1
|
Wang S, Miao S, Li Y, Wang J, Li C, Lu Y, Li B. Morphological and functional characterization of circulating hemocytes in Tribolium castaneum larvae. INSECT SCIENCE 2024. [PMID: 39361781 DOI: 10.1111/1744-7917.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
Hemocytes are pivotal in the immune response of insects against invasive pathogens. However, our knowledge of hemocyte types and their specific function in Tribolium castaneum, an increasingly important Coleoptera model insect in various research fields, remains limited. Presently, a combination of morphological criteria and dye-staining properties were used to characterize hemocyte types from T. castaneum larvae, and 4 distinct types were identified: granulocytes, oenocytoids, plasmatocytes and prohemocytes. Following different immune challenges, the total hemocyte counts declined rapidly in the initial phase (at 2 h), then increased over time (at 4 and 6 h) and eventually returned to the naive state by 24 h post-injection. Notably, the morphology of granulocytes underwent dramatic changes, characterized by an expansion of the surface area and an increased production of pseudopods, and with the number of granulocytes rising significantly through mitotic division. Granulocytes and plasmatocytes, the main hemocyte types in T. castaneum larvae, can phagocytose bacteria or latex beads injected into the larval hemolymph in vivo. Furthermore, these hemocytes participate in the encapsulation and melanization processes in vitro, forming capsules to encapsulate and melanize nickel-nitrilotriacetic acid (Ni-NTA) beads. This study provides the first comprehensive characterization of circulating hemocytes in T. castaneum larvae, offering valuable insights into cell-mediated immunity in response to bacterial infection and the injection of latex beads. These results deepen our understanding of the cellular response mechanisms in T. castaneum larvae and lay a solid foundation for subsequent investigations of the involvement of T. castaneum hemocytes in combating pathogens.
Collapse
Affiliation(s)
- Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shiyuan Miao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- College of Environmental and Life Science, Murdoch University, Murdoch, WA, Australia
| | - Yusi Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianhui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Chen K, Lu S, Song J, Dou X, Wei X, Wang X, Liu X, Feng C. The selective regulation of immune responses by matrix metalloproteinase MMP14 in Ostrinia furnacalis. INSECT SCIENCE 2023; 30:1622-1636. [PMID: 37209089 DOI: 10.1111/1744-7917.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 05/22/2023]
Abstract
Matrix metalloproteinases (MMPs) are crucial for tissue remodeling and immune responses in insects, yet it remains unclear how MMPs affect the various immune processes against pathogenic infections and whether the responses vary among insects. In this study, we used the lepidopteran pest Ostrinia furnacalis larvae to address these questions by examining the changes of immune-related gene expression and antimicrobial activity after the knockdown of MMP14 and bacterial infections. We identified MMP14 in O. furnacalis using the rapid amplification of complementary DNA ends (RACE), and found that it was conserved and belonged to the MMP1 subfamily. Our functional investigations revealed that MMP14 is an infection-responsive gene, and its knockdown reduces phenoloxidase (PO) activity and Cecropin expression, while the expressions of Lysozyme, Attacin, Gloverin, and Moricin are enhanced after MMP14 knockdown. Further PO and lysozyme activity determinations showed consistent results with gene expression of these immune-related genes. Finally, the knockdown of MMP14 decreased larvae survival to bacterial infections. Taken together, our data indicate that MMP14 selectively regulates the immune responses, and is required to defend against bacterial infections in O. furnacalis larvae. Conserved MMPs may serve as a potential target for pest control using a combination of double-stranded RNA and bacterial infection.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shiqi Lu
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiahui Song
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Xiangyi Wei
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyan Wang
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Liu
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Zhang X, Zhang S, Kuang J, Sellens KA, Morejon B, Saab SA, Li M, Metto EC, An C, Culbertson CT, Osta MA, Scoglio C, Michel K. CLIPB4 Is a Central Node in the Protease Network that Regulates Humoral Immunity in Anopheles gambiae Mosquitoes. J Innate Immun 2023; 15:680-696. [PMID: 37703846 PMCID: PMC10603620 DOI: 10.1159/000533898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip-domain serine proteases (cSPs) and/or their non-catalytic homologs, which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Shasha Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | | | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sally A. Saab
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Miao Li
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Eve C. Metto
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | | | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
4
|
Zhang X, Zhang S, Kuang J, Sellens KA, Morejon B, Saab SA, Li M, Metto EC, An C, Culbertson CT, Osta MA, Scoglio C, Michel K. CLIPB4 is a central node in the protease network that regulates humoral immunity in Anopheles gambiae mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.545904. [PMID: 37461554 PMCID: PMC10350057 DOI: 10.1101/2023.07.07.545904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip domain serine proteases (cSPs) and/or their non-catalytic homologs (cSPHs), which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Shasha Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | | | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sally A. Saab
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Miao Li
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Eve C. Metto
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | | | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
5
|
Alradi MF, Lu S, Wang L, Han Z, Elradi SA, Khogali MK, Liu X, Wei X, Chen K, Li S, Feng C. Characterization and functional analysis of a myeloid differentiation factor 88 in Ostrinia furnacalis Guenée larvae infected by Bacillus thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104489. [PMID: 35781013 DOI: 10.1016/j.dci.2022.104489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a pivotal adapter protein involved in activating nuclear factor NF-κB of the Toll pathway in insect innate immunity. MyD88 has been extensively studied in vertebrates and Drosophila. However, the information ascribed to MyD88 in Lepidoptera is scarce. In the present study, an Ostrinia furnacalis MyD88 (OfMyD88) cDNA was cloned and functionally characterized (GenBank accession no. MN906311). The complete cDNA sequence of OfMyD88 is 804 bp, and contains a 630 bp open reading frame encoding 209 amino acid residues. OfMyD88 has the death domain (DD), an intermediate domain, and the Toll/interleukin 1 receptor (TIR) domain. OfMyD88 was widely expressed in immune-related tissues such as hemocytes, fat body, midgut, and integument, with the highest expression level in hemocytes, and the lowest expression level in integument. To clarify the immune function of MyD88, O. furnacalis larvae were challenged with Bacillus thuringiensis (Bt) through feeding. Bt oral infection had significantly up-regulated the expression of OfMyD88 and immune genes, including PPO2 (prophenoloxidase 2), Attacin, Gloverin, Cecropin, Moricin, GRP3 (β-1, 3-Glucan recognition protein 3), and Lysozyme, and increased the activities of PO and lysozyme in hemolymph of O. furnacalis larvae. Knockdown of OfMyD88 by RNA interference suppressed the expression levels of immune related genes, but not PPO2 in the larvae orally infected with Bt, suggesting that OfMyD88 is involved in defending against Bt invasion through the Toll signaling pathway, but does not affect the PPO expression in O. furnacalis larvae.
Collapse
Affiliation(s)
- Mohamed F Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Medical Entomology, College of Public and Environmental Health, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Shiqi Lu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Sana A Elradi
- Department of Physiology, College of Medicine, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuzhong Li
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
6
|
Bidoli C, Miccoli A, Buonocore F, Fausto AM, Gerdol M, Picchietti S, Scapigliati G. Transcriptome Analysis Reveals Early Hemocyte Responses upon In Vivo Stimulation with LPS in the Stick Insect Bacillus rossius (Rossi, 1788). INSECTS 2022; 13:insects13070645. [PMID: 35886821 PMCID: PMC9316843 DOI: 10.3390/insects13070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Non-model insect species such as B. rossius suffer from a profound gap of knowledge regarding the temporal progression of physiological responses following the challenge with bacterial pathogens or cell wall components thereof. The reason for this mostly lies in the lack of genomic/transcriptomic resources, which would provide an unparalleled in-depth capacity in the analysis of molecular, biochemical, and metabolic mechanisms. We present a high-quality transcriptome obtained from high-coverage sequencing of hemocytes harvested from adult stick insect specimens both pre- and post-LPS stimulation. Such a resource served as the basis for a stringent differential gene expression and functional enrichment analyses, the results of which were characterized and discussed in depth. Selected transcripts encoding for C-type lectins and ML-domain containing proteins were further investigated from a phylogenetic perspective. Overall, these findings shed light on the physiological responses driven by a short-term LPS stimulation in the European stick insect. Abstract Despite a growing number of non-model insect species is being investigated in recent years, a greater understanding of their physiology is prevented by the lack of genomic resources. This is the case of the common European stick insect Bacillus rossius (Rossi, 1788): in this species, some knowledge is available on hemocyte-related defenses, but little is known about the physiological changes occurring in response to natural or experimental challenges. Here, the transcriptional signatures of adult B. rossius hemocytes were investigated after a short-term (2 h) LPS stimulation in vivo: a total of 2191 differentially expressed genes, mostly involved in proteolysis and carbohydrate and lipid metabolic processes, were identified in the de novo assembled transcriptome and in-depth discussed. Overall, the significant modulation of immune signals—such as C-type lectins, ML domain-containing proteins, serpins, as well as Toll signaling-related molecules—provide novel information on the early progression of LPS-induced responses in B. rossius.
Collapse
Affiliation(s)
- Carlotta Bidoli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.B.); (M.G.)
| | - Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
- Correspondence:
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.B.); (M.G.)
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| |
Collapse
|
7
|
Eychenne M, Girard PA, Frayssinet M, Lan L, Pagès S, Duvic B, Nègre N. Mutagenesis of both prophenoloxidases in the fall armyworm induces major defects in metamorphosis. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104399. [PMID: 35568240 DOI: 10.1016/j.jinsphys.2022.104399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Upon infection, the phenoloxidase system in arthropods is rapidly mobilized and constitutes a major defense system against invaders. The activation of the key enzymes prophenoloxidase (PPO) and their action in immunity through melanization and encapsulation of foreign bodies in hemolymph has been described in many insects. On the other hand, little is known about PPOs involvement in other essential functions related to insect development. In this paper, we investigated the function of the two PPOs of the crop pest, Spodoptera frugiperda (PPO1 and PPO2). We show that PPOs are mainly expressed in hemocytes with the PPO2 expressed at higher levels than the PPO1. In addition, these two genes are expressed in the same tissue and at the same stages of insect development. Through the generation of loss-of-function mutants by CRISPR/Cas9 method, we show that the presence of PPOs is essential for the normal development of the pupa and the survival of the insect.
Collapse
Affiliation(s)
| | | | | | - Laijiao Lan
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Sylvie Pagès
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Bernard Duvic
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
8
|
Jin Q, Wang Y, Hartson SD, Jiang H. Cleavage activation and functional comparison of Manduca sexta serine protease homologs SPH1a, SPH1b, SPH4, and SPH101 in conjunction with SPH2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103762. [PMID: 35395380 PMCID: PMC9328667 DOI: 10.1016/j.ibmb.2022.103762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Phenoloxidase (PO) is a crucial component of the insect immune response against microbial infection. In the tobacco hornworm Manduca sexta, PO is generated from its precursor proPO by prophenoloxidase activating proteases (PAPs) in the presence of two noncatalytic serine protease homologs (SPHs). cDNA cloning and genome analysis indicate that SPH1a (formerly known as SPH1), SPH1b, SPH4, SPH101, and SPH2 contain a clip domain, a linker, and a protease-like domain (PLD). The first 22 residues of the SPH1b, SPH4, and SPH101 PLDs are identical, and differ from SPH1a only at position 4, Thr154 substituted with Asn154 in SPH1a. While the sequence from Edman degradation was used to establish PAP cofactor as a high Mr complex of SPH1a and SPH2, this assignment needed further validation, especially because SPH1b mRNA levels are much higher than SPH1a's and better correlate with SPH2 transcription. Thus, here we determined expression profiles of these SPH genes in different tissues from various developmental stages using highly specific primers. High levels of SPH1b and SPH2 proteins, low SPH4, and no SPH1a or SPH101 were detected in hemolymph from larvae in the feeding, wandering and bar stages, pupae, and adults by targeted LC-MS/MS analysis, based on unique peptides from the trypsin-treated SPHs. We expressed the five proSPHs in baculovirus-infected Sf9 cells for use as standards to identify and quantify their counterparts in plasma samples. Moreover, we tested their cleavage by PAP3 and efficacy of the SPH1a, 1b, 4, and 101 as SPH2 partners in PAP3-mediated proPO activation. PAP3 processed proSPH1b and 101 more readily than proSPH1a and 4; PAP3 activated proPO more efficiently in the presence of SPH2 with SPH101 or SPH1b than with SPH1a or SPH4. These results generally agree with their order of appearance or sequence similarity: SPH101 > SPH1b (98%) > SPH1a (90%) > SPH4 (83%). In other words, likely due to positive selection, products of the newly duplicated genes (SPH1b and SPH101) are more favorable substrates of PAP3 and better SPH2 partners in forming a high Mr cofactor than SPH1a or SPH4 is. Electrophoresis on native gel and immunoblot analysis further indicated that SPH101 or 1b form high Mr complexes more readily than SPH1a or 4 does. In comparison, SPH2 showed a small mobility decrease and then increase on native gel after PAP3 cleavage at the first site. Since the natural cofactor in bar-stage hemolymph is complexes of SPH1 and 2 with an average Mr of 790 kDa, PAP3-activated SPH2 may associate with the higher Mr SPH1b scaffolds to form super-complexes. Their structures and formation in relation to cleavage of SPH1b at different sites await further exploration.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
9
|
Cheng L, Liu WL, Su MP, Huang SC, Wang JR, Chen CH. Prohemocytes are the main cells infected by dengue virus in Aedes aegypti and Aedes albopictus. Parasit Vectors 2022; 15:137. [PMID: 35449113 PMCID: PMC9027048 DOI: 10.1186/s13071-022-05276-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background The primary disease vectors for dengue virus (DENV) transmission between humans are the mosquitoes Aedes aegypti and Aedes albopictus, with Ae. aegypti population size strongly correlated with DENV outbreaks. When a mosquito is infected with DENV, the virus migrates from the midgut to the salivary glands to complete the transmission cycle. How the virus crosses the hemocoel, resulting in systemic infection, is still unclear however. During viral infection and migration, the innate immune system is activated in defense. As part of cellular-mediated immunity, hemocytes are known to defend against bacteria and Plasmodium infection and may also participate in defending against DENV infection. Hemocytes are categorized into three cell types: prohemocytes, granulocytes, and oenocytoids. Here, we investigated which hemocytes can be infected by DENV and compare hemocyte infection between Ae. aegypti and Ae. albopictus. Methods Hemocytes were collected from Ae. aegypti and Ae. albopictus mosquitoes that were intrathoracically infected with DENV2-GFP. The collected hemocytes were then identified via Giemsa staining and examined microscopically for morphological differences and viral infection. Results All three types of hemocytes were infected by DENV, though the predominantly infected cell type was prohemocytes. In Ae. aegypti, the highest and lowest infection rates at 7 days post infection occurred in prohemocytes and granulocytes, respectively. Prohemocytes were also the primary infection target of DENV in Ae. albopictus, with similar infection rates across the other two hemocyte groups. The ratios of hemocyte composition did not differ significantly between non-infected and infected mosquitoes for either species. Conclusions In this study, we showed that prohemocytes were the major type of hemocyte infected by DENV in both Ae. aegypti and Ae. albopictus. The infection rate of prohemocytes in Ae. albopictus was lower than that in Ae. aegypti, which may explain why systemic DENV infection in Ae. albopictus is less efficient than in Ae. aegypti and why Ae. albopictus is less correlated to dengue fever outbreaks. Future work in understanding the mechanisms behind these phenomena may help reduce arbovirus infection prevalence. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05276-w.
Collapse
Affiliation(s)
- Lie Cheng
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
| | - Matthew P Su
- Institute of Advanced Research, Nagoya University, Nagoya, Japan.,Department of Biological Science, Nagoya University, Nagoya, Japan
| | - Shu-Chen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan.
| |
Collapse
|
10
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Christa Heryanto
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Taha Bassal
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationGuizhou UniversityGuiyangChina
| | - Gianluca Tettamanti
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Amr Mohamed
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| |
Collapse
|
11
|
von Bredow CR, von Bredow YM, Trenczek TE. The larval haematopoietic organs of Manduca sexta (Insecta, Lepidoptera): An insight into plasmatocyte development and larval haematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103858. [PMID: 32898576 DOI: 10.1016/j.dci.2020.103858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Haematopoietic organs (HOs) in Lepidoptera are widely recognised as the source for at least two haemocyte types. With new specific markers for oenocytoids and spherule cells and a method to identify prohaemocytes, the haemocytes formed in and released by the HOs of Manduca sexta are characterised. Differentiation of HO-cells to haemocytes other than plasmatocytes and prohaemocytes neither occurs in the organ itself nor in cells released in vitro by the HOs. Differential labelling patterns evidence the existence of plasmatocyte subpopulations and prohaemocytes, which might represent a gradual differentiation of haemocytes within the organs. Prohaemocytes can be identified by PNA-labelling of the cell membrane. These prohaemocytes are found in circulation and in the HOs and are released by the organs. Circulating prohaemocytes possess characteristics for granular cells, plasmatocytes or oenocytoids while HO derived prohaemocytes share characteristics only with plasmatocytes. Ablation of the HOs diminishes the plasmatocyte and prohaemocyte number, indicating a true larval haematopoietic function.
Collapse
Affiliation(s)
- Christoph-Rüdiger von Bredow
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390, Gießen, Germany; Current Address: Technische Universität Dresden, Fakultät Biologie, Institut für Zoologie, Zellescher Weg 20 B, 01217, Dresden, Germany.
| | - Yvette M von Bredow
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390, Gießen, Germany.
| | - Tina E Trenczek
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390, Gießen, Germany
| |
Collapse
|
12
|
Zhang X, Li M, El Moussawi L, Saab S, Zhang S, Osta MA, Michel K. CLIPB10 is a Terminal Protease in the Regulatory Network That Controls Melanization in the African Malaria Mosquito Anopheles gambiae. Front Cell Infect Microbiol 2021; 10:585986. [PMID: 33520733 PMCID: PMC7843523 DOI: 10.3389/fcimb.2020.585986] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Humoral immune responses in animals are often tightly controlled by regulated proteolysis. This proteolysis is exerted by extracellular protease cascades, whose activation culminates in the proteolytic cleavage of key immune proteins and enzymes. A model for such immune system regulation is the melanization reaction in insects, where the activation of prophenoxidase (proPO) leads to the rapid formation of eumelanin on the surface of foreign entities such as parasites, bacteria and fungi. ProPO activation is tightly regulated by a network of so-called clip domain serine proteases, their proteolytically inactive homologs, and their serpin inhibitors. In Anopheles gambiae, the major malaria vector in sub-Saharan Africa, manipulation of this protease network affects resistance to a wide range of microorganisms, as well as host survival. However, thus far, our understanding of the molecular make-up and regulation of the protease network in mosquitoes is limited. Here, we report the function of the clip domain serine protease CLIPB10 in this network, using a combination of genetic and biochemical assays. CLIPB10 knockdown partially reversed melanotic tumor formation induced by Serpin 2 silencing in the absence of infection. CLIPB10 was also partially required for the melanization of ookinete stages of the rodent malaria parasite Plasmodium berghei in a refractory mosquito genetic background. Recombinant serpin 2 protein, a key inhibitor of the proPO activation cascade in An. gambiae, formed a SDS-stable protein complex with activated recombinant CLIPB10, and efficiently inhibited CLIPB10 activity in vitro at a stoichiometry of 1.89:1. Recombinant activated CLIPB10 increased PO activity in Manduca sexta hemolymph ex vivo, and directly activated purified M. sexta proPO in vitro. Taken together, these data identify CLIPB10 as the second protease with prophenoloxidase-activating function in An. gambiae, in addition to the previously described CLIPB9, suggesting functional redundancy in the protease network that controls melanization. In addition, our data suggest that tissue melanization and humoral melanization of parasites are at least partially mediated by the same proteases.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Miao Li
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Layla El Moussawi
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sally Saab
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shasha Zhang
- Division of Biology, Kansas State University, Manhattan, KS, United States.,Department of Entomology, China Agricultural University, Beijing, China
| | - Mike A Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
13
|
Cao X, Wang Y, Rogers J, Hartson S, Kanost MR, Jiang H. Changes in composition and levels of hemolymph proteins during metamorphosis of Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103489. [PMID: 33096211 PMCID: PMC7704632 DOI: 10.1016/j.ibmb.2020.103489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The tobacco hornworm, Manduca sexta, is a lepidopteran model species widely used to study insect biochemical processes. Some of its larval hemolymph proteins are well studied, and a detailed proteomic analysis of larval plasma proteins became available in 2016, revealing features such as correlation with transcriptome data, formation of immune complexes, and constitution of an immune signaling system in hemolymph. It is unclear how the composition of these proteins may change in other developmental stages. In this paper, we report the proteomes of cell-free hemolymph from prepupae, pupae on day 4 and day 13, and young adults. Of the 1824 proteins identified, 907 have a signal peptide and 410 are related to immunity. Drastic changes in abundance of the storage proteins, lipophorins and vitellogenin, for instance, reflect physiological differences among prepupae, pupae, and adults. Considerably more proteins lacking signal peptide are present in the late pupae, suggesting that plasma contains relatively low concentrations of intracellular components released from remodeling tissues during metamorphosis. The defense proteins detected include 43 serine proteases and 11 serine protease homologs. Some of these proteins are members of the extracellular immune signaling network found in feeding larvae, and others may play additional roles and hence confer new features in the later life stages. In summary, the proteins and their levels revealed in this study, together with their transcriptome data, are expected to stimulate focused explorations of humoral immunity and other physiological systems in wandering larvae, pupae, and adults of M. sexta and shed light upon functional and comparative genomic research in other holometabolous insects.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
14
|
Csordás G, Grawe F, Uhlirova M. Eater cooperates with Multiplexin to drive the formation of hematopoietic compartments. eLife 2020; 9:57297. [PMID: 33026342 PMCID: PMC7541089 DOI: 10.7554/elife.57297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Blood development in multicellular organisms relies on specific tissue microenvironments that nurture hematopoietic precursors and promote their self-renewal, proliferation, and differentiation. The mechanisms driving blood cell homing and their interactions with hematopoietic microenvironments remain poorly understood. Here, we use the Drosophila melanogaster model to reveal a pivotal role for basement membrane composition in the formation of hematopoietic compartments. We demonstrate that by modulating extracellular matrix components, the fly blood cells known as hemocytes can be relocated to tissue surfaces where they function similarly to their natural hematopoietic environment. We establish that the Collagen XV/XVIII ortholog Multiplexin in the tissue-basement membranes and the phagocytosis receptor Eater on the hemocytes physically interact and are necessary and sufficient to induce immune cell-tissue association. These results highlight the cooperation of Multiplexin and Eater as an integral part of a homing mechanism that specifies and maintains hematopoietic sites in Drosophila.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ferdinand Grawe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
von Bredow YM, von Bredow CR, Trenczek TE. A novel site of haematopoiesis and appearance and dispersal of distinct haemocyte types in the Manduca sexta embryo (Insecta, Lepidoptera). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103722. [PMID: 32360227 DOI: 10.1016/j.dci.2020.103722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
With a set of haemocyte specific markers novel findings on haematopoiesis in the Manduca sexta embryo are presented. We identify a hitherto unknown paired haematopoietic cluster, the abdominal haemocyte cluster in abdominal segment 7 (A7-HCC). These clusters are localised at distinct positions and are established at around katatrepsis. Later in embryogenesis, the A7-HCCs disintegrate, thereby releasing numerous embryonic plasmatocytes which disperse both anteriorly and posteriorly. These cells follow stereotypic migration routes projecting anteriorly. The thoracic larval haematopoietic organs are established at around midembryogenesis. We identify embryonic oenocytoids in the M. sexta embryo for the first time. They appear in the head region roughly at the same time as the A7-HCCs occur and successively disperse in the body cavity during development. Localisation of the prophenoloxidase (proPO) mRNA and of the proPO protein are identical. Morphological, cytometric and antigenic traits show three independently generated haemocyte types during embryogenesis.
Collapse
Affiliation(s)
- Yvette M von Bredow
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Zelluläre Erkennungs- und Abwehrprozesse, Stephanstraße 24, 35390, Gießen, Germany.
| | - Christoph-Rüdiger von Bredow
- Technische Universität Dresden, Fakultät Biologie, Institut für Zoologie, Professur für Allgemeine Zoologie und Entwicklungsbiologie, Zellescher Web 20 b, 01217, Dresden, Germany
| | - Tina E Trenczek
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Zelluläre Erkennungs- und Abwehrprozesse, Stephanstraße 24, 35390, Gießen, Germany
| |
Collapse
|
16
|
Wang Y, Yang F, Cao X, Zou Z, Lu Z, Kanost MR, Jiang H. Hemolymph protease-5 links the melanization and Toll immune pathways in the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci U S A 2020; 117:23581-23587. [PMID: 32900946 PMCID: PMC7519321 DOI: 10.1073/pnas.2004761117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteolytic activation of phenoloxidase (PO) and the cytokine Spätzle during immune responses of insects is mediated by a network of hemolymph serine proteases (HPs) and noncatalytic serine protease homologs (SPHs) and inhibited by serpins. However, integration and conservation of the system and its control mechanisms are not fully understood. Here we present biochemical evidence that PO-catalyzed melanin formation, Spätzle-triggered Toll activation, and induced synthesis of antimicrobial peptides are stimulated via hemolymph (serine) protease 5 (HP5) in Manduca sexta Previous studies have demonstrated a protease cascade pathway in which HP14 activates proHP21; HP21 activates proPAP2 and proPAP3, which then activate proPO in the presence of a complex of SPH1 and SPH2. We found that both HP21 and PAP3 activate proHP5 by cleavage at ESDR176*IIGG. HP5 then cleaves proHP6 at a unique site of LDLH112*ILGG. HP6, an ortholog of Drosophila Persephone, activates both proHP8 and proPAP1. HP8 activates proSpätzle-1, whereas PAP1 cleaves and activates proPO. HP5 is inhibited by Manduca sexta serpin-4, serpin-1A, and serpin-1J to regulate its activity. In summary, we have elucidated the physiological roles of HP5, a CLIPB with unique cleavage specificity (cutting after His) that coordinates immune responses in the caterpillar.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Zhen Zou
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Zhiqiang Lu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
17
|
Characterization and structural analysis of prophenoloxidase in mud crab Scylla serrata and discovering novel chemical inhibitors through virtual screening. Struct Chem 2020. [DOI: 10.1007/s11224-020-01515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Tiwari SK, Toshniwal AG, Mandal S, Mandal L. Fatty acid β-oxidation is required for the differentiation of larval hematopoietic progenitors in Drosophila. eLife 2020; 9:53247. [PMID: 32530419 PMCID: PMC7347386 DOI: 10.7554/elife.53247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-intrinsic and extrinsic signals regulate the state and fate of stem and progenitor cells. Recent advances in metabolomics illustrate that various metabolic pathways are also important in regulating stem cell fate. However, our understanding of the metabolic control of the state and fate of progenitor cells is in its infancy. Using Drosophila hematopoietic organ: lymph gland, we demonstrate that Fatty Acid Oxidation (FAO) is essential for the differentiation of blood cell progenitors. In the absence of FAO, the progenitors are unable to differentiate and exhibit altered histone acetylation. Interestingly, acetate supplementation rescues both histone acetylation and the differentiation defects. We further show that the CPT1/whd (withered), the rate-limiting enzyme of FAO, is transcriptionally regulated by Jun-Kinase (JNK), which has been previously implicated in progenitor differentiation. Our study thus reveals how the cellular signaling machinery integrates with the metabolic cue to facilitate the differentiation program. Stem cells are special precursor cells, found in all animals from flies to humans, that can give rise to all the mature cell types in the body. Their job is to generate supplies of new cells wherever these are needed. This is important because it allows damaged or worn-out tissues to be repaired and replaced by fresh, healthy cells. As part of this renewal process, stem cells generate pools of more specialized cells, called progenitor cells. These can be thought of as half-way to maturation and can only develop in a more restricted number of ways. For example, so-called myeloid progenitor cells from humans can only develop into a specific group of blood cell types, collectively termed the myeloid lineage. Fruit flies, like many other animals, also have several different types of blood cells. The fly’s repertoire of blood cells is very similar to the human myeloid lineage, and these cells also develop from the fly equivalent of myeloid progenitor cells. These progenitors are found in a specialized organ in fruit fly larvae called the lymph gland, where the blood forms. These similarities between fruit flies and humans mean that flies are a good model to study how myeloid progenitor cells mature. A lot is already known about the molecules that signal to progenitor cells how and when to mature. However, the role of metabolism – the chemical reactions that process nutrients and provide energy inside cells – is still poorly understood. Tiwari et al. set out to identify which metabolic reactions myeloid progenitor cells require and how these reactions might shape the progenitors’ development into mature blood cells. The experiments in this study used fruit fly larvae that had been genetically altered so that they could no longer perform key chemical reactions needed for the breakdown of fats. In these mutant larvae, the progenitors within the lymph gland could not give rise to mature blood cells. This showed that myeloid progenitor cells need to be able to break down fats in order to develop properly. These results highlight a previously unappreciated role for metabolism in controlling the development of progenitor cells. If this effect also occurs in humans, this knowledge could one day help medical researchers engineer replacement tissues in the lab, or even increase our own bodies’ ability to regenerate blood, and potentially other organs.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Ashish Ganeshlalji Toshniwal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| |
Collapse
|
19
|
Duarte JP, Redaelli LR, Silva CE, Jahnke SM. Effect of Azadirachta indica (Sapindales: Meliaceae) Oil on the Immune System of Spodoptera frugiperda (Lepidoptera: Noctuidae) Immatures. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:17. [PMID: 32556318 PMCID: PMC7300835 DOI: 10.1093/jisesa/ieaa048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The insect immune system includes several mechanisms responsible for defending against pathogens, parasites, and parasitoids. Some botanical insecticides, such as Azadirachta indica oil, cause changes in the immune system of various insect species. Spodoptera frugiperda is an important agricultural pest; thus, knowledge about the effect of neem oil on the immune system of this species can assist in its management. This study aimed to evaluate the effect of A. indica oil on the immune system of S. frugiperda. Caterpillars (2-3 mg) were placed individually in containers (50 ml) with approximately 10 g of diet, containing 125, 250, and 500 ppm of neem oil with propanone; the control group received only the propanone diet. In four experiments, the total number of hemocytes, the phagocytic activity, the activity of lysozyme-like enzymes, and phenoloxidase activity were measured in caterpillars at the end of the sixth instar. The total number of hemocytes in insects exposed to neem oil was 21% lower than in the control group. The percentage of cells that phagocyted the latex beads was similar among the caterpillars that ingested the different concentrations. The mean diameter of cell lysis halos was reduced only at concentrations of 125 and 250 ppm. Absorbance did not differ between treatments. Knowing that this oil reduces the number of circulation cells and the activity of lysozyme-like enzymes is of great importance to design control strategies, once the neem oil could be added to other biological agents for mortality reducing the chances of this insect surviving in the environment.
Collapse
Affiliation(s)
- Jucelio P Duarte
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Porto Alegre, RS, Brazil
| | - Luiza R Redaelli
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Porto Alegre, RS, Brazil
| | - Carlos Eugênio Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, Brazil
| | - Simone M Jahnke
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Zhang W, Zhao L, Zhou J, Yu H, Zhang C, Lv Y, Lin Z, Hu S, Zou Z, Sun J. Enhancement of oxidative stress contributes to increased pathogenicity of the invasive pine wood nematode. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180323. [PMID: 30967022 DOI: 10.1098/rstb.2018.0323] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) play important roles in defence response of host plants versus pathogens. While generation and detoxification of ROS is well understood, how varied ability of different isolates of pathogens to overcome host ROS, or ROS contribution to a particular isolate's pathogenicity, remains largely unexplored. Here, we report that transcriptional regulation of the ROS pathway, in combination with the insulin pathway, increases the pathogenicity of invasive species Bursaphelenchus xylophilus. The results showed a positive correlation between fecundity and pathogenicity of different nematode isolates. The virulent isolates from introduced populations in Japan, China and Europe had significantly higher fecundity than native avirulent isolates from the USA. Increased expression of Mn-SOD and reduced expression of catalase/ GPX-5 and H2O2 accumulation during invasion are associated with virulent strains. Additional H2O2 could improve fecundity of Bu. xylophilus. Furthermore, depletion of Mn-SOD decreased fecundity and virulence of Bu. xylophilus, while the insulin pathway is significantly affected. Thus, we propose that destructive pathogenicity of Bu. xylophilus to pines is partly owing to upregulated fecundity modulated by the insulin pathway in association with the ROS pathway and further enhanced by H2O2 oxidative stress. These findings provide a better understanding of pathogenic mechanisms in plant-pathogen interactions and adaptive evolution of invasive species. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Wei Zhang
- 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,3 Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry , Beijing l00091 , People's Republic of China
| | - Lilin Zhao
- 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,4 College of Life Science, University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jiao Zhou
- 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Haiying Yu
- 2 CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Chi Zhang
- 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,4 College of Life Science, University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yunxue Lv
- 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,4 College of Life Science, University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Zhe Lin
- 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Songnian Hu
- 2 CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Zhen Zou
- 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,4 College of Life Science, University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China.,5 School of Medicine, Huzhou University , Huzhou 311300 , People's Republic of China
| | - Jianghua Sun
- 1 State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,4 College of Life Science, University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
21
|
Kwon H, Yang Y, Kumar S, Lee DW, Bajracharya P, Calkins TL, Kim Y, Pietrantonio PV. Characterization of the first insect prostaglandin (PGE 2) receptor: MansePGE 2R is expressed in oenocytoids and lipoteichoic acid (LTA) increases transcript expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103290. [PMID: 31790798 DOI: 10.1016/j.ibmb.2019.103290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
In arthropods, eicosanoids derived from the oxygenated metabolism of arachidonic acid are significant in mediating immune responses. However, the lack of information about insect eicosanoid receptors is an obstacle to completely decipher immune mechanisms underlying both eicosanoid downstream signal cascades and their relationship to immune pathogen-associated molecular patterns (PAMPs). Here, we cloned and sequenced a G protein-coupled receptor (MW 46.16 kDa) from the model lepidopteran, Manduca sexta (Sphingidae). The receptor shares similarity of amino acid motifs to human prostaglandin E2 (PGE2) receptors, and phylogenetic analysis supports its classification as a prostaglandin receptor. In agreement, the recombinant receptor was activated by PGE2 resulting in intracellular cAMP increase, and therefore designated MansePGE2R. Expression of MansePGE2R in Sf9 cells in which the endogenous orthologous receptor had been silenced showed similar cAMP increase upon PGE2 challenge. Receptor transcript expression was identified in various tissues in larvae and female adults, including Malpighian tubules, fat body, gut and hemocytes, and in female ovaries. In addition to the cDNA cloned that encodes the functional receptor, an mRNA was found featuring the poly-A tail but lacking the predicted transmembrane (TM) regions 2 and 3, suggesting the possibility that internally deleted receptor proteins exist in insects. Immunocytochemistry and in situ hybridization revealed that among hemocytes, the receptor was exclusively localized in the oenocytoids. Larval immune challenges injecting bacterial components showed that lipoteichoic acid (LTA) increased MansePGE2R expression in hemocytes. In contrast, injection of LPS or peptidoglycan did not increase MansePGE2R transcript levels in hemocytes, suggesting the LTA-associated increase in receptor transcript is regulated through a distinct pathway. This study provides the first characterization of an eicosanoid receptor in insects, and paves the way for establishing the hierarchy in signaling steps required for establishing insect immune responses to infections.
Collapse
Affiliation(s)
- Hyeogsun Kwon
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Sunil Kumar
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| | - Dae-Weon Lee
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Prati Bajracharya
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Travis L Calkins
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| | | |
Collapse
|
22
|
Wang Y, Yang F, Cao X, Huang R, Paskewitz S, Hartson SD, Kanost MR, Jiang H. Inhibition of immune pathway-initiating hemolymph protease-14 by Manduca sexta serpin-12, a conserved mechanism for the regulation of melanization and Toll activation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103261. [PMID: 31698082 PMCID: PMC6983340 DOI: 10.1016/j.ibmb.2019.103261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 06/01/2023]
Abstract
A network of serine proteases (SPs) and their non-catalytic homologs (SPHs) activates prophenoloxidase (proPO), Toll pathway, and other insect immune responses. However, integration and conservation of the network and its control mechanisms have not yet been fully understood. Here we present evidence that these responses are initiated through a conserved serine protease and negatively regulated by serpins in two species, Manduca sexta and Anopheles gambiae. We have shown that M. sexta serpin-12 reduces the proteolytic activation of HP6, HP8, proPO activating proteases (PAPs), SPHs, and POs in larval hemolymph, and we hypothesized that these effects are due to the inhibition of the immune pathway-initiating protease HP14. To test whether these changes are due to HP14 inhibition, we isolated a covalent complex of HP14 with serpin-12 from plasma using polyclonal antibodies against the HP14 protease domain or against serpin-12, and confirmed formation of the complex by 2D-electrophoresis, immunoblotting, and mass spectrometry. Upon recognition of bacterial peptidoglycans or fungal β-1,3-glucan, the zymogen proHP14 became active HP14, which formed an SDS-stable complex with serpin-12 in vitro. Activation of proHP21 by HP14 was suppressed by serpin-12, consistent with the decrease in steps downstream of HP21, proteolytic activation of proPAP3, proSPH1/2 and proPO in hemolymph. Guided by the results of phylogenetic analysis, we cloned and expressed A. gambiae proSP217 (an ortholog of HP14) and core domains of A. gambiae serpin-11 and -17. The recombinant SP217 zymogen became active during expression, with cleavage between Tyr394 and Ile395. Both MsHP14 and AgSP217 cleaved MsSerpin-12 and AgSRPN11 at Leu*Ser (P1*P1') and formed complexes in vitro. ProPO activation in M. sexta plasma increased after recombinant AgSP217 had been added, indicating that it may function in a similar manner as the endogenous initiating protease HP14. Based on these data, we propose that inhibition of an initiating modular protease by a serpin may be a common mechanism in holometabolous insects to regulate proPO activation and other protease-induced immune responses.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Rudan Huang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Susan Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Steve D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
23
|
Baruah GS, Sarma HK, Bardoloi S, Bora D. Purification and characterization of phenoloxidase from the hemolymph of healthy and diseased Antheraea assamensis Helfer (Lepidoptera: Saturniidae): Effects of certain biological components and chemical agents on enzyme activity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21531. [PMID: 30588648 DOI: 10.1002/arch.21531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the current study, a dimeric phenoloxidase (PO) from the hemolymph of healthy and diseased (pebrine infected) larvae of Antheraea assamensis Helfer was extracted and purified. The protein was subjected to purification using Sephacryl S-100 and CM Sepharose chromatography. The enzyme comprised of two subunits of ~76.8 and 76 kDa that showed PO activity in 6 mM l-3,4-dihydroxyphenylalanine (L-DOPA) and 8 mM catechol but not in hydroquinone. Optimum temperature for PO activity was 30°C in l-DOPA and 37°C in catechol. Optimum pH ranged from 6.8 to 7.0 in L-DOPA and 7.0-7.2 in catechol. Specific activity of the purified PO from healthy larvae was 53.9 µM/min per mg of protein per ml in L-DOPA and 50.77 µM/min per mg of protein per ml in catechol. Specific activity of PO from diseased larvae was 30.0 µM/min per mg of protein per ml in L-DOPA and 28.55 µM/min per mg of protein per ml in catechol. Purification fold was 3.27-4.21 for healthy and 2.38-2.56 for diseased fractions. The enzyme showed the Michaelis constant (Km ) of 2.46-2.85 mM for healthy and diseased fractions in L-DOPA. In catechol Km of 9.23-17.71 mM was observed. Peptidoglycan was the best activator of purified PO from both healthy and diseased fractions. Interactions between controls and activators appeared statistically significant (F = 767.5; df = 3; P < 0.0001). Na+ , K+ , and Cu2+ increased, whereas Ca2+ , Zn2+ , Mg2+ , and Co2+ decreased PO activity. The overall interactions appeared highly significant (F = 217.0; df = 27; P < 0.0001). Kojic acid, dithiothreitol, thiourea, phenylthiourea, carbendazim, N-bromosuccinimide, N,N,N',N'-tetraacetic acid, and diethyldithiocarbamate inhibited PO activity.
Collapse
Affiliation(s)
- Gayatri Sarma Baruah
- Department of Life Sciences, Dibrugarh University, Dibrugarh, India
- Advanced Level Institutional Biotech Hub, Department of Zoology, B. Borooah College, Guwahati, India
| | | | - Sunayan Bardoloi
- Advanced Level Institutional Biotech Hub, Department of Zoology, B. Borooah College, Guwahati, India
| | - Dipsikha Bora
- Department of Life Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
24
|
Tabunoki H, Dittmer NT, Gorman MJ, Kanost MR. Development of a new method for collecting hemolymph and measuring phenoloxidase activity in Tribolium castaneum. BMC Res Notes 2019; 12:7. [PMID: 30616595 PMCID: PMC6323729 DOI: 10.1186/s13104-018-4041-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/31/2018] [Indexed: 12/16/2022] Open
Abstract
Objective Hemolymph plays many important roles in the physiology of an insect throughout its lifetime; however, for small-bodied insects, studies are lacking because of the difficulties encountered while collecting hemolymph. The objective of our study was to develop a method to collect hemolymph plasma from various stages of Tribolium castaneum and to evaluate phenoloxidase activity in the plasma samples. We first designed a procedure for easily and quickly collecting clear hemolymph plasma from T. castaneum. Results By using this method, we collected approximately 5 µl plasma from 30 individuals at the larval, pupal or adult stages. And then, we studied the expression of phenoloxidase by performing western blot analysis of the plasma samples and found that phenoloxidase is present in hemolymph in each developmental stage. We also measured phenoloxidase activity in control plasma and plasma treated with Gram-positive bacteria, Micrococcus luteus. Phenoloxidase activity was greater in some of the M. luteus-treated plasma samples compared with control samples. Thus, we developed a method to collect hemolymph plasma that is suitable for studies of phenoloxidase activity. Electronic supplementary material The online version of this article (10.1186/s13104-018-4041-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan. .,Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506-3702, USA.
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506-3702, USA
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506-3702, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506-3702, USA
| |
Collapse
|
25
|
Dorrah MA, Mohamed AA, Shaurub ESH. Immunosuppressive effects of the limonoid azadirachtin, insights on a nongenotoxic stress botanical, in flesh flies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:55-66. [PMID: 30744897 DOI: 10.1016/j.pestbp.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/08/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The tetranortriterpenoid azadirachtin (Aza) is a well-known insect growth disruptor of plant origin. Although its actions on insects have been extensively studied; fragmentary reports are available from the immunological point of view. Therefore, in the present study, total (THC) and differential hemocyte counts (DHC), nodulation, phenoloxidase (PO) activity, immune-reactive lysozymes and inducible nitric oxide (NO) were assessed, as measures of immune responses, in Sarcophaga argyrostoma 3rd instars challenged individually with M. luteus or Aza, or in combination with both compared to the control larvae. THC was significantly declined after 12 h and 24 h of treatment with Aza. DHC varied considerably; in particular, plasmatocytes were significantly decreased after 36 h and 48 h of treatment with Aza; whereas granulocytes were significantly increased. Nodulation was significantly increased with the increase of time after all treatments. Challenging with M. luteus significantly increased the activity of PO in hemocytes and plasma; whereas such activity was significantly decreased after treatment with Aza or combined Aza and M. luteus. Treatment with Aza or M. luteus alone or in couple significantly increased lysozyme activity of fat body, hemocytes and plasma. However, challenging with M. luteus significantly increased NO concentration in the same tissues. A hypothetical model of Aza as a potential mutagen is presented. However, no genotoxic effect was observed through tracking apoptosis-associated changes in Aza-treated hemocytes via flow cytometry-based apoptosis detection. Our study suggests that the integration of Aza, as an eco-friendly pesticide, with bacterial biopesticides may be a successful approach for controlling insect pests.
Collapse
Affiliation(s)
- Moataza A Dorrah
- Department of Entomology, Faculty of Science, Cairo University, Giza, PO Box 12613, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, PO Box 12613, Egypt
| | - El-Sayed H Shaurub
- Department of Entomology, Faculty of Science, Cairo University, Giza, PO Box 12613, Egypt.
| |
Collapse
|
26
|
He Y, Wang Y, Hu Y, Jiang H. Manduca sexta hemolymph protease-2 (HP2) activated by HP14 generates prophenoloxidase-activating protease-2 (PAP2) in wandering larvae and pupae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:57-65. [PMID: 30098411 PMCID: PMC6163074 DOI: 10.1016/j.ibmb.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 05/27/2023]
Abstract
Melanization is a universal defense mechanism of insects against microbial infection. During this response, phenoloxidase (PO) is activated from its precursor by prophenoloxidase activating protease (PAP), the terminal enzyme of a serine protease (SP) cascade. In the tobacco hornworm Manduca sexta, hemolymph protease-14 (HP14) is autoactivated from proHP14 to initiate the protease cascade after host proteins recognize invading pathogens. HP14, HP21, proHP1*, HP6, HP8, PAP1-3, and non-catalytic serine protease homologs (SPH1 and SPH2) constitute a portion of the extracellular SP-SPH system to mediate melanization and other immune responses. Here we report the expression, purification, and functional characterization of M. sexta HP2. The HP2 precursor is synthesized in hemocytes, fat body, integument, nerve and trachea. Its mRNA level is low in fat body of 5th instar larvae before wandering stage; abundance of the protein in hemolymph displays a similar pattern. HP2 exists as an active enzyme in plasma of the wandering larvae and pupae in the absence of an infection. HP14 cleaves proHP2 to yield active HP2. After incubating active HP2 with larval hemolymph, we detected higher levels of PO activity, i.e. an enhancement of proPO activation. HP2 cleaved proPAP2 (but not proPAP3 or proPAP1) to yield active PAP2, responsible for a major increase in IEARpNA hydrolysis. PAP2 activates proPOs in the presence of a cofactor of SPH1 and SPH2. In summary, we have identified a new member of the proPO activation system and reconstituted a pathway of HP14-HP2-PAP2-PO. Since high levels of HP2 mRNA were present in integument and active HP2 in plasma of wandering larvae, HP2 likely plays a role in cuticle melanization during pupation and protects host from microbial infection in a soil environment.
Collapse
Affiliation(s)
- Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
27
|
Yang F, Wang Y, Sumathipala N, Cao X, Kanost MR, Jiang H. Manduca sexta serpin-12 controls the prophenoloxidase activation system in larval hemolymph. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 99:27-36. [PMID: 29800677 PMCID: PMC5997545 DOI: 10.1016/j.ibmb.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/28/2018] [Accepted: 05/14/2018] [Indexed: 06/01/2023]
Abstract
Insect prophenoloxidase activation is coordinated by a serine protease network, which is regulated by serine protease inhibitors of the serpin superfamily. The enzyme system also leads to proteolytic processing of a Spätzle precursor. Binding of Spätzle to a Toll receptor turns on a signaling pathway to induce the synthesis of defense proteins. Previous studies of the tobacco hornworm Manduca sexta have revealed key members of the protease cascade, which generates phenoloxidase for melanogenesis and Spätzle to induce immunity-related genes. Here we provide evidence that M. sexta serpin-12 regulates hemolymph protease-14 (HP14), an initiating protease of the cascade. This inhibitor, unlike the other serpins characterized in M. sexta, has an amino-terminal extension rich in hydrophilic residues and an unusual P1 residue (Leu429) right before the scissile bond cleaved by a target protease. Serpins with similarities to serpin-12, including Drosophila Necrotic, were identified in a wide range of insects including flies, moths, wasps, beetles, and two hemimetabolous species. The serpin-12 mRNA is present at low, constitutive levels in larval fat body and hemocytes and becomes more abundant after an immune challenge. We produced the serpin-12 core domain (serpin-12ΔN) in insect cells and in Escherichia coli and demonstrated its inhibition of human cathepsin G, bovine α-chymotrypsin, and porcine pancreatic elastase. MALDI-TOF analysis of the reaction mixtures confirmed the predicted P1 residue of Leu429. Supplementation of larval plasma samples with the serpin-12ΔN decreased prophenoloxidase activation elicited by microbial cells and reduced the proteolytic activation of the protease precursors of HP6, HP8, PAPs, and other serine protease-related proteins. After incubation of plasma stimulated with peptidoglycan, a 72 kDa protein appeared, which was recognized by polyclonal antibodies against both serpin-12 and HP14, suggesting that a covalent serpin-protease complex formed when serpin-12 inhibited HP14. Together, these data suggest that M. sexta serpin-12 inhibits HP14 to regulate melanization and antimicrobial peptide induction.
Collapse
Affiliation(s)
- Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Niranji Sumathipala
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
28
|
Kim Y, Lee DW, Jung JK. Rapid Cold-Hardening of a Subtropical Species, Maruca vitrata (Lepidoptera: Crambidae), Accompanies Hypertrehalosemia by Upregulating Trehalose-6-Phosphate Synthase. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1432-1438. [PMID: 29029081 DOI: 10.1093/ee/nvx153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 06/07/2023]
Abstract
A subtropical insect, Maruca vitrata (F.) (Lepidoptera: Crambidae), is invasive to temperate zones, in which low temperatures during winter would be a serious challenge for colonization. This study assessed cold tolerance and cold-hardening of M. vitrata to understand its overwintering mechanism. Supercooling capacity was confirmed in all developmental stages exhibiting body freezing points at lower than -10°C, in which supercooling points (SCPs) were significantly different among developmental stages, with eggs having the lowest SCP (at -22.5°C). However, all developmental stages suffered significant mortality after being exposed to low temperatures much higher than SCPs. Furthermore, nonfreezing injury increased with elapsed time at 25°C after cold shock. One of the nonfreezing symptoms was a darkening on thorax, which was explained by uncontrolled prophenoloxidase activation. Pre-exposure to 8°C for 1 h significantly increased the survival of both young and old larvae to a low-temperature treatment (-5°C for 1 h). Rapid cold-hardening (RCH) was accompanied by significant increase in hemolymph trehalose concentration. During RCH, trehalose-6-phosphate synthase was significantly upregulated in its expression level. These results suggest that M. vitrata is a freeze-susceptible species and becomes cold-hardy via hypertrehalosemia.
Collapse
Affiliation(s)
- Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Dae-Weon Lee
- Department of Chemistry and Life Sciences, Kyungsung University, Busan 48434, Korea
| | - Jin Kyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Korea
| |
Collapse
|
29
|
Inhibition of melanization by serpin-5 and serpin-9 promotes baculovirus infection in cotton bollworm Helicoverpa armigera. PLoS Pathog 2017; 13:e1006645. [PMID: 28953952 PMCID: PMC5633200 DOI: 10.1371/journal.ppat.1006645] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/09/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
Melanization, an important insect defense mechanism, is mediated by clip-domain serine protease (cSP) cascades and is regulated by serpins. Here we show that proteolytic activation of prophenoloxidase (PPO) and PO-catalyzed melanization kill the baculovirus in vitro. Our quantitative proteomics and biochemical experiments revealed that baculovirus infection of the cotton bollworm, Helicoverpa armigera, reduced levels of most cascade members in the host hemolymph and PO activity. By contrast, serpin-9 and serpin-5 were sequentially upregulated after the viral infection. The H. armigera serpin-5 and serpin-9 regulate melanization by directly inhibiting their target proteases cSP4 and cSP6, respectively and cSP6 activates PPO purified from hemolymph. Furthermore, serpin-5/9-depleted insects exhibited high PO activities and showed resistance to baculovirus infection. Together, our results characterize a part of the melanization cascade in H. armigera, and suggest that natural insect virus baculovirus has evolved a distinct strategy to suppress the host immune system. Melanization is one of important modules in insect defense system. It consists of a cascade of clip-domain serine proteases (cSPs) that converts the zymogen prophenoloxidase (PPO) to active phenoloxidase (PO), which is negatively regulated by serpins. PO then catalyses the formation of melanin that physically encapsulates certain pathogens. Parasites and bacteria have evolved to produce specific proteins or antibiotic to suppress the melanization response of host insects for survival. However, the mechanisms by which virus persists in the face of the insect melanization are poorly understood. In this study, we show that a DNA virus baculovirus infection of the cotton bollworm, Helicoverpa armigera, reduced the levels of most cascade members in the host hemolymph and PO activity. By contrast, serpin-9 and serpin-5 were sequentially upregulated after the viral infection. Our results also reveal that melanization kills baculovirus in vitro. Serpin-5 and serpin-9 regulate melanization by directly inhibiting their target proteases cSP4 and cSP6, respectively and cSP6 activates PPO purified from hemolymph. Moreover, serpin-5/9-depleted insects show resistance to baculovirus infection. Our findings have enriched the understanding of molecular mechanisms by which pathogens suppress the melanization response of host insect for survival.
Collapse
|
30
|
Noothuan N, Amparyup P, Tassanakajon A. Melanization inhibition protein of Penaeus monodon acts as a negative regulator of the prophenoloxidase-activating system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:97-102. [PMID: 28232130 DOI: 10.1016/j.dci.2017.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/18/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Melanization mediated by the prophenoloxidase-activating system (proPO) is an important immune response in invertebrates. However, in addition to melanin, the proPO system produces reactive intermediates that are not only harmful to the invading microbes but also to the host cells. Thus, the proPO system must be tightly regulated by several inhibitors. Previously, a melanization inhibition protein from the black tiger shrimp Penaeus monodon, PmMIP, has been identified and preliminarily characterized. In this study, we investigate the function of PmMIP in the regulation of the proPO system in shrimp. When challenged with the bacterium Vibrio harveyi, the expression of PmMIP transcripts in gills was down-regulated dramatically at 24 h but recovered after 48 h post infection (hpi), while the PmMIP protein level in shrimp plasma was decreased at 6 hpi but recovered at 24 hpi. Double-stranded RNA-mediated gene silencing of PmMIP suppressed both PmMIP transcriptional and translational levels and resulted in increased hemolymph phenoloxidase and proteinase activities compared to controls injected with GFP dsRNA or NaCl. Furthermore, the recombinant PmMIP protein successfully expressed in Escherichia coli was able to inhibit hemolymph PO activity by 50%. These results suggested that PmMIP was involved in the proPO system by acting as a negative regulator and interfering with hemolymph proteinase activity.
Collapse
Affiliation(s)
- Nattaphop Noothuan
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand.
| |
Collapse
|
31
|
Seehausen ML, Cusson M, Régnière J, Bory M, Stewart D, Djoumad A, Smith SM, Martel V. High temperature induces downregulation of polydnavirus gene transcription in lepidopteran host and enhances accumulation of host immunity gene transcripts. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:126-133. [PMID: 28041943 DOI: 10.1016/j.jinsphys.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Endoparasitoids face the challenge of overcoming the immune reaction of their hosts, which typically consists of encapsulation and melanisation of parasitoid eggs or larvae. Some endoparasitic wasps such as the solitary Tranosema rostrale (Hymenoptera: Ichneumonidae) that lay their eggs in larvae of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), have evolved a symbiotic relationship with a polydnavirus (PDV), which in turn helps them suppress the host's immune response. We observed an increase in mortality of immature T. rostrale with increasing temperature, and we tested two hypotheses about the mechanisms involved: high temperatures (1) hamper the expression of T. rostrale PDV genes and (2) enhance the expression of spruce budworm immunity-related genes. Dissections of parasitized spruce budworm larvae reared at 30°C revealed that most parasitoid eggs or larvae had died as a result of encapsulation and melanisation by the host. A qPCR analysis of T. rostrale PDV (TrIV) gene expression showed that the transcription of several TrIV genes in host larvae was downregulated at high temperature. On the other hand, encapsulation, but not melanisation, of foreign bodies in spruce budworm larvae was enhanced at high temperatures, as shown by the injection of Sephadex™ beads into larvae. However, at the molecular level, the transcription of genes related to spruce budworm's melanisation process (prophenoloxidase 1 and 2) was upregulated. Our results support the hypothesis that a temperature-dependent increase of encapsulation response is due to the combined effects of reduced expression of TrIV genes and enhanced expression of host immune genes.
Collapse
Affiliation(s)
- M Lukas Seehausen
- University of Toronto, Faculty of Forestry, 33 Willcocks Street, Toronto, Ontario M5S 3B3, Canada.
| | - Michel Cusson
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Jacques Régnière
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Maxence Bory
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Don Stewart
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Abdelmadjid Djoumad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Sandy M Smith
- University of Toronto, Faculty of Forestry, 33 Willcocks Street, Toronto, Ontario M5S 3B3, Canada
| | - Véronique Martel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| |
Collapse
|
32
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
Affiliation(s)
- P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - E S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M S Gonzalez
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - C B Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - N A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales, United Kingdom.
| |
Collapse
|
33
|
Fors L, Markus R, Theopold U, Ericson L, Hambäck PA. Geographic variation and trade-offs in parasitoid virulence. J Anim Ecol 2016; 85:1595-1604. [PMID: 27476800 DOI: 10.1111/1365-2656.12579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
Host-parasitoid systems are characterized by a continuous development of new defence strategies in hosts and counter-defence mechanisms in parasitoids. This co-evolutionary arms race makes host-parasitoid systems excellent for understanding trade-offs in host use caused by evolutionary changes in host immune responses and parasitoid virulence. However, knowledge obtained from natural host-parasitoid systems on such trade-offs is still limited. In this study, the aim was to examine trade-offs in parasitoid virulence in Asecodes parviclava (Hymenoptera: Eulophidae) when attacking three closely related beetles: Galerucella pusilla, Galerucella calmariensis and Galerucella tenella (Coleoptera: Chrysomelidae). A second aim was to examine whether geographic variation in parasitoid infectivity or host immune response could explain differences in parasitism rate between northern and southern sites. More specifically, we wanted to examine whether the capacity to infect host larvae differed depending on the previous host species of the parasitoids and if such differences were connected to differences in the induction of host immune systems. This was achieved by combining controlled parasitism experiments with cytological studies of infected larvae. Our results reveal that parasitism success in A. parviclava differs both depending on previous and current host species, with a higher virulence when attacking larvae of the same species as the previous host. Virulence was in general high for parasitoids from G. pusilla and low for parasitoids from G. calmariensis. At the same time, G. pusilla larvae had the strongest immune response and G. calmariensis the weakest. These observations were linked to changes in the larval hemocyte composition, showing changes in cell types important for the encapsulation process in individuals infected by more or less virulent parasitoids. These findings suggest ongoing evolution in parasitoid virulence and host immune response, making the system a strong candidate for further studies on host race formation and speciation.
Collapse
Affiliation(s)
- Lisa Fors
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden.
| | - Robert Markus
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Lars Ericson
- Department of Ecology and Environmental Science, Umeå University, 90187, Umeå, Sweden
| | - Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
34
|
Zhang X, An C, Sprigg K, Michel K. CLIPB8 is part of the prophenoloxidase activation system in Anopheles gambiae mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 71:106-15. [PMID: 26926112 PMCID: PMC4828722 DOI: 10.1016/j.ibmb.2016.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 05/27/2023]
Abstract
In insects and other arthropods the formation of eumelanin (melanization) is a broad spectrum and potent immune response that is used to encapsulate and kill invading pathogens. This immune response is regulated by the activation of prophenoxidase (proPO), which is controlled by proteinase cascades and its serpin inhibitors, together forming the proPO activation system. While the molecular composition of these protease cascades are well understood in insect model systems, major knowledge gaps remain in mosquitoes. Recently, a regulatory unit of melanization in Anopheles gambiae was documented, comprised of the inhibitory serpin-clip-serine proteinase, CLIPB9 and its inhibitor serpin-2 (SRPN2). Partial reversion of SRPN2 phenotypes in melanotic tumor formation and adult survival by SRPN2/CLIPB9 double knockdown suggested other target proteinases of SRPN2 in regulating melanization. Here we report that CLIPB8 supplements the SRPN2/CLIPB9 regulatory unit in controlling melanization in An. gambiae. As with CLIPB9, knockdown of CLIPB8 partially reversed the pleiotropic phenotype induced by SRPN2 silencing with regards to adult survival and melanotic tumor formation. Recombinant SRPN2 protein formed an SDS-stable protein complex with activated recombinant CLIPB8, however did not efficiently inhibit CLIPB8 activity in vitro. CLIPB8 did not directly activate proPO in vitro nor was it able to cleave and activate proCLIPB9. Nevertheless, epistasis analysis using RNAi placed CLIPB8 and CLIPB9 in the same pathway leading to melanization, suggesting that CLIPB8 either acts further upstream of CLIPB9 or is required for activation of a yet to be identified serine proteinase homolog. Taken together, this study identifies CLIPB8 as an additional player in proPO activation cascade and highlights the complexity of the proteinase network that regulates melanization in An. gambiae.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Chunju An
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - KaraJo Sprigg
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
35
|
Xu J, Zhang P, Kusakabe T, Mon H, Li Z, Zhu L, Iiyama K, Banno Y, Morokuma D, Lee JM. Comparative proteomic analysis of hemolymph proteins from Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-sensitive or -resistant silkworm strains during infections. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:36-47. [DOI: 10.1016/j.cbd.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 01/07/2023]
|
36
|
Yokoi K, Hayakawa Y, Kato D, Minakuchi C, Tanaka T, Ochiai M, Kamiya K, Miura K. Prophenoloxidase genes and antimicrobial host defense of the model beetle, Tribolium castaneum. J Invertebr Pathol 2015; 132:190-200. [DOI: 10.1016/j.jip.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
|
37
|
Sharifi M, Ghadamyari M, Sajedi RH, Mahmoodi NO. Effects of 4-hexylresorcinol on the phenoloxidase from Hyphantria cunea (Lepidoptera: Arctiidae): In vivo and in vitro studies. INSECT SCIENCE 2015; 22:639-650. [PMID: 24995395 DOI: 10.1111/1744-7917.12154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Insecticidal effects of 4-hexylresorcinol, a phenoloxidase (PO) inhibitor, were determined on Hyphantria cunea (Drury) under laboratory conditions. The LC50 for the 15-d-old larvae was estimated to be 2.95 g/L after 96 h exposure. The activities of glutathione S-transferase (GST) and PO showed a decrease in larvae treated with 4-hexylresorcinol, and the IC50 of GST and PO were estimated to be 0.8 and 0.43 g/L, respectively, 24 h after treatment. The PO from the hemolymph of fall webworm was purified by ammonium sulfate precipitation, gel-filtration, and ion-exchange chromatography, and then enzymatic characteristics and the mechanism of inhibition were determined using L-dihydroxyphenylalanine (L-DOPA) as the substrate. The purified PO showed a single band on SDS-PAGE with a molecular weight of about 70 kDa. The optimum pH for PO activity was observed at pH 7.0, optimum temperature was found to be 45 °C, and PO activity was strongly inhibited by Zn(2+) . IC50 values were estimated to be 8.2, 19.14, and 24.04 μmol/L for 4-hexylresorsinol, kojic acid, and quercetin, respectively. The inhibitory potencies (i.e., I50 of each compound/I50 of 4-hexylresorcinol) of kojic acid and quercetin on H. cunea PO were estimated to be 1.87 and 2.89, respectively. 4-hexylresorcinol was determined to be a competitive inhibitor, and kojic acid and quercetin were determined to be mixed inhibitors. PO is one of the most important enzymes in an insect's immune system, and the use of PO inhibitors seems to be a promising approach for pest control due to their potential safety for humans.
Collapse
Affiliation(s)
- Mahboobeh Sharifi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht
| | - Mohammad Ghadamyari
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran
| | - Nosrat O Mahmoodi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
38
|
Kanost MR, Jiang H. Clip-domain serine proteases as immune factors in insect hemolymph. CURRENT OPINION IN INSECT SCIENCE 2015; 11:47-55. [PMID: 26688791 PMCID: PMC4680995 DOI: 10.1016/j.cois.2015.09.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CLIP proteases are non-digestive serine proteases present in hemolymph of insects and other arthropods. They are composed of one or more amino-terminal clip domains followed by a linker sequence and a carboxyl-terminal S1A family serine protease domain. The genes for CLIP proteases have evolved as four clades (CLIPA, CLIPB, CLIPC, CLIPD), each present as multigene families in insect genomes. CLIP proteases in hemolymph function in innate immune responses. These include proteolytic activation of the cytokine Spätzle, to form an active Toll ligand leading to synthesis of antimicrobial peptides, and specific activation of prophenoloxidase, required for the melanization response. CLIP proteases act in cascade pathways. In the immune pathways that have been characterized, microbial surface molecules stimulate activation of an initiating modular serine protease, which then activates a CLIPC, which in turn activates a CLIPB. The active CLIPB then cleaves and activates an effector molecule (proSpätzle or prophenoloxidase). CLIPA proteins are pseudoproteases, lacking proteolytic activity, but some can function as regulators of the activity of other CLIP proteases and form high molecular weight immune complexes. A few three dimensional structures for CLIP proteases are now available for structure-function analysis of these immune factors, revealing structural features that may act in specific activation or in formation of immune complexes. The functions of most CLIP proteases are unknown, even in well studied insect species. It is very likely that additional proteins activated by CLIP proteases and acting in immunity remain to be discovered.
Collapse
Affiliation(s)
- Michael R. Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506 USA
- Communicating author: Michael R. Kanost, Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506 USA, 785-532-6964,
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078 USA
| |
Collapse
|
39
|
Clark KD. Altered tyrosine metabolism and melanization complex formation underlie the developmental regulation of melanization in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 58:66-75. [PMID: 25596090 DOI: 10.1016/j.ibmb.2015.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
The study of hemolymph melanization in Lepidoptera has contributed greatly to our understanding of its role in insect immunity. Manduca sexta in particular has been an excellent model for identifying the myriad components of the phenoloxidase (PO) cascade and their activation through exposure to pathogen-associated molecular patterns (PAMPs). However, in a process that is not well characterized or understood, some insect species rapidly melanize upon wounding in the absence of added PAMPs. We sought to better understand this process by measuring wound-induced melanization in four insect species. Of these, only plasma from late 5th instar M. sexta was unable to melanize, even though each contained millimolar levels of the putative melanization substrate tyrosine (Tyr). Analysis of Tyr metabolism using substrate-free plasmas (SFPs) from late 5th instar larvae of each species showed that only M. sexta SFP failed to melanize with added Tyr. In contrast, early instar M. sexta larvae exhibited wound-induced melanization and Tyr metabolism, and SFPs prepared from these larvae melanized in the presence of Tyr. Early instar melanization in M. sexta was associated with the formation of a high mass protein complex that could be observed enzymatically in native gels or by PO-specific immunoblotting. Topical treatment of M. sexta larvae with the juvenile hormone (JH) analog methoprene delayed pupation and increased melanizing ability late in the instar, thus linking development with immunity. Our results demonstrate that melanization rates are highly variable in Lepidoptera, and that developmental stage can be an important factor for melanization within a species. More specifically, we show that the physiological substrate for melanization in M. sexta is Tyr, and that melanization is associated with the formation of a PO-containing protein complex.
Collapse
Affiliation(s)
- Kevin D Clark
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
40
|
Guimarães J, Marques EJ, Wanderley-Teixeira V, De Albuquerque AC, Dos Passos EM, Silva CCM, Teixeira ÁAC. Sublethal effect of concentrations of Metarhizium anisopliae (Metsch.) Sorok on the larval stage and immunologic characteristics of Diatraea flavipennella (BOX) (Lepidoptera: Crambidae). AN ACAD BRAS CIENC 2015; 86:1973-84. [PMID: 25590733 DOI: 10.1590/0001-3765201420130339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/17/2014] [Indexed: 11/22/2022] Open
Abstract
This work aimed to evaluate the effects of Metarhizium anisopliae on Diatraea flavipennella and investigate their immune response. Was observed the effect of M. anisopliae against larvae of D. flavipennella sprayed at concentrations of 103, 104, 105 conidia / mL, in which showed differences relative the larval period, extending up to 72.0 days in treatment and 25.0 days in the control. The results for hemocytes revealed that the most frequent cells when sprayed at the concentrations of 103, 105, 107 conidia / mL were the prohemocytes, spherulocytes, plasmatocytes and granulocytes in relation to adipohemocytes and oenocytoids. The level of nitric oxide was different between the control and the concentration 107 spores / mL (24), while the activity of phenoloxidase was similar among treatments in 24 and higher concentration 107 spores / mL (60h). In biochemical profile of hemocytes was a change in carbohydrates, lipids and proteins in response to the fungus. The results indicate that the fungus M. anisopliae can be used in the Integrated Management of D. flavipennella by presenting pathogenicity and interfere with their development even when exposed to small concentrations.
Collapse
Affiliation(s)
- Jennifer Guimarães
- Departamento de Agronomia - Entomologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Edmilson J Marques
- Departamento de Agronomia - Entomologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Valéria Wanderley-Teixeira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | | | - Eliana M Dos Passos
- Departamento de Agronomia - Entomologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Cínthia C M Silva
- Departamento de Agronomia - Entomologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | - Álvaro A C Teixeira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| |
Collapse
|
41
|
Lu WX, Yue D, Hai ZJ, Daihua W, Yi ZM, Fu WC, Rong Z. Cloning, expression, and characterization of prophenoloxidase from Antheraea pernyi. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:45-63. [PMID: 25521627 DOI: 10.1002/arch.21219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Prophenoloxidase (PPO) is an essential enzyme in insect innate immunity because of its role in humoral defense. In this study, we have cloned a full-length cDNA of Antheraea pernyi prophenoloxidase (ApPPO) with an open-reading frame encoding 683 amino acids, and the deduced amino acid sequence of ApPPO exhibited a high similarity with those of lepidoptera. The expression of ApPPO was inducible so that the mRNA level was significantly upregulated in the microbial challenged tissues, including fat body, hemocytes, and midgut. To better investigate the enzymatic and immunological properties of ApPPO, recombinant ApPPO (rApPPO) was produced in Escherichia coli. Several functional verification experiments were performed after studying the enzymatic properties. It was found that rApPPO could be stimulated by the microbial challenged larvae hemolymph and then killed bacteria in the radial diffusion assay. Furthermore, rApPPO also induced the transcription of cecropins after injected into the larvae 24 h later.
Collapse
Affiliation(s)
- Wang Xia Lu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China; Benxi Institute of Medicines, Shenyang Pharmaceutical University, Benxi, Liaoning Province, P. R. China
| | | | | | | | | | | | | |
Collapse
|
42
|
Kato Y, Yoshida T, Miura K, Tanaka T, Nakamatsu Y, Ochiai M. A novel type of hemocytes localizing melanization with high-spreading behavior in Mythimna separata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 86:220-239. [PMID: 24986040 DOI: 10.1002/arch.21173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lepidopteran larvae show a cellular response to invading foreign substances that are larger than hemocytes, for example, parasitoid eggs or larvae. This response is called hemocyte encapsulation and is often accompanied by phenoloxidase (PO)-catalyzed melanization. In the present study, we artificially transplanted endoparasitoid larvae and small glass fragments into the hemocoel of the common armyworm, Mythimna separata. We observed that the host larva showed a cellular response and that, 2-4 h after transplantation, melanin formation was spatially confined to the surface of the encapsulated substances. We further noted that specific morphological hemocytes surrounded by melanin formation became attached to the surface of the foreign substances. We designated these hemocytes hyperspread cells (HSCs) on the basis of their specific characteristics and circumferential spread. We confirmed the occurrence of prophenoloxidase (PPO)/phenoloxidase (PO) on the periphery of the HSCs and in the substance secreted around the HSCs by using anti-PPO antibody. We were unable to detect PPO-mRNA in HSCs by using in situ hybridization, although we showed that oenocytoids contained PPO-mRNA and PPO protein. We used light microscopy and scanning electron microscopy to discriminate five main types of circulating M. separata hemocytes. We observed that HSCs differed from plasmatocytes, but spread out well. Further, during the encapsulation process, HSCs appeared to provide a localized melanization spot on the surface of foreign invaders.
Collapse
Affiliation(s)
- Yoshiaki Kato
- Laboratory of Applied Entomology, Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan YX, Ling E. Insect prophenoloxidase: the view beyond immunity. Front Physiol 2014; 5:252. [PMID: 25071597 PMCID: PMC4092376 DOI: 10.3389/fphys.2014.00252] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Abstract
Insect prophenoloxidase (PPO) is an important innate immunity protein due to its involvement in cellular and humoral defense. It belongs to a group of type-3 copper-containing proteins that occurs in almost all organisms. Insect PPO has been studied for over a century, and the PPO activation cascade is becoming clearer. The insect PPO activation pathway incorporates several important proteins, including pattern-recognition receptors (PGRP, β GRP, and C-type lectins), serine proteases, and serine protease inhibitors (serpins). Due to their complexity, PPO activation mechanisms vary among insect species. Activated phenoloxidase (PO) oxidizes phenolic molecules to produce melanin around invading pathogens and wounds. The crystal structure of Manduca sexta PPO shows that a conserved amino acid, phenylalanine (F), can block the active site pocket. During activation, this blocker must be dislodged or even cleaved at the N-terminal sequence to expose the active site pockets and allow substrates to enter. Thanks to the crystal structure of M. sexta PPO, some domains and specific amino acids that affect PPO activities have been identified. Further studies of the relationship between PPO structure and enzyme activities will provide an opportunity to examine other type-3 copper proteins, and trace when and why their various physiological functions evolved. Recent researches show that insect PPO has a relationship with neuron activity, longevity, feces melanization (phytophagous insects) and development, which suggests that it is time for us to look back on insect PPO beyond the view of immunity in this review.
Collapse
Affiliation(s)
- Anrui Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Qiaoli Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Jie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Kai Wu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Wei Xie
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yun-Xia Luan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
44
|
Wang Y, Lu Z, Jiang H. Manduca sexta proprophenoloxidase activating proteinase-3 (PAP3) stimulates melanization by activating proPAP3, proSPHs, and proPOs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:82-91. [PMID: 24768974 PMCID: PMC4064829 DOI: 10.1016/j.ibmb.2014.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 05/22/2023]
Abstract
Melanization participates in various insect physiological processes including antimicrobial immune responses. Phenoloxidase (PO), a critical component of the enzyme system catalyzing melanin formation, is produced as an inactive precursor prophenoloxidase (proPO) and becomes active via specific proteolytic cleavage by proPO activating proteinase (PAP). In Manduca sexta, three PAPs can activate proPOs in the presence of two serine proteinase homologs (SPH1 and SPH2). While the hemolymph proteinases (HPs) that generate the active PAPs are known, it is unclear how the proSPHs (especially proSPH1) are activated. In this study, we isolated from plasma of bar-stage M. sexta larvae an Ile-Glu-Ala-Arg-p-nitroanilide hydrolyzing enzyme that cleaved the proSPHs. This proteinase, PAP3, generated active SPH1 and SPH2, which function as cofactors for PAP3 in proPO activation. Cleavage of the purified recombinant proSPHs by PAP3 yielded 38 kDa bands similar in mobility to the SPHs formed in vivo. Surprisingly, PAP3 also can activate proPAP3 to stimulate melanization in a direct positive feedback loop. The enhanced proPO activation concurred with the cleavage activation of proHP6, proHP8, proPAP1, proPAP3, proSPH1, proSPH2, proPOs, but not proHP14 or proHP21. These results indicate that PAP3, like PAP1, is a key factor of the self-reinforcing mechanism in the proPO activation system, which is linked to other immune responses in M. sexta.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zhiqiang Lu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
45
|
Wang JL, Zhang Q, Tang L, Chen L, Liu XS, Wang YF. Involvement of a pattern recognition receptor C-type lectin 7 in enhancing cellular encapsulation and melanization due to its carboxyl-terminal CRD domain in the cotton bollworm, Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:21-29. [PMID: 24269901 DOI: 10.1016/j.dci.2013.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
C-type lectins play important roles in innate immunity as pattern recognition receptors (PRRs). We have previously reported a novel C-type lectin HaCTL7 from the cotton bollworm (Helicoverpa armigera) which contains two carbohydrate-recognition domains (CRDs), namely N-terminal CRD1 and C-terminal CRD2. Interestingly, there are four but not six of conserved cysteine residues in CRD2 of HaCTL7, which is different from that of other dual CRD C-type lectins. In the current study, we expressed and purified recombinant HaCTL7 (rHaCTL7) as well as rCRD1 and rCRD2, and demonstrated that both rHaCTL7 and rCRD2, but not rCRD1, owned the agglutinate ability against both Gram-negative and Gram-positive bacteria in a calcium dependent manner. In addition, both rHaCTL7 and rCRD2, but not rCRD1, could bind to various bacteria, and enhanced haemocytes mediated encapsulation and melanization processes. HaCTL7 secreted from fat bodies is able to bind to granulocytes, plasmatocytes and oenocytoids, but not to spherulocytes. Recombinant HaCTL7 and rCRD2 are capable of binding to both granulocytes and oenocytoids, while rCRD1 can only bind to granulocytes. Our data suggest that as a PRR HaCTL7 enhances encapsulation and melanization likely through its C-terminal CRD2, but not N-terminal CRD1, which imply that the characteristic four cysteine structure of CRD2 plays key roles in innate immunity.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China.
| | - Qi Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Lin Tang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Lei Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
46
|
Park J, Kim Y. Prostaglandin mediates down-regulation of phenoloxidase activation of Spodoptera exigua via plasmatocyte-spreading peptide-binding protein. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 85:234-247. [PMID: 24615993 DOI: 10.1002/arch.21156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Insect immunity is innate and highly efficient to defend against various pathogens. However, uncontrolled excessive immune responses would be highly detrimental and energy-consuming processes. An insect cytokine, plasmatocyte-spreading peptide (SePSP), induces hemocyte-spreading behavior as well as activates phenoloxidase (PO) in the beet armyworm, Spodoptera exigua. A hemocyte transcriptome of S. exigua contains a partial sequence of a putative PSP-binding protein (SePSP-BP1). SePSP-BP1 was expressed in most larval stages except in the last instar. However, a bacterial challenge induced SePSP-BP1 expression in the last instar especially in hemocytes and fat body. Injecting a double-stranded RNA specific to SePSP-BP1 (dsPSP-BP1) suppressed the induction of SePSP-BP1 expression in response to bacterial challenge. The larvae treated with dsPSP-BP1 suffered high mortality to infection of nonpathogenic bacteria due to uncontrolled high PO activity. SePSP significantly induced PO activity. The eicosanoid synthesis inhibitor, dexamethasone (DEX), inhibited SePSP-mediated PO activation. However, treatment with prostaglandin E2 (PGE2) induced a transient increase of PO activity under DEX treatment. Treatment of dsPSP decreased the duration of PO activation induced by PGE2, while treatment of dsPSP-BP1 increased the induced period. These results suggest that prostaglandin mediates PSP signals in both upregulation of PO activity and its subsequent downregulation via SePSP-BP1.
Collapse
Affiliation(s)
- Jiyeong Park
- Department of Bioresource Sciences, Andong National University, Andong, Republic of Korea
| | | |
Collapse
|
47
|
Contreras E, Rausell C, Real MD. Tribolium castaneum Apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity. J Invertebr Pathol 2013; 113:209-13. [DOI: 10.1016/j.jip.2013.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 12/24/2022]
|
48
|
Yang B, Lu A, Peng Q, Ling QZ, Ling E. Activity of fusion prophenoloxidase-GFP and its potential applications for innate immunity study. PLoS One 2013; 8:e64106. [PMID: 23717543 PMCID: PMC3662757 DOI: 10.1371/journal.pone.0064106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/08/2013] [Indexed: 01/28/2023] Open
Abstract
Insect prophenoloxidase (PPO) is essential for physiological functions such as melanization of invading pathogens, wound healing and cuticle sclerotization. The insect PPO activation pathway is well understood. However, it is not very clear how PPO is released from hemocytes and how PPO takes part in cellular immunity. To begin to assess this, three Drosophila melanogaster PPO genes were separately fused with GFP at the C-terminus (rPPO-GFP) and were over-expressed in S2 cells. The results of staining and morphological observation show that rPPO-GFP expressed in S2 cells has green fluorescence and enzyme activity if Cu(2+) was added during transfection. Each rPPO-GFP has similar properties as the corresponding rPPO. However, cells with rPPO-GFP over-expressed are easier to trace without PO activation and staining. Further experiments show that rPPO1-GFP is cleaved and activated by Drosophila serine protease, and rPPO1-GFP binds to Micrococcus luteus and Beauveria bassiana spores as silkworm plasma PPO. The above research indicates that the GFP-tag has no influence on the fusion enzyme activation and PPO-involved innate immunity action in vitro. Thus, rPPO-GFP may be a convenient tool for innate immunity study in the future if it can be expressed in vivo.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Anrui Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qin Peng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qing-Zhi Ling
- Department of Applied Biology, Zhejiang Pharmaceutical College, Ningbo, People’s Republic of China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
49
|
Diao Y, Lu A, Yang B, Hu W, Peng Q, Ling QZ, Beerntsen BT, Söderhäll K, Ling E. Existence of prophenoloxidase in wing discs: a source of plasma prophenoloxidase in the silkworm, Bombyx mori. PLoS One 2012; 7:e41416. [PMID: 22848488 PMCID: PMC3405132 DOI: 10.1371/journal.pone.0041416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/21/2012] [Indexed: 01/15/2023] Open
Abstract
In insects, hemocytes are considered as the only source of plasma prophenoloxidase (PPO). PPO also exists in the hemocytes of the hematopoietic organ that is connected to the wing disc of Bombyx mori. It is unknown whether there are other cells or tissues that can produce PPO and release it into the hemolymph besides circulating hemocytes. In this study, we use the silkworm as a model to explore this possibility. Through tissue staining and biochemical assays, we found that wing discs contain PPO that can be released into the culture medium in vitro. An in situ assay showed that some cells in the cavity of wing discs have PPO1 and PPO2 mRNA. We conclude that the hematopoietic organ may wrongly release hemocytes into wing discs since they are connected through many tubes as repost in previous paper. In wing discs, the infiltrating hemocytes produce and release PPO probably through cell lysis and the PPO is later transported into hemolymph. Therefore, this might be another source of plasma PPO in the silkworm: some infiltrated hemocytes sourced from the hematopoietic organ release PPO via wing discs.
Collapse
Affiliation(s)
- Yupu Diao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Anrui Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Wenli Hu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qing Peng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qing-Zhi Ling
- Department of Applied Biology, Zhejiang Pharmaceutical College, Ningbo, People’s Republic of China
| | - Brenda T. Beerntsen
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
50
|
Demir D, Gençer N, Er A. Purification and characterization of prophenoloxidase fromGalleria mellonellaL. ACTA ACUST UNITED AC 2012; 40:391-5. [DOI: 10.3109/10731199.2012.696060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|