1
|
Li X, Wang B, Wang X, Chen C, Zhan E, Lv Z, He Q, Hu Y, Zhang F. Vitamin D deficiency promotes intervertebral disc degeneration via p38/NCoR2-mediated extracellular matrix degradation. Eur J Nutr 2025; 64:163. [PMID: 40274653 DOI: 10.1007/s00394-025-03685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE Vitamin D (VD) deficiency significantly contributes to intervertebral disc degeneration (IDD), a common cause of low back pain, yet the underlying mechanisms remain unclear. This study investigates how VD deficiency exacerbates IDD and identifies potential therapeutic targets. METHODS We used real-time quantitative PCR, immunoblots, immunoprecipitation, liquid chromatography with tandem mass spectrometry analysis, co-immunoprecipitation, and chromatin immunoprecipitation to study gene and protein expressions, protein complex assembly, and transcriptional complex binding. Degeneration of IVDs was assessed via hematoxylin and eosin staining. RESULTS Eight members of ADAMTSs (A disintegrin and metalloproteinase with thrombospondin motifs) are enriched in lumbar discs of both VD-deficient and VD receptor (VDR)-knockout (VDR-/-) mice. Sufficient VD suppresses ADAMTS genes through a complex formed by nuclear receptor corepressor 2 (NCoR2) and signal transducer and activator of transcription 6 (STAT6). VD deficiency activates p38 kinase, leading to NCoR2 phosphorylation and subsequent degradation by a Cullin 4-RING (CRL4) E3 ligase, impairing NCoR2's transrepression function and upregulating ADAMTS genes, accelerating extracellular matrix (ECM) degradation in discs. This mechanism is replicated in VDR-deficient cells. In vitro treatments with p38 inhibitor (BIRB-796) and CRL4 inhibitor (KH-4-43) reduce ADAMTS expression, and in vivo application of these inhibitors improves disc integrity in VD-deficient mice. CONCLUSION Our findings highlight NCoR2 degradation, mediated by p38 kinase and CRL4 E3 ligase, as crucial in VD deficiency-induced IDD. Targeting this pathway offers promising therapeutic potential to mitigate IDD progression in individuals with VD deficiency or VDR abnormalities.
Collapse
Affiliation(s)
- Xingguo Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Wuhua District, Kunming, Yunnan, 650032, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Wuhua District, Kunming, Yunnan, 650032, China
| | - Xuenan Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Wuhua District, Kunming, Yunnan, 650032, China
| | - Chao Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Wuhua District, Kunming, Yunnan, 650032, China
| | - Enyu Zhan
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Wuhua District, Kunming, Yunnan, 650032, China
| | - Zhengpin Lv
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Wuhua District, Kunming, Yunnan, 650032, China
| | - Qicong He
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Wuhua District, Kunming, Yunnan, 650032, China
| | - Yaoquan Hu
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Wuhua District, Kunming, Yunnan, 650032, China
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Wuhua District, Kunming, Yunnan, 650032, China.
| |
Collapse
|
2
|
Jahanshir E, Llamas J, Kim Y, Biju K, Oak S, Gnedeva K. The Hippo pathway and p27 Kip1 cooperate to suppress mitotic regeneration in the organ of Corti and the retina. Proc Natl Acad Sci U S A 2025; 122:e2411313122. [PMID: 40178894 PMCID: PMC12002246 DOI: 10.1073/pnas.2411313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
The mature mammalian auditory sensory organ, the organ of Corti (OC), lacks the capacity for regenerating hair cells, leading to permanent hearing impairment. In contrast, the vestibular system has a limited capacity for hair cell regeneration, which we have shown to be further enhanced by inhibiting the Hippo pathway. Here, we demonstrate that, despite similar transcriptional responses, only vestibular and not auditory supporting cells proliferate as a result of Yap activation following Hippo inhibition. Mechanistically, we identify p27Kip1, a cell cycle kinase inhibitor encoded by Cdkn1b, as an additional barrier preventing cell cycle reentry specifically in the OC. We show that while in both systems Yap stimulates p27Kip1 degradation through activation of its direct target gene Skp2, this protein-level control is antagonized by an unusually high level of Cdkn1b transcription in the cochlea. Consequently, p27Kip1 activity is maintained in the OC even in the presence of constitutively active Yap5SA, counteracting its mitogenic effects. Supporting this model, inactivation of the Hippo pathway in the Cdkn1b-deficient background is sufficient to induce adult auditory supporting cell proliferation in vivo. Furthermore, we show that the synergistic interaction between Hippo and p27Kip1 is conserved in the retina where inhibition of both pathways potently induces Müller glia proliferation and initiates neuronal regeneration. Our work uncovers the molecular mechanism preventing quiescent adult sensory progenitor cells, supporting cells in the ear and Müller glia in the eye, from reentering the cell cycle after damage-the key step toward sensory receptor regeneration blocked in mammals.
Collapse
Affiliation(s)
- Eva Jahanshir
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Juan Llamas
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Yeeun Kim
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Kevin Biju
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Sanyukta Oak
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Ksenia Gnedeva
- University of Southern California Caruso Department of Otolaryngology—Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| |
Collapse
|
3
|
Hou J, Du Y, Cui H. RNF6 promotes cell proliferation of glioblastoma by targeting ubiquitin-mediated degradation of p27. Biochem Biophys Res Commun 2025; 752:151460. [PMID: 39938447 DOI: 10.1016/j.bbrc.2025.151460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
RNF6 (RING finger protein 6), an atypical RING-type ubiquitin ligase, has been reported to be a potential tumor promoter in several human cancers. However, the role of RNF6 in glioblastoma remains poorly understood. In this study, we found that RNF6 was highly expressed in glioblastoma tissues, and its elevated expression was significantly associated with poor prognosis in glioblastoma patients. RNF6 depletion remarkably inhibited cell growth of glioblastoma cells. Mechanistically, RNF6 depletion stabilized p27 protein expression. We demonstrated that RNF6 interacted with p27 and mediated its ubiquitination and degradation in an E3 ligase activity-dependent manner. Moreover, we provide the first evidence revealing the crucial role RNF6 in mediating SKP2 expression at both transcriptional and post-translational levels. On the one hand, RNF6 played as a transcription factor to regulate the activity of the SKP2 promoter. On the other hand, RNF6 interacted with SKP2 and stabilized its protein levels in an Akt-dependent manner. Collectively, our data indicated that RNF6 accelerated glioblastoma cell proliferation and tumorigenesis by targeting p27 for degradation.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 400716, China
| | - Yi Du
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China; Jinfeng Laboratory, Chongqing, 400716, China.
| |
Collapse
|
4
|
Stein CS, Linzer CR, Heer CD, Witmer NH, Cochran JD, Spitz DR, Boudreau RL. Mitoregulin Promotes Cell Cycle Progression in Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2025; 26:1939. [PMID: 40076565 PMCID: PMC11899852 DOI: 10.3390/ijms26051939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Mitoregulin (MTLN) is a 56-amino-acid mitochondrial microprotein known to modulate mitochondrial energetics. MTLN gene expression is elevated broadly across most cancers and has been proposed as a prognostic biomarker for non-small cell lung cancer (NSCLC). In addition, lower MTLN expression in lung adenocarcinoma (LUAD) correlates with significantly improved patient survival. In our studies, we have found that MTLN silencing in A549 NSCLC cells slowed proliferation and, in accordance with this, we observed the following: (1) increased proportion of cells in the G1 phase of cell cycle; (2) protein changes consistent with G1 arrest (e.g., reduced levels and/or reduced phosphorylation of ERK, MYC, CDK2, and RB, and elevated p27Kip1); (3) reduction in clonogenic cell survival and; (4) lower steady-state cytosolic and mitochondrial H2O2 levels as indicated by use of the roGFP2-Orp1 redox sensor. Conflicting with G1 arrest, we observed a boost in cyclin D1 abundance. We also tested MTLN silencing in combination with buthionine sulfoximine (BSO) and auranofin (AF), drugs that inhibit GSH synthesis and thioredoxin reductase, respectively, to elevate the reactive oxygen species (ROS) amount to a toxic range. Interestingly, clonogenic survival after drug treatment was greater for MTLN-silenced cultures versus the control cultures. Lower H2O2 output and reduced vulnerability to ROS damage due to G1 status may have jointly contributed to the partial BSO + AF resistance. Overall, our results provide evidence that MTLN fosters H2O2 signaling to propel G1/S transition and suggest MTLN silencing as a therapeutic strategy to limit NSCLC growth.
Collapse
Affiliation(s)
- Colleen S. Stein
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Connor R. Linzer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Collin D. Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.D.H.); (D.R.S.)
| | - Nathan H. Witmer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Jesse D. Cochran
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.D.H.); (D.R.S.)
| | - Ryan L. Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| |
Collapse
|
5
|
Tang W, Yu Y, Xu T. The interplay between extracellular and intracellular auxin signaling in plants. J Genet Genomics 2025; 52:14-23. [PMID: 38969259 DOI: 10.1016/j.jgg.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The phytohormone auxin exerts control over remarkable developmental processes in plants. It moves from cell to cell, resulting in the creation of both extracellular auxin and intracellular auxin, which are recognized by distinct auxin receptors. These two auxin signaling systems govern different auxin responses while working together to regulate plant development. In this review, we outline the latest research advancements in unraveling these auxin signaling pathways, encompassing auxin perception and signaling transductions. We emphasize the interaction between extracellular and intracellular auxin, which contributes to the intricate role of auxin in plant development.
Collapse
Affiliation(s)
- Wenxin Tang
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yongqiang Yu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tongda Xu
- Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
6
|
Tomar Y, Baidya M, Chadokiya J, Bhatt S, Singhvi G. An overview of Skp2: a promising new therapeutic target of psoriasis. Expert Opin Ther Targets 2024; 28:689-700. [PMID: 39086205 DOI: 10.1080/14728222.2024.2387604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Psoriasis is a chronic immune-mediated disorder affecting over 2-3% of the population worldwide, significantly impacting quality of life. Despite the availability of various therapeutic interventions, concerns persist regarding lesion recurrence and potential alterations in immune surveillance promoting cancer progression. Recent advancements in understanding cellular and molecular pathways have unveiled key factors in psoriasis etiology, including IL-17, 22, 23, TNF-α, PDE-4, JAK-STAT inhibitors, and AhR agonists. This work explores the potential of S-phase kinase-associated protein 2 (Skp2) as a therapeutic target in psoriasis. AREA COVERED This review covers the current understanding of psoriasis pathophysiology, including immune dysregulation, and the role of keratinocytes and ubiquitin. It also delves into Skp2 role in cell cycle regulation, and its correlation with angiogenesis and ubiquitin in psoriasis. The evolving therapeutic approaches targeting Skp2, including small molecule inhibitors, are also discussed. EXPERT OPINION Targeting Skp2 holds promise for developing novel therapeutic approaches for psoriasis. By modulating Skp2 activity or expression, it may be possible to intervene in inflammatory and proliferative processes underlying the disease. Further research into Skp2 inhibitors and their efficacy in preclinical and clinical settings is warranted to harness the full potential of Skp2 as a therapeutic target in psoriasis management.
Collapse
Affiliation(s)
- Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Moushumi Baidya
- Department of Pharmacy, Milestones Institute of Pharmaceutical Sciences, Udaipur, Tripura, India
| | - Jay Chadokiya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| |
Collapse
|
7
|
Cigliano A, Simile MM, Vidili G, Pes GM, Dore MP, Urigo F, Cossu E, Che L, Feo C, Steinmann SM, Ribback S, Pascale RM, Evert M, Chen X, Calvisi DF. Fatty Acid Synthase Promotes Hepatocellular Carcinoma Growth via S-Phase Kinase-Associated Protein 2/p27 KIP1 Regulation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1160. [PMID: 39064589 PMCID: PMC11278665 DOI: 10.3390/medicina60071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Aberrant upregulation of fatty acid synthase (FASN), catalyzing de novo synthesis of fatty acids, occurs in various tumor types, including human hepatocellular carcinoma (HCC). Although FASN oncogenic activity seems to reside in its pro-lipogenic function, cumulating evidence suggests that FASN's tumor-supporting role might also be metabolic-independent. Materials and Methods: In the present study, we show that FASN inactivation by specific small interfering RNA (siRNA) promoted the downregulation of the S-phase kinase associated-protein kinase 2 (SKP2) and the consequent induction of p27KIP1 in HCC cell lines. Results: Expression levels of FASN and SKP2 directly correlated in human HCC specimens and predicted a dismal outcome. In addition, forced overexpression of SKP2 rendered HCC cells resistant to the treatment with the FASN inhibitor C75. Furthermore, FASN deletion was paralleled by SKP2 downregulation and p27KIP1 induction in the AKT-driven HCC preclinical mouse model. Moreover, forced overexpression of an SKP2 dominant negative form or a p27KIP1 non-phosphorylatable (p27KIP1-T187A) construct completely abolished AKT-dependent hepatocarcinogenesis in vitro and in vivo. Conclusions: In conclusion, the present data indicate that SKP2 is a critical downstream effector of FASN and AKT-dependent hepatocarcinogenesis in liver cancer, envisaging the possibility of effectively targeting FASN-positive liver tumors with SKP2 inhibitors or p27KIP1 activators.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Maria M. Simile
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Gianpaolo Vidili
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Giovanni M. Pes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Maria P. Dore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Francesco Urigo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Eleonora Cossu
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Fracisco, CA 94143, USA; (L.C.); (X.C.)
| | - Claudio Feo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Sara M. Steinmann
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, 17489 Greifswald, Germany;
| | - Rosa M. Pascale
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Fracisco, CA 94143, USA; (L.C.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| |
Collapse
|
8
|
Lin HS, Li CH, Chen LW, Wang SS, Chen LY, Hung CH, Lin CL, Chang PJ. The varicella-zoster virus ORF16 protein promotes both the nuclear transport and the protein abundance of the viral DNA polymerase subunit ORF28. Virus Res 2024; 345:199379. [PMID: 38643859 PMCID: PMC11061344 DOI: 10.1016/j.virusres.2024.199379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Although all herpesviruses utilize a highly conserved replication machinery to amplify their viral genomes, different members may have unique strategies to modulate the assembly of their replication components. Herein, we characterize the subcellular localization of seven essential replication proteins of varicella-zoster virus (VZV) and show that several viral replication enzymes such as the DNA polymerase subunit ORF28, when expressed alone, are localized in the cytoplasm. The nuclear import of ORF28 can be mediated by the viral DNA polymerase processivity factor ORF16. Besides, ORF16 could markedly enhance the protein abundance of ORF28. Noteworthily, an ORF16 mutant that is defective in nuclear transport still retained the ability to enhance ORF28 abundance. The low abundance of ORF28 in transfected cells was due to its rapid degradation mediated by the ubiquitin-proteasome system. We additionally reveal that radicicol, an inhibitor of the chaperone Hsp90, could disrupt the interaction between ORF16 and ORF28, thereby affecting the nuclear entry and protein abundance of ORF28. Collectively, our findings imply that the cytoplasmic retention and rapid degradation of ORF28 may be a key regulatory mechanism for VZV to prevent untimely viral DNA replication, and suggest that Hsp90 is required for the interaction between ORF16 and ORF28.
Collapse
Affiliation(s)
- Huang-Shen Lin
- Department of Internal Medicine, Division of Infectious Diseases, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Han Li
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
9
|
Prabhu KS, Ahmad F, Kuttikrishnan S, Leo R, Ali TA, Izadi M, Mateo JM, Alam M, Ahmad A, Al-Shabeeb Akil AS, Bhat AA, Buddenkotte J, Pourkarimi E, Steinhoff M, Uddin S. Bortezomib exerts its anti-cancer activity through the regulation of Skp2/p53 axis in non-melanoma skin cancer cells and C. elegans. Cell Death Discov 2024; 10:225. [PMID: 38724504 PMCID: PMC11082213 DOI: 10.1038/s41420-024-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans (C. elegans). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm's counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans. By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Fareed Ahmad
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Tayyiba Akbar Ali
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Mahmoud Izadi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Jericha M Mateo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Ammira S Al-Shabeeb Akil
- Population Genetic and Genomics, Genetics and Metabolic Disorders Clinical Research Program, Precision Medicine of Diabetes Obesity and Cancer laboratory, Sidra Medicine, Doha, 26999, Qatar
| | - Ajaz A Bhat
- Population Genetic and Genomics, Genetics and Metabolic Disorders Clinical Research Program, Precision Medicine of Diabetes Obesity and Cancer laboratory, Sidra Medicine, Doha, 26999, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Ehsan Pourkarimi
- Division of Genomics and Translational Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha, 24144, Qatar
- College of Medicine, Qatar University, Doha, 2713, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, 34110, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
10
|
Vasavan B, Das N, Kahnamouei P, Trombley C, Swan A. Skp2-Cyclin A Interaction Is Necessary for Mitotic Entry and Maintenance of Diploidy. J Mol Biol 2024; 436:168505. [PMID: 38423454 DOI: 10.1016/j.jmb.2024.168505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Skp2, the substrate recognition component of the SCFSkp2 ubiquitin ligase, has been implicated in the targeted destruction of a number of key cell cycle regulators and the promotion of S-phase. One of its critical targets is the Cyclin dependent kinase (Cdk) inhibitor p27, and indeed the overexpression of Skp2 in a number of cancers is directly correlated with the premature degradation of p27. Skp2 was first identified as a protein that interacts with Cyclin A in transformed cells, but its role in this complex has remained unclear. In this paper, we demonstrate that Skp2 interacts with Cyclin A in Drosophila and is required to maintain Cyclin A levels and permit mitotic entry. Failure of mitotic entry in Skp2 mutant cells results in polyploidy. If these cells enter mitosis again they are unable to properly segregate their chromosomes, leading to checkpoint dependent cell cycle arrest or apoptosis. Thus, Skp2 is required for mitosis and for maintaining diploidy and genome stability.
Collapse
Affiliation(s)
- Biju Vasavan
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 2P1, Canada
| | - Nilanjana Das
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 2P1, Canada
| | - Paria Kahnamouei
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 2P1, Canada
| | - Chantelle Trombley
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 2P1, Canada
| | - Andrew Swan
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 2P1, Canada.
| |
Collapse
|
11
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
12
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
13
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. J Virol 2024; 98:e0172623. [PMID: 38226814 PMCID: PMC10878100 DOI: 10.1128/jvi.01726-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
14
|
Kuttikrishnan S, Ahmad F, Mateo JM, Prabhu KS, El‐Elimat T, Oberlies NH, Pearce CJ, Akil ASA, Bhat AA, Alali FQ, Uddin S. Neosetophomone B induces apoptosis in multiple myeloma cells via targeting of AKT/SKP2 signaling pathway. Cell Biol Int 2024; 48:190-200. [PMID: 37885161 PMCID: PMC10952688 DOI: 10.1002/cbin.12101] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/10/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy associated with malignant plasma cell proliferation in the bone marrow. Despite the available treatments, drug resistance and adverse side effects pose significant challenges, underscoring the need for alternative therapeutic strategies. Natural products, like the fungal metabolite neosetophomone B (NSP-B), have emerged as potential therapeutic agents due to their bioactive properties. Our study investigated NSP-B's antitumor effects on MM cell lines (U266 and RPMI8226) and the involved molecular mechanisms. NSP-B demonstrated significant growth inhibition and apoptotic induction, triggered by reduced AKT activation and downregulation of the inhibitors of apoptotic proteins and S-phase kinase protein. This was accompanied by an upregulation of p21Kip1 and p27Cip1 and an elevated Bax/BCL2 ratio, culminating in caspase-dependent apoptosis. Interestingly, NSP-B also enhanced the cytotoxicity of bortezomib (BTZ), an existing MM treatment. Overall, our findings demonstrated that NSP-B induces caspase-dependent apoptosis, increases cell damage, and suppresses MM cell proliferation while improving the cytotoxic impact of BTZ. These findings suggest that NSP-B can be used alone or in combination with other medicines to treat MM, highlighting its importance as a promising phytoconstituent in cancer therapy.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- College of Pharmacy, QU HealthQatar UniversityDohaQatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | - Jericha M. Mateo
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | - Tamam El‐Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of PharmacyJordan University of Science and TechnologyIrbidJordan
| | - Nicholas H. Oberlies
- Department of Chemistry and BiochemistryUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
| | | | - Ammira S. Alshabeeb Akil
- Department of Human Genetics‐Precision Medicine in DiabetesObesity and Cancer Research Program, Sidra MedicineDohaQatar
| | - Ajaz A. Bhat
- Department of Human Genetics‐Precision Medicine in DiabetesObesity and Cancer Research Program, Sidra MedicineDohaQatar
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Laboratory of Animal Research CenterQatar UniversityDohaQatar
| |
Collapse
|
15
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
16
|
Jin J, He J, Li X, Ni X, Jin X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene 2023; 889:147807. [PMID: 37722609 DOI: 10.1016/j.gene.2023.147807] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The PI3K/AKT/mTOR pathway controls key cellular processes, including proliferation and tumor progression, and abnormally high activation of this pathway is a hallmark in human cancers. The post-translational modification, such as Ubiquitination and deubiquitination, fine-tuning the protein level and the activity of members in this pathway play a pivotal role in maintaining normal physiological process. Emerging evidence show that the unbalanced ubiquitination/deubiquitination modification leads to human diseases via PI3K/AKT/mTOR pathway. Therefore, a comprehensive understanding of the ubiquitination/deubiquitination regulation of PI3K/AKT/mTOR pathway may be helpful to uncover the underlying mechanism and improve the potential treatment of cancer via targeting this pathway. Herein, we summarize the latest research progress of ubiquitination and deubiquitination of PI3K/AKT/mTOR pathway, systematically discuss the associated crosstalk between them, as well as focus the clinical transformation via targeting ubiquitination process.
Collapse
Affiliation(s)
- Jiabei Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqi Ni
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
17
|
Mouery BL, Baker EM, Mills CA, Herring LE, Fleifel D, Cook JG. APC/C prevents non-canonical order of cyclin/CDK activity to maintain CDK4/6 inhibitor-induced arrest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566394. [PMID: 37986787 PMCID: PMC10659421 DOI: 10.1101/2023.11.09.566394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase APC/C (anaphase promoting complex/cyclosome), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear if APC/C maintains all types of arrest. Here by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological CDK4/6 inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves cyclin-dependent kinases acting in an atypical order to inactivate RB-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.
Collapse
Affiliation(s)
- Brandon L Mouery
- Curriculum in Genetics and Molecular Biology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Eliyambuya M Baker
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Christine A Mills
- UNC Proteomics Core Facility, Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill NC, 27599, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill NC, 27599, USA
| | - Dalia Fleifel
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill NC, 27599, USA
| |
Collapse
|
18
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565564. [PMID: 37961092 PMCID: PMC10635129 DOI: 10.1101/2023.11.03.565564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the E7 protein by degrading the components of the SKP1-CUL1-F-box (SCF) ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
19
|
Gu X, Nardone C, Kamitaki N, Mao A, Elledge SJ, Greenberg ME. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 2023; 381:eadh5021. [PMID: 37616343 PMCID: PMC10617673 DOI: 10.1126/science.adh5021] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Cells use ubiquitin to mark proteins for proteasomal degradation. Although the proteasome also eliminates proteins that are not ubiquitinated, how this occurs mechanistically is unclear. Here, we found that midnolin promoted the destruction of many nuclear proteins, including transcription factors encoded by the immediate-early genes. Diverse stimuli induced midnolin, and its overexpression was sufficient to cause the degradation of its targets by a mechanism that did not require ubiquitination. Instead, midnolin associated with the proteasome via an α helix, used its Catch domain to bind a region within substrates that can form a β strand, and used a ubiquitin-like domain to promote substrate destruction. Thus, midnolin contains three regions that function in concert to target a large set of nuclear proteins to the proteasome for degradation.
Collapse
Affiliation(s)
- Xin Gu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Nardone
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Aoyue Mao
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stephen J. Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
20
|
Zhou H, Zhou L, Guan Q, Hou X, Wang C, Liu L, Wang J, Yu X, Li W, Liu H. Skp2-mediated MLKL degradation confers cisplatin-resistant in non-small cell lung cancer cells. Commun Biol 2023; 6:805. [PMID: 37532777 PMCID: PMC10397346 DOI: 10.1038/s42003-023-05166-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent type of cancer and the leading cause of cancer-related death. Chemotherapeutic resistance is a major obstacle in treating NSCLC patients. Here, we discovered that the E3 ligase Skp2 is overexpressed, accompanied by the downregulation of necroptosis-related regulator MLKL in human NSCLC tissues and cell lines. Knockdown of Skp2 inhibited viability, anchorage-independent growth, and in vivo tumor development of NSCLC cells. We also found that the Skp2 protein is negatively correlated with MLKL in NSCLC tissues. Moreover, Skp2 is increased and accompanied by an upregulation of MLKL ubiquitination and degradation in cisplatin-resistant NSCLC cells. Accordingly, inhibition of Skp2 partially restores MLKL and sensitizes NSCLC cells to cisplatin in vitro and in vivo. Mechanistically, Skp2 interacts and promotes ubiquitination-mediated degradation of MLKL in cisplatin-resistant NSCLC cells. Our results provide evidence of an Skp2-dependent mechanism regulating MLKL degradation and cisplatin resistance, suggesting that targeting Skp2-ubiquitinated MLKL degradation may overcome NSCLC chemoresistance.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cong Wang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Dewey JA, Delalande C, Azizi SA, Lu V, Antonopoulos D, Babnigg G. Molecular Glue Discovery: Current and Future Approaches. J Med Chem 2023; 66:9278-9296. [PMID: 37437222 PMCID: PMC10805529 DOI: 10.1021/acs.jmedchem.3c00449] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The intracellular interactions of biomolecules can be maneuvered to redirect signaling, reprogram the cell cycle, or decrease infectivity using only a few dozen atoms. Such "molecular glues," which can drive both novel and known interactions between protein partners, represent an enticing therapeutic strategy. Here, we review the methods and approaches that have led to the identification of small-molecule molecular glues. We first classify current FDA-approved molecular glues to facilitate the selection of discovery methods. We then survey two broad discovery method strategies, where we highlight the importance of factors such as experimental conditions, software packages, and genetic tools for success. We hope that this curation of methodologies for directed discovery will inspire diverse research efforts targeting a multitude of human diseases.
Collapse
Affiliation(s)
- Jeffrey A Dewey
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Clémence Delalande
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Saara-Anne Azizi
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Vivian Lu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Dionysios Antonopoulos
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
22
|
Rowland RJ, Heath R, Maskell D, Thompson RF, Ranson NA, Blaza JN, Endicott JA, Noble MEM, Salamina M. Cryo-EM structure of SKP1-SKP2-CKS1 in complex with CDK2-cyclin A-p27KIP1. Sci Rep 2023; 13:10718. [PMID: 37400515 PMCID: PMC10318019 DOI: 10.1038/s41598-023-37609-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023] Open
Abstract
p27KIP1 (cyclin-dependent kinase inhibitor 1B, p27) is a member of the CIP/KIP family of CDK (cyclin dependent kinase) regulators that inhibit cell cycle CDKs. p27 phosphorylation by CDK1/2, signals its recruitment to the SCFSKP2 (S-phase kinase associated protein 1 (SKP1)-cullin-SKP2) E3 ubiquitin ligase complex for proteasomal degradation. The nature of p27 binding to SKP2 and CKS1 was revealed by the SKP1-SKP2-CKS1-p27 phosphopeptide crystal structure. Subsequently, a model for the hexameric CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex was proposed by overlaying an independently determined CDK2-cyclin A-p27 structure. Here we describe the experimentally determined structure of the isolated CDK2-cyclin A-CKS1-p27-SKP1-SKP2 complex at 3.4 Å global resolution using cryogenic electron microscopy. This structure supports previous analysis in which p27 was found to be structurally dynamic, transitioning from disordered to nascent secondary structure on target binding. We employed 3D variability analysis to further explore the conformational space of the hexameric complex and uncovered a previously unidentified hinge motion centred on CKS1. This flexibility gives rise to open and closed conformations of the hexameric complex that we propose may contribute to p27 regulation by facilitating recognition with SCFSKP2. This 3D variability analysis further informed particle subtraction and local refinement approaches to enhance the local resolution of the complex.
Collapse
Affiliation(s)
- Rhianna J Rowland
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Richard Heath
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Daniel Maskell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Life Sciences Electron Microscopy, Thermo Fisher Scientific, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - James N Blaza
- Department of Chemistry, York Structural Biology Laboratory and York Biomedical Research Institute, University of York, Heslington, YO10 5DD, York, UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Martin E M Noble
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Marco Salamina
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
- Evotec (UK) Ltd., Milton, Abingdon, OX14 4RZ, UK.
| |
Collapse
|
23
|
Chen L, Zhang W, Chen D, Yang Q, Sun S, Dai Z, Li Z, Liang X, Chen C, Jiao Y, Zhi L, Zhao L, Zhang J, Liu X, Zhao J, Li M, Wang Y, Qi Y. RBM4 dictates ESCC cell fate switch from cellular senescence to glutamine-addiction survival through inhibiting LKB1-AMPK-axis. Signal Transduct Target Ther 2023; 8:159. [PMID: 37080995 PMCID: PMC10119322 DOI: 10.1038/s41392-023-01367-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 04/22/2023] Open
Abstract
Cellular senescence provides a protective barrier against tumorigenesis in precancerous or normal tissues upon distinct stressors. However, the detailed mechanisms by which tumor cells evade premature senescence to malignant progression remain largely elusive. Here we reported that RBM4 adversely impacted cellular senescence to favor glutamine-dependent survival of esophageal squamous cell carcinoma (ESCC) cells by dictating the activity of LKB1, a critical governor of cancer metabolism. The level of RBM4 was specifically elevated in ESCC compared to normal tissues, and RBM4 overexpression promoted the malignant phenotype. RBM4 contributed to overcome H-RAS- or doxorubicin-induced senescence, while its depletion caused P27-dependent senescence and proliferation arrest by activating LKB1-AMPK-mTOR cascade. Mechanistically, RBM4 competitively bound LKB1 to disrupt the LKB1/STRAD/MO25 heterotrimeric complex, subsequently recruiting the E3 ligase TRIM26 to LKB1, promoting LKB1 ubiquitination and degradation in nucleus. Therefore, such molecular process leads to bypassing senescence and sustaining cell proliferation through the activation of glutamine metabolism. Clinically, the ESCC patients with high RBM4 and low LKB1 have significantly worse overall survival than those with low RBM4 and high LKB1. The RBM4 high/LKB1 low expression confers increased sensitivity of ESCC cells to glutaminase inhibitor CB-839, providing a novel insight into mechanisms underlying the glutamine-dependency to improve the efficacy of glutamine inhibitors in ESCC therapeutics.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Quan Yang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Siwen Sun
- Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhenwei Dai
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Zhengzheng Li
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Xuemei Liang
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Yuexia Jiao
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Lili Zhi
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Xuefeng Liu
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China
| | - Man Li
- Department of Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Yang Wang
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China.
| | - Yangfan Qi
- Institute of Cancer Stem Cells and the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
24
|
Moses EJ, Azlan A, Khor KZ, Mot YY, Mohamed S, Seeni A, Barneh F, Heidenreich O, Yusoff N. A RUNX1/ETO-SKP2-CDKN1B axis regulates expression of telomerase in t (8;21) acute myeloid leukemia. Cell Mol Life Sci 2023; 80:70. [PMID: 36820913 PMCID: PMC11071865 DOI: 10.1007/s00018-023-04713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
The fusion oncoprotein RUNX1/ETO which results from the chromosomal translocation t (8;21) in acute myeloid leukemia (AML) is an essential driver of leukemic maintenance. We have previously shown that RUNX1/ETO knockdown impairs expression of the protein component of telomerase, TERT. However, the underlying molecular mechanism of how RUNX1/ETO controls TERT expression has not been fully elucidated. Here we show that RUNX1/ETO binds to an intergenic region 18 kb upstream of the TERT transcriptional start site and to a site located in intron 6 of TERT. Loss of RUNX1/ETO binding precedes inhibition of TERT expression. Repression of TERT expression is also dependent on the destabilization of the E3 ubiquitin ligase SKP2 and the resultant accumulation of the cell cycle inhibitor CDKN1B, that are both associated with RUNX1/ETO knockdown. Increased CDKN1B protein levels ultimately diminished TERT transcription with E2F1/Rb involvement. Collectively, our results show that RUNX1/ETO controls TERT expression directly by binding to its locus and indirectly via a SKP2-CDKN1B-E2F1/Rb axis.
Collapse
Affiliation(s)
- Emmanuel J Moses
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia.
| | - Adam Azlan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Kang Zi Khor
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Saleem Mohamed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Azman Seeni
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Farnaz Barneh
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| | - Narazah Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
25
|
Abu-Lubad MA, Al-Zereini W, Al-Zeer MA. Deregulation of the cyclin-dependent kinase inhibitor p27 as a putative candidate for transformation in Chlamydia trachomatis infected mesenchymal stem cells. AIMS Microbiol 2023; 9:131-150. [PMID: 36891539 PMCID: PMC9988407 DOI: 10.3934/microbiol.2023009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/05/2023] [Accepted: 02/19/2023] [Indexed: 03/04/2023] Open
Abstract
Purpose Several pathological conditions might cause the degradation of the cyclin-dependent kinase inhibitor (CKI) p27 and cell cycle arrest at the G1 phase, including cancers and infections. Chlamydia trachomatis (Ctr), as an obligatory intracellular pathogen, has been found to alter the fate of the cell from different aspects. In this study, we aimed to investigate the effect of Ctr infection on the expression of the important cell cycle regularity protein p27 in mesenchymal stem cells (MSCs). Methods Isolation of MSCs from healthy human fallopian tube was confirmed by detection of the stemness markers Sox2, Nanog and Oct4 and the surface markers CD44, CD73 and CD90 by Western blotting and fluorescence-activated cell sorting analysis. The expression of p27 was downregulated at the protein level upon Ctr D infection measured by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR), IF and Western blotting. Recovery of p27 in Ctr D-infected MSCs was achieved by treatment with difluoromethylornithine (DFMO). Ctr D infected MSCs were able to produce colonies in anchorage-independent soft agar assay. Conclusion Ctr D infection was able to downregulate the expression of the important cell cycle regulator protein p27, which will be considered a putative candidate for transformation in Ctr D infected MSCs.
Collapse
Affiliation(s)
- Mohammad A Abu-Lubad
- Department of Medical Microbiology and Pathology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Wael Al-Zereini
- Biological Sciences Department, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - Munir A Al-Zeer
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
26
|
Jing J, Rui L, Junyuan S, Jinfeng Y, Zhihao H, Weiguo L, Zhenyu J. Small-molecule compounds inhibiting S-phase kinase-associated protein 2: A review. Front Pharmacol 2023; 14:1122008. [PMID: 37089937 PMCID: PMC10113621 DOI: 10.3389/fphar.2023.1122008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
S-phase kinase-associated protein 2 (Skp2) is a substrate-specific adaptor in Skp1-CUL1-ROC1-F-box E3 ubiquitin ligases and widely regarded as an oncogene. Therefore, Skp2 has remained as an active anticancer research topic since its discovery. Accordingly, the structure of Skp2 has been solved and numerous Skp2 inhibiting compounds have been identified. In this review, we would describe the structural features of Skp2, introduce the ubiquitination function of SCFSkp2, and summarize the diverse natural and synthetic Skp2 inhibiting compounds reported to date. The IC50 data of the Skp2 inhibitors or inhibiting compounds in various kinds of tumors at cellular levels implied that the cancer type, stage and pathological mechanisms should be taken into consideration when selecting Skp2-inhibiting compound for cancer treatment.
Collapse
Affiliation(s)
- Jia Jing
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Li Rui
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sun Junyuan
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Yang Jinfeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Hong Zhihao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Lu Weiguo
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Women′s Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| | - Jia Zhenyu
- Institute of Occupation Diseases, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| |
Collapse
|
27
|
Kang D, Baek Y, Lee JS. Mechanisms of RNA and Protein Quality Control and Their Roles in Cellular Senescence and Age-Related Diseases. Cells 2022; 11:cells11244062. [PMID: 36552825 PMCID: PMC9777292 DOI: 10.3390/cells11244062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence, a hallmark of aging, is defined as irreversible cell cycle arrest in response to various stimuli. It plays both beneficial and detrimental roles in cellular homeostasis and diseases. Quality control (QC) is important for the proper maintenance of cellular homeostasis. The QC machineries regulate the integrity of RNA and protein by repairing or degrading them, and are dysregulated during cellular senescence. QC dysfunction also contributes to multiple age-related diseases, including cancers and neurodegenerative, muscle, and cardiovascular diseases. In this review, we describe the characters of cellular senescence, discuss the major mechanisms of RNA and protein QC in cellular senescence and aging, and comprehensively describe the involvement of these QC machineries in age-related diseases. There are many open questions regarding RNA and protein QC in cellular senescence and aging. We believe that a better understanding of these topics could propel the development of new strategies for addressing age-related diseases.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Correspondence: ; Tel.: +82-32-860-9832; Fax: +82-32-885-8302
| |
Collapse
|
28
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
29
|
Lohmüller M, Roeck BF, Szabo TG, Schapfl MA, Pegka F, Herzog S, Villunger A, Schuler F. The SKP2-p27 axis defines susceptibility to cell death upon CHK1 inhibition. Mol Oncol 2022; 16:2771-2787. [PMID: 35673965 PMCID: PMC9348596 DOI: 10.1002/1878-0261.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Checkpoint kinase 1 (CHK1; encoded by CHEK1) is an essential gene that monitors DNA replication fidelity and prevents mitotic entry in the presence of under-replicated DNA or exogenous DNA damage. Cancer cells deficient in p53 tumor suppressor function reportedly develop a strong dependency on CHK1 for proper cell cycle progression and maintenance of genome integrity, sparking interest in developing kinase inhibitors. Pharmacological inhibition of CHK1 triggers B-Cell CLL/Lymphoma 2 (BCL2)-regulated cell death in malignant cells largely independently of p53, and has been suggested to kill p53-deficient cancer cells even more effectively. Next to p53 status, our knowledge about factors predicting cancer cell responsiveness to CHK1 inhibitors is limited. Here, we conducted a genome-wide CRISPR/Cas9-based loss-of-function screen to identify genes defining sensitivity to chemical CHK1 inhibitors. Next to the proapoptotic BCL2 family member, BCL2 Binding Component 3 (BBC3; also known as PUMA), the F-box protein S-phase Kinase-Associated Protein 2 (SKP2) was validated to tune the cellular response to CHK1 inhibition. SKP2 is best known for degradation of the Cyclin-dependent Kinase Inhibitor 1B (CDKN1B; also known as p27), thereby promoting G1-S transition and cell cycle progression in response to mitogens. Loss of SKP2 resulted in the predicted increase in p27 protein levels, coinciding with reduced DNA damage upon CHK1-inhibitor treatment and reduced cell death in S-phase. Conversely, overexpression of SKP2, which consequently results in reduced p27 protein levels, enhanced cell death susceptibility to CHK1 inhibition. We propose that assessing SKP2 and p27 expression levels in human malignancies will help to predict the responsiveness to CHK1-inhibitor treatment.
Collapse
Affiliation(s)
- Michael Lohmüller
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Bernhard F Roeck
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Tamas G Szabo
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fragka Pegka
- Institute for Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Sebastian Herzog
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
30
|
Ruamsap N, Riyapa D, Janesomboon S, Stevens JM, Pichyangkul S, Pattanapanyasat K, Demons ST, Stevens MP, Korbsrisate S. Lymphostatin, a virulence factor of attaching and effacing Escherichia coli, inhibits proliferation and cytokine responses of human T cells in a manner associated with cell cycle arrest but not apoptosis or necrosis. Front Cell Infect Microbiol 2022; 12:941939. [PMID: 35967844 PMCID: PMC9373022 DOI: 10.3389/fcimb.2022.941939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.
Collapse
Affiliation(s)
- Nattaya Ruamsap
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Donporn Riyapa
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne M. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sathit Pichyangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Department for Research and Development, Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Samandra T. Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| |
Collapse
|
31
|
Lan C, Ni B, Zhao T, Li Z, Wang J, Ma Y, Li W, Wang X. An Integrative Pan-Cancer Analysis Revealing MLN4924 (Pevonedistat) as a Potential Therapeutic Agent Targeting Skp2 in YAP-Driven Cancers. Front Genet 2022; 13:866702. [PMID: 35685435 PMCID: PMC9171011 DOI: 10.3389/fgene.2022.866702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Background: YAP, coded by YAP1 gene, is critical in the Hippo pathway. It has been reported to be involved in the tumorigenesis and progression of several cancers. However, its roles on tumor cell proliferation in diverse cancers remain to be elucidated. And there is currently no clinically feasible drug that can directly target YAP in cancers. This research aimed to explore the regulatory mechanism of YAP in promoting tumor proliferation of multiple cancers, in order to find new strategies for inhibiting the overgrowth of YAP-driven cancers. Methods: We investigated the expression pattern of YAP1 in pan-cancer across numerous databases and our cohorts. First, univariate Cox regression analysis and survival analysis were used to evaluate the effect of YAP1 on the prognosis of cancer patients. Second, TIMER was used to explore the relationship between YAP1 expression and tumor cell proliferation. Third, functional and pathway enrichment was performed to search for targets of YAP involved in cell cycle in cancers. At last, GDSC and CCLE datasets were used to assess the correlation between SKP2 expression and MLN4924 IC50 values. Results: Differential expression analysis of multiple databases and qPCR validation showed that YAP1 was generally overexpressed in pan-cancers. Survival analysis revealed that YAP1 over-expression was significantly related to poor prognosis of patients with PAAD. The expression level of YAP1 was positively correlated with the proliferation in varieties of tumors. Further, SKP2 was confirmed as a target of YAP in promoting tumor cell proliferation. In addition, SKP2 expression was negatively correlated with MLN4924 IC50 values in almost all cancer types. Conclusion:YAP1 is frequently overexpressed in human cancers. YAP promoted tumor cell proliferation by up-regulating SKP2 expression in multiple cancers. The comprehensive pan-cancer analysis suggested that inhibition of Skp2 with MLN4924 might be an effective therapeutic strategy for attenuating tumor cell proliferation in YAP-driven cancers.
Collapse
Affiliation(s)
- Chungen Lan
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Bo Ni
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tiansuo Zhao
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zekun Li
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Junjin Wang
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ying Ma
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Weidong Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiuchao Wang
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
32
|
Holzer G, Antonin W. Nup50 plays more than one instrument. Cell Cycle 2022; 21:1785-1794. [PMID: 35549614 PMCID: PMC9359400 DOI: 10.1080/15384101.2022.2074742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nup50 is nuclear pore complex component localized to the nuclear side of the pore and in the nucleoplasm. It has been characterized as an auxiliary factor in nuclear transport reactions. Our recent work indicates that it interacts with and stimulates RCC1, the sole guanine nucleotide exchange factor for the GTPase Ran. Here, we discuss how this interaction might contribute to Nup50 function in nuclear transport but also its other functions like control of gene expression, cell cycle and DNA damage repair.
Collapse
Affiliation(s)
- Guillaume Holzer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
33
|
Regulation of p27 (Kip1) by Ubiquitin E3 Ligase RNF6. Pharmaceutics 2022; 14:pharmaceutics14040802. [PMID: 35456636 PMCID: PMC9029106 DOI: 10.3390/pharmaceutics14040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 12/10/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p27 (Kip1) is an important regulator of the G1/S checkpoint. It is degraded by the SCF-SKP2 complex in late G1 thereby allowing cells to progress to the S phase. Here we investigated the role of the E3 ubiquitin ligase RNF6 (Ring Finger Protein 6) in cell cycle progression in prostate cancer cells. Our data demonstrate that RNF6 can promote cell cycle progression by reducing the levels of p27. Knockdown of RNF6 led to an increase in the stability of p27 and to the arrest of cells in the G1 phase. RNF6 interacted with p27 via its KIL domain and this interaction was found to be phosphorylation independent. RNF6 enhanced ubiquitination and subsequent degradation of p27 in the early G0/G1 phase of the cell cycle. Knockdown of RNF6 expression by short hairpin RNA led to inhibition of the CDK2/Cyclin E complex thereby reducing phosphorylation of Retinoblastoma protein (Rb) and to a subsequent decrease in cell cycle progression and proliferation. Our data suggest that RNF6 acts as a negative regulator for p27kip1 leading to its proteasome-dependent degradation in the early G0/G1 phase of the cell cycle.
Collapse
|
34
|
Skp2 stabilizes Mcl-1 and confers radioresistance in colorectal cancer. Cell Death Dis 2022; 13:249. [PMID: 35301297 PMCID: PMC8930992 DOI: 10.1038/s41419-022-04685-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 11/08/2022]
Abstract
AbstractOverexpression of Skp2 plays a critical role in tumorigenesis and correlates with poor prognosis in human malignancies. Thus, Skp2 has been proposed as an attractive target for anti-tumor interventions. The expression of Skp2 in human colorectal cancer (CRC) and the role of Skp2 in tumorigenic properties and irradiation sensitivities of CRC cells were examined by anchorage-dependent and -independent growth assays, immunoblot, flow cytometry, immunohistochemical staining, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiments. Skp2 is highly expressed in CRC patient tissues. Blocking Skp2 expression reduces the tumorigenic properties of CRC cells in vitro and in vivo. Depletion of Skp2 confers sensitivity to irradiation of CRC cells. Skp2 deficiency enhances irradiation-induced intrinsic apoptosis by facilitating E3 ligase FBW7-mediated Mcl-1 ubiquitination and degradation. Knockout of Skp2 sensitizes CRC cells to irradiation treatments in vivo. Our findings indicate that Skp2 stabilizes Mcl-1, and targeting Skp2 in combination with traditional radiotherapy might be efficacious in treating CRC.
Collapse
|
35
|
A gene signature consisting of ubiquitin ligases and deubiquitinating enzymes of SKP2 is associated with clinical outcome in breast cancer. Sci Rep 2022; 12:2478. [PMID: 35169199 PMCID: PMC8847659 DOI: 10.1038/s41598-022-06451-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022] Open
Abstract
The ubiquitination of SKP2, an oncoprotein, is controlled by its E3 ligases, including APC/CFZR1 and deubiquitinases such as USP10. We identified a two-gene signature for the ubiquitination of SKP2, consisting of the copy number of FZR1 compared to the copy number of USP10. The signature reflects the level of SKP2 activity, stratifying BC patients into two groups with significantly different protein levels of SKP2 ubiquitination substrate p27 (t-test p < 0.01) and recapitulating the expression patterns of SKP2 between tumor and normal tissue (Spearman’s ρ = 0.39.) The signature is also highly associated with clinical outcome in luminal BC but not other subtypes, characterizing patients into two groups with significantly different overall survival times (log-rank p = 0.006). In addition, it is dramatically associated with tumor grade (Chi-squared p = 6.7 × 10−3), stage (Chi-squared p = 1.6 × 10−11), and the number of positive lymph nodes (negative binomial regression coefficient p = 2.0 × 10−3). Our study provides a rationale for targeting the SKP2 ubiquitination pathway in luminal BC and for further investigation of the use of ubiquitinase/deubiquitinase genes as prognosis and treatment biomarkers.
Collapse
|
36
|
Kometani T, Kawasaki Y, Chibazakura T. Differential regulation of p27Kip1 depending on culture conditions and its correlation with status of p14ARF and p53. Genes Cells 2022; 27:229-237. [PMID: 35014130 DOI: 10.1111/gtc.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022]
Abstract
p27Kip1 is known as a major cyclin-dependent kinase inhibitor and a tumor suppressor, and often functionally hampered at protein level. p27 protein expression levels are frequently low in various cancers and negatively correlated with malignancy of cancer. However, in our previous study, we discovered that p27 overexpression does not inhibit the proliferation of two cancer cell lines due to a functional suppression of p27 by nucleophosmin isoform 1 (NPM1); that is, a qualitative, not quantitative, suppression of p27 function occurs in these cancer cell lines. To clarify the regulation of p27 in several types of cancer, we investigated p27 function in other cancer cell lines, based on proliferation assays in those cell lines carrying doxycycline-inducible p27, and found that MDAH041 cells which express p14ARF, an antagonist of NPM1, show growth inhibition depending on p27 induction. Moreover, to investigate p27 function under anchorage-independent culture conditions, we performed soft agar colony formation assay and observed that the colony formation of some cell lines carrying wild-type p53, a major tumor suppressor, was inhibited depending on p27 induction. These results suggest that p27 function is regulated differentially among cancer cell types under anchorage-dependent and anchorage-independent culture conditions.
Collapse
Affiliation(s)
- Tatsuya Kometani
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yutaro Kawasaki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
37
|
Hu K, Li XJ, Asmamaw MD, Shi XJ, Liu HM. Establishment of high-throughput screening HTRF assay for identification small molecule inhibitors of Skp2-Cks1. Sci Rep 2021; 11:21105. [PMID: 34702937 PMCID: PMC8548536 DOI: 10.1038/s41598-021-00646-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
S-phase kinase associated protein 2 (Skp2), a member of the F-box family that constitute the largest known class of ubiquitin E3 specificity components, is responsible for recognizing and recruiting cyclin-dependent kinase inhibitor p27 for its ubiquitination in the presence of the small accessory protein cyclin-dependent kinase regulatory subunit 1(Cks1). Skp2 is overexpressed in esophageal carcinoma tissues and closely related with tumor poor prognosis, and perturbation of the Skp2-Cks1 interaction by inhibitors or RNAi could inhibit the proliferation and metastasis of tumor cells. Therefore, inhibition of Skp2 function by small-molecule compounds targeting Skp2-Cks1 interaction is emerging as a promising and novel anti-cancer strategy. In this study, we establish an improved high-throughput screening platform to screen Skp2 inhibitors targeting Skp2-Cks1interaction, which may provide a new therapeutic approach for the clinic.
Collapse
Affiliation(s)
- Kaizhao Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control and Evaluation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiao-Jing Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control and Evaluation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control and Evaluation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control and Evaluation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
38
|
Yu M, Hu X, Yan J, Wang Y, Lu F, Chang J. RIOK2 Inhibitor NSC139021 Exerts Anti-Tumor Effects on Glioblastoma via Inducing Skp2-Mediated Cell Cycle Arrest and Apoptosis. Biomedicines 2021; 9:biomedicines9091244. [PMID: 34572430 PMCID: PMC8470931 DOI: 10.3390/biomedicines9091244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Up to now, the chemotherapy approaches for glioblastoma were limited. 1-[2-Thiazolylazo]-2-naphthol (named as NSC139021) was shown to significantly inhibit the proliferation of prostate cancer cells by targeting the atypical protein kinase RIOK2. It is documented that RIOK2 overexpressed in glioblastoma. However, whether NSC139021 can inhibit the growth of glioblastoma cells and be a potential drug for glioblastoma treatment need to be clarified. In this study, we investigated the effects of NSC139021 on human U118MG, LN-18, and mouse GL261 glioblastoma cells and the mouse models of glioblastoma. We verified that NSC139021 effectively inhibited glioblastoma cells proliferation, but it is independent of RIOK2. Our data showed that NSC139021 induced cell cycle arrest at G0/G1 phase via the Skp2-p27/p21-Cyclin E/CDK2-pRb signaling pathway in G1/S checkpoint regulation. In addition, NSC139021 also increased the apoptosis of glioblastoma cells by activating the p53 signaling pathway and increasing the levels of Bax and cleaved caspase 3. Furthermore, intraperitoneal administration of 150 mg/kg NSC139021 significantly suppressed the growth of human and mouse glioblastoma in vivo. Our study suggests that NSC139021 may be a potential chemotherapy drug for the treatment of glioblastoma by targeting the Skp2-p27/p21-Cyclin E/CDK2-pRb signaling pathway.
Collapse
Affiliation(s)
- Min Yu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
| | - Xiaoyan Hu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jingyu Yan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
| | - Ying Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Correspondence: (F.L.); (J.C.); Tel.: +86-755-26032279 (F.L.); +86-755-86585254 (J.C.)
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (M.Y.); (X.H.); (J.Y.); (Y.W.)
- Correspondence: (F.L.); (J.C.); Tel.: +86-755-26032279 (F.L.); +86-755-86585254 (J.C.)
| |
Collapse
|
39
|
Thompson LL, Rutherford KA, Lepage CC, McManus KJ. The SCF Complex Is Essential to Maintain Genome and Chromosome Stability. Int J Mol Sci 2021; 22:8544. [PMID: 34445249 PMCID: PMC8395177 DOI: 10.3390/ijms22168544] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
The SKP1, CUL1, F-box protein (SCF) complex encompasses a group of 69 SCF E3 ubiquitin ligase complexes that primarily modify protein substrates with poly-ubiquitin chains to target them for proteasomal degradation. These SCF complexes are distinguishable by variable F-box proteins, which determine substrate specificity. Although the function(s) of each individual SCF complex remain largely unknown, those that have been characterized regulate a wide array of cellular processes, including gene transcription and the cell cycle. In this regard, the SCF complex regulates transcription factors that modulate cell signaling and ensures timely degradation of primary cell cycle regulators for accurate replication and segregation of genetic material. SCF complex members are aberrantly expressed in a myriad of cancer types, with altered expression or function of the invariable core SCF components expected to have a greater impact on cancer pathogenesis than that of the F-box proteins. Accordingly, this review describes the normal roles that various SCF complexes have in maintaining genome stability before discussing the impact that aberrant SCF complex expression and/or function have on cancer pathogenesis. Further characterization of the SCF complex functions is essential to identify and develop therapeutic approaches to exploit aberrant SCF complex expression and function.
Collapse
Affiliation(s)
- Laura L. Thompson
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kailee A. Rutherford
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Chloe C. Lepage
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kirk J. McManus
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada; (L.L.T.); (K.A.R.); (C.C.L.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
40
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|
41
|
Bodrug T, Welsh KA, Hinkle M, Emanuele MJ, Brown NG. Intricate Regulatory Mechanisms of the Anaphase-Promoting Complex/Cyclosome and Its Role in Chromatin Regulation. Front Cell Dev Biol 2021; 9:687515. [PMID: 34109183 PMCID: PMC8182066 DOI: 10.3389/fcell.2021.687515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.
Collapse
Affiliation(s)
- Tatyana Bodrug
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kaeli A Welsh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Megan Hinkle
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Michael J Emanuele
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Nicholas G Brown
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
42
|
Zhang H. Regulation of DNA Replication Licensing and Re-Replication by Cdt1. Int J Mol Sci 2021; 22:ijms22105195. [PMID: 34068957 PMCID: PMC8155957 DOI: 10.3390/ijms22105195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Chemistry and Biochemistry, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454003, Las Vegas, NV 89154, USA
| |
Collapse
|
43
|
Kelso S, Orlicky S, Beenstock J, Ceccarelli DF, Kurinov I, Gish G, Sicheri F. Bipartite binding of the N terminus of Skp2 to cyclin A. Structure 2021; 29:975-988.e5. [PMID: 33989513 DOI: 10.1016/j.str.2021.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Skp2 and cyclin A are cell-cycle regulators that control the activity of CDK2. Cyclin A acts as an activator and substrate recruitment factor of CDK2, while Skp2 mediates the ubiquitination and subsequent destruction of the CDK inhibitor protein p27. The N terminus of Skp2 can interact directly with cyclin A but is not required for p27 ubiquitination. To gain insight into this poorly understood interaction, we have solved the 3.2 Å X-ray crystal structure of the N terminus of Skp2 bound to cyclin A. The structure reveals a bipartite mode of interaction with two motifs in Skp2 recognizing two discrete surfaces on cyclin A. The uncovered binding mechanism allows for a rationalization of the inhibitory effect of Skp2 on CDK2-cyclin A kinase activity toward the RxL motif containing substrates and raises the possibility that other intermolecular regulators and substrates may use similar non-canonical modes of interaction for cyclin targeting.
Collapse
Affiliation(s)
- Susan Kelso
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada
| | - Stephen Orlicky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Derek F Ceccarelli
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, IL 60439, USA
| | - Gerald Gish
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
44
|
Hosoya Y, Ohkanda J. Intrinsically Disordered Proteins as Regulators of Transient Biological Processes and as Untapped Drug Targets. Molecules 2021; 26:2118. [PMID: 33917117 PMCID: PMC8067799 DOI: 10.3390/molecules26082118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are critical players in the dynamic control of diverse cellular processes, and provide potential new drug targets because their dysregulation is closely related to many diseases. This review focuses on several medicinal studies that have identified low-molecular-weight inhibitors of IDPs. In addition, clinically relevant liquid-liquid phase separations-which critically involve both intermolecular interactions between IDPs and their posttranslational modification-are analyzed to understand the potential of IDPs as new drug targets.
Collapse
Affiliation(s)
| | - Junko Ohkanda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan;
| |
Collapse
|
45
|
Shi L, Yan Y, He Y, Yan B, Pan Y, Orme JJ, Zhang J, Xu W, Pang J, Huang H. Mutated SPOP E3 Ligase Promotes 17βHSD4 Protein Degradation to Drive Androgenesis and Prostate Cancer Progression. Cancer Res 2021; 81:3593-3606. [PMID: 33762355 DOI: 10.1158/0008-5472.can-20-3258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Molecular mechanisms underlying intratumoral androgenesis and aberrant androgen receptor (AR) activation in prostate cancer remain poorly understood. Here we demonstrate that ectopic expression of the E3 ubiquitin ligase adaptor speckle-type poxvirus and zinc finger domain protein (SPOP) stabilizes 17βHSD4. SPOP bound a functional substrate-binding consensus (SBC) motif 315RATST319 in 17βHSD4 and promoted nondegradable K27- and K29-linked polyubiquitination of 17βHSD4. The effect of SPOP was antagonized by serum- and glucocorticoid kinase-3 (SGK3)-mediated phosphorylation of serine 318 (S318) in the SBC and S318 phosphorylation-dependent binding of SKP2 E3 ligase and subsequent K48-linked polyubiquitination and proteasomal degradation of 17βHSD4. Prostate cancer-associated SPOP mutations impaired the SPOP-17βHSD4 interaction, caused 17βHSD4 protein destruction in prostate cancer cells in culture and patient specimens, and increased testosterone production and prostate cancer cell growth in vitro and in mouse models. Thus, we have identified SPOP and SKP2 as two essential E3 ubiquitin ligases that exert opposite effects on 17βHSD4 protein degradation and intratumoral androgenesis in prostate cancer cells. We further demonstrate that SPOP mutations or SKP2 overexpression contribute to prostate cancer progression by decreasing 17βHSD4 expression and increasing intratumoral androgen synthesis. SIGNIFICANCE: This study reveals a novel mechanism of aberrant AR activation in SPOP-mutated prostate cancer and uncovers putative biomarkers for effective treatment by AR-targeted therapies.
Collapse
Affiliation(s)
- Lei Shi
- Department of Radiation Oncology, the Fourth Hospital of Harbin Medical University, Harbin, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Binyuan Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jacob J Orme
- Division of Medical Oncology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Scottsdale, Arizona
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota. .,Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
46
|
Salamina M, Montefiore BC, Liu M, Wood DJ, Heath R, Ault JR, Wang LZ, Korolchuk S, Baslé A, Pastok MW, Reeks J, Tatum NJ, Sobott F, Arold ST, Pagano M, Noble ME, Endicott JA. Discriminative SKP2 Interactions with CDK-Cyclin Complexes Support a Cyclin A-Specific Role in p27KIP1 Degradation. J Mol Biol 2021; 433:166795. [PMID: 33422522 PMCID: PMC7895821 DOI: 10.1016/j.jmb.2020.166795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022]
Abstract
The SCFSKP2 ubiquitin ligase relieves G1 checkpoint control of CDK-cyclin complexes by promoting p27KIP1 degradation. We describe reconstitution of stable complexes containing SKP1-SKP2 and CDK1-cyclin B or CDK2-cyclin A/E, mediated by the CDK regulatory subunit CKS1. We further show that a direct interaction between a SKP2 N-terminal motif and cyclin A can stabilize SKP1-SKP2-CDK2-cyclin A complexes in the absence of CKS1. We identify the SKP2 binding site on cyclin A and demonstrate the site is not present in cyclin B or cyclin E. This site is distinct from but overlapping with features that mediate binding of p27KIP1 and other G1 cyclin regulators to cyclin A. We propose that the capacity of SKP2 to engage with CDK2-cyclin A by more than one structural mechanism provides a way to fine tune the degradation of p27KIP1 and distinguishes cyclin A from other G1 cyclins to ensure orderly cell cycle progression.
Collapse
Affiliation(s)
- Marco Salamina
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Bailey C. Montefiore
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mengxi Liu
- Department of Biochemistry and Molecular Pharmacology, Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, and Howard Hughes Medical Institute, The Alexandria Center of Life Science, East Tower, 450 E, 29th Street, New York, NY 10016, USA
| | - Daniel J. Wood
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Richard Heath
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James R. Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Lan-Zhen Wang
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Svitlana Korolchuk
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martyna W. Pastok
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Judith Reeks
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Natalie J. Tatum
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan T. Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, and Howard Hughes Medical Institute, The Alexandria Center of Life Science, East Tower, 450 E, 29th Street, New York, NY 10016, USA
| | - Martin E.M. Noble
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A. Endicott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
47
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
48
|
Wang H, Luo J, Tian X, Xu L, Zhai Z, Cheng M, Chen L, Luo S. DNAJC5 promotes hepatocellular carcinoma cells proliferation though regulating SKP2 mediated p27 degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118994. [PMID: 33662413 DOI: 10.1016/j.bbamcr.2021.118994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
DNAJC5 (DnaJ heat shock protein family (Hsp40) member C5), also known as cysteine tandem protein (CSPα), is important for maintaining the normal function of nerve tissues, but its oncogenic function remains unknown. Here, we report a unique mechanism underlying the oncogenic function of DNAJC5. DNAJC5 protein expression is highly detectable in human hepatocellular carcinoma (HCC) tissues and is strongly related to a poor prognosis among HCC patients. DNAJC5 overexpression promotes HCC cell proliferation and reduced the ratio of cells in G1 phase of the cell cycle. Furthermore, DNAJC5 interacts with SKP2 and enhances the degradation of p27 (a cyclin-dependent kinase inhibitor1B) by promoting formation of the SKP2-p27 complex. In contrast, DNAJC5 knockdown rescues the SKP2-mediated decrease in p27 protein levels. These results reveal that the DNAJC5-SKP2-p27 pathway is a novel mechanism for the oncogenic function of DNAJC5 in HCC.
Collapse
Affiliation(s)
- Hailong Wang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi, China
| | - Jiayu Luo
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi, China
| | - Xuesi Tian
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi, China
| | - Linlin Xu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi, China
| | - Zhenyu Zhai
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi, China
| | - Minzhang Cheng
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi, China
| | - Limin Chen
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
49
|
The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ 2021; 28:522-537. [PMID: 33432111 PMCID: PMC7862665 DOI: 10.1038/s41418-020-00696-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in our understanding of the disease, glioblastoma (GB) continues to have limited treatment options and carries a dismal prognosis for patients. Efforts to stratify this heterogeneous malignancy using molecular classifiers identified frequent alterations in targetable proteins belonging to several pathways including the receptor tyrosine kinase (RTK) and mitogen-activated protein kinase (MAPK) signalling pathways. However, these findings have failed to improve clinical outcomes for patients. In almost all cases, GB becomes refractory to standard-of-care therapy, and recent evidence suggests that disease recurrence may be associated with a subpopulation of cells known as glioma stem cells (GSCs). Therefore, there remains a significant unmet need for novel therapeutic strategies. E3 ubiquitin ligases are a family of >700 proteins that conjugate ubiquitin to target proteins, resulting in an array of cellular responses, including DNA repair, pro-survival signalling and protein degradation. Ubiquitin modifications on target proteins are diverse, ranging from mono-ubiquitination through to the formation of polyubiquitin chains and mixed chains. The specificity in substrate tagging and chain elongation is dictated by E3 ubiquitin ligases, which have essential regulatory roles in multiple aspects of brain cancer pathogenesis. In this review, we begin by briefly summarising the histological and molecular classification of GB. We comprehensively describe the roles of E3 ubiquitin ligases in RTK and MAPK, as well as other, commonly altered, oncogenic and tumour suppressive signalling pathways in GB. We also describe the role of E3 ligases in maintaining glioma stem cell populations and their function in promoting resistance to ionizing radiation (IR) and chemotherapy. Finally, we consider how our knowledge of E3 ligase biology may be used for future therapeutic interventions in GB, including the use of blood-brain barrier permeable proteolysis targeting chimeras (PROTACs).
Collapse
|
50
|
Policing Cancer: Vitamin D Arrests the Cell Cycle. Int J Mol Sci 2020; 21:ijms21239296. [PMID: 33291213 PMCID: PMC7731034 DOI: 10.3390/ijms21239296] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Vitamin D is a steroid hormone crucial for bone mineral metabolism. In addition, vitamin D has pleiotropic actions in the body, including anti-cancer actions. These anti-cancer properties observed within in vitro studies frequently report the reduction of cell proliferation by interruption of the cell cycle by the direct alteration of cell cycle regulators which induce cell cycle arrest. The most recurrent reported mode of cell cycle arrest by vitamin D is at the G1/G0 phase of the cell cycle. This arrest is mediated by p21 and p27 upregulation, which results in suppression of cyclin D and E activity which leads to G1/G0 arrest. In addition, vitamin D treatments within in vitro cell lines have observed a reduced C-MYC expression and increased retinoblastoma protein levels that also result in G1/G0 arrest. In contrast, G2/M arrest is reported rarely within in vitro studies, and the mechanisms of this arrest are poorly described. Although the relationship of epigenetics on vitamin D metabolism is acknowledged, studies exploring a direct relationship to cell cycle perturbation is limited. In this review, we examine in vitro evidence of vitamin D and vitamin D metabolites directly influencing cell cycle regulators and inducing cell cycle arrest in cancer cell lines.
Collapse
|