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Melanie M Brinkmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Luka Cicin-Sain
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Hulsebus HJ, O'Conner SD, Smith EM, Jie C, Bohlson SS. Complement Component C1q Programs a Pro-Efferocytic Phenotype while Limiting TNFα Production in Primary Mouse and Human Macrophages. Front Immunol 2016; 7:230. [PMID: 27379094 PMCID: PMC4908142 DOI: 10.3389/fimmu.2016.00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/26/2016] [Indexed: 12/02/2022] Open
Abstract
Deficiency in complement component C1q is associated with an inability to clear apoptotic cells (efferocytosis) and aberrant inflammation in lupus, and identification of the pathways involved in these processes should reveal important regulatory mechanisms in lupus and other autoimmune or inflammatory diseases. In this study, C1q-dependent regulation of TNFα/IL-6 expression and efferocytosis was investigated using primary mouse bone marrow-derived macrophages and human monocyte-derived macrophages. C1q downregulated LPS-dependent TNFα production in mouse and human macrophages. While prolonged stimulation with C1q (18 h) was required to elicit a dampening of TNFα production from mouse macrophages, the human macrophages responded to C1q with immediate downregulation of TNFα. IL-6 production was unchanged in mouse and upregulated by human macrophages following prolonged stimulation with C1q. Our previous studies indicated that C1q programmed enhanced efferocytosis in mouse macrophages by enhancing expression of Mer tyrosine kinase and its ligand Gas6, a receptor–ligand pair that also inhibits proinflammatory signaling. Here, we demonstrated that C1q-dependent programming of human macrophage efferocytosis required protein synthesis; however, neither Mer nor the related receptor Axl was upregulated in human cells. In addition, while the C1q-collagen-like tails are sufficient for promoting C1q-dependent phagocytosis of antibody-coated targets, the C1q-tails failed to program enhanced efferocytosis or dampen TNFα production. These data further elucidate the mechanisms by which C1q regulates proinflammatory signaling and efferocytosis in macrophages, functions that are likely to influence the progression of autoimmunity and chronic inflammation.
Collapse
Affiliation(s)
- Holly J Hulsebus
- Department of Microbiology and Immunology, Des Moines University , Des Moines, IA , USA
| | - Sean D O'Conner
- Department of Microbiology and Immunology, Des Moines University , Des Moines, IA , USA
| | - Emily M Smith
- Department of Microbiology and Immunology, Des Moines University , Des Moines, IA , USA
| | - Chunfa Jie
- Office of Research, Des Moines University , Des Moines, IA , USA
| | - Suzanne S Bohlson
- Department of Microbiology and Immunology, Des Moines University , Des Moines, IA , USA
| |
Collapse
|
20
|
Gao Y, Zhu Y, Zhang Z, Zhang C, Huang X, Yuan Z. Clinical significance of pancreatic circulating tumor cells using combined negative enrichment and immunostaining-fluorescence in situ hybridization. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:66. [PMID: 27066900 PMCID: PMC4828870 DOI: 10.1186/s13046-016-0340-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Circulating tumor cells (CTCs) hold great potential in both clinical application and basic research for the managements of cancer. However, it remains to be an enormous challenge to obtain efficient detection of pancreatic CTCs. New detection platforms for the detection of pancreatic CTCs are urgently required. METHODS In the present study, we applied a newly-developed platform integrated subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) to analyze clinical significance of pancreatic CTCs. Immunostaining of CK, CD45, DAPI and FISH with the centromere of chromosome 8 (CEP8) were utilized to identify CTCs. Cells with features of CK+/CD45-/DAPI+/CEP8 = 2, CK+/CD45-/DAPI+/CEP8 > 2, CK-/CD45-/DAPI+/CEP8 > 2 were defined as pancreatic CTCs. The Kaplan-Meier method and Cox proportional hazards model were used to analyze the relationship of CTC level and other clinicopathological factors with pancreatic cancer clinical outcomes. RESULTS CTC count in pancreatic cancer was higher than healthy individuals (median, 3 vs. 0 per 7.5 ml; P < 0.001). SE-iFISH platform yielded a sensitivity of 88% and specificity of 90% in pancreatic cancer at the cutoff value of 2 cells/7.5 ml. Pancreatic cancer patients with lower CTC count (<3/7.5 ml) had substantially better overall survival (OS) compared with these with higher CTC count (≥3/7.5 ml) (15.2 vs. 10.2 months, P = 0.023). Multivariate analysis indicated that higher CTC count was a strong indicator for worse OS (HR = 4.547, P = 0.016). CONCLUSION Our current data showed that CTCs could be detected in pancreatic cancer patients in various stages, whether localized, locally advanced and metastatic. Besides, CTCs have shown the potential implication in predicting prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Yang Gao
- Department of General Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Yayun Zhu
- Department of General Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Zhenzhen Zhang
- Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai, China
| | - Cheng Zhang
- Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai, China
| | - Xinyu Huang
- Department of General Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China
| | - Zhou Yuan
- Department of General Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, No.600, Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
21
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
22
|
Viral interference with functions of the cellular receptor tyrosine phosphatase CD45. Viruses 2015; 7:1540-57. [PMID: 25807057 PMCID: PMC4379584 DOI: 10.3390/v7031540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/24/2022] Open
Abstract
The receptor tyrosine phosphatase CD45 is expressed on the surface of almost all cells of hematopoietic origin. CD45 functions are central to the development of T cells and determine the threshold at which T and B lymphocytes can become activated. Given this pivotal role of CD45 in the immune system, it is probably not surprising that viruses interfere with the activity of CD45 in lymphocytes to dampen the immune response and that they also utilize this molecule to accomplish their replication cycle. Here we report what is known about the interaction of viral proteins with CD45. Moreover, we debate putative interactions of viruses with CD45 in myeloid cells and the resulting consequences-subjects that remain to be investigated. Finally, we summarize the evidence that pathogens were the driving force for the evolution of CD45.
Collapse
|
23
|
Brinkmann MM, Dağ F, Hengel H, Messerle M, Kalinke U, Čičin-Šain L. Cytomegalovirus immune evasion of myeloid lineage cells. Med Microbiol Immunol 2015; 204:367-82. [PMID: 25776081 DOI: 10.1007/s00430-015-0403-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/28/2015] [Indexed: 12/23/2022]
Abstract
Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Schorn T, Drago F, Tettamanti G, Valvassori R, de Eguileor M, Vizioli J, Grimaldi A. Homolog of allograft inflammatory factor-1 induces macrophage migration during innate immune response in leech. Cell Tissue Res 2014; 359:853-64. [PMID: 25435328 DOI: 10.1007/s00441-014-2058-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
Allograft inflammatory factor-1 (AIF-1) is a 17-kDa cytokine-inducible calcium-binding protein that, in vertebrates, plays an important role in the allograft immune response. Its expression is mostly limited to the monocyte/macrophage lineage. Until recently, AIF-1 was assumed to be a novel molecule involved in inflammatory responses. To clarify this aspect, we have investigated the expression of AIF-1 after bacterial challenge and its potential role in regulating the innate immune response in an invertebrate model, the medicinal leech (Hirudo medicinalis). Analysis of an expressed sequence tag library from the central nervous system of Hirudo revealed the presence of the gene Hmaif-1/alias Hmiba1, showing high homology with vertebrate aif-1. Immunohistochemistry with an anti-HmAIF-1 polyclonal antibody revealed the constitutive presence of this protein in spread CD68(+) macrophage-like cells. A few hours after pathogen (bacterial) injection into the body wall, the amount of these immunopositive cells co-expressing HmAIF-1 and the common leucocyte marker CD45 increased at the injected site. Moreover, the recombinant protein HmAIF-1 induced massive angiogenesis and was a potent chemoattractant for macrophages. Following rHmAIF-1 stimulation, macrophage-like cells co-expressed the macrophage marker CD68 and the surface glycoprotein CD45, which, in vertebrates, seems to have a role in the integrin-mediated adhesion of macrophages and in the regulation of the functional responsiveness of cells to chemoattractants. CD45 is therefore probably involved in leech macrophage-like cell activation and migration towards an inflammation site. We have also examined its potential effect on HmAIF-1-induced signalling.
Collapse
Affiliation(s)
- Tilo Schorn
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
Collapse
|
26
|
Galvan MD, Hulsebus H, Heitker T, Zeng E, Bohlson SS. Complement protein C1q and adiponectin stimulate Mer tyrosine kinase-dependent engulfment of apoptotic cells through a shared pathway. J Innate Immun 2014; 6:780-92. [PMID: 24942043 DOI: 10.1159/000363295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/28/2014] [Indexed: 12/25/2022] Open
Abstract
The failure to clear apoptotic cells is linked to defects in development and autoimmunity. Complement component C1q is required for efficient engulfment of apoptotic cells (efferocytosis), and C1q deficiency leads to the development of lupus. We recently identified a novel molecular mechanism for C1q-dependent efferocytosis in murine macrophages. C1q elicited the expression of Mer tyrosine kinase (Mer), a receptor that regulates efficient efferocytosis and prevention of autoimmunity. To characterize the C1q-dependent signal transduction mechanism, pathway analysis of the transcriptome from C1q-activated macrophages was performed, and it identified the adiponectin signaling pathway as significantly upregulated with C1q. Adiponectin is structurally homologous to C1q and regulates cellular metabolism via downstream activation of 5'adenosine monophosphate-activated protein kinase (AMPK). Macrophage stimulation with C1q resulted in the activation of AMPK, and silencing of AMPK expression using siRNA-inhibited C1q-dependent efferocytosis. Adiponectin signaling also stimulates activation of nuclear receptors, and inhibition of the nuclear receptor retinoid X receptor abrogated C1q-dependent Mer expression and efferocytosis. Furthermore, adiponectin elicited Mer expression and Mer-dependent efferocytosis in macrophages similar to cells stimulated with C1q. Collectively, our results suggest that C1q and adiponectin share a common signal transduction cascade to promote clearance of apoptotic cells, and identify a novel molecular pathway required for efficient efferocytosis.
Collapse
Affiliation(s)
- Manuel D Galvan
- Department of Microbiology and Immunology, Des Moines University, Des Moines, Iowa, USA
| | | | | | | | | |
Collapse
|
27
|
Williamson AJK, Pierce A, Jaworska E, Zhou C, Aspinall-O'Dea M, Lancashire L, Unwin RD, Abraham SA, Walker MJ, Cadecco S, Spooncer E, Holyoake TL, Whetton AD. A specific PTPRC/CD45 phosphorylation event governed by stem cell chemokine CXCL12 regulates primitive hematopoietic cell motility. Mol Cell Proteomics 2013; 12:3319-29. [PMID: 23997015 DOI: 10.1074/mcp.m112.024604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CXCL12 governs cellular motility, a process deregulated by hematopoietic stem cell oncogenes such as p210-BCR-ABL. A phosphoproteomics approach to the analysis of a hematopoietic progenitor cell line treated with CXCL12 and the Rac 1 and 2 inhibitor NSC23766 has been employed to objectively discover novel mechanisms for regulation of stem cells in normal and malignant hematopoiesis. The proteomic data sets identified new aspects of CXCL12-mediated signaling and novel features of stem cell regulation. We also identified a novel phosphorylation event in hematopoietic progenitor cells that correlated with motile response and governed by the chemotactic factor CXCL12. The novel phosphorylation site on PTPRC/CD45; a protein tyrosine phosphatase, was validated by raising an antibody to the site and also using a mass spectrometry absolute quantification strategy. Site directed mutagenesis and inhibitor studies demonstrated that this single phosphorylation site governs hematopoietic progenitor cell and lymphoid cell motility, lies downstream from Rac proteins and potentiates Src signaling. We have also demonstrated that PTPRC/CD45 is down-regulated in leukemogenic tyrosine kinase expressing cells. The use of discovery proteomics has enabled further understanding of the regulation of PTPRC/CD45 and its important role in cellular motility in progenitor cells.
Collapse
Affiliation(s)
- Andrew J K Williamson
- Stem Cell and Leukaemia Proteomics Laboratory, School of Cancer and Enabling Sciences, Manchester Academic Health Science Centre, University of Manchester, 27 Palatine Rd, Manchester, M20 4QL
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Taher TE, Muhammad HA, Rahim A, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA. Aberrant B-lymphocyte responses in lupus: inherent or induced and potential therapeutic targets. Eur J Clin Invest 2013; 43:866-80. [PMID: 23701475 DOI: 10.1111/eci.12111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lupus is a prototype autoimmune disease of unknown aetiology. The disease is complex; manifest diverse clinical symptoms and disease mechanisms. This complexity has provided many leads to explore: from disease mechanisms to approaches for therapy. B-lymphocytes play a central role in the pathogenesis of the disease. However, the cause of aberrant B-lymphocyte responses in patients and, indeed, its causal relationship with the disease remain unclear. DESIGN This article provides a synopsis of current knowledge of immunological abnormalities in lupus with an emphasis on abnormalities in the B-lymphocyte compartment. RESULTS There is evidence for abnormalities in most compartments of the immune system in animal models and patients with lupus including an ever expanding list of abnormalities within the B-lymphocyte compartment. In addition, recent genome-wide linkage analyses in large cohorts of patients have identified new sets of genetic association factors some with potential links with defective B-lymphocyte responses although their full pathophysiological effects remain to be determined. The accumulating knowledge may help in the identification and application of new targeted therapies for treating lupus disease. CONCLUSIONS Cellular, molecular and genetic studies have provided significant insights into potential causes of immunological defects associated with lupus. Most of this insight relate to defects in B- and T-lymphocyte tolerance, signalling and responses. For B-lymphocytes, there is evidence for altered regulation of inter and intracellular signalling pathways at multiple levels. Some of these abnormalities will be discussed within the context of potential implications for disease pathogenesis and targeted therapies.
Collapse
Affiliation(s)
- Taher E Taher
- Bone & Joint Research Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
St-Pierre J, Ostergaard HL. A role for the protein tyrosine phosphatase CD45 in macrophage adhesion through the regulation of paxillin degradation. PLoS One 2013; 8:e71531. [PMID: 23936270 PMCID: PMC3729947 DOI: 10.1371/journal.pone.0071531] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Hanne L. Ostergaard
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
30
|
Taher TE, Muhammad HA, Bariller E, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA. B-lymphocyte signalling abnormalities and lupus immunopathology. Int Rev Immunol 2013; 32:428-44. [PMID: 23768155 DOI: 10.3109/08830185.2013.788648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lupus is a complex autoimmune rheumatic disease of unknown aetiology. The disease is associated with diverse features of immunological abnormality in which B-lymphocytes play a central role. However, the cause of atypical B-lymphocyte responses remains unclear. In this article, we provide a synopsis of current knowledge on intracellular signalling abnormalities in B-lymphocytes in lupus and their potential effects on the response of these cells in mouse models and in patients. There are numerous reported defects in the regulation of intracellular signalling proteins and pathways in B-lymphocytes in lupus that, potentially, affect critical biological responses. Most of the evidence for these defects comes from studies of disease models and genetically engineered mice. However, there is also increasing evidence from studying B-lymphocytes from patients and from genome-wide linkage analyses for parallel defects to those observed in mice. These studies provide molecular and genetic explanations for the key immunological abnormalities associated with lupus. Most of the new information appears to relate to defects in intracellular signalling that impact B-lymphocyte tolerance, cytokine production and responses to infections. Some of these abnormalities will be discussed within the context of disease pathogenesis.
Collapse
Affiliation(s)
- Taher E Taher
- Bone & Joint Research Unit, William Harvey Research Institute, Barts
| | | | | | | | | | | | | |
Collapse
|
31
|
Myosin II-dependent exclusion of CD45 from the site of Fcγ receptor activation during phagocytosis. FEBS Lett 2012; 586:3229-35. [DOI: 10.1016/j.febslet.2012.06.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022]
|
32
|
Marozzi C, Bertoni F, Randelli E, Buonocore F, Timperio AM, Scapigliati G. A monoclonal antibody for the CD45 receptor in the teleost fish Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:342-353. [PMID: 22504161 DOI: 10.1016/j.dci.2012.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 05/31/2023]
Abstract
The CD45 tyrosine phosphatase plays an important role in regulating T lymphocyte activation in vertebrate species. In this study we describe some molecular and functional features of the CD45 receptor molecule from the European sea bass Dicentrarchus labrax. Following immunization with fixed sea bass thymocytes, we obtained a murine monoclonal antibody (mAb) able to stain fish leucocytes both alive, by immunofluorescence of thymus and mucosal tissues, and fixed, by in situ immunohistochemistry of tissue sections. The selected IgG(2) mAb (DLT22) was able to recognise by western blots polypeptides mainly at 180 kDa and 130 kDa in thymus, spleen, intestine and gill leucocyte. Accordingly, a 130 kDa polypeptide immunoprecipitated with DLT22 from thymocytes and analysed by nano-RP-HPLC-ESI-MS/MS, gave peptide sequences homologous to Fugu CD45, that were employed for the homology cloning of a partial sea bass CD45 cDNA sequence. This cDNA sequence was employed to measure by quantitative PCR the transcription of the CD45 gene both in unstimulated and in in vitro stimulated leucocytes, showing that the gene transcription was specifically modulated by LPS, ConA, PHA, IL-1, and poly I:C. When splenocytes were stimulated in vitro with ConA and PHA, a cell proliferation paralleled by an increase of DLT22-positive leucocytes was also observed. These data indicate that the DLT22 mAb recognizes a putative CD45 molecule in sea bass, documenting the presence of CD45-like developing lymphocytes in thymus and CD45-associated functional stages of lymphocytes in this species, thus dating back to teleost fish the functional activities of these cell populations in vertebrates.
Collapse
Affiliation(s)
- Catia Marozzi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Galvan MD, Foreman DB, Zeng E, Tan JC, Bohlson SS. Complement component C1q regulates macrophage expression of Mer tyrosine kinase to promote clearance of apoptotic cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:3716-23. [PMID: 22422887 DOI: 10.4049/jimmunol.1102920] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Failure to efficiently clear apoptotic cells is linked to defects in development and the onset of autoimmunity. Complement component C1q is required for efficient engulfment of apoptotic cells in mice and humans; however, the molecular mechanisms leading to C1q-dependent engulfment are not fully understood. In this study, we used primary mouse macrophages to identify and characterize a novel molecular mechanism for macrophage-mediated C1q-dependent engulfment of apoptotic cells. We found that macrophage activation with C1q resulted in cycloheximide-sensitive enhanced engulfment, indicating a requirement for de novo protein synthesis. To investigate the cycloheximide-sensitive pathway, C1q-elicited macrophage transcripts were identified by microarray. C1q triggered the expression of Mer tyrosine kinase (Mer) and the Mer ligand growth arrest-specific 6: a receptor-ligand pair that mediates clearance of apoptotic cells. Full-length native C1q, and not the collagen-like tail or heat-denatured protein, stimulated Mer expression. This novel pathway is specific to C1q because mannose-binding lectin, a related collectin, failed to upregulate Mer expression and function. Soluble Mer-Fc fusion protein inhibited C1q-dependent engulfment of apoptotic cells, indicating a requirement for Mer. Moreover, Mer-deficient macrophages failed to respond to C1q with enhanced engulfment. Our results suggest that C1q elicits a macrophage phenotype specifically tailored for apoptotic cell clearance, and these data are consistent with the established requirement for C1q in prevention of autoimmunity.
Collapse
Affiliation(s)
- Manuel D Galvan
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
34
|
Greenlee-Wacker MC, Briseño C, Galvan M, Moriel G, Velázquez P, Bohlson SS. Membrane-associated CD93 regulates leukocyte migration and C1q-hemolytic activity during murine peritonitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:3353-61. [PMID: 21849679 PMCID: PMC3169757 DOI: 10.4049/jimmunol.1100803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD93 is emerging as a novel regulator of inflammation; however, its molecular function is unknown. CD93 exists as a membrane-associated glycoprotein on the surface of cells involved in the inflammatory cascade, including endothelial and myeloid cells. A soluble form (sCD93) is detectable in blood and is elevated with inflammation. In this study, we demonstrate heightened susceptibility to thioglycollate-induced peritonitis in CD93(-/-) mice. CD93(-/-) mice showed a 1.6-1.8-fold increase in leukocyte infiltration during thioglycollate-induced peritonitis between 3 and 24 h that returned to wild type levels by 96 h. Impaired vascular integrity in CD93(-/-) mice during peritonitis was demonstrated using fluorescence multiphoton intravital microscopy; however, no differences in cytokine or chemokine levels were detected with Luminex Multiplex or ELISA analysis. C1q-hemolytic activity in CD93(-/-) mice was decreased by 22% at time zero and by 46% 3 h after thioglycollate injection, suggesting a defect in the classical complement pathway. Leukocyte recruitment and C1q-hemolytic activity was restored to wild type levels when CD93 was expressed on either hematopoietic cells or nonhematopoietic cells in bone marrow chimeric mice. However, elevated levels of sCD93 in inflammatory fluid were observed only when CD93 was expressed on nonhematopoietic cells. Because cell-associated CD93 was sufficient to restore a normal inflammatory response, these data suggest that cell-associated CD93, and not sCD93, regulates leukocyte recruitment and complement activation during murine peritonitis.
Collapse
Affiliation(s)
- Mallary C. Greenlee-Wacker
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Carlos Briseño
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Manuel Galvan
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN 46617
| | - Gabriela Moriel
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Peter Velázquez
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN 46617
| | - Suzanne S. Bohlson
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN 46617
| |
Collapse
|
35
|
Shivtiel S, Lapid K, Kalchenko V, Avigdor A, Goichberg P, Kalinkovich A, Nagler A, Kollet O, Lapidot T. CD45 regulates homing and engraftment of immature normal and leukemic human cells in transplanted immunodeficient mice. Exp Hematol 2011; 39:1161-1170.e1. [PMID: 21911094 DOI: 10.1016/j.exphem.2011.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/21/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Bone marrow homing and engraftment by clinically transplanted hematopoietic stem and progenitor cells is a complex process that is not fully understood. We report that the pan-leukocyte CD45 phosphatase plays an essential role in trafficking and repopulation of the bone marrow by immature human CD34(+) cells and leukemic cells in transplanted nonobese diabetic severe combined immunodeficient mice. Inhibiting CD45 function by blocking antibodies or a CD45 inhibitor impaired the motility of both normal and leukemic human cells. Blocking CD45 inhibited homing and repopulation by immature human CD34(+) cells as well as homing of primary patient leukemic cells. In addition, CD45 inhibition negatively affected development of hematopoietic progenitors in vitro and their recovery in transplanted recipients in vivo, revealing the central role of CD45 in the regulation of hematopoiesis. Moreover, CD45 blockage induced a hyperadhesive phenotype in immature human progenitor cells as well as in murine leukocytes, leading to their defective adhesion interactions with endothelial cells. This phenotype was further manifested by the ability of CD45 blockage to prevent breakdown of adhesion interactions in the BM, which inhibited murine progenitor mobilization. The substantial effects of a direct CD45 inhibition point at its essential roles in cell trafficking, including murine progenitor cell mobilization and both normal immature and leukemic human hematopoietic cells as well as regulation of hematopoiesis and engraftment potential.
Collapse
Affiliation(s)
- Shoham Shivtiel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ait-Ali T, Wilson AD, Carré W, Westcott DG, Frossard JP, Mellencamp MA, Mouzaki D, Matika O, Waddington D, Drew TW, Bishop SC, Archibald AL. Host inhibits replication of European porcine reproductive and respiratory syndrome virus in macrophages by altering differential regulation of type-I interferon transcriptional response. Immunogenetics 2011; 63:437-48. [PMID: 21380581 DOI: 10.1007/s00251-011-0518-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by a positive RNA strand arterivirus. PRRS virus (PRRSV) interacts primarily with lung macrophages. Little is known how the virus subverts the innate immune response to initiate its replication in alveolar macrophages. Large-scale transcriptional responses of macrophages with different levels of susceptibility to PRRSV infection were compared over 30 h of infection. This study demonstrates a rapid and intense host transcriptional remodelling during the early phase of the replication of the virus which correlates with transient repression of type-I interferon transcript as early as 8 h post-infection. These results support the suggestion from previous studies that host innate immune response inhibits replication of European porcine reproductive and respiratory syndrome virus in macrophages by altering differential regulation of type-I interferon transcriptional response.
Collapse
Affiliation(s)
- Tahar Ait-Ali
- The Roslin Institute and Royal Dick School of Veterinary Studies, The University of Edinburgh, Roslin, Midlothian EH25 9RG, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhu Y, Hou H, Rezai-Zadeh K, Giunta B, Ruscin A, Gemma C, Jin J, Dragicevic N, Bradshaw P, Rasool S, Glabe CG, Ehrhart J, Bickford P, Mori T, Obregon D, Town T, Tan J. CD45 deficiency drives amyloid-β peptide oligomers and neuronal loss in Alzheimer's disease mice. J Neurosci 2011; 31:1355-65. [PMID: 21273420 PMCID: PMC3068193 DOI: 10.1523/jneurosci.3268-10.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 12/23/2022] Open
Abstract
Converging lines of evidence indicate dysregulation of the key immunoregulatory molecule CD45 (also known as leukocyte common antigen) in Alzheimer's disease (AD). We report that transgenic mice overproducing amyloid-β peptide (Aβ) but deficient in CD45 (PSAPP/CD45(-/-) mice) faithfully recapitulate AD neuropathology. Specifically, we find increased abundance of cerebral intracellular and extracellular soluble oligomeric and insoluble Aβ, decreased plasma soluble Aβ, increased abundance of microglial neurotoxic cytokines tumor necrosis factor-α and interleukin-1β, and neuronal loss in PSAPP/CD45(-/-) mice compared with CD45-sufficient PSAPP littermates (bearing mutant human amyloid precursor protein and mutant human presenilin-1 transgenes). After CD45 ablation, in vitro and in vivo studies demonstrate an anti-Aβ phagocytic but proinflammatory microglial phenotype. This form of microglial activation occurs with elevated Aβ oligomers and neural injury and loss as determined by decreased ratio of anti-apoptotic Bcl-xL to proapoptotic Bax, increased activated caspase-3, mitochondrial dysfunction, and loss of cortical neurons in PSAPP/CD45(-/-) mice. These data show that deficiency in CD45 activity leads to brain accumulation of neurotoxic Aβ oligomers and validate CD45-mediated microglial clearance of oligomeric Aβ as a novel AD therapeutic target.
Collapse
Affiliation(s)
- Yuyan Zhu
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Medicine, College of Medicine, University of South Florida, Tampa, Florida 33613
| | - Huayan Hou
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and
| | - Kavon Rezai-Zadeh
- Department of Biomedical Sciences, Research Divisions of Neurobiology and Immunology, Regenerative Medicine Institute and
| | - Brian Giunta
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Medicine, College of Medicine, University of South Florida, Tampa, Florida 33613
| | - Amanda Ruscin
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Medicine, College of Medicine, University of South Florida, Tampa, Florida 33613
| | | | - JingJi Jin
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Medicine, College of Medicine, University of South Florida, Tampa, Florida 33613
| | - Natasa Dragicevic
- Department of Biology, College of Arts and Science, University of South Florida, Tampa, Florida 33613
| | - Patrick Bradshaw
- Department of Biology, College of Arts and Science, University of South Florida, Tampa, Florida 33613
| | - Suhail Rasool
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697
| | - Jared Ehrhart
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Medicine, College of Medicine, University of South Florida, Tampa, Florida 33613
| | - Paula Bickford
- Departments of Neurosurgery and Brain Repair
- James A. Haley Veterans Affairs Medical Center, Tampa, Florida 33612
| | - Takashi Mori
- Departments of Biomedical Sciences and Pathology, Saitama Medical Center/Saitama Medical University, Kawagoe, Saitama 350-8550, Japan, and
| | - Demian Obregon
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Medicine, College of Medicine, University of South Florida, Tampa, Florida 33613
| | - Terrence Town
- Department of Biomedical Sciences, Research Divisions of Neurobiology and Immunology, Regenerative Medicine Institute and
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90048
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Medicine, College of Medicine, University of South Florida, Tampa, Florida 33613
- James A. Haley Veterans Affairs Medical Center, Tampa, Florida 33612
| |
Collapse
|
38
|
Ruela-de-Sousa RR, Queiroz KCS, Peppelenbosch MP, Fuhler GM. Reversible phosphorylation in haematological malignancies: potential role for protein tyrosine phosphatases in treatment? Biochim Biophys Acta Rev Cancer 2010; 1806:287-303. [PMID: 20659529 DOI: 10.1016/j.bbcan.2010.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 01/12/2023]
Abstract
Most aspects of leukocyte physiology are under the control of reversible tyrosine phosphorylation. It is clear that excessive phosphorylation of signal transduction elements is a pivotal element of many different pathologies including haematological malignancies and accordingly, strategies that target such phosphorylation have clinically been proven highly successful for treatment of multiple types of leukemias and lymphomas. Cellular phosphorylation status is dependent on the resultant activity of kinases and phosphatases. The cell biology of the former is now well understood; for most cellular phosphoproteins we now know the kinases responsible for their phosphorylation and we understand the principles of their aberrant activity in disease. With respect to phosphatases, however, our knowledge is much patchier. Although the sequences of whole genomes allow us to identify phosphatases using in silico methodology, whereas transcription profiling allows us to understand how phosphatase expression is regulated during disease, most functional questions as to substrate specificity, dynamic regulation of phosphatase activity and potential for therapeutic intervention are still to a large degree open. Nevertheless, recent studies have allowed us to make meaningful statements on the role of tyrosine phosphatase activity in the three major signaling pathways that are commonly affected in leukemias, i.e. the Ras-Raf-ERK1/2, the Jak-STAT and the PI3K-PKB-mTOR pathways. Lessons learned from these pathways may well be applicable elsewhere in leukocyte biology as well.
Collapse
Affiliation(s)
- Roberta R Ruela-de-Sousa
- Center for Experimental and Molecular Medicine, Academic Medical Center, Meibergdreef 9 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
39
|
Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 2010; 22:339-48. [PMID: 19861160 DOI: 10.1016/j.cellsig.2009.10.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 01/01/2023]
Abstract
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.
Collapse
Affiliation(s)
- A E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
40
|
Chen K, Craige SE, Keaney JF. Downstream targets and intracellular compartmentalization in Nox signaling. Antioxid Redox Signal 2009; 11:2467-80. [PMID: 19309256 PMCID: PMC2861540 DOI: 10.1089/ars.2009.2594] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) have become recognized for their role as second messengers in a multitude of physiologic responses. Emerging evidence points to the importance of the NADPH oxidase family of ROS-producing enzymes in mediating redox-sensitive signal transduction. However, a clear paradox exists between the specificity required for signaling and the nature of ROS as both diffusible and highly reactive molecules. We seek to understand the targets and compartmentalization of the NADPH oxidase signaling to determine how NADPH oxidase-derived ROS fit into established signaling paradigms. Herein we review recent data that link cellular NADPH oxidase enzymes to ROS signaling, with a particular focus on the mechanism(s) involved in achieving signaling specificity.
Collapse
Affiliation(s)
- Kai Chen
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
41
|
Reduced Levels of Protein Tyrosine Phosphatase CD45 Protect Mice from the Lethal Effects of Ebola Virus Infection. Cell Host Microbe 2009; 6:162-73. [DOI: 10.1016/j.chom.2009.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/16/2009] [Accepted: 07/14/2009] [Indexed: 01/01/2023]
|
42
|
Greenlee MC, Sullivan SA, Bohlson SS. Detection and characterization of soluble CD93 released during inflammation. Inflamm Res 2009; 58:909-19. [DOI: 10.1007/s00011-009-0064-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 06/24/2009] [Indexed: 11/30/2022] Open
|
43
|
Hermiston ML, Zikherman J, Zhu JW. CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev 2009; 228:288-311. [PMID: 19290935 PMCID: PMC2739744 DOI: 10.1111/j.1600-065x.2008.00752.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reciprocal regulation of tyrosine phosphorylation by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) is central to normal immune cell function. Disruption of the equilibrium between PTK and PTP activity can result in immunodeficiency, autoimmunity, or malignancy. Src family kinases (SFKs) play a central role in both immune cell function and disease due to their proximal position in numerous signal transduction cascades including those emanating from integrin, T and B-cell antigen receptors, Fc, growth factor, and cytokine receptors. Given that tight regulation of SFKs activity is critical for appropriate responses to stimulation of these various signaling pathways, it is perhaps not surprising that multiple PTPs are involved in their regulation. Here, we focus on the role of three phosphatases, CD45, CD148, and LYP/PEP, which are critical regulators of SFKs in hematopoietic cells. We review our current understanding of their structures, expression, functions in different hematopoietic cell subsets, regulation, and putative roles in disease. Finally, we discuss remaining questions that must be addressed if we are to have a clearer understanding of the coordinated regulation of tyrosine phosphorylation and signaling networks in hematopoietic cells and how they could potentially be manipulated therapeutically in disease.
Collapse
Affiliation(s)
- Michelle L. Hermiston
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-2413, Fax: 415-502-5127,
| | - Julie Zikherman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| | - Jing W. Zhu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, Phone: 415-476-4115, Fax: 502-5081, ;
| |
Collapse
|
44
|
N'Diaye EN, Branda CS, Branda SS, Nevarez L, Colonna M, Lowell C, Hamerman JA, Seaman WE. TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J Cell Biol 2009; 184:215-23. [PMID: 19171755 PMCID: PMC2654305 DOI: 10.1083/jcb.200808080] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/24/2008] [Indexed: 12/24/2022] Open
Abstract
Phagocytosis, which is essential for the immune response to pathogens, is initiated by specific interactions between pathogens and cell surface receptors expressed by phagocytes. This study identifies triggering receptor expressed on myeloid cells 2 (TREM-2) and its signaling counterpart DAP12 as a molecular complex that promotes phagocytosis of bacteria. Expression of TREM-2-DAP12 enables nonphagocytic Chinese hamster ovary cells to internalize bacteria. This function depends on actin cytoskeleton dynamics and the activity of the small guanosine triphosphatases Rac and Cdc42. Internalization also requires src kinase activity and tyrosine phosphorylation. In bone marrow-derived macrophages, phagocytosis is decreased in the absence of DAP12 and can be restored by expression of TREM-2-DAP12. Depletion of TREM-2 inhibits both binding and uptake of bacteria. Finally, TREM-2-dependent phagocytosis is impaired in Syk-deficient macrophages. This study highlights a novel role for TREM-2-DAP12 in the immune response to bacterial pathogens.
Collapse
Affiliation(s)
- Elsa-Noah N'Diaye
- Macrophage Biology Laboratory, San Francisco VA Medical Center, San Francisco, CA 94121
| | | | | | - Lisette Nevarez
- Macrophage Biology Laboratory, San Francisco VA Medical Center, San Francisco, CA 94121
| | - Marco Colonna
- Washington University School of Medicine, St. Louis, MO 63110
| | - Clifford Lowell
- University of California, San Francisco, San Francisco, CA 94143
| | | | - William E. Seaman
- Macrophage Biology Laboratory, San Francisco VA Medical Center, San Francisco, CA 94121
| |
Collapse
|
45
|
Wong NKY, Lai JCY, Birkenhead D, Shaw AS, Johnson P. CD45 down-regulates Lck-mediated CD44 signaling and modulates actin rearrangement in T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:7033-43. [PMID: 18981123 DOI: 10.4049/jimmunol.181.10.7033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tyrosine phosphatase CD45 dephosphorylates the negative regulatory tyrosine of the Src family kinase Lck and plays a positive role in TCR signaling. In this study we demonstrate a negative regulatory role for CD45 in CD44 signaling leading to actin rearrangement and cell spreading in activated thymocytes and T cells. In BW5147 T cells, CD44 ligation led to CD44 and Lck clustering, which generated a reduced tyrosine phosphorylation signal in CD45(+) T cells and a more sustained, robust tyrosine phosphorylation signal in CD45(-) T cells. This signal resulted in F-actin ring formation and round spreading in the CD45(+) cells and polarized, elongated cell spreading in CD45(-) cells. The enhanced signal in the CD45(-) cells was consistent with enhanced Lck Y394 phosphorylation compared with the CD45(+) cells where CD45 was recruited to the CD44 clusters. This enhanced Src family kinase-dependent activity in the CD45(-) cells led to PI3K and phospholipase C activation, both of which were required for elongated cell spreading. We conclude that CD45 induces the dephosphorylation of Lck at Y394, thereby preventing sustained Lck activation and propose that the amplitude of the Src family kinase-dependent signal regulates the outcome of CD44-mediated signaling to the actin cytoskeleton and T cell spreading.
Collapse
Affiliation(s)
- Nelson K Y Wong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
46
|
Vacaresse N, Møller B, Danielsen EM, Okada M, Sap J. Activation of c-Src and Fyn kinases by protein-tyrosine phosphatase RPTPalpha is substrate-specific and compatible with lipid raft localization. J Biol Chem 2008; 283:35815-24. [PMID: 18948260 DOI: 10.1074/jbc.m807964200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src family tyrosine kinases (SFKs) function in multiple signaling pathways, raising the question of how appropriate regulation and substrate choice are achieved. SFK activity is modulated by several protein-tyrosine phosphatases, among which RPTPalpha and SHP2 are the best established. We studied how RPTPalpha affects substrate specificity and regulation of c-Src and Fyn in response to epidermal growth factor and platelet-derived growth factor. We find that RPTPalpha, in a growth factor-specific manner, directs the specificity of these kinases toward a specific subset of SFK substrates, particularly the focal adhesion protein Paxillin and the lipid raft scaffolding protein Cbp/PAG. A significant fraction of RPTPalpha is present in lipid rafts, where its targets Fyn and Cbp/PAG reside, and growth factor-mediated SFK activation within this compartment is strictly dependent on RPTPalpha. Forced concentration of RPTPalpha into lipid rafts is compatible with activation of Fyn. Finally, RPTPalpha-induced phosphorylation of Paxillin and Cbp/PAG induces recruitment of the SFK inhibitory kinase Csk, indicative of negative feedback loops limiting SFK activation by RPTPalpha. Our findings indicate that individual SFK-controlling PTPs play important and specific roles in dictating SFK substrate specificity and regulatory mechanism.
Collapse
Affiliation(s)
- Nathalie Vacaresse
- Biotech Research and Innovation Center, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
47
|
Shivtiel S, Kollet O, Lapid K, Schajnovitz A, Goichberg P, Kalinkovich A, Shezen E, Tesio M, Netzer N, Petit I, Sharir A, Lapidot T. CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. ACTA ACUST UNITED AC 2008; 205:2381-95. [PMID: 18779349 PMCID: PMC2556782 DOI: 10.1084/jem.20080072] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor kappaB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments.
Collapse
Affiliation(s)
- Shoham Shivtiel
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cross JL, Kott K, Miletic T, Johnson P. CD45 regulates TLR-induced proinflammatory cytokine and IFN-beta secretion in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:8020-9. [PMID: 18523265 DOI: 10.4049/jimmunol.180.12.8020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD45 is a leukocyte-specific protein tyrosine phosphatase and an important regulator of AgR signaling in lymphocytes. However, its function in other leukocytes is not well-understood. In this study, we examine the function of CD45 in dendritic cells (DCs). Analysis of DCs from CD45-positive and CD45-null mice revealed that CD45 is not required for the development of DCs but does influence DC maturation induced by TLR agonists. CD45 affected the phosphorylation state of Lyn, Hck, and Fyn in bone marrow-derived DCs and dysregulated LPS-induced Lyn activation. CD45 affected TLR4-induced proinflammatory cytokine and IFN-beta secretion and TLR4-activated CD45-null DCs had a reduced ability to activate NK and Th1 cells to produce IFN-gamma. Interestingly, the effect of CD45 on TLR-induced cytokine secretion depended on the TLR activated. Analysis of CD45-negative DCs indicated a negative effect of CD45 on TLR2 and 9, MyD88-dependent cytokine production, and a positive effect on TLR3 and 4, MyD88-independent IFN-beta secretion. This indicates a new role for CD45 in regulating TLR-induced responses in DCs and implicates CD45 in a wider regulatory role in innate and adaptive immunity.
Collapse
Affiliation(s)
- Jennifer L Cross
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
49
|
Guiet R, Poincloux R, Castandet J, Marois L, Labrousse A, Le Cabec V, Maridonneau-Parini I. Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – From signaling and actin reorganization to migration and phagocytosis. Eur J Cell Biol 2008; 87:527-42. [DOI: 10.1016/j.ejcb.2008.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 01/21/2023] Open
|
50
|
Lillis AP, Greenlee MC, Mikhailenko I, Pizzo SV, Tenner AJ, Strickland DK, Bohlson SS. Murine low-density lipoprotein receptor-related protein 1 (LRP) is required for phagocytosis of targets bearing LRP ligands but is not required for C1q-triggered enhancement of phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:364-73. [PMID: 18566402 PMCID: PMC2663906 DOI: 10.4049/jimmunol.181.1.364] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C1q and members of the defense collagen family are pattern recognition molecules that bind to pathogens and apoptotic cells and trigger a rapid enhancement of phagocytic activity. Candidate phagocytic cell receptors responsible for the enhancement of phagocytosis by defense collagens have been proposed but not yet discerned. Engagement of phagocyte surface-associated calreticulin in complex with the large endocytic receptor, low-density lipoprotein receptor-related protein 1 (LRP/CD91), by defense collagens has been suggested as one mechanism governing enhanced ingestion of C1q-coated apoptotic cells. To investigate this possibility, macrophages were derived from transgenic mice genetically deficient in LRP resulting from tissue-specific loxP/Cre recombination. LRP-deficient macrophages were impaired in their ability to ingest beads coated with an LRP ligand when compared with LRP-expressing macrophages, confirming for the first time that LRP participates in phagocytosis. When LRP-deficient and -expressing macrophages were plated on C1q-coated slides, they demonstrated equivalently enhanced phagocytosis of sheep RBC suboptimally opsonized with IgG or complement, compared with cells plated on control protein. In addition, LRP-deficient and -expressing macrophages ingested equivalent numbers of apoptotic Jurkat cells in the presence and absence of serum. Both LRP-deficient and -expressing macrophages ingested fewer apoptotic cells when incubated in the presence of C1q-deficient serum compared with normal mouse serum, and the addition of purified C1q reconstituted uptake to control serum levels. These studies demonstrate a direct contribution of LRP to phagocytosis and indicate that LRP is not required for the C1q-triggered enhancement of phagocytosis, suggesting that other, still undefined, receptor(s) exist to mediate this important innate immune function.
Collapse
Affiliation(s)
- Anna P Lillis
- Center for Vascular and Inflammatory Diseases and Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|