1
|
Broda M, Plaza NZ, Jakes JE, Baez C, Pingali SV, Bras W. Effect of alkali treatment and fungal degradation on the nanostructure and cellulose arrangement in Scots pine cell walls - A neutron and X-ray scattering study. Carbohydr Polym 2025; 347:122733. [PMID: 39486963 DOI: 10.1016/j.carbpol.2024.122733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 11/04/2024]
Abstract
Research on new conservation treatments for historical wood requires considerable amounts of appropriate wood material, which is hard to acquire. Thus, we produced biologically and chemically degraded model wood that could be used as a representative material in future research on consolidating agents. Using chemical composition determinations, we found that fungal decay targeted mainly polysaccharides, while alkaline treatment mostly reduced hemicelluloses and lignin content. X-ray and neutron scattering showed that all decayed samples had increased disorder in microfibril alignment and larger elementary fibril cross-sections, and alkaline-treated samples had much larger elementary fibril spacing compared to those decayed by fungi. These nanoscale and chemical differences correlate with physical property changes. For example, decreased cellulose crystallinity and increased disorder of the microfibrils in degraded cell walls likely contribute to the lower elastic moduli measured for these cell walls. The obtained data improves understanding of how degradation alters wood structures and properties across length scales and will be valuable for future studies focusing on archeological wood. Moreover, it leads to the conclusion that it is more appropriate to develop treatments that consider not only spatial variability and degree of wood degradation but also the corresponding molecular and nanoscale changes in the cell walls.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 38/42, 60-637 Poznan, Poland.
| | - Nayomi Z Plaza
- Forest Products Laboratory, Forest Service, United States Department of Agriculture, Madison, WI 53726, USA.
| | - Joseph E Jakes
- Forest Products Laboratory, Forest Service, United States Department of Agriculture, Madison, WI 53726, USA
| | - Carlos Baez
- Forest Products Laboratory, Forest Service, United States Department of Agriculture, Madison, WI 53726, USA
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
2
|
Chiappini V, Conti C, Astolfi ML, Girelli AM. Characteristic study of Candida rugosa lipase immobilized on lignocellulosic wastes: effect of support material. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03096-z. [PMID: 39400575 DOI: 10.1007/s00449-024-03096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
For the first time is reported the comparison of solid biocatalysts derived from Candida rugosa lipase (CRL) immobilized on different lignocellulosic wastes (rice husk, brewer's spent grain, hemp tea waste, green tea waste, vine bark, and spent coffee grounds) focusing on the characterization of these materials and their impact on the lipase-support interaction. The wastes were subjected to meticulous characterization by ATR-FTIR, BET, and SEM analysis, besides lignin content and hydrophobicity determination. Investigating parameters influencing immobilization performance revealed the importance of morphology, textural properties, and hydrophobic interactions revealed the importance of morphology, textural properties and especially hydrophobic interactions which resulted in positive correlations between surface hydrophobicity and lipase immobilization efficiency. Hemp tea waste and spent coffee grounds demonstrated superior immobilization performances (7.20 U/g and 8.74 U/g immobilized activity, 102.3% and 33.5% efficiency, 13.4% and 15.4% recovery, respectively). Moreover, they demonstrated good temporal stability (100% and 92% residual activity after 120 days, respectively) and retained 100% of their immobilized activity after five reuses in the hydrolysis of p-nitrophenyl palmitate in hexane. In addition, the study of enzymatic desorption caused by ionic strength and detergent treatments indicated mixed hydrophobic and electrostatic interactions in rice husk, vine bark, and spent coffee grounds supports, while hemp tea waste and green tea waste were dominated by hydrophobic interactions.
Collapse
Affiliation(s)
- Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Camilla Conti
- Department of Chemistry, Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
3
|
Wang D, Gu Y, Cheng L, Sun S, Yang W, He S, Jiang S, Dai H, Wu Q, Xiao H, Han J. High-mass loaded redox-active lignin functionalized carbonized wood collector to construct sustainable and high-performance supercapacitors. Int J Biol Macromol 2024; 281:136242. [PMID: 39389492 DOI: 10.1016/j.ijbiomac.2024.136242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Traditional electrode materials for supercapacitors often face issues like high toxicity, cost, and non-renewability. To address these drawbacks, biomass-based alternatives are being explored, aligning with green development trends. Herein, carbonized wood (CW) with rich pore structure and redox-active lignin are combined to fabricate an all-wood-based sustainable supercapacitor electrode material. Due to its inherent porous structure, CW provides a larger surface area for accommodating active materials ion, enabling the electrode to achieve a higher lignin loading capacity of 2.82-11.68 mg/cm2. Furthermore, the utilization of lignin as a substitute for conventional transition metal-based pseudocapacitor material functionalized CW endows the electrode with exemplary electrochemical performance while guaranteeing the comprehensive sustainability of the electrode. This synergy confers the electrode with exceptional electrical performance, yielding an areal capacitance of 960.7 mF/cm2 at a current density of 1 mA/cm2. The symmetric supercapacitors (SSC) manufactured by this composite electrode can achieve a notable areal energy density of 0.14 mWh/cm2 and a power density of 15.98 mW/cm2, while maintaining an outstanding capacitance retention rate of 81 % after 50,000 cycles at 20 mA/cm2. The manufacture of CW-lignin electrode underscores the potential of utilizing renewable biomass resources as alternatives for developing high-performance energy storage applications, thereby reducing negative environmental impacts.
Collapse
Affiliation(s)
- Danning Wang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuanjie Gu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Long Cheng
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forestry Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shijing Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weisheng Yang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Shuijian He
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shaohua Jiang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hongqi Dai
- Jiangsu Co-innovation Center for Efficient Processing and Utilization of Forestry Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Huining Xiao
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingquan Han
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
4
|
Hegazy GE, Moawad MN, Othman SS, Soliman NA, Abeer E A, Oraby H, Abdel-Fattah YR. Microbial dynamics, chemical profile, and bioactive potential of diverse Egyptian marine environments from archaeological wood to soda lake. Sci Rep 2024; 14:20918. [PMID: 39251732 PMCID: PMC11385181 DOI: 10.1038/s41598-024-70411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Halophilic archaea are a unique group of microorganisms that thrive in high-salt environments, exhibiting remarkable adaptations to survive extreme conditions. Archaeological wood and El-Hamra Lake serve as a substrate for a diverse range of microorganisms, including archaea, although the exact role of archaea in archaeological wood biodeterioration remains unclear. The morphological and chemical characterizations of archaeological wood were evaluated using FTIR, SEM, and EDX. The degradation of polysaccharides was identified in Fourier transform infrared analysis (FTIR). The degradation of wood was observed through scanning electron microscopy (SEM). The energy dispersive X-ray spectroscopy (EDX) revealed the inclusion of minerals, such as calcium, silicon, iron, and sulfur, into archaeological wood structure during burial and subsequent interaction with the surrounding environment. Archaea may also be associated with detected silica in archaeological wood since several organosilicon compounds have been found in the crude extracts of archaeal cells. Archaeal species were isolated from water and sediment samples from various sites in El-Hamra Lake and identified as Natronococcus sp. strain WNHS2, Natrialba hulunbeirensisstrain WNHS14, Natrialba chahannaoensis strain WNHS9, and Natronococcus occultus strain WNHS5. Additionally, three archaeal isolates were obtained from archaeological wood samples and identified as Natrialba chahannaoensisstrain W15, Natrialba chahannaoensisstrain W22, and Natrialba chahannaoensisstrain W24. These archaeal isolates exhibited haloalkaliphilic characteristics since they could thrive in environments with high salinity and alkalinity. Crude extracts of archaeal cells were analyzed for the organic compounds using gas chromatography-mass spectrometry (GC-MS). A total of 59 compounds were identified, including free saturated and unsaturated fatty acids, saturated fatty acid esters, ethyl and methyl esters of unsaturated fatty acids, glycerides, phthalic acid esters, organosiloxane, terpene, alkane, alcohol, ketone, aldehyde, ester, ether, and aromatic compounds. Several organic compounds exhibited promising biological activities. FTIR spectroscopy revealed the presence of various functional groups, such as hydroxyl, carboxylate, siloxane, trimethylsilyl, and long acyl chains in the archaeal extracts. Furthermore, the archaeal extracts exhibited antioxidant effects. This study demonstrates the potential of archaeal extracts as a valuable source of bioactive compounds with pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Ghada E Hegazy
- National Institute of Oceanography & Fisheries, NIOF-Egypt, Alexandria, Egypt.
| | - Madelyn N Moawad
- National Institute of Oceanography & Fisheries, NIOF-Egypt, Alexandria, Egypt.
| | - Sarah Samir Othman
- Pharmaceutical Bioproducts Research Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt
| | - Abdelwahab Abeer E
- Medical Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research &Technological Applications, Alexandria, Egypt
| | - Hussein Oraby
- Department of Chemical Engineering, Military Technical College, Cairo, Egypt.
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt
| |
Collapse
|
5
|
Zou W, Deng J, Wang Z, Sun D, Zou N. Encapsulation of thermochromic tetradecyl myristate/methyl red composite via full poplar-based cellulose/lignin/SiO 2 framework for preparation of thermochromic wood with thermal response and storage. Int J Biol Macromol 2024; 276:133881. [PMID: 39029822 DOI: 10.1016/j.ijbiomac.2024.133881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Thermochromic wood (TW), a smart material that can respond to temperature changes and store thermal energy, holds broad potential for application in the construction industry. This study fabricated thermochromic poplar (TP) by encapsulating a thermochromic phase change material (TPCM), consisting of tetradecyl myristate and methyl red, within a full poplar-based cellulose/lignin/SiO2 framework. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that the poplar matrix and the incorporated SiO2 formed an integrated cellulose/lignin/SiO2 framework, which encapsulated the TPCM within the poplar ducts. The TP exhibits a color change from light purple to dark purple within the temperature range of 30-48 °C, with a pronounced shift at approximately 42 °C, correlating with the sensation of scalding. Thus, TP-based products can alert users to the risk of scalding through a noticeable color change. The full poplar-based framework mitigates the impact of ultraviolet (UV) radiation on the TP and prevents the loss of TPCM during thermal processing. The mechanical properties of TP are enhanced to a strength grade comparable to that of Manchurian ash wood, making it suitable for load-bearing components in wooden structures. Additionally, the average temperature of TP is around 10 °C higher than that of untreated poplar within 25 min after the same thermal treatment. Consequently, TP can serve as a building material with capabilities for temperature response, thermal energy storage, and structural load-bearing.
Collapse
Affiliation(s)
- Weihua Zou
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China.
| | - Jie Deng
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China
| | - Zhangheng Wang
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China
| | - Delin Sun
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China.
| | - Naike Zou
- Central South University of Forestry and Technology, Shaoshan South Road 498, Changsha 410004, China
| |
Collapse
|
6
|
Averheim A, Stagge S, Jönsson LJ, Larsson SH, Thyrel M. Separate hydrolysis and fermentation of softwood bark pretreated with 2-naphthol by steam explosion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:102. [PMID: 39020440 PMCID: PMC11253379 DOI: 10.1186/s13068-024-02552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND 2-Naphthol, a carbocation scavenger, is known to mitigate lignin condensation during the acidic processing of lignocellulosic biomass, which may benefit downstream processing of the resulting materials. Consequently, various raw materials have demonstrated improved enzymatic saccharification yields for substrates pretreated through autohydrolysis and dilute acid hydrolysis in the presence of 2-naphthol. However, 2-naphthol is toxic to ethanol-producing organisms, which may hinder its potential application. Little is known about the implications of 2-naphthol in combination with the pretreatment of softwood bark during continuous steam explosion in an industrially scalable system. RESULTS The 2-naphthol-pretreated softwood bark was examined through spectroscopic techniques and subjected to separate hydrolysis and fermentation along with a reference excluding the scavenger and a detoxified sample washed with ethanol. The extractions of the pretreated materials with water resulted in a lower aromatic content in the extracts and stronger FTIR signals, possibly related to guaiacyl lignin, in the nonextractable residue when 2-naphthol was used during pretreatment. In addition, cyclohexane/acetone (9:1) extraction revealed the presence of pristine 2-naphthol in the extracts and increased aromatic content of the nonextractable residue detectable by NMR for the scavenger-pretreated materials. Whole-slurry enzymatic saccharification at 12% solids loading revealed that elevated saccharification recoveries after 48 h could not be achieved with the help of the scavenger. Glucose concentrations of 16.9 (reference) and 15.8 g/l (2-naphthol) could be obtained after 48 h of hydrolysis. However, increased inhibition during fermentation of the scavenger-pretreated hydrolysate, indicated by yeast cell growth, was slight and could be entirely overcome by the detoxification stage. The ethanol yields from fermentable sugars after 24 h were 0.45 (reference), 0.45 (2-naphthol), and 0.49 g/g (2-naphthol, detoxified). CONCLUSION The carbocation scavenger 2-naphthol did not increase the saccharification yield of softwood bark pretreated in an industrially scalable system for continuous steam explosion. On the other hand, it was shown that the scavenger's inhibitory effects on fermenting microorganisms can be overcome by controlling the pretreatment conditions to avoid cross-inhibition or detoxifying the substrates through ethanol washing. This study underlines the need to jointly optimize all the main processing steps.
Collapse
Affiliation(s)
- Andreas Averheim
- Fiber Technology Center, Valmet AB, 851 94, Sundsvall, Sweden.
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| | - Stefan Stagge
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Sylvia H Larsson
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
7
|
Loron CC. A mathematical description of fossilization. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231827. [PMID: 39021769 PMCID: PMC11251779 DOI: 10.1098/rsos.231827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
Fossils constitute an inestimable archive of past life on the Earth. However, the stochastic processes driving decay and fossilization and overwhelmingly distorting this archive, are challenging to interpret. Consequently, concepts of exceptional or poor preservation are often subjective or arbitrarily defined. Here, we offer an alternative way to think about fossilization. We propose a mathematical description of decay and fossilization relying on the change in the relative frequency and characteristics of biogenic objects (e.g. atoms, functional groups, molecules, body parts and organisms) within an organism-fossil system. This description partitions taphonomic changes into three categories: gain, loss and alteration of state. Although the changes undergone by organisms through decay, preservation and alteration vary a lot for different organisms under different conditions, we provide a unified formalism which can be applied directly in the comparison of different assemblages, experiments and fossils. Our expression is closely related to George R. Price's famous equation for the change in evolutionary traits and can be adapted to the study of palaeontological systems and many others.
Collapse
Affiliation(s)
- Corentin C. Loron
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Jurowski K, Noga M, Kobylarz D, Niżnik Ł, Krośniak A. Multimodal Imaging Using Raman Spectroscopy and FTIR in a Single Analytical Instrument with a Microscope (Infrared Raman Microscopy AIRsight, Shimadzu): Opportunities and Applications. Int J Mol Sci 2024; 25:6884. [PMID: 38999996 PMCID: PMC11241415 DOI: 10.3390/ijms25136884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy are powerful analytical techniques widely used separately in different fields of study. Integrating these two powerful spectroscopic techniques into one device represents a groundbreaking advance in multimodal imaging. This new combination which merges the molecular vibrational information from Raman spectroscopy with the ability of FTIR to study polar bonds, creates a unique and complete analytical tool. Through a detailed examination of the microscope's operation and case studies, this article illustrates how this integrated analytical instrument can provide more thorough and accurate analysis than traditional methods, potentially revolutionising analytical sample characterisation. This article aims to present the features and possible uses of a unified instrument merging FTIR and Raman spectroscopy for multimodal imaging. It particularly focuses on the technological progress and collaborative benefits of these two spectroscopic techniques within the microscope system. By emphasising this approach's unique benefits and improved analytical capabilities, the authors aim to illustrate its applicability in diverse scientific and industrial sectors.
Collapse
Affiliation(s)
- Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| |
Collapse
|
9
|
Zhang T, Wang S, Yang K, Lin L, Yang P, Zhou K, Chen W, Chen M, Zhou X. Directly Converting Bulk Wood into Branch Micro-Nano Fibers to Synergistically Enhance the Strength and Toughness via Interface Engineering. NANO LETTERS 2024; 24:6576-6584. [PMID: 38775216 DOI: 10.1021/acs.nanolett.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Hierarchical biobased micro/nanomaterials offer great potential as the next-generation building blocks for robust films or macroscopic fibers with high strength, while their capability in suppressing crack propagation when subject to damage is hindered by their limited length. Herein, we employed an approach to directly convert bulk wood into fibers with a high aspect ratio and nanosized branching structures. Particularly, the length of microfibers surpassed 1 mm with that of the nanosized branches reaching up to 300 μm. The presence of both interwoven micro- and nanofibers endowed the product with substantially improved tensile strength (393.99 MPa) and toughness (19.07 MJ m-3). The unique mechanical properties arose from mutual filling and the hierarchical deformation facilitated by branched nanofibers, which collectively contributed to effective energy dissipation. Hence, the nanotransformation strategy opens the door toward a facial, scalable method for building high-strength film or macroscopic fibers available in various advanced applications.
Collapse
Affiliation(s)
- Tao Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Shijun Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Kai Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Liangke Lin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Pei Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Weimin Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Minzhi Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Xiaoyan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037, China
| |
Collapse
|
10
|
Isola D, Lee HJ, Chung YJ, Zucconi L, Pelosi C. Once upon a Time, There Was a Piece of Wood: Present Knowledge and Future Perspectives in Fungal Deterioration of Wooden Cultural Heritage in Terrestrial Ecosystems and Diagnostic Tools. J Fungi (Basel) 2024; 10:366. [PMID: 38786721 PMCID: PMC11122135 DOI: 10.3390/jof10050366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Wooden Cultural Heritage (WCH) represents a significant portion of the world's historical and artistic heritage, consisting of immovable and movable artefacts. Despite the expertise developed since ancient times to enhance its durability, wooden artefacts are inevitably prone to degradation. Fungi play a pivotal role in the deterioration of WCH in terrestrial ecosystems, accelerating its decay and leading to alterations in color and strength. Reviewing the literature of the last 25 years, we aimed to provide a comprehensive overview of fungal diversity affecting WCH, the biochemical processes involved in wood decay, and the diagnostic tools available for fungal identification and damage evaluation. Climatic conditions influence the occurrence of fungal species in threatened WCH, characterized by a prevalence of wood-rot fungi (e.g., Serpula lacrymans, Coniophora puteana) in architectural heritage in temperate and continental climates and Ascomycota in indoor and harsh environments. More efforts are needed to address the knowledge fragmentation concerning biodiversity, the biology of the fungi involved, and succession in the degradative process, which is frequently centered solely on the main actors. Multidisciplinary collaboration among engineers, restorers, and life sciences scientists is vital for tackling the challenges posed by climate change with increased awareness. Traditional microbiology and culture collections are fundamental in laying solid foundations for a more comprehensive interpretation of big data.
Collapse
Affiliation(s)
- Daniela Isola
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Hyun-Ju Lee
- Institute of Preventive Conservation for Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Yong-Jae Chung
- Department of Heritage Conservation and Restoration, Graduate School of Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Claudia Pelosi
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| |
Collapse
|
11
|
Szwajca A, Lucejko JJ, Berdychowska N, Zborowska M. Understanding changes in holocellulose and lignin compounds in wooden structure of veneers: Molecular insights post hydrothermal treatment and aging. Int J Biol Macromol 2024; 266:130920. [PMID: 38513902 DOI: 10.1016/j.ijbiomac.2024.130920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Veneers obtained via hydrothermal treatment serve to enhance the aesthetic appeal of furniture and other wooden surfaces. However, the impact of this treatment on the chemical composition of holocellulose and lignin, coupled with their resistance to ultraviolet (UV) irradiation, remains a relatively unexplored area requiring further investigation. In the experiment, wood samples of three distinct species underwent hydrothermal treatment followed by exposure to UV aging. Parameters including colour, contact angle, and acid-base properties were examined alongside their chemical alterations during these processes. These observed properties were then correlated with changes identified through FT-IR and Py-GC/MS analyses to uncover their molecular origins. Through these methods, the study offered insights into the chemical transformations driving the observed alterations. Findings revealed the considerable impact of hydrothermal treatment on these properties and their propensity for modification under UV radiation. In most test variations, hydrothermal treatment amplified tendencies toward colour changes, increased hydrophobicity, and basicity. Analysis of chemical changes suggested the degradation of polysaccharides due to hydrothermal treatment and lignin breakdown under UV irradiation. Understanding these molecular changes provides a foundation for mitigating the adverse effects of hydrothermal wood treatment.
Collapse
Affiliation(s)
- Anna Szwajca
- Department of Synthesis and Structure of Organic Compounds, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | | | - Natalia Berdychowska
- Department of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
| | - Magdalena Zborowska
- Department of Chemical Wood Technology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland.
| |
Collapse
|
12
|
Dzeikala O, Prochon M, Sedzikowska N. Gelatine Blends Modified with Polysaccharides: A Potential Alternative to Non-Degradable Plastics. Int J Mol Sci 2024; 25:4333. [PMID: 38673918 PMCID: PMC11050030 DOI: 10.3390/ijms25084333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all of them can be recycled. Due to growing ecological awareness, interest in the topics of biodegradable materials suitable for disposable items has begun to reduce the consumption of non-degradable plastics. An example of such materials are biodegradable biopolymers and their derivatives, which can be used to create the so-called bioplastics and biopolymer blends. In this article, gelatine blends modified with polysaccharides (e.g., agarose or carrageenan) were created and tested in order to obtain a stable biopolymer coating. Various techniques were used to characterize the resulting bioplastics, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), contact angle measurements, and surface energy characterization. The influence of thermal and microbiological degradation on the properties of the blends was also investigated. From the analysis, it can be observed that the addition of agarose increased the hardness of the mixture by 27% compared to the control sample without the addition of polysaccharides. In addition, there was an increase in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the gelatine matrix increased the softening point by 15% and the glass transition temperature by 6%. After aging, both compounds showed an increase in hardness of 26% and a decrease in tensile strength of 60%. This offers an opportunity as application materials in the form of biopolymer coatings, dietary supplements, skin care products, short-term and single-contact decorative elements, food, medical, floriculture, and decorative industries.
Collapse
Affiliation(s)
| | - Miroslawa Prochon
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (O.D.); (N.S.)
| | | |
Collapse
|
13
|
Miranda I, Lourenço A, Simões R, Athayde J, Pereira H. Insights into cork weathering regarding colour, chemical and cellular changes in view of outdoor applications. PLoS One 2024; 19:e0301384. [PMID: 38574047 PMCID: PMC10994410 DOI: 10.1371/journal.pone.0301384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
A comprehensive analysis of outdoor weathering and soil burial of cork during 1-year experiments was carried out with measurements of CIELAB color parameters, cellular observations by scanning electron microscopy, and surface chemical features analysed by ATR-FTIR and wet chemical analysis. Cork applied in outdoor conditions above and below ground retained its physical structure and integrity without signs of deterioration or fracturing. The cellular structure was maintained with some small changes at the one-cell layer at the surface, featuring cellular expansion and minute cell wall fractures. Surface color and chemistry showed distinct results for outdoor exposure and soil burial. The weathered cork surfaces acquired a lighter color while the soil buried cork surfaces became darker. With outdoor weathering, the cork polar solubles increased (13.0% vs. 7.6% o.d. mass) while a substantial decrease of lignin occurred (about 28% of the original lignin was removed) leading to a suberin-enriched cork surface. The chemical impact on lignin is therefore responsible for the surface change towards lighter colors. Soil-burial induced hydrolysis of ester bonds of suberin and xylan, and the lignin-enriched cork surface displayed a dark brown color. FTIR and wet chemical results were consistent. Overall cork showed a considerable structural and physical stability that allows its application in outdoor conditions, namely for building façades or other surfacing applications. Architects and designers should take into account the color dynamics of the cork surfaces.
Collapse
Affiliation(s)
- Isabel Miranda
- Forest Research Center and Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | - Ana Lourenço
- Forest Research Center and Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | - Rita Simões
- Forest Research Center and Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | - João Athayde
- Forest Research Center and Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| | - Helena Pereira
- Forest Research Center and Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
14
|
Morar IM, Stefan R, Dan C, Sestras RE, Truta P, Medeleanu M, Ranga F, Sestras P, Truta AM, Sestras AF. FT-IR and HPLC analysis of silver fir ( Abies alba Mill.) bark compounds from different geographical provenances. Heliyon 2024; 10:e26820. [PMID: 38463881 PMCID: PMC10920173 DOI: 10.1016/j.heliyon.2024.e26820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Fourier Transform Infrared Spectroscopy (FT-IR) and High-Performance Liquid Chromatography (HPLC) could be applied to study the provenance of wood, specifically the differentiation of wood resources, as well as the identification of chemical compounds that are connected to the changes that occur in wood as a result of drying treatments. To test this hypothesis, the bark of silver fir (Abies alba Mill.) from trees belonging to seven different geographical provenances was studied, using samples dried at three different temperatures (60, 80, and 100 °C). FT-IR spectroscopy revealed different band assignments in the mid-infrared region depending on fir provenances, whereas the vibrational bands of the biomass functional groups tended to shift to lower wavenumbers. Significant differences were identified between the chemical compounds in the bark depending on the provenances. The largest proportion of the total phenolics was represented by the epicatechin gallate, epicatechin, catechin, and procyanidin dimer B1. Exploratory data analysis was performed using principal component analysis (PCA), hierarchical clustering, and Pearson correlations. This allowed a comparative evaluation of the samples and interpret the findings according to the geographical provenances, respectively ecological conditions in the areas of origin, but also the influence of the drying temperatures of the samples on chemical compounds. The precipitation in the areas of origin decreased total phenolics in silver fir bark samples, and total phenolics differed not only due to the geographic provenance, but also due to drying temperature.
Collapse
Affiliation(s)
- Irina M. Morar
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Razvan Stefan
- Preclinic Department, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Catalina Dan
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Radu E. Sestras
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Petru Truta
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Mădălina Medeleanu
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Florica Ranga
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Paul Sestras
- Faculty of Civil Engineering, Technical University of Cluj-Napoca, 400020, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Alina M. Truta
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Adriana F. Sestras
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Rajeswari G, Kumar V, Jacob S. A concerted enzymatic de-structuring of lignocellulosic materials using a compost-derived microbial consortia favoring the consolidated pretreatment and bio-saccharification. Enzyme Microb Technol 2024; 174:110393. [PMID: 38219439 DOI: 10.1016/j.enzmictec.2023.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
The robustness of microbial consortia isolated from compost habitat encompasses the complementary metabolism that aids in consolidated bioprocessing (CBP) of lignocellulosic biomass (LCB) by division of labor across the symbionts. Composting of organic waste is deemed to be an efficient way of carbon recycling, where the syntrophic microbial population exerts a concerted action of lignin and polysaccharide (hemicellulose and cellulose) component of plant biomass. The potential of this interrelated microorganism could be enhanced through adaptive laboratory evolution (ALE) with LCB for its desired functional capabilities. Therefore, in this study, microbial symbionts derived from organic compost was enriched on saw dust (SD) (woody biomass), aloe vera leaf rind (AVLR) (agro-industrial waste) and commercial filter paper (FP) (pure cellulose) through ALE under different conditions. Later, the efficacy of enriched consortium (EC) on consolidated pretreatment and bio-saccharification was determined based on substrate degradation, endo-enzymes profiling and fermentable sugar yield. Among the treatment sets, AVLR biomass treated with EC-5 has resulted in the higher degradation rate of lignin (47.01 ± 0.66%, w/w) and polysaccharides (45.87 ± 1.82%, w/w) with a total sugar yield of about 60.01 ± 4.24 mg/g. In addition, the extent of structural disintegration of substrate after EC-treatment was clearly deciphered by FTIR and XRD analysis. And the factors of Pearson correlation matrix reinforces the potency of EC-5 by exhibiting a strong positive correlation between AVLR degradation and the sugar release. Thus, a consortium based CBP could promote the feasibility of establishing a sustainable second generation biorefinery framework.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
16
|
Bansal R, Barshilia HC, Pandey KK. Nanotechnology in wood science: Innovations and applications. Int J Biol Macromol 2024; 262:130025. [PMID: 38340917 DOI: 10.1016/j.ijbiomac.2024.130025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Application of nanomaterials is gaining tremendous interest in the field of wood science and technology for value addition and enhancing performance of wood and wood-based composites. This review focuses on the use of nanomaterials in improving the properties of wood and wood-based materials and protecting them from weathering, biodegradation, and other deteriorating agents. UV-resistant, self-cleaning (superhydrophobic) surfaces with anti-microbial properties have been developed using the extraordinary features of nanomaterials. Scratch-resistant nano-coatings also improve durability and aesthetic appeal of wood. Moreover, nanomaterials have been used as wood preservatives for increasing the resistance against wood deteriorating agents such as fungi, termites and borers. Wood can be made more resistant to ignition and slower to burn by introducing nano-clays or nanoparticles of metal-oxides. The use of nanocellulose and lignin nanoparticles in wood-based products has attracted huge interest in developing novel materials with improved properties. Nanocellulose and lignin nanoparticles derived/synthesized from woody biomass can enhance the mechanical properties such as strength and stiffness and impart additional functionalities to wood-based products. Cellulose nano-fibres/crystals find application in wide areas of materials science like reinforcement for composites. Incorporation of nanomaterials in resin has been used to enhance specific properties of wood-based composites. This review paper highlights some of the advancements in the use of nanotechnology in wood science, and its potential impact on the industry.
Collapse
Affiliation(s)
- Richa Bansal
- Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru 560003, India
| | - Harish C Barshilia
- CSIR-National Aerospace Laboratories, HAL Airport Road, Bangalore 560017, India
| | - Krishna K Pandey
- Institute of Wood Science and Technology, 18th Cross Malleswaram, Bengaluru 560003, India.
| |
Collapse
|
17
|
Jesus E, Franca T, Calvani C, Lacerda M, Gonçalves D, Oliveira SL, Marangoni B, Cena C. Making wood inspection easier: FTIR spectroscopy and machine learning for Brazilian native commercial wood species identification. RSC Adv 2024; 14:7283-7289. [PMID: 38433943 PMCID: PMC10906009 DOI: 10.1039/d4ra00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The molecular structure of wood is mainly based on cellulose, lignin, and hemicellulose. However, low concentrations of lipids, phenolic compounds, terpenoids, fatty acids, resin acids, and waxes can also be found. In general, their color, smell, texture, quantity, and distribution of pores are used in human sensory analysis to identify native wood species, which may lead to erroneous classification, impairing quality control and inspection of commercialized wood. This study developed a fast and accurate method to discriminate Brazilian native commercial wood species using Fourier Transform Infrared Spectroscopy (FTIR) and machine learning algorithms. It not only solves the limitations of traditional methods but also goes beyond as it allows fast analyses to be obtained at low cost and high accuracy. In this work, we provide the identification of five Brazilian native wood species: Angelim-pedra (Hymenolobium petraeum Ducke), Cambara (Gochnatia polymorpha), Cedrinho (Erisma uncinatum), Champagne (Dipteryx odorata), and Peroba do Norte (Goupia glabra Aubl). The results showed the great potential of FTIR and multivariate analysis for wood sample classification; here, the Linear SVM differentiated the five wood species with an accuracy of 98%. The developed method allows industries, laboratories, companies, and control bodies to identify the nature of the wood product after being extracted and semi-manufactured.
Collapse
Affiliation(s)
- Everton Jesus
- UFMS - Universidade Federal de Mato Grosso do Sul, Optics and Photonic Lab (SISFOTON-UFMS) Campo Grande MS Brazil
| | - Thiago Franca
- UFMS - Universidade Federal de Mato Grosso do Sul, Optics and Photonic Lab (SISFOTON-UFMS) Campo Grande MS Brazil
| | - Camila Calvani
- UFMS - Universidade Federal de Mato Grosso do Sul, Optics and Photonic Lab (SISFOTON-UFMS) Campo Grande MS Brazil
| | - Miller Lacerda
- UFMS - Universidade Federal de Mato Grosso do Sul, Optics and Photonic Lab (SISFOTON-UFMS) Campo Grande MS Brazil
| | - Daniel Gonçalves
- UFGD - Universidade Federal da Grande Dourados Dourados MS Brazil
- UEMS - Universidade Estadual de Mato Grosso do Sul Dourados MS Brazil
| | - Samuel L Oliveira
- UFMS - Universidade Federal de Mato Grosso do Sul, Optics and Photonic Lab (SISFOTON-UFMS) Campo Grande MS Brazil
| | - Bruno Marangoni
- UFMS - Universidade Federal de Mato Grosso do Sul, Optics and Photonic Lab (SISFOTON-UFMS) Campo Grande MS Brazil
| | - Cicero Cena
- UFMS - Universidade Federal de Mato Grosso do Sul, Optics and Photonic Lab (SISFOTON-UFMS) Campo Grande MS Brazil
| |
Collapse
|
18
|
Rasaq WA, Okpala COR, Igwegbe CA, Białowiec A. Navigating Pyrolysis Implementation-A Tutorial Review on Consideration Factors and Thermochemical Operating Methods for Biomass Conversion. MATERIALS (BASEL, SWITZERLAND) 2024; 17:725. [PMID: 38591602 PMCID: PMC10856175 DOI: 10.3390/ma17030725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 04/10/2024]
Abstract
Pyrolysis and related thermal conversion processes have shown increased research momentum in recent decades. Understanding the underlying thermal conversion process principles alongside the associated/exhibited operational challenges that are specific to biomass types is crucial for beginners in this research area. From an extensive literature search, the authors are convinced that a tutorial review that guides beginners particularly towards pyrolysis implementation, from different biomasses to the thermal conversion process and conditions, is scarce. An effective understanding of pre-to-main pyrolysis stages, alongside corresponding standard methodologies, would help beginners discuss anticipated results. To support the existing information, therefore, this review sought to seek how to navigate pyrolysis implementation, specifically considering factors and thermochemical operating methods for biomass conversion, drawing the ideas from: (a) the evolving nature of the thermal conversion process; (b) the potential inter-relatedness between individual components affecting pyrolysis-based research; (c) pre- to post-pyrolysis' engagement strategies; (d) potential feedstock employed in the thermal conversion processes; (e) the major pre-treatment strategies applied to feedstocks; (f) system performance considerations between pyrolysis reactors; and (g) differentiating between the reactor and operation parameters involved in the thermal conversion processes. Moreover, pre-pyrolysis activity tackles biomass selection/analytical measurements, whereas the main pyrolysis activity tackles treatment methods, reactor types, operating processes, and the eventual product output. Other areas that need beginners' attention include high-pressure process reactor design strategies and material types that have a greater potential for biomass.
Collapse
Affiliation(s)
- Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (W.A.R.); (C.A.I.)
| | - Charles Odilichukwu R. Okpala
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA;
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (W.A.R.); (C.A.I.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka 420218, Nigeria
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (W.A.R.); (C.A.I.)
| |
Collapse
|
19
|
Reyes-Rivera J, Terrazas T. Lignin Analysis by HPLC and FTIR: Spectra Deconvolution and S/G Ratio Determination. Methods Mol Biol 2024; 2722:149-169. [PMID: 37897607 DOI: 10.1007/978-1-0716-3477-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Fourier transform infrared spectroscopy (FTIR) is a simple nondestructive technique that allows the user to obtain quick and accurate information about the structure of the constituents of wood. Spectra deconvolution is a computational technique, complementary to FTIR analysis, which improves the resolution of overlapped or unobserved bands in the raw spectra. High performance liquid chromatography (HPLC) is an analytical technique useful to determine the ratio of the lignin monomers obtained by the alkaline nitrobenzene oxidation method. Furthermore, lignin content has been commonly determined by wet chemical methods; Klason lignin determination is a quick and accessible method. Here, we detail the procedures for chemical analysis of the wood lignin using these techniques. Additionally, the deconvolution process of FTIR spectra for the determination of the S/G ratio, in lignin isolated by this or other methods, is explained in detail.
Collapse
Affiliation(s)
| | - Teresa Terrazas
- Departamento de Botánica, Instituto de Biología, UNAM, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, Mexico.
| |
Collapse
|
20
|
Hummadi KK, Zhu L, He S. Bio-adsorption of heavy metals from aqueous solution using the ZnO-modified date pits. Sci Rep 2023; 13:22779. [PMID: 38123837 PMCID: PMC10733537 DOI: 10.1038/s41598-023-50278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
The bio-adsorption of heavy metals (including Cu2+, Ni2+, and Zn2+) in aqueous solution and also in an industry wastewater using the ZnO-modified date pits (MDP) as the bio-adsorbent are investigated. The fresh and used bio-adsorbents were characterized by FT-IR, SEM, BET, and XRD. The bio-adsorption parameters (including the pH of solution, the particle size of MDP, the shaking speed, the initial concentration of heavy metals, the dosing of MDP, the adsorption time, and the adsorption temperature) were screened and the data were used to optimize the bio-adsorption process and to study the bio-adsorption isotherms, kinetics, and thermodynamics. Two adsorption models (Langmuir isotherm model and Freundlich isotherm model) and three kinetic models (pseudo-first-order model, pseudo-second-order model, and intra-particle diffusion model) were applied to model the experimental data. Results show that the maximum adsorption amount of Cu2+, Ni2+, and Zn2+ on a complete monolayer of MDP are 82.4, 71.9, and 66.3 mg g-1, which are over 4 times of those of date pits-based bio-adsorbents reported in literature. The bio-adsorption of heavy metals on MDP is spontaneous and exothermic, and is regulated by chemical adsorption on the homogeneous and heterogeneous adsorption sites of MDP surface. This work demonstrates an effective modification protocol for improved bio-adsorption performance of the date pits-based bio-adsorbent, which is cheap and originally from a waste.
Collapse
Affiliation(s)
- Khalid Khazzal Hummadi
- Joint International Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- College of Engineering, University of Baghdad, 47024, Aljadria, Baghdad, Iraq.
| | - Lin Zhu
- Joint International Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Songbo He
- Joint International Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- CoRe Pro BV, 9722NJ, Groningen, The Netherlands.
| |
Collapse
|
21
|
Suri IF, Purusatama BD, Kim JH, Hidayat W, Hwang WJ, Iswanto AH, Park SY, Lee SH, Kim NH. Durability of heat-treated Paulownia tomentosa and Pinus koraiensis woods in palm oil and air against brown- and white-rot fungi. Sci Rep 2023; 13:21929. [PMID: 38081973 PMCID: PMC10713529 DOI: 10.1038/s41598-023-48971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to evaluate and compare the effects of oil- and air-heat treatments on the durability of Paulownia tomentosa and Pinus koraiensis woods against Fomitopsis palustris and Trametes versicolor. The wood samples were treated in palm oil and air at 180, 200, and 220 °C for 2 h. The weight loss, morphology, crystalline properties, and chemical compounds of untreated and heat-treated wood after fungal attack were investigated. The significant difference in weight loss between oil- and air-heat-treated samples was shown at 220 °C. Heat-treated wood exposed to white-rot fungus showed a lower weight loss than that exposed to brown-rot fungus. The cell components in the untreated- and heat-treated Paulownia tomentosa and Pinus koraiensis at 180 °C were severely damaged due to fungal exposure compared to those at 220 °C. A fungal effect on the relative crystallinity was observed in heat-treated wood at 180 °C, whereas the effect was not observed at 220 °C. Following brown-rot fungus exposure, untreated- and heat-treated wood at 180 °C showed a notable change in the Fourier transform infrared (FTIR) peaks of polysaccharides, whereas no noticeable change in lignin peaks was observed. Heat-treated wood at 220 °C showed no noticeable change in the FTIR spectra owing to brown-rot fungus exposure. Exposure to white-rot fungus did not noticeably change the FTIR spectra of untreated and heat-treated wood.
Collapse
Affiliation(s)
- Intan Fajar Suri
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Department of Forestry, Faculty of Agriculture, University of Lampung, Bandar Lampung, 35145, Indonesia
| | | | - Jong Ho Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Wahyu Hidayat
- Department of Forestry, Faculty of Agriculture, University of Lampung, Bandar Lampung, 35145, Indonesia
| | - Won Joung Hwang
- Wood Engineering Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Apri Heri Iswanto
- Department of Forest Products Technology, Faculty of Forestry, Universitas Sumatera Utara, Deli Serdang, 20353, North Sumatra, Indonesia
| | - Se Yeong Park
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung Hwan Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Nam Hun Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
22
|
Zhang T, Zhang D, Chen W, Chen Y, Yang K, Yang P, Quan Q, Li Z, Zhou K, Chen M, Zhou X. Shape and Stiffness Switchable Hydroplastic Wood with Programmability and Reproducibility. ACS NANO 2023. [PMID: 38032080 DOI: 10.1021/acsnano.3c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Stiffness switchable materials (e.g., supramolecular polymers, metals) that alter their shape and mechanical properties in response to specific stimuli are potentially utilized in the structural engineering field but still limited due to the use of petroleum-based synthetic monomers and large energy consumption. Herein, a sustainable and facile solvent casting strategy is proposed to fabricate the "hydroplastic wood" with shape and stiffness switchable properties via cell wall wetting, cell wall softening and subsequent moisture evaporation. Therein, a wetting agent with low surface tension and low viscosity is utilized for covering the rough surface of solid wood to form a liquid lubricating layer, thereby increasing the interfacial wettability and achieving uniform softening of the cell walls. This interface wetting treatment can easily break through the hydro-plasticization process for thick wood (Balsa wood, Ochroma lagopus Swartz, density: 0.25 g/cm3; Pinewood, Pinus armandii, density: 0.38 g/cm3). Additionally, the capillary force arising from moisture evaporation induces the self-densification of oriented cellulose nanofibrils and achieves moisture-mediated shape design capabilities through periodic saturation-dehydration. This work makes hydroplastic wood a promising candidate for engineering materials because of its combined advantages of strong durability, formability, and load-carrying capacity.
Collapse
Affiliation(s)
- Tao Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Daotong Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Weimin Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Yan Chen
- Laboratory for Multiscale Mechanics and Medical Science, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Pei Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Qi Quan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Zhao Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Ke Zhou
- Laboratory for Multiscale Mechanics and Medical Science, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
- College of Energy, Soochow University, Suzhou 215006, China
| | - Minzhi Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| | - Xiaoyan Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- International Innovation Center for Forest Chemicals and Materials, Nanjing 210037, China
- Jiangsu Engineering Research Center of Fast-Growing Trees and Agri-fiber Materials, Nanjing 210037, China
| |
Collapse
|
23
|
Yun J, Robertson S, Kim C, Suzuki M, Murphy WL, Gopalan P. Aligned skeletal muscle assembly on a biofunctionalized plant leaf scaffold. Acta Biomater 2023; 171:327-335. [PMID: 37730079 PMCID: PMC10913149 DOI: 10.1016/j.actbio.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Decellularized plant scaffolds have drawn attention as alternative tissue culture platforms due to their wide accessibility, biocompatibility, and diversity of innate microstructures. Particularly, in this work, monocot leaves with innate uniaxial micropatterned topography were utilized to promote cell alignment and elongation. The leaf scaffold was biofunctionalized with poly(PEGMEMA-r-VDM-r-GMA) copolymer that prevented non-specific protein adsorption and was modified with cell adhesive RGD peptide to enable cell adhesion and growth in serum-free media. The biofunctionalized leaf supported the adhesion, growth, and alignment of various human cells including embryonic stem cells (hESC) derived muscle cells. The hESC-derived myogenic progenitor cells cultured on the biofunctionalized leaf scaffold adopted a parallel orientation and were elongated along the leaf topography. These cells showed significant early myogenic differentiation and muscle-like bundled myotube formation. The aligned cells formed compact myotube assemblies and showed uniaxial muscle contraction under chemical stimulation, a critical requirement for developing functional skeletal muscle tissue. Polymer-functionalized plant leaf scaffolds offer a novel human cell culture platform and have potential in human tissue engineering applications that require parallel alignment of cells. STATEMENT OF SIGNIFICANCE: Plant scaffolds are plentiful sources in nature and present a prefabricated construct to present topographical cues to cells. Their feature width is ideal for human cell alignment and elongation, especially for muscle cells. However, plant scaffolds lack proteins that support mammalian cell culture. We have developed a polymer coated leaf scaffold that enables cell adhesion and growth in serum-free media. Human muscle cells cultured on the biofunctionalized leaf, aligned along the natural parallel micro-patterned leaf topography, and formed muscle-like bundled myotube assemblies. These assemblies showed uniaxial muscular contraction, a critical requirement for developing functional skeletal muscle tissue. The biodiversity of the plant materials offers a novel human cell culture platform with potential in human tissue engineering.
Collapse
Affiliation(s)
- Junsu Yun
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Chanul Kim
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53075, United States
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, United States.
| | - William L Murphy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, United States; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53075, United States; Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, United States.
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53075, United States.
| |
Collapse
|
24
|
Enriquez-Medina I, Bermudez AC, Ortiz-Montoya EY, Alvarez-Vasco C. From purposeless residues to biocomposites: A hyphae made connection. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00807. [PMID: 37448784 PMCID: PMC10338154 DOI: 10.1016/j.btre.2023.e00807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Biocomposites create attractive alternatives to match packing needs with available agricultural residues. Growing native fungal strains developed a mycelium biocomposite over a mixture of Peach Palm Fruit Peel Flour and Sugar Cane Bagasse Wet Dust. A methodology was proposed to analyze their main characteristics: 1) morphological, 2) chemical, and 3) biodegradability. 1) SEM analysis evidenced the structural change of the dried vs pressed material and mycelium morphology for both species. 2) The ratio lignin:carbohydrate showed that P. ostreatus degrades the cellulose-hemicellulose fraction of the substrate at a higher rate than T. elegans, and 3) the curve BMP indicated that these materials are readily biodegradable with a maximum yield of 362,50 mL biogas/g VS. An innovative tangible valorization strategy based on mass balances is also presented: from just 50 kg of peel flour, up to 1840 units can be manufactured, which could pave the way for a more sustainable future.
Collapse
Affiliation(s)
- Isabel Enriquez-Medina
- Department of Biological Sciences, Bioprocesses and Biotechnology, Universidad ICESI, Calle 18 No, 122-135, Cali, Colombia
| | - Andres Ceballos Bermudez
- Department of Biological Sciences, Bioprocesses and Biotechnology, Universidad ICESI, Calle 18 No, 122-135, Cali, Colombia
- Centro BioInc, Universidad ICESI, Cali, Colombia
| | - Erika Y. Ortiz-Montoya
- Department of Biological Sciences, Bioprocesses and Biotechnology, Universidad ICESI, Calle 18 No, 122-135, Cali, Colombia
- Centro BioInc, Universidad ICESI, Cali, Colombia
| | - Carlos Alvarez-Vasco
- Department of Biological Sciences, Bioprocesses and Biotechnology, Universidad ICESI, Calle 18 No, 122-135, Cali, Colombia
- Centro BioInc, Universidad ICESI, Cali, Colombia
| |
Collapse
|
25
|
Zhao B, Liu R, Guo Q, Xu G, Zhang L, Sun P, Cao Y, Hu S. The use of newly isolated fungal cultures for the selective delignification of bamboo culms. Front Bioeng Biotechnol 2023; 11:1265420. [PMID: 37720322 PMCID: PMC10501718 DOI: 10.3389/fbioe.2023.1265420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
The screening of ligninolytic enzyme-producing fungal species in samples led to the identification of Paracremonium sp. LCB1, Clonostachys compactiuscula LCD1 and C. compactiuscula LCN1. Both these strains produced high levels of hemicellulase and ligninolytic enzyme production over a relatively short fermentation period of 3-5 days while exhibiting very low levels of cellulase activity. The results of the tests indicated that co-culturing LCB1 and LCN1 enhanced the ability to degrade lignin, and the ideal degrading circumstances and internal degrading mechanism of combined fungi were examined. The results showed that under conditions of temperature (30°C), pH (5), culture time (40 d), solid-liquid ratio (1:2.5), the pretreatment of bamboo culms with a co-culture of LCB1 and LCN1 resulted in a pronounced 76.37% drop in lignin weight and a high lignin/cellulose loss ratio (>10). Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy were used to characterize the physicochemical properties of these bio-pretreated bamboo culms, further confirming that LCB1 and LCN1 co-culture represents an effective approach to bamboo delignification.
Collapse
Affiliation(s)
- Bo Zhao
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang, China
| | - Rui Liu
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang, China
| | - Qi Guo
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang, China
| | - Gang Xu
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang, China
| | - Li Zhang
- Sichuan Academy of Forestry, Chengdu, China
| | - Peng Sun
- Sichuan Academy of Forestry, Chengdu, China
| | - Ying Cao
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang, China
| | - Shanglian Hu
- School of Life Science and Engineering, Bamboo Research Institute, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
26
|
Bergamasco S, Zikeli F, Vinciguerra V, Sobolev AP, Scarnati L, Tofani G, Scarascia Mugnozza G, Romagnoli M. Extraction and Characterization of Acidolysis Lignin from Turkey Oak ( Quercus cerris L.) and Eucalypt ( Eucalyptus camaldulensis Dehnh.) Wood from Population Stands in Italy. Polymers (Basel) 2023; 15:3591. [PMID: 37688217 PMCID: PMC10490508 DOI: 10.3390/polym15173591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Acidolysis lignins from the species Quercus cerris L. and Eucalyptus camaldulensis Dehnh. were isolated and characterized using high pressure size exclusion chromatography (HP-SEC), Fourier-transform (FTIR) infrared spectroscopy, analytical pyrolysis-gas chromatography-mass spectrometry (Py-GCMS), and two-dimensional heteronuclear single quantum coherence (2D HSQC) NMR spectroscopy. The acidolysis lignins from the two different species varied in chemical composition and structural characteristics, with Q. cerris L. lignin having a higher S/G ratio and higher molar mass averages with a bimodal molar mass distribution. The different analytical techniques FTIR spectroscopy, Py-GCMS, and 2D NMR spectroscopy provided consistent results regarding the S/G ratio of the lignins from the two wood species. Based on the determined high S/G ratio of both oak and eucalypt lignin, the two wood sources could be promoted as substrates for efficient lignin isolation in modern forest biorefineries in order to develop innovative lignin-based value-added biorefinery products.
Collapse
Affiliation(s)
- Sara Bergamasco
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (F.Z.); (V.V.); (G.S.M.)
| | - Florian Zikeli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (F.Z.); (V.V.); (G.S.M.)
| | - Vittorio Vinciguerra
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (F.Z.); (V.V.); (G.S.M.)
| | - Anatoly Petrovich Sobolev
- “Annalaura Segre” Magnetic Resonance Laboratory, Institute for Biological Systems, CNR, Via Salaria, Km 29,300, 00015 Monterotondo, Italy;
| | - Luca Scarnati
- Agenzia Regionale per lo Sviluppo e l’Innovazione dell’Agricultura nel Lazio—ARSIAL, Via Rodolfo Lanciani, 38, 00162 Roma, Italy;
| | - Giorgio Tofani
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
| | - Giuseppe Scarascia Mugnozza
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (F.Z.); (V.V.); (G.S.M.)
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (F.Z.); (V.V.); (G.S.M.)
| |
Collapse
|
27
|
Damto T, Zewdu A, Birhanu T. Application of Fourier transform infrared (FT-IR) spectroscopy and multivariate analysis for detection of adulteration in honey markets in Ethiopia. Curr Res Food Sci 2023; 7:100565. [PMID: 37664005 PMCID: PMC10470187 DOI: 10.1016/j.crfs.2023.100565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Honey is a highly susceptible food item to adulteration in national and international trade. Spectrum screening by FTIR coupled with multivariate analysis was investigated as an alternate analytical technique for honey adulterations and authentication. This technique was evaluated using pure honey samples that were blended at a ratio of 0-50% with commonly known adulterant materials and honey samples that were readily available for purchase in the Addis Ababa markets channel. Holeta Bee Research's bee farm pure honey, which is authentic honey, is employed as the control in this experiment. In the region, 4000-400 cm-1, spectral data of honey samples and five adulterant materials were recorded. The combination of spectra measurement with multivariate analyses resulted in the visualization of honey grouping and classification based on their functional group. The bands at 1800-650 cm-1 spectral region were selected for successful discrimination of clusters. Based on spectral differences, cluster analysis (CA) is also capable of grouping and separating pure from contaminated honey. Principle component analysis was able to visualize the differentiation of deliberately adulterated honey and commercially available from authentic ones. According to the results of our investigation, using FTIR analysis methods along with multivariate statistical analysis of the data could be considered useful fingerprinting procedures for identifying samples of pure and adulterated honey.
Collapse
Affiliation(s)
- Teferi Damto
- Holeta Bee Research Center, Oromia Agriculture Research Institute, Ethiopia
| | - Ashagrie Zewdu
- Food Science and Nutrition, College of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tarekegn Birhanu
- Analytical Chemistry, Vice President for Academic Affairs, Addis Ababa Science and Technology University, Ethiopia
| |
Collapse
|
28
|
Chen G, Wu P, Dong J, Zheng J, Wang E. Use of a wheat straw covering to reduce nitrogen loss during pig slurry storage and reuse of the straw covering in biochar production for nitrogen retention in the slurry. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:406-412. [PMID: 37354632 DOI: 10.1016/j.wasman.2023.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Storing pig slurry (PS) and returning it to the field is one of the most important ways to recycle PS. However, during the storage of PS, the NH3 emissions cause a large loss of nitrogen (N), which reduces the fertilizer value of stored PS and cause environmental pollution. To reduce N loss during PS storage, we added different amounts of wheat straw powder (WSP) and wheat straw segments (WSSs) to the PS. The wheat straw cover was used for biochar production, and then, the biochar was used for N adsorption from the PS. The results showed that the N loss of PS was significantly decreased by use of the wheat straw covering. The N losses in treatments of WSP covering and WSSs covering were reduced by 4.8-53.1 and 0.8-14.2 percentage points compared with that in the control, respectively. Ammonia adsorption is an important reason for the reduction in N loss by straw covering during PS storage. After covering for 180 days in storage, the NH4+-N content in both the WSP covering and WSSs covering increased greatly, and the cover was reused for biochar production. The biochar yield was inversely proportional to the pyrolysis temperature, and the specific surface area and pore volume of the biochar were proportional to the pyrolysis temperature. We achieved the highest amount of NH4+-N adsorption (1.9 mg/g) with a biochar dosage of 0.2 g/L (treatment Y-400). This study provides a new straw-covered PS storage method to achieve straw recycling and low N loss during PS storage.
Collapse
Affiliation(s)
- Guangyin Chen
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Engineering Laboratory of Soil and Water Pollution Control and Remediation, Wuhu 241002, China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK 2800, Denmark.
| | - Pei Wu
- Anhui Engineering Laboratory of Soil and Water Pollution Control and Remediation, Wuhu 241002, China
| | - Jinzhu Dong
- Anhui Engineering Laboratory of Soil and Water Pollution Control and Remediation, Wuhu 241002, China
| | - Jiawei Zheng
- Anhui Engineering Laboratory of Soil and Water Pollution Control and Remediation, Wuhu 241002, China
| | - Enhui Wang
- Anhui Engineering Laboratory of Soil and Water Pollution Control and Remediation, Wuhu 241002, China
| |
Collapse
|
29
|
Poolakkalody NJ, Ramesh K, Palliprath S, Nittoor SN, Santiago R, Kabekkodu SP, Manisseri C. Understanding triethylammonium hydrogen sulfate ([TEA][HSO]) pretreatment induced changes in Pennisetum polystachion cell wall matrix and its implications on biofuel yield. RENEWABLE ENERGY 2023; 209:420-430. [DOI: 10.1016/j.renene.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
|
30
|
Silva DJS, Santos JAV, Pinto JCN, Llorent-Martínez EJ, Castilho PC, Batista de Carvalho LAE, Marques MPM, Barroca MJ, Moreira da Silva A, da Costa RMF. Spectrochemical analysis of seasonal and sexual variation of antioxidants in Corema album (L.) D. Don leaf extracts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122816. [PMID: 37192576 DOI: 10.1016/j.saa.2023.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Bioactive phytoconstituents have been increasingly investigated for their potential human health benefits. Corema album (L.) D. Don, an Ericaceae, reportedly has antioxidant, antimicrobial and anticancer properties. Aiming at enhancing its nutraceutical potential, we performed a spectrochemical analysis of hydroethanolic extracts from C. album leaves. We report on changes in the antioxidant activity of the extracts, as well as in the accumulation of key phytoconstituents (namely phenolic compounds), in female and male samples, throughout three harvesting seasons (February, July, and October). For each extract, the antioxidant activity was assessed by different spectrophotometric methods. Simultaneously, attenuated total reflectance Fourier transform mid-infrared spectroscopy (FTIR-ATR), and high-performance liquid chromatography - electrospray ionisation - quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS), were used to identify and monitor variations in the composition of phenolic compounds in the extracts. The main compounds identified were epicatechin, laricitrin-O-hexoside isomers, and myricetin-O-hexoside isomers. Significant differences were found in the composition and relative abundance of the compounds of interest, according to sex and season. Overall, a trend was observed whereby phenolic content and antioxidant activities were higher in males and increased between the earlier and the latest harvests. Based on these results, we may conclude that late summer or early autumn harvests are preferable when aiming at the highest yearly content of bioactive compounds. Additionally, it should be considered that extracts from male individuals typically display higher antioxidant activities. Ultimately, our understanding of C. album in the context of nutraceutical applications is benefited from the quantitative and qualitative portrait provided here, thus promoting its relevance as a source of bioactive compounds.
Collapse
Affiliation(s)
- Daniela J S Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Joana C N Pinto
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain
| | - Paula C Castilho
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Maria João Barroca
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
| | - Aida Moreira da Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
| | - Ricardo M F da Costa
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
31
|
Influence of Natural Aging on the Moisture Sorption Behaviour of Wooden Structural Components. Molecules 2023; 28:molecules28041946. [PMID: 36838933 PMCID: PMC9960851 DOI: 10.3390/molecules28041946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
A greater understanding of moisture sorption behaviour of aged wooden structural components, which has a close relationship with dimensional stability, is required to effectively evaluate and preserve historical artefacts. This study focused on the effects of aging on Baotou beam samples from a Chinese historical wooden building. An analysis of the sorption isotherms and hysteresis loops of a naturally aged, decayed sample (AOS), an aged sound sample (AIS), and a reference sample (RS), using classical sorption isotherm models revealed that the moisture sorption behaviour of samples from the same growth ring in a Baotou beam can differ significantly. AOS showed higher hygroscopicity than AIS, and both these samples were more hygroscopic than RS. Furthermore, the mono/multilayer moisture contents of AOS were always higher than those of AIS and RS. In addition, Fourier transform infrared, second-derivative infrared, and two-dimensional correlation infrared spectroscopy were used to investigate chemical changes in the samples. The relative hemicellulose and lignin contents of the samples changed significantly with wood aging. Furthermore, AOS exhibited the highest calcium oxalate content, which may be associated with fungal infections. Overall, these results provide valuable insights into the effects of aging on wood samples and the dimensional stability of timber structures, which could inform future research on methods for the preservation or restoration of aging timber structures.
Collapse
|
32
|
Chen G, Cao H, Tang Y, Ni K, Wang J, Wu P. Cascade utilization of rice straw for biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50444-50456. [PMID: 36795205 DOI: 10.1007/s11356-023-25829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
To improve the biogas yield of rice straw, an innovative cascade utilization process for biogas production was proposed using a method referred to as "the first digestion + NaOH treatment + the second digestion" (labeled FSD). Both the first digestion and the second digestion of all treatments were conducted at the initial total solid (TS) loading of straw of 6%. A series of lab-scale batch experiments were conducted to investigate the effect of first digestion time (5, 10, and 15 days) on biogas production and lignocellulose structure destruction of rice straw. The results showed that the cumulative biogas yield of rice straw using the FSD process was increased by 13.63-36.14% compared with the control (CK), and the highest biogas yield of 233.57 mL g-1 TSadded was obtained when the first digestion time was 15 days (FSD-15). The removal rates of TS, volatile solids, and organic matter were increased by 12.21-18.09%, 10.62-14.38%, and 13.44-16.88%, respectively, compared with those of CK. The results of Fourier transform infrared spectroscopy analysis revealed that the skeletal structure of rice straw was not significantly destroyed after the FSD process, but the relative contents of functional groups in rice straw were changed. The FSD process accelerated the destruction of crystallinity of rice straw, and the lowest crystallinity index of 10.19% was obtained at FSD-15. The abovementioned results indicated that the FSD-15 process is recommended for cascade utilization of rice straw in biogas production.
Collapse
Affiliation(s)
- Guangyin Chen
- Anhui Engineering Laboratory of Soil and Water Pollution Control and Remediation, Wuhu, 241002, China. .,School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China. .,Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, DK, Denmark.
| | - Hainan Cao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Yaling Tang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Keye Ni
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Jing Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Pei Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
33
|
Silva TP, de Albuquerque FS, Nascimento Ferreira A, Santos DMRCD, Santos TVD, Meneghetti SMP, Franco M, Luz JMRD, Pereira HJV. Dilute acid pretreatment for enhancing the enzymatic saccharification of agroresidues using a Botrytis ricini endoglucanase. Biotechnol Appl Biochem 2023; 70:184-192. [PMID: 35338782 DOI: 10.1002/bab.2341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
The enormous amount of agroindustrial residues generated in Brazil can be used as biomass to produce fermentable sugars. This study compared the pretreatments with different proportions of dilute acid. The method involved pretreatment with 0.5%, 1%, and 1.5% (v/v) sulfuric acid, followed by hydrolysis using the halotolerant and thermostable endoglucanase from Botrytis ricini URM 5627. The physicochemical characterization of plant biomass was performed using XRD, FTIR, and SEM. The pretreatment significantly increased the production of fermentable sugars following enzymatic saccharification from wheat bran, sugarcane bagasse, and rice husk: 153.67%, 91.98%, and 253.21% increment in sugar production; 36.39 mg⋅g-1 ± 1.23, 39.55 mg⋅g-1 ± 1.70, and 42.53 mg⋅g-1 ± 7.61 mg⋅L-1 of glucose; and 3.26 ± 0.35 mg⋅g-1 , 3.61mg⋅g-1 ± 0.74 and 3.59 mg⋅g-1 ± 0.80 of fructose were produced, respectively. In conclusion, biomass should preferably be pretreated before the enzymatic saccharification using B. ricini URM 5627 endoglucanase.
Collapse
Affiliation(s)
- Tatielle Pereira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | - Fabiana Sarmento de Albuquerque
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | - Alexsandra Nascimento Ferreira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | | | - Thatiane Veríssimo Dos Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | | | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - José Maria Rodrigues da Luz
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Maceió, Alagoas, Brazil
| |
Collapse
|
34
|
Moroccan Endemic Artemisia herba-alba Essential Oil: GC-MS Analysis and Antibacterial and Antifungal Investigation. SEPARATIONS 2023. [DOI: 10.3390/separations10010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In Morocco, the endemic Artemisia herba-alba is well known by its traditional uses and health benefits. The search for natural, safe, and effective antibacterial and antifungal agents from plants is in high demand due to microbial and fungal resistance to conventional synthetic antibiotics and antifungal drugs. In this study, the A. herba-alba was collected from the region of Fez-Boulemane during the periods of March, June, and September. Essential oils (EOs) were extracted from the aerial part of the plant by the hydrodistillation method. The chemical constituents were determined using GC-MS as analytical tools. The antimicrobial activities of different oils were tested using the macrodilution method. The results showed the difference in the yields between the three EOs (0.49, 1.74, 1.30% (mL/100 g)), respectively, as well as in their corresponding chemical compositions. The main constituents revealed by GC-MS are higher contents of oxygenated monoterpenes (84.7, 84.4, 81%), such as cis chrysanthenyl acetate (30, 26.7, 27.6%), β-thujone (23.2, 12.9, 15.4%), camphor (9.76, 14.3, 15.8%), chrysanthenone (2.4, 1, 14%), 1,8-cineole (1.5, 11.7, 11.8%), trans β-dihydroterpineol (7.8, 7.2, 6.9%), α-thujone (4.8, 3, 5.4%), and sesquiterpenic davanone (3.9, 1.5, 1.4%), respectively. The three EOs biological activities’ results showed significant antimicrobial effects against four bacteria tested (E. coli, B. subtilis, S. aureus, M. luteus), with the MIC values ranging from 0.1 to 0.03% (v/v), as well as interesting antifungal effects on both wood rot fungi against four fungi examined (G. trabeum, P. placenta, C. puteana, C. versicolor) and molds against three microorganisms tested (A. niger, P. digitatum, P. expansum), with MIC values ranging from 0.2 to 0.03% (v/v) and 0.4 to 0.03% (v/v), respectively. The June and September EO samples showed more potent activities than those collected during March. Our research findings showed quantitative variability in both EO contents and chemical compositions, which could be due to the phenological stages, climatic conditions of growth, and harvesting periods. The potent results of the antimicrobial/antifungal activities were provided by the EOs of June and September and might be correlated to the contribution and synergism effect of all oxygenated monoterpenes. These results support the possible application of A. herba-alba EOs as natural and safe antibacterial agents, and an effective alternative to synthetic drugs, enabling the prevention and treatment of certain pathogenic infections in food and health, and the preservation of wood alteration against fungi.
Collapse
|
35
|
Wittner N, Slezsák J, Broos W, Geerts J, Gergely S, Vlaeminck SE, Cornet I. Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121912. [PMID: 36174400 DOI: 10.1016/j.saa.2022.121912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Lignin determination in lignocellulose with the conventional two-step acid hydrolysis method is highly laborious and time-consuming. However, its quantification is crucial to monitor fungal pretreatment of wood, as the increase of acid-insoluble lignin (AIL) degradation linearly correlates with the achievable enzymatic saccharification yield. Therefore, in this study, a new attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy method was developed to track fungal delignification in an easy and rapid manner. Partial least square regression (PLSR) with cross-validation (CV) was applied to correlate the ATR-FTIR spectra with the AIL content (19.9 %-27.1 %). After variable selection and normalization, a PLSR model with a high coefficient of determination (RCV2 = 0.87) and a low root mean square (RMSECV = 0.60 %) were obtained despite the heterogeneous nature of the fungal solid-state fermentation. These results show that ATR-FTIR can reliably predict the AIL content in fungus-treated wood while being a high-throughput method. This novel method can facilitate the transition to the wood-based economy.
Collapse
Affiliation(s)
- Nikolett Wittner
- Research Group of Biochemical Wastewater Valorization and Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - János Slezsák
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Waut Broos
- Research Group of Biochemical Wastewater Valorization and Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Jordi Geerts
- Research Group of Biochemical Wastewater Valorization and Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Szilveszter Gergely
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Iris Cornet
- Research Group of Biochemical Wastewater Valorization and Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
36
|
Goué EL, Ham-Pichavant F, Grelier S, Remy J, Coma V. Functional Chitosan-Calcium Carbonate Coatings for Enhancing Water and Fungal Resistance of Paper Materials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248886. [PMID: 36558019 PMCID: PMC9785779 DOI: 10.3390/molecules27248886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
The objective of this study was to increase the water resistance of paper while providing fungal resistance using a bio-based coating made from chitosan. The water resistance was improved through the surface control of roughness using modified calcium carbonate particles. The higher the quantity of particles in the film-forming solution, the higher the surface hydrophobicity of the paper. The addition of particles was found to counterbalance the chitosan hydrophilicity through the control of the coatings' penetration in the paper bulk. As a consequence, the wetting time and liquid water resistance were enhanced. The antifungal activity of the film-forming solutions and coated paper was also investigated against the growth of Chaetomium globosum, which was selected as a model strain able to contaminate paper materials. The results reveal that the antifungal activity of chitosan was improved by a possible synergic effect with the bicarbonate ions from the mineral particles.
Collapse
Affiliation(s)
- Erwan Le Goué
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, 33600 Pessac, France
- Papeterie Zuber Rieder, rue Ernest Zuber, 25320 Boussières, France
| | - Frédérique Ham-Pichavant
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Stéphane Grelier
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Jordan Remy
- Papeterie Zuber Rieder, rue Ernest Zuber, 25320 Boussières, France
| | - Véronique Coma
- Laboratoire de Chimie des Polymères Organiques, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5629, 16 Avenue Pey-Berland, 33600 Pessac, France
- Correspondence:
| |
Collapse
|
37
|
Acosta AP, Gallio E, Cruz N, Aramburu AB, Lunkes N, Missio AL, Delucis RDA, Gatto DA. Alumina as an Antifungal Agent for Pinus elliottii Wood. J Fungi (Basel) 2022; 8:jof8121299. [PMID: 36547632 PMCID: PMC9785303 DOI: 10.3390/jof8121299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
This work deals with the durability of a Pinus elliotti wood impregnated with alumina (Al2O3) particles. The samples were impregnated at three different Al2O3 weight fractions (c.a. 0.1%, 0.3% and 0.5%) and were then exposed to two wood-rot fungi, namely white-rot fungus (Trametes versicolor) and brown-rot fungus (Gloeophyllum trabeum). Thermal and chemical characteristics were evaluated by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric (TG) analyses. The wood which incorporated 0.3 wt% of Al2O3 presented a weight loss 91.5% smaller than the untreated wood after being exposed to the white-rot fungus. On the other hand, the highest effectiveness against the brown-rot fungus was reached by the wood treated with 5 wt% of Al2O3, which presented a mass loss 91.6% smaller than that of the untreated pine wood. The Al2O3-treated woods presented higher antifungal resistances than the untreated ones in a way that: the higher the Al2O3 content, the higher the thermal stability. In general, the impregnation of the Al2O3 particles seems to be a promising treatment for wood protection against both studied wood-rot fungi. Additionally, both FT-IR and TG results were valuable tools to ascertain chemical changes ascribed to fungal decay.
Collapse
Affiliation(s)
- Andrey P. Acosta
- Postgraduate Program in Mining, Metallurgical and Materials Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90650-001, RS, Brazil
| | - Ezequiel Gallio
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Nidria Cruz
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Arthur B. Aramburu
- Postgraduate Program in Mining, Metallurgical and Materials Engineering, Federal University of Rio Grande do Sul, Porto Alegre 90650-001, RS, Brazil
| | - Nayara Lunkes
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - André L. Missio
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
- Correspondence: ; Tel.: +55-55-9944-4478
| | - Rafael de A. Delucis
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Darci A. Gatto
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| |
Collapse
|
38
|
Mohamed HS, Tawfik WZ, Hamza ZS, Kfafy YR, El-Bassuony AA, Ahmed SA, El-Mageed HRA, Soliman NK. Removal of Dye by Adsorption on Nitric Acid Treated Sugar Bagasse Wastes, an Experimentally, Theoretically, and Computational Studies. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022; 96:3232-3243. [DOI: 10.1134/s0036024423020085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 09/02/2023]
|
39
|
Xia M, Valverde‐Barrantes OJ, Suseela V, Blackwood CB, Tharayil N. Characterizing natural variability of lignin abundance and composition in fine roots across temperate trees: a comparison of analytical methods. THE NEW PHYTOLOGIST 2022; 236:2358-2373. [PMID: 36168143 PMCID: PMC9828118 DOI: 10.1111/nph.18515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Lignin is an important root chemical component that is widely used in biogeochemical models to predict root decomposition. Across ecological studies, lignin abundance has been characterized using both proximate and lignin-specific methods, without much understanding of their comparability. This uncertainty in estimating lignin limits our ability to comprehend the mechanisms regulating root decomposition and to integrate lignin data for large-scale syntheses. We compared five methods of estimating lignin abundance and composition in fine roots across 34 phylogenetically diverse tree species. We also assessed the feasibility of high-throughput techniques for fast-screening of root lignin. Although acid-insoluble fraction (AIF) has been used to infer root lignin and decomposition, AIF-defined lignin content was disconnected from the lignin abundance estimated by techniques that specifically measure lignin-derived monomers. While lignin-specific techniques indicated lignin contents of 2-10% (w/w) in roots, AIF-defined lignin contents were c. 5-10-fold higher, and their interspecific variation was found to be largely unrelated to that determined using lignin-specific techniques. High-throughput pyrolysis-gas chromatography-mass spectrometry, when combined with quantitative modeling, accurately predicted lignin abundance and composition, highlighting its feasibility for quicker assessment of lignin in roots. We demonstrate that AIF should be interpreted separately from lignin in fine roots as its abundance is unrelated to that of lignin polymers. This study provides the basis for informed decision-making with respect to lignin methodology in ecology.
Collapse
Affiliation(s)
- Mengxue Xia
- Department of Plant & Environmental SciencesClemson UniversityClemsonSC29634USA
| | - Oscar J. Valverde‐Barrantes
- International Center for Tropical Biodiversity, Institute of EnvironmentFlorida International UniversityMiamiFL33199USA
| | - Vidya Suseela
- Department of Plant & Environmental SciencesClemson UniversityClemsonSC29634USA
| | | | - Nishanth Tharayil
- Department of Plant & Environmental SciencesClemson UniversityClemsonSC29634USA
| |
Collapse
|
40
|
Kutrakul N, Liu A, Ratchahat S, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Highly selective catalytic conversion of raw sugar and sugarcane bagasse to lactic acid over YbCl3, ErCl3, and CeCl3 Lewis acid catalysts without alkaline in a hot-compressed water reaction system. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Improving hydrophobicity and compatibility between kenaf fiber and polymer composite by surface treatment with inorganic nanoparticles. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
42
|
Odlyha M, Lucejko JJ, Lluveras-Tenorio A, di Girolamo F, Hudziak S, Strange A, Bridarolli A, Bozec L, Colombini MP. Violin Varnishes: Microstructure and Nanomechanical Analysis. Molecules 2022; 27:molecules27196378. [PMID: 36234913 PMCID: PMC9572707 DOI: 10.3390/molecules27196378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the current work is twofold: to demonstrate the application of in situ non-invasive imaging by portable atomic force microscopy (AFM) on the surfaces of a violin and to integrate compositional and mechanical analysis at the nano scale level on model samples of varnished wood. These samples were prepared according to traditional recipes by an Italian lute-maker family well practised in the art. Samples of oil and spirit-based varnishes on maple wood, naturally and accelerated light aged, were studied. AFM was used to measure the nanomechanical properties of the model samples and established that the spirit-based varnish was stiffer than the oil-based. Synchrotron radiation micro- Fourier Transform Infra-red analysis of the layer structure revealed that stiffer spirit-based varnish showed less penetration into the wood than the oil-based. Further PeakForce Quantitative Nanomechanical Mapping (QNM) demonstrated a difference in adhesion values between the oil- and spirit-based samples.
Collapse
Affiliation(s)
- Marianne Odlyha
- Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
- Correspondence: (M.O.); (M.P.C.)
| | - Jeannette J. Lucejko
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56127 Pisa, Italy
| | - Anna Lluveras-Tenorio
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56127 Pisa, Italy
| | - Francesca di Girolamo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56127 Pisa, Italy
| | - Stephen Hudziak
- Department of Electronic and Electrical Engineering, University College London, London WC1E 6BT, UK
| | - Adam Strange
- Eastman Dental Institute, University College London, London WC1E 6DG, UK
| | - Alexandra Bridarolli
- Eastman Dental Institute, University College London, London WC1E 6DG, UK
- Getty Conservation Institute, 1200 Getty Center Drive, Suite 700, Los Angeles, CA 90049, USA
| | - Laurent Bozec
- Eastman Dental Institute, University College London, London WC1E 6DG, UK
- Getty Conservation Institute, 1200 Getty Center Drive, Suite 700, Los Angeles, CA 90049, USA
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Maria Perla Colombini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56127 Pisa, Italy
- Correspondence: (M.O.); (M.P.C.)
| |
Collapse
|
43
|
Wang L, Guan H, Hu J, Feng Y, Li X, Yusef KK, Gao H, Tian D. Aspergillus niger Enhances Organic and Inorganic Phosphorus Release from Wheat Straw by Secretion of Degrading Enzymes and Oxalic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10738-10746. [PMID: 36027054 DOI: 10.1021/acs.jafc.2c03063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To explore the mechanisms of crop straw degradation and phosphorus (P) release by phosphate-solubilizing fungi (PSF), a typical PSF Aspergillus niger (A. niger, ANG) was investigated for the degradation of wheat straw (WST) in this work. The results revealed that A. niger significantly increased wheat straw degradation (30%) compared with no A. niger treatment (7.7%). Meanwhile, more than 92% of total P was released from WST by A. niger, much higher than from WST treatment (69.5%). Although the ratios of inorganic P release between WST and WST + ANG treatments were similar (17.6 vs 19.7%), a significant difference occurred between their release of organic P, i.e., WST (51.9%) vs WST + ANG (72.5%). The high enzyme activity of β-1,4-glucanase and β-glucosidase produced by A. niger contributed to the wheat straw degradation and organic P release compared with no A. niger treatment. Oxalic acid secreted by A. niger dominated the release of inorganic P from WST. Our findings suggested that A. niger is an efficient microbial agent for crop straw degradation and P release, which could be a candidate in the pathway of straw return.
Collapse
Affiliation(s)
- Liyan Wang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Hao Guan
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Jun Hu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Yi Feng
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Li
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Kianpoor Kalkhajeh Yusef
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Hongjian Gao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Da Tian
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
44
|
Beltrame G, Mattsson I, Damlin P, Han Z, Kvarnström C, Leino R, Yang B. Study of the sterile conk of Inonotus obliquus using 13C CPMAS NMR and FTIR spectroscopies coupled with multivariate analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Szadkowska D, Auriga R, Lesiak A, Szadkowski J, Marchwicka M. Influence of Pine and Alder Woodchips Storage Method on the Chemical Composition and Sugar Yield in Liquid Biofuel Production. Polymers (Basel) 2022; 14:polym14173495. [PMID: 36080570 PMCID: PMC9460749 DOI: 10.3390/polym14173495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to investigate the effect of storing methods of woodchips from two species, pine (Pinus sylvestris L.) and alder (Alnus Mill.), on the basic chemical composition and sugar yield in liquid biofuel production. Two methods of storing woody biomass were used in the study—an open pile and a cover pile. The wood was felled at the end of November and was stored as industrial chips for eight months from December onward. After this time, material was collected for chemical composition analyses and enzymatic hydrolysis. The results of the chemical composition analysis of the wood for both studied species showed the influence of the type of storage on the composition of the individual structural components of the wood. Based on the results of the enzymatic hydrolysis of the woody biomass, it can be seen that, irrespective of the hydrolysed material (wood, cellulose, holocellulose), the material from the biomass stored in the open pile gave higher results. The hydrolysis efficiency also increased with time, independent of the type of material that was hydrolysed. The highest sugar yield from the enzymatic hydrolysis of wood was obtained for alder wood stored in an open pile. The highest sugar yield from the enzymatic hydrolysis of cellulose was obtained for cellulose extracted from alder wood—as well—that had been stored in an open pile.
Collapse
|
46
|
Gold Mine Wooden Artefacts: Multianalytical Investigations for the Selection of Appropriate Consolidation Treatments. Molecules 2022; 27:molecules27165228. [PMID: 36014467 PMCID: PMC9413467 DOI: 10.3390/molecules27165228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Environmental conditions present in mines generally are very favourable to decay; high temperature, high humidity, variable oxygen content, numerous metal-wood connections and the presence of a high content of inorganic compounds typical of mines have a significant impact on the biotic and abiotic degradation factors. The state of conservation of wooden artefacts from the Złoty Stok (Poland) gold mine was investigated using a multi-analytical approach. The aim was to select the conservation treatments that would stop decay and improve the conditions and dimensional stability of the wood. FT-IR and Py-GC/MS were used to assess the state of preservation of lignocellulosic material. ED-XRF and SEM-EDS were used to determine—and XRD to identify crystalline phases—salts and minerals in the wood structure or efflorescence on the surface. Highly degraded lignocellulosic material that had undergone depolymerisation and oxidation was found to be severely contaminated by iron-based mineral substances, mainly pyrite, and in some cases greigite and magnetite. The presence of inorganic salts made it difficult to choose the best consolidating material to reduce the level of decay and improve the dimensional stability of the wood.
Collapse
|
47
|
Wu K, Yang K, Wang S, Yu J, Chu C, Luo B, Zhang H. The enrichment of sugars and phenols from fast pyrolysis of bamboo via ethanol-Fenton pretreatment. BIORESOURCE TECHNOLOGY 2022; 356:127315. [PMID: 35580789 DOI: 10.1016/j.biortech.2022.127315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The high-purity compounds (e.g., sugars and phenols) are important raw materials and chemicals, which can be produced by biomass pyrolysis. However, the direct biomass pyrolysis produces complex compounds and thus inhibiting its large-scale utilization. To increase the yield and enrichment of sugars and phenols, a green coupling process based on ethanol-Fenton pretreatment combined with fast pyrolysis is firstly proposed. The bamboo was effectively separated into the ethanol-Fenton pretreated bamboo (EF-bamboo), lignin-rich fractions, and hemicellulose-degradation intermixtures with the massive removal of inorganic metals via this process. Compared with the fast pyrolysis of raw bamboo, the levoglucosan yield of EF-bamboo increased 5.4 times and the enrichment of sugars improved from 7.6% to 59.7%. Similarly, the yield of monophenols from lignin-rich fractions increased around 0.6 times and the enrichment of monophenols increased from 25.7% to 63.5%. This work provides a green and efficient route to produce high-yield and high-enrichment sugars and phenols.
Collapse
Affiliation(s)
- Kai Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Ke Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Siyu Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Jiajun Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chenyang Chu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Bingbing Luo
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
48
|
Saha A, Kumar S. Effects of graphene nanoparticles with organic wood particles: A synergistic effect on the structural, physical, thermal, and mechanical behavior of hybrid composites. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Abir Saha
- Department of Mechanical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Santosh Kumar
- Department of Mechanical Engineering National Institute of Technology Silchar Silchar India
| |
Collapse
|
49
|
Thermal Characteristics and Simulation of Enzymatic Lignin Isolated from Chinese Fir and Birch. FORESTS 2022. [DOI: 10.3390/f13060914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Lignin is one of the main components of the plant cell wall, and the thermal properties of in situ biomass lignin are crucial for the multi-scale modeling of biomass properties and the thermodynamic modeling of lignin. In this study, high yields of double enzymatic lignin (DEL) were successfully isolated from softwood Chinese fir (Cunninghamia lanceolate (Lamb.) Hook.) and hardwood white birch (Betula platyphylla Suk.) to represent the in situ wood lignin. Their thermal properties, including specific heat capacity, thermal conductivity, thermal stability, and thermal degradation kinetic parameters, were tested and simulated. The results showed that Chinese fir DEL has different chemical structural units and thermal properties than birch DEL. The specific heat capacities of Chinese fir DEL and birch DEL at 20 °C were 1301 and 1468 J/(kg·K), respectively, and their thermal conductivities were 0.30 and 0.32 W/(m·K). Their specific heat capacity and thermal conductivity showed a positive linear relationship over a temperature range of 20–120 °C. Chinese fir DEL had a better thermal stability and a higher carbon residue than birch DEL. The average activation energy and pre-exponential factor changed with the conversion rate, and their relationships were simulated using linear or quadratic equations in the conversion rate range of 0.02–0.60. A second-order reaction function was found to be the best mechanism function for DEL thermal degradation.
Collapse
|
50
|
Min X, Zhang T, Xie M, Zhang K, Chai L, Lin Z, Ding C, Shi Y. Functionalized Lignin for Fabrication of FeCoNi Nanoparticles Enriched 3D Carbon Hybrid: From Waste to a High Performance Oxygen Evolution Reaction Catalyst. ChemElectroChem 2022. [DOI: 10.1002/celc.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoye Min
- Central South University School of Metallurgy and Environment CHINA
| | - Tingzheng Zhang
- Central South University School of Metallurgy and Environment CHINA
| | - Mingbo Xie
- Central South University School of Metallurgy and Environment CHINA
| | - Kejing Zhang
- Central South University School of Metallurgy and Environment CHINA
| | - Liyuan Chai
- Central South University School of Metallurgy and Environment CHINA
| | - Zhang Lin
- Central South University School of Metallurgy and Environment CHINA
| | - Chunlian Ding
- Central South University School of Metallurgy and Environment CHINA
| | - Yan Shi
- Central South University School of Metallurgy and Environment No.932, Lushannan Road, Yuelu District 410083 Changsha CHINA
| |
Collapse
|