1
|
Wei ZH, Zhao P, Ning XY, Xie YQ, Li Z, Liu XX. Nanomaterial-Encapsulated dsRNA-Targeting Chitin Pathway─A Potential Efficient and Eco-Friendly Strategy against Cotton Aphid, Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20905-20917. [PMID: 39258562 DOI: 10.1021/acs.jafc.4c06390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The r-strategy pests are very challenging to effectively control because of their rapid population growth and strong resurgence potential and are more prone to developing pesticide resistance. As a typical r-strategy pest, the cosmopolitan cotton aphid, Aphis gossypii Glover, seriously impacts the growth and production of cucurbits and cotton. The present study developed a SPc/double-stranded RNA (dsRNA)/botanical strategy to enhance the control efficacy of A. gossypii. The results demonstrated that the expression of two chitin pathway genes AgCHS2 and AgHK2 notably changed in A. gossypii after treated by three botanical pesticides, 1% azadirachtin, 1% matrine, and 5% eucalyptol. SPc nanocarrier could significantly enhance the environmental stability, cuticle penetration, and interference efficiency of dsRNA products. The SPc/dsRNA/botanical complex could obviously increase the mortality of A. gossypii in both laboratory and greenhouse conditions. This study provides an eco-friendly control technique for enhanced mortality of A. gossypii and lower application of chemical pesticides. Given the conservative feature of chitin pathway genes, this strategy would also shed light on the promotion of management strategies against other r-strategy pests using dsRNA/botanical complex nanopesticides.
Collapse
Affiliation(s)
- Zi-Han Wei
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peng Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin-Yuan Ning
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu-Qing Xie
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiao-Xia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Zhang C, He L, Ding B, Yang H. Identification and functional characterization of the chitinase and chitinase-like gene family in Myzus persicae (Sulzer) during molting. PEST MANAGEMENT SCIENCE 2024. [PMID: 39319496 DOI: 10.1002/ps.8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The crucial role of insect chitinase in molting, pupation, and emergence renders it a promising target for pest control strategies. Despite the extensive investigation of chitinase genes in various pests, there is still a lack of systematic identification and functional analysis related to aphid chitinase. RESULTS We systematically identified a total of nine chitinase/chitinase-like genes and one ENGase gene, which included eight Cht genes, one IDGF gene, and one ENGase gene. Through phylogenetic analysis, the chitinase proteins were classified into nine distinct groups (I, II, III, V, VI, VIII, X, other, and ENGase). The expression profile revealed that the epidermis exhibited relatively high expression levels for three chitinase genes: MpCht5, MpCht7, and MpCht10. Furthermore, transcriptional levels of nine chitinase genes were up-regulated following treatment with 20-hydroxyecdysone (20E) hormone. Silencing MpCht3, MpCht5, MpCht7, MpCht10, and MpCht11-2 via RNA interference (RNAi) during the molting stage resulted in nymph shrinking, hindering normal molting and leading to death. Additionally, it was observed that silencing of MpIDGF induced the body color of the aphids to change from reddish brown to colorless after molting, culminating in eventual mortality. CONCLUSION Our findings suggest that chitinase/chitinase-like genes play a crucial role in the molting process of Myzus persicae. Utilizing RNAi technology, we aimed to elucidate the precise function of MpCht genes in the molting mechanism of M. persicae, this discovery establishes a significant theoretical foundation for future research on aphid control, with chitinase as the target. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| | - Li He
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Forestry Development Centre, Zhenfeng County Forestry Bureau, Southwest Guizhou Buyi and Miao Autonomous Prefecture, Guizhou, P. R. China
| | - Bo Ding
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| |
Collapse
|
3
|
Liu M, Ge R, Song L, Chen Y, Yan S, Bu C. The chitinase genes TuCht4 and TuCht10 are indispensable for molting and survival of Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 171:104150. [PMID: 38871132 DOI: 10.1016/j.ibmb.2024.104150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Insect chitinases (Chts) play a crucial role in the molting process, enabling continuous growth through sequential developmental stages. Based on their high homology to insect Chts, TuCht1 (group II), TuCht4 (group I) and TuCht10 (group IV) were identified, and their roles during molting process were investigated. TuCht1 was mainly expressed in the deutonymphal stage, while TuCht4 was mainly expressed in the nymphal stage and the highest expression level of TuCht10 was observed in the larvae. Feeding RNAi assays have shown that group I TuCht4 and group Ⅳ TuCht10 are involved in mite molting. Suppression of TuCht4 or TuCht10 resulted in high mortality, molting abnormalities and the absence of distinct electron dense layers of chitinous horizontal laminae in the cuticle, as demonstrated by scanning electron microscopy and transmission electron microscopy. The nanocarrier mediated RNAi had significantly higher RNAi efficiency and caused higher mortality. The results of the present study suggest that chitinase genes TuCht4 and TuCht10 are potential targets for dietary RNAi, and demonstrates a nanocarrier-mediated delivery system to enhance the bioactivity of dsRNA, providing a potential technology for green pest management.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Rongchumu Ge
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Lihong Song
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Yan Chen
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
4
|
Hezakiel HE, Thampi M, Rebello S, Sheikhmoideen JM. Biopesticides: a Green Approach Towards Agricultural Pests. Appl Biochem Biotechnol 2024; 196:5533-5562. [PMID: 37994977 DOI: 10.1007/s12010-023-04765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Biopesticides are biological products or organisms which are potential candidates for eco-friendly pest management and crop protection over the chemical pesticides. The so-called biopesticides include viruses, bacteria, fungi, predators, parasites, and pheromones exhibiting a variety of modes of actions. They are less toxic, rapidly degradable, and more targeted to specific pests. However, it is noted that the formulation of biopesticides plays a crucial link between production and application, and the former dictates economy, longer shelf life, ease of application, and enhanced field efficacy. Moreover, there is an urgent need for organic farmers to gain more proficiency in using biopesticides. Even though biopesticides have more advantages, the main challenge is the marketing of biopesticides. Advances in biopesticide research and development significantly reduce the environmental damage caused by the residues of synthetic insecticides and support sustainable agriculture. Numerous products have been developed since the introduction of biopesticides, some of which have taken the lead in the agro-market after being registered and released. The types of biopesticides; their mode of action; formulation strategies; recent advancements of biopesticides focusing mainly on improvement of its action spectra, to thereby replace chemical pesticides; and finally, the future aspects of biopesticides have been discussed in this review.
Collapse
Affiliation(s)
| | - Meenu Thampi
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | - Sharrel Rebello
- National Institute of Plant Science Technology, Mahatma Gandhi University, Kottayam, India
| | - Jisha Manakulam Sheikhmoideen
- National Institute of Plant Science Technology, Mahatma Gandhi University, Kottayam, India.
- School of Biosciences, Mahatma Gandhi University, Kottayam, India.
- School of Food Science and Technology, Mahatma Gandhi University, Kottayam, India.
| |
Collapse
|
5
|
Kaur M, Nagpal M, Dhingra GA, Rathee A. Exploring chitin: novel pathways and structures as promising targets for biopesticides. Z NATURFORSCH C 2024; 79:125-136. [PMID: 38760917 DOI: 10.1515/znc-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Chitin, the most prevalent polymer in nature, a significant structural polysaccharide that comes in second only to cellulose. Chitin is a crucial component of fungal cell walls and also present in many other creatures, such as viruses, plants, animals, insect exoskeletons, and crustacean shells. Chitin presents itself as a promising target for the development of biopesticides. It focuses on unraveling the unique structures and biochemical pathways associated with chitin, aiming to identify vulnerabilities that can be strategically leveraged for effective and environmentally sustainable pest control. It involves a comprehensive analysis of chitinase enzymes, chitin biosynthesis, and chitin-related processes across diverse organisms. By elucidating the molecular intricacies involved in chitin metabolism, this review seeks to unveil potential points of intervention that can disrupt essential biological processes in target pests without harming non-target species. This holistic approach to understanding chitin-related pathways aims to inform the design and optimization of biopesticides with enhanced specificity and reduced ecological impact. The outcomes of this study hold great promise for advancing innovative and eco-friendly pest management strategies. By targeting chitin structures and pathways, biopesticides developed based on these findings may offer a sustainable and selective alternative to conventional chemical pesticides, contributing to the ongoing efforts towards more environmentally conscious and effective pest control solutions.
Collapse
Affiliation(s)
- Malkiet Kaur
- 418665 University Institute of Pharma Sciences, Chandigarh University , Mohali, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, 154025 Chitkara University , Rajpura, Punjab, India
| | | | - Ankit Rathee
- 418665 University Institute of Pharma Sciences, Chandigarh University , Mohali, Punjab, India
| |
Collapse
|
6
|
Zhao WJ, Li Y, Jiao ZL, Su PP, Yang LB, Sun CQ, Xiu JF, Shang XL, Guo G. Function analysis and characterisation of a novel chitinase, MdCht9, in Musca domestica. INSECT MOLECULAR BIOLOGY 2024; 33:157-172. [PMID: 38160324 DOI: 10.1111/imb.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yan Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Zhen-Long Jiao
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Pei-Pei Su
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Long-Bing Yang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Chao-Qin Sun
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiang-Fan Xiu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiao-Li Shang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
| | - Guo Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
El-Sayed GM, Emam MTH, Hammad MA, Mahmoud SH. Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from Serratia marcescens for Biocontrol of Spodoptera frugiperda Larvae Infesting Maize Crops. Molecules 2024; 29:1466. [PMID: 38611746 PMCID: PMC11012731 DOI: 10.3390/molecules29071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.
Collapse
Affiliation(s)
- Ghada M. El-Sayed
- Microbial Genetic Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt
| | - Maha T. H. Emam
- Genetics & Cytology Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt;
| | - Maher A. Hammad
- Department of Plant Protection, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Shaymaa H. Mahmoud
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt;
| |
Collapse
|
8
|
Zhang R, Liu W, Zhang Z. miR-306-5p is involved in chitin metabolism in Aedes albopictus pupae via linc8338-miR-306-5p-XM_019678125.2 axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105811. [PMID: 38582583 DOI: 10.1016/j.pestbp.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/08/2024]
Abstract
Aedes albopictus can transmit several lethal arboviruses. This mosquito has become a sever public health threat due to its rapidly changing global distribution. Chitin, which is the major component of the cuticle and peritrophic membrane (PM), is crucial for the growth and development of insect. microRNAs (miRNAs) play important roles in the posttranscriptional level regulation of gene expression, thereby influencing many biological processes in insects. In this study, an attempt was made to evaluate the role of miR-306-5p in regulating chitin metabolism in Ae. albopictus pupae. Overexpression of miR-306-5p resulted in a significantly reduced survival rate in pupae and an increased malformation rate in adults. Both in vivo and in vitro evidence confirmed the presence of the competing endogenous RNA (ceRNA) regulatory axis (linc8338-miR-306-5p-XM_019678125.2). RNAi of linc8338 and XM_019678125.2 had effects on pupae similar to those of miR-306-5p. The highest expression level of miR-306-5p was found in the midgut, and alteration in the expression of miR-306-5p, XM_019678125.2 and linc8338 induced increased transcript levels of chitin synthase 2 (AaCHS2) and decreased chitinase 10 (AaCht10); as well as increased thickness of the midgut and enlarged midgut epithelial cells. The results of this study highlight the potential of miR-306-5p as a prospective target in mosquito control and confirm that the ceRNA mechanism is involved in chitin metabolism. These findings will provide a basis for further studies to uncover the molecular mechanisms through which ncRNAs regulate chitin metabolism.
Collapse
Affiliation(s)
- Ruiling Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China; School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China.
| | - Wenjuan Liu
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
| | - Zhong Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China.
| |
Collapse
|
9
|
Correa KCS, Facchinatto WM, Habitzreuter FB, Ribeiro GH, Rodrigues LG, Micocci KC, Campana-Filho SP, Colnago LA, Souza DHF. Activity of a Recombinant Chitinase of the Atta sexdens Ant on Different Forms of Chitin and Its Fungicidal Effect against Lasiodiplodia theobromae. Polymers (Basel) 2024; 16:529. [PMID: 38399907 PMCID: PMC10892911 DOI: 10.3390/polym16040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
This study evaluates the activity of a recombinant chitinase from the leaf-cutting ant Atta sexdens (AsChtII-C4B1) against colloidal and solid α- and β-chitin substrates. 1H NMR analyses of the reaction media showed the formation of N-acetylglucosamine (GlcNAc) as the hydrolysis product. Viscometry analyses revealed a reduction in the viscosity of chitin solutions, indicating that the enzyme decreases their molecular masses. Both solid state 13C NMR and XRD analyses showed minor differences in chitin crystallinity pre- and post-reaction, indicative of partial hydrolysis under the studied conditions, resulting in the formation of GlcNAc and a reduction in molecular mass. However, the enzyme was unable to completely degrade the chitin samples, as they retained most of their solid-state structure. It was also observed that the enzyme acts progressively and with a greater activity on α-chitin than on β-chitin. AsChtII-C4B1 significantly changed the hyphae of the phytopathogenic fungus Lasiodiplodia theobromae, hindering its growth in both solid and liquid media and reducing its dry biomass by approximately 61%. The results demonstrate that AsChtII-C4B1 could be applied as an agent for the bioproduction of chitin derivatives and as a potential antifungal agent.
Collapse
Affiliation(s)
- Katia Celina Santos Correa
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| | - William Marcondes Facchinatto
- Aveiro Institute of Materials, CICECO, Department of Chemistry, University of Aveiro, St. Santiago, 3810-193 Aveiro, Portugal;
| | - Filipe Biagioni Habitzreuter
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Ave. Trabalhador Sao-carlense 400, 13560-590 Sao Carlos, Brazil; (F.B.H.); (S.P.C.-F.)
| | - Gabriel Henrique Ribeiro
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, St. XV de Novembro 1452, 13560-970 Sao Carlos, Brazil; (G.H.R.); (L.A.C.)
| | - Lucas Gomes Rodrigues
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| | - Kelli Cristina Micocci
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| | - Sérgio Paulo Campana-Filho
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Ave. Trabalhador Sao-carlense 400, 13560-590 Sao Carlos, Brazil; (F.B.H.); (S.P.C.-F.)
| | - Luiz Alberto Colnago
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, St. XV de Novembro 1452, 13560-970 Sao Carlos, Brazil; (G.H.R.); (L.A.C.)
| | - Dulce Helena Ferreira Souza
- Department of Chemistry, Federal University of Sao Carlos, 13565-905 Sao Carlos, Brazil; (K.C.S.C.); (L.G.R.); (K.C.M.)
| |
Collapse
|
10
|
Rabadiya D, Behr M. The biology of insect chitinases and their roles at chitinous cuticles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104071. [PMID: 38184175 DOI: 10.1016/j.ibmb.2024.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Chitin is one of the most prevalent biomaterials in the natural world. The chitin matrix formation and turnover involve several enzymes for chitin synthesis, maturation, and degradation. Sequencing of the Drosophila genome more than twenty years ago revealed that insect genomes contain a number of chitinases, but why insects need so many different chitinases was unclear. Here, we focus on insect GH18 family chitinases and discuss their participation in chitin matrix formation and degradation. We describe their variations in terms of temporal and spatial expression patterns, molecular function, and physiological consequences at chitinous cuticles. We further provide insight into the catalytic mechanisms by discussing chitinase protein domain structures, substrate binding, and enzymatic activities with respect to structural analysis of the enzymatic GH18 domain, substrate-binding cleft, and characteristic TIM-barrel structure.
Collapse
Affiliation(s)
- Dhyeykumar Rabadiya
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany
| | - Matthias Behr
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.
| |
Collapse
|
11
|
Son DJ, Kim GG, Choo HY, Chung NJ, Choo YM. Functional Comparison of Three Chitinases from Symbiotic Bacteria of Entomopathogenic Nematodes. Toxins (Basel) 2024; 16:26. [PMID: 38251242 PMCID: PMC10821219 DOI: 10.3390/toxins16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Xenorhabdus and Photorhabdus, bacterial symbionts of entomopathogenic nematodes Steinernema and Heterorhabditis, respectively, have several biological activities including insecticidal and antimicrobial activities. Thus, XnChi, XhChi, and PtChi, chitinases of X. nematophila, X. hominickii, and P. temperata isolated from Korean indigenous EPNs S. carpocapsae GJ1-2, S. monticolum GJ11-1, and H. megidis GJ1-2 were cloned and expressed in Escherichia coli BL21 to compare their biological activities. Chitinase proteins of these bacterial symbionts purified using the Ni-NTA system showed different chitobiosidase and endochitinase activities, but N-acetylglucosamidinase activities were not shown in the measuring of chitinolytic activity through N-acetyl-D-glucosarmine oligomers. In addition, the proteins showed different insecticidal and antifungal activities. XnChi showed the highest insecticidal activity against Galleria mellonella, followed by PtChi and XhChi. In antifungal activity, XhChi showed the highest half-maximal inhibitory concentration (IC50) against Fusarium oxysporum with 0.031 mg/mL, followed by PtChi with 0.046 mg/mL, and XnChi with 0.072 mg/mL. XhChi also showed the highest IC50 against F. graminearum with 0.040 mg/mL, but XnChi was more toxic than PtChi with 0.055 mg/mL and 0.133 mg/mL, respectively. This study provides an innovative approach to the biological control of insect pests and fungal diseases of plants with the biological activity of symbiotic bacterial chitinases of entomopathogenic nematodes.
Collapse
Affiliation(s)
- Da-Jeong Son
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea;
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| | - Geun-Gon Kim
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Ho-Yul Choo
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Nam-Jun Chung
- Division of Research and Development, Nambo Co., Ltd., Jinju 52840, Republic of Korea; (G.-G.K.); (H.-Y.C.)
| | - Young-Moo Choo
- Division of Research and Development, Jinju Bioindustry Foundation, Jinju 52839, Republic of Korea
| |
Collapse
|
12
|
Han Q, Wu N, Zhang J, Feng T, Zi Y, Zhang R, Zou R, Liu Y, Yang Q, Duan H. Discovery of Rhodanine Inhibitors Targeting Of ChtI Based on the π-Stacking Effect and Aqueous Solubility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18685-18695. [PMID: 38006338 DOI: 10.1021/acs.jafc.3c05287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The application of some reported inhibitors against the chitinolytic enzyme Of ChtI was limited due to their unsatisfactory insecticidal activities. Hence, we first performed a synergetic design strategy combining the π-stacking effect with aqueous solubility to find novel rhodanine analogues with inhibitory activities against Of ChtI. Novel rhodanine compounds IAa-f and IBa-f have weak aqueous solubility, but they (IAd: Ki = 4.0 μM; IBd: Ki = 2.2 μM) showed better inhibitory activities against Of ChtI and comparable insecticidal efficiency toward Ostrinia furnacalis compared to the high aqueous solubility compounds IIAa-f and IIBa-f (IIAd: Ki = 21.6 μM; IIBd: Ki = 14.3 μM) without a large conjugate plane. Further optimized compounds IIIAa-j with a conjugate plane as well as a higher aqueous solubility exhibited similar good inhibitory activities against Of ChtI (IIIAe: Ki = 2.4 μM) and better insecticidal potency (IIIAe: mortality rate of 63.33%) compared to compounds IAa-f and IBa-f, respectively. Molecular docking studies indicated that the conjugate planarity with the π-stacking effect for rhodanine analogues is responsible for their enzyme inhibitory activity against Of ChtI. This study provides a new strategy for designing insect chitinolytic enzyme inhibitors as insect growth regulators for pest control.
Collapse
Affiliation(s)
- Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Jingyu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Tianyu Feng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Rulei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Renxuan Zou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yaoyang Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| |
Collapse
|
13
|
Lee Y, Muthukrishnan S, Kramer KJ, Sakamoto T, Tabunoki H, Arakane Y, Noh MY. Functional importance of groups I and II chitinases in cuticle chitin turnover during molting in a wood-boring beetle, Monochamus alternatus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105496. [PMID: 37532355 DOI: 10.1016/j.pestbp.2023.105496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 08/04/2023]
Abstract
Insects must periodically replace their old cuticle/exoskeleton with a new one in a process called molting or ecdysis to allow for continuous growth through sequential developmental stages. Many RNA interference (RNAi) studies have demonstrated that certain chitinases (CHTs) play roles in this vital physiological event because knockdown of these CHT genes resulted in developmental arrest during the ensuing molting period in several insect species. In this research we analyzed the functions of group I (MaCHT5) and group II (MaCHT10) CHT genes in molting of the Japanese pine sawyer, Monochamus alternatus, an important forest pest known as a major vector of the pinewood nematode. Real-time qPCR revealed that these two CHT genes differ in their expression patterns during late stages of development. Depletion of either MaCHT5 or MaCHT10 transcripts by RNAi resulted in lethal larval-pupal and pupal-adult molting defects depending on the double-stranded RNA (dsRNA) injection timing during development. The insects were unable to shed their old cuticle and died. Furthermore, transmission electron microscopic analysis revealed that, unlike dsEGFP-treated controls, dsMaCHT5- and dsMaCHT10-treated pharate adults exhibited a failure of degradation of the endocuticular layer of their old pupal cuticle, retaining nearly intact horizontal chitinous laminae and vertical pore canal fibers. Both enzymes were indispensable for complete turnover of the chitinous old endocuticle, which is critical for insect molting. The possible functions of two spliced variants of MaCHT10, namely, MaCHT10a and MaCHT10b, are also discussed. Our results add to the knowledge base for further functional studies of insect chitin catabolism by revealing the relative importance of both MaCHT5 and MaCHT10 in chitin turnover with subtle differences in their action. These essential genes and their encoded proteins are potential targets to manipulate for controlling populations of M. alternatus and other pest insects.
Collapse
Affiliation(s)
- Youngseo Lee
- Department of Forest Resources, AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, South Korea
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, Kansas 66506, USA
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, Kansas 66506, USA
| | - Takuma Sakamoto
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju 61186, South Korea.
| | - Mi Young Noh
- Department of Forest Resources, AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
14
|
Zhang Q, Zhang X, He Y, Li Y. The synergistic action of two chitinases from Vibrio harveyi on chitin degradation. Carbohydr Polym 2023; 307:120640. [PMID: 36781282 DOI: 10.1016/j.carbpol.2023.120640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In this study, two chitinases (VhChit2 and VhChit6) from Vibrio harveyi possessed specific activity of 36.5 and 20.8 U/mg, respectively. Structure analysis indicates that their amino acid composition of active sites is similar, but the substrate binding cleft of VhChit2 is deeper than that of VhChit6. They were shown to have a synergistic effect on chitin degradation, and the optimized degree of synergy and the degradation ratio of chitin reached 1.75 and 23.6 %, respectively. The saturated adsorption capacity of VhChit2 and VhChit6 adsorbed in 1 g of chitin was 48.5 and 33.4 mg. It was found that VhChit2 and VhChit6 had different adsorption sites on chitin, making more enzymes absorbed by chitin. Furthermore, the combined use of VhChit2 and VhChit6 increased their binding force of chitinases with the substrate. The synergistic action of VhChit2 and VhChit6 may be attributed to their different adsorption sites on chitin and the increased binding force with chitin.
Collapse
Affiliation(s)
- Qiao Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food and Biological Engineering, Hezhou University, Hezhou 542899, China
| | - Xueying Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanchang He
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongcheng Li
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan Provincial Research Center of Aquatic Resources Efficient Utilization in the South China Sea, Haikou 570228, China.
| |
Collapse
|
15
|
An S, Liu W, Fu J, Zhang Z, Zhang R. Molecular identification of the chitinase genes in Aedes albopictus and essential roles of AaCht10 in pupal-adult transition. Parasit Vectors 2023; 16:120. [PMID: 37005671 PMCID: PMC10068161 DOI: 10.1186/s13071-023-05733-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/11/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Aedes albopictus is an increasingly serious threat in public health due to it is vector of multiple arboviruses that cause devastating human diseases, as well as its widening distribution in recent years. Insecticide resistance is a serious problem worldwide that limits the efficacy of chemical control strategies against Ae. albopictus. Chitinase genes have been widely recognized as attractive targets for the development of effective and environmentally safe insect management measures. METHODS Chitinase genes of Ae. albopictus were identified and characterized on the basis of bioinformatics search of the referenced genome. Gene characterizations and phylogenetic relationships of chitinase genes were investigated, and spatio-temporal expression pattern of each chitinase gene was evaluated using qRT-PCR. RNA interference (RNAi) was used to suppress the expression of AaCht10, and the roles of AaCht10 were verified based on phynotype observations, chitin content analysis and hematoxylin and eosin (H&E) stain of epidermis and midgut. RESULTS Altogether, 14 chitinase-related genes (12 chitinase genes and 2 IDGFs) encoding 17 proteins were identified. Phylogenetic analysis showed that all these AaChts were classified into seven groups, and most of them were gathered into group IX. Only AaCht5-1, AaCht10 and AaCht18 contained both catalytic and chitin-binding domains. Different AaChts displayed development- and tissue-specific expression profiling. Suppression of the expression of AaCht10 resulted in abnormal molting, increased mortality, decreased chitin content and thinning epicuticle, procuticle and midgut wall of pupa. CONCLUSIONS Findings of the present study will aid in determining the biological functions of AaChts and also contribute to using AaChts as potential target for mosquito management.
Collapse
Affiliation(s)
- Sha An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Wenjuan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Jingwen Fu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Zhong Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| | - Ruiling Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
- School of Laboratory Animal (Shandong Laboratory Animal Center), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| |
Collapse
|
16
|
Dong W, Flaven-Pouchon J, Gao YH, Song CY, El Wakil A, Zhang JZ, Moussian B. Chitinase 6 is required for procuticle thickening and organ shape in Drosophila wing. INSECT SCIENCE 2023; 30:268-278. [PMID: 36114809 DOI: 10.1111/1744-7917.13115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The polysaccharide chitin is a major scaffolding molecule in the insect cuticle. In order to be functional, both chitin amounts and chitin organization have been shown to be important parameters. Despite great advances in the past decade, the molecular mechanisms of chitin synthesis and organization are not fully understood. Here, we have characterized the function of the Chitinase 6 (Cht6) in the formation of the wing, which is a simple flat cuticle organ, in the fruit fly Drosophila melanogaster. Reduction of Cht6 function by RNA interference during wing development does not affect chitin organization, but entails a thinner cuticle suggesting reduced chitin amounts. This phenotype is opposed to the one reported recently to be caused by reduction of Cht10 expression. Probably as a consequence, cuticle permeability to xenobiotics is enhanced in Cht6-less wings. We also observed massive deformation of these wings. In addition, the shape of the abdomen is markedly changed upon abdominal suppression of Cht6. Finally, we found that suppression of Cht6 transcript levels influences the expression of genes coding for enzymes of the chitin biosynthesis pathway. This finding indicates that wing epidermal cells respond to activity changes of Cht6 probably trying to adjust chitin amounts. Together, in a working model, we propose that Cht6-introduced modifications of chitin are needed for chitin synthesis to proceed correctly. Cuticle thickness, according to our hypothesis, is in turn required for correct organ or body part shape. The molecular mechanisms of this processes shall be characterized in the future.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Ying-Hao Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Chen-Yang Song
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Abeer El Wakil
- Faculty of Education, Department of Biological and Geological Sciences, Alexandria University, Alexandria, Egypt
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- INRAE, CNRS, Université Côte d'Azur, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
17
|
Zhang H, Zhou H, Zhao Y, Li T, Yin H. Comparative studies of two AA10 family lytic polysaccharide monooxygenases from Bacillus thuringiensis. PeerJ 2023; 11:e14670. [PMID: 36684673 PMCID: PMC9851047 DOI: 10.7717/peerj.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Bacillus thuringiensis, known to be one of the most important biocontrol microorganisms, contains three AA10 family lytic polysaccharide monooxygenases (LPMOs) in its genome. In previous reports, two of them, BtLPMO10A and BtLPMO10B, have been preliminarily characterized. However, some important biochemical features and substrate preference, as well as their potential applications in chitin degradation, still deserve further investigation. Results from present study showed that both BtLPMO10A and BtLPMO10B exhibit similar catalytic domains as well as highly conserved substrate-binding planes. However, unlike BtLPMO10A, which has comparable binding ability to both crystalline and amorphous form of chitins, BtLPMO10B exhibited much stronger binding ability to colloidal chitin, which mainly attribute to its carbohydrate-binding module-5 (CBM5). Interestingly, the relative high binding ability of BtLPMO10B to colloidal chitin does not lead to high catalytic activity of the enzyme. In contrast, the enzyme exhibited higher activity on β-chitin. Further experiments showed that the binding of BtLPMO10B to colloidal chitin was mainly non-productive, indicating a complicated role for CBM5 in LPMO activity. Furthermore, synergistic experiments demonstrated that both LPMOs boosted the activity of the chitinase, and the higher efficiency of BtLPMO10A can be overridden by BtLPMO10B.
Collapse
Affiliation(s)
- Huiyan Zhang
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haichuan Zhou
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Zhao
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tang Li
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heng Yin
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
18
|
Micocci KC, Moreira AC, Sanchez AD, Pettinatti JL, Rocha MC, Dionizio BS, Correa KCS, Malavazi I, Wouters FC, Bueno OC, Souza DHF. Identification, cloning, and characterization of a novel chitinase from leaf-cutting ant Atta sexdens: An enzyme with antifungal and insecticidal activity. Biochim Biophys Acta Gen Subj 2023; 1867:130249. [PMID: 36183893 DOI: 10.1016/j.bbagen.2022.130249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2022]
Abstract
Chitinases are enzymes that degrade chitin, a polysaccharide found in the exoskeleton of insects, fungi, yeast, and internal structures of other vertebrates. Although chitinases isolated from bacteria, fungi and plants have been reported to have antifungal or insecticide activities, chitinases from insects with these activities have been seldomly reported. In this study, a leaf-cutting ant Atta sexdens DNA fragment containing 1623 base pairs was amplified and cloned into a vector to express the protein (AsChtII-C4B1) in Pichia pastoris. AsChtII-C4B1, which contains one catalytic domain and one carbohydrate-binding module (CBM), was secreted to the extracellular medium and purified by ammonium sulfate precipitation followed by nickel column chromatography. AsChtII-C4B1 showed maximum activity at pH 5.0 and 55 °C when tested against colloidal chitin substrate and maintained >60% of its maximal activity in different temperatures during 48 h. AsChtII-C4B1 decreased the survival of Spodoptera frugiperda larvae fed with an artificial diet that contained AsChtII-C4B1. Our results have indicated that AsChtII-C4B1 has a higher effect on larva-pupa than larva-larva molts. AsChtII-C4B1 activity targets more specifically the growth of filamentous fungus than yeast. This work describes, for the first time, the obtaining a recombinant chitinase from ants and the characterization of its insecticidal and antifungal activities.
Collapse
Affiliation(s)
- Kelli C Micocci
- Center for the Study of Social Insects, São Paulo State University "Julio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Ariele C Moreira
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, SP, Brazil
| | - Amanda D Sanchez
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Jessica L Pettinatti
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marina C Rocha
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Bruna S Dionizio
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Katia C S Correa
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Iran Malavazi
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Felipe C Wouters
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Odair C Bueno
- Center for the Study of Social Insects, São Paulo State University "Julio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Dulce Helena F Souza
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Li C, Ul Haq I, Khurshid A, Tao Y, Quandahor P, Zhou JJ, Liu CZ. Effects of abiotic stresses on the expression of chitinase-like genes in Acyrthosiphon pisum. Front Physiol 2022; 13:1024136. [PMID: 36505077 PMCID: PMC9727142 DOI: 10.3389/fphys.2022.1024136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Insect chitinases play a crucial part to digest chitin in the exoskeleton during the molting process. However, research on insect chitinase related to the environmental stress response is very limited. This study was the first conducted to expression analysis of chitinase- related genes in A. pisum under abiotic stresses. Here, we identified five chitinase-like proteins (ApIDGF, ApCht3, ApCht7, ApCht10 and ApENGase), and clustered them into five groups (group II, III, V, Ⅹ, and ENGase). Developmental expression analysis revealed that the five A. pisum chitinase-related genes were expressed at whole developmental stages with different relative expression patterns. When aphids were exposed to various abiotic stresses including temperature, insecticide and the stress 20-hydroxyecdysone (20E), all five chitinase genes were differentially expressed in A. pisum. The results showed that insecticide such as imidacloprid down-regulated the expression of these five Cht-related genes. Analysis of temperature stress of A. pisum chitinase suggested that ApCht7 expression was high at 10°C, which demonstrates its important role in pea aphids under low temperature. Conversely, ApCht10 was more active under high temperature stress, as it was significantly up-regulated at 30°C. Besides, 20E enhanced ApCht3 and ApCht10 expression in A. pisum, but reduced ApCht7 expression. These findings provide basic information and insights for the study of the role of these genes under abiotic stress, which advances our knowledge in the management of pea aphids under multiple stresses.
Collapse
Affiliation(s)
- Chunchun Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Inzamam Ul Haq
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Aroosa Khurshid
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yan Tao
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Peter Quandahor
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- CSIR-Savanna Agricultural Research Institute, Tamale, Ghana
| | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, China
| | - Chang-Zhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
20
|
Li L, Wang YQ, Li GY, Song QS, Stanley D, Wei SJ, Zhu JY. Genomic and transcriptomic analyses of chitin metabolism enzymes in Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21950. [PMID: 35809232 DOI: 10.1002/arch.21950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Chitin is of great importance in the cuticle and inner cuticular linings of insects. Chitin synthases (CHSs), chitin deacetylases (CDAs), chitinases (CHTs), and β-N-acetylhexosaminidases (HEXs) are important enzymes required for chitin metabolism, and play essential roles in development and metamorphosis. Although chitin metabolism genes have been well characterized in limited insects, the information in the yellow mealworm, Tenebrio molitor, a model insect, is presently still unavailable. With the help of bioinformatics, we identified 54 genes that encode putative chitin metabolism enzymes, including 2 CHSs, 10 CDAs, 32 CHTs, and 10 HEXs in the genome of T. molitor. All these genes have the conserved domains and motifs of their corresponding protein family. Phylogenetic analyses indicated that CHS genes were divided into two groups. CDA genes were clustered into five groups. CHT genes were phylogenetically grouped into 11 clades, among which 1 in the endo-β-N-acetylglucosaminidases group and the others were classified in the glycoside hydrolase family 18 groups. HEX genes were assorted into six groups. Developmental and tissue-specific expression profiling indicated that the identified chitin metabolism genes showed dynamical expression patterns concurrent with specific instar during molting period, suggesting their significant roles in molting and development. They were predominantly expressed in different tissues or body parts, implying their functional specialization and diversity. The results provide important information for further clarifying their biological functions using the yellow mealworm as an ideal experimental insect.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
21
|
Liu XY, Wang SS, Zhong F, Zhou M, Jiang XY, Cheng YS, Dan YH, Hu G, Li C, Tang B, Wu Y. Chitinase (CHI) of Spodoptera frugiperda affects molting development by regulating the metabolism of chitin and trehalose. Front Physiol 2022; 13:1034926. [PMID: 36262255 PMCID: PMC9574123 DOI: 10.3389/fphys.2022.1034926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chitin is the main component of insect exoskeleton and midgut peritrophic membrane. Insect molting is the result of the balance and coordination of chitin synthesis and degradation in chitin metabolism under the action of hormones. In this study, a 678 bp dsRNA fragment was designed and synthesized according to the known CHI (Chitinase) sequence of Spodoptera frugiperda. It was injected into the larvae to observe the molting and development of S. frugiperda. At the same time, the activities of trehalase and chitinase, the contents of trehalose, chitin and other substances were detected, and the expression of related genes in the chitin synthesis pathway was determined. The results showed that CHI gene was highly expressed at the end of each instar, prepupa and pupal stage before molting; At 12 and 24 h after dsRNA injection of CHI gene of S. frugiperda, the expression of CHI gene decreased significantly, and the chitinase activity decreased significantly from 12 to 48 h. The expression of chitin synthase (CHSB) gene decreased significantly, and the chitin content increased significantly. Some larvae could not molt normally and complete development, leading to certain mortality. Secondly, after RNAi of CHI gene, the content of glucose and glycogen increased first and then decreased, while the content of trehalose decreased significantly or showed a downward trend. The activities of the two types of trehalase and the expression levels of trehalase genes decreased first and then increased, especially the trehalase activities increased significantly at 48 h after dsCHI injection. And trehalose-6-phosphate synthase (TPS), glutamine: fructose-6-phosphate amidotransferase (GFAT), UDP-N-acetylglucosamine pyrophosphorylases (UAP), hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and phosphoacetylglucosamine mutase (PAGM) all decreased significantly at 24 h, and then increased or significantly increased at 48 h. These results indicated that when the expression of chitinase gene of S. frugiperda was inhibited, it affected the degradation of chitin in the old epidermis and the formation of new epidermis, and the content of chitin increased, which led to the failure of larvae to molt normally. Moreover, the chitin synthesis pathway and trehalose metabolism were also regulated. The relevant results provide a theoretical basis for screening target genes and developing green insecticides to control pests by using the chitin metabolism pathway.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Sha-Sha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Min Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Xin-Yi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yi-Sha Cheng
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Yi-Hao Dan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
- *Correspondence: Yan Wu,
| |
Collapse
|
22
|
Increased Attraction and Stability of Beauveria bassiana-Formulated Microgranules for Aedes aegypti Biocontrol. J Fungi (Basel) 2022; 8:jof8080828. [PMID: 36012816 PMCID: PMC9409880 DOI: 10.3390/jof8080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Aedes aegypti (Linn.) incidence has increased in recent years, causing human viral diseases such as dengue, which are often fatal. Beauveria bassiana (Bals., Vuillemin) efficacy for Ae. aegypti biological control has been evidenced but it relies on host susceptibility and strain virulence. We hypothesized that B. bassiana conidia microgranular formulations (MGF) with the additives acetone, lactic acid, and sugar increase Ae. aegypti adult exposure, thus improving their biocontrol effectiveness. Beauveria bassiana strain four (BBPTG4) conidia stability was assessed after 0 d, 5 d, and 30 d storage at 25 °C ± 2 °C with additives or in MGF after 91 d of storage at 25 °C ± 2 °C or 4 °C ± 1 °C, whereas mortality was evaluated after adult exposure to MGF + conidia, using home-made traps. Additives did not show toxicity to conidia. In addition, we observed that sugar in MGF increased Ae. aegypti adults’ attraction and their viability resulted in a 3-fold reduction after 5 d and 1- to 4-fold decrease after 30 d of storage, and formulations were less attractive (p < 0.05). Conidia stability was higher on MGF regardless of the storage temperature, losing up to 2.5-fold viability after 91 d. In conclusion, BBPTG4 infected and killed Ae. aegypti, whereas MGF attracting adults resulted in 42.2% mortality, increasing fungus auto dissemination potential among infected surviving adults. It is necessary to further evaluate MGF against Ae. aegypti in the field.
Collapse
|
23
|
Han Y, Kamau PM, Lai R, Luo L. Bioactive Peptides and Proteins from Centipede Venoms. Molecules 2022; 27:molecules27144423. [PMID: 35889297 PMCID: PMC9325314 DOI: 10.3390/molecules27144423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous, blood, and muscular systems. Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Although centipede bites are frequently reported, the composition and effect of centipede venoms are far from known. With the development of molecular biology and structural biology, the research on centipede venoms, especially peptides and proteins, has been deepened. Therefore, we summarize partial progress on the exploration of the bioactive peptides and proteins in centipede venoms and their potential value in pharmacological research and new drug development.
Collapse
Affiliation(s)
- Yalan Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (R.L.); (L.L.)
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China; (Y.H.); (P.M.K.)
- Correspondence: (R.L.); (L.L.)
| |
Collapse
|
24
|
Hu DQ, Luo SH, Abudunasier M, Cai XH, Feng MM, Liu XN, Wang DM. The effect of group IV chitinase, HaCHT4, on the chitin content of the peritrophic matrix (PM) during larval growth and development of Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2022; 78:1815-1823. [PMID: 35043538 DOI: 10.1002/ps.6799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Extensive research has been conducted on insect chitinases. However, little is known about the function of chitinase in the regulation of the surface structure of the peritrophic matrix (PM) in larval midguts. The aim of this study was to analyze the effect of HaCHT4 on the chitin content and surface structure of the PM during larval growth and development of Helicoverpa armigera. RESULTS The expression level of HaCHT4 was lower and the chitin content was higher in the early stages of fourth to sixth instar larvae, but they were reversed in the corresponding late stages. The correlation coefficient between the expression level of HaCHT4 and the chitin content was -0.585 (P < 0.05), with a higher negative correlation of -0.934 for the fourth instar (P < 0.01). Scanning electron microscopy (SEM) showed that the surface structure of PM was multi-laminated with small pores in the early stages of fourth to sixth instar larvae, and more and bigger pores in the late stages. Low expression of HaCHT4 caused by RNA interference (RNAi) resulted in the increase of chitin content in the PM, and the surface structure of PM became multilayered with smaller pore size in the late stage of fourth instar larvae. Also, induction of HaCHT4 by application of 2-tridecanone (2-TD), decreased the chitin content of PM, caused larger pores to form and lots of food bolus to attach to the PM surface, and also increased the larval susceptibility to chlorantraniliprole. CONCLUSION These results provided strong evidence that HaCHT4 plays an important role by regulating the chitin content of the PM and its surface structure, thereby affecting the sensitivity of H. armigera to chlorantraniliprole.
Collapse
Affiliation(s)
- De-Qin Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Sheng-Hui Luo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Maimaitiaili Abudunasier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xin-Hui Cai
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Meng-Meng Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiao-Ning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Dong-Mei Wang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
25
|
Camilli MP, Kadri SM, Alvarez MVN, Ribolla PEM, Orsi RO. Zinc supplementation modifies brain tissue transcriptome of Apis mellifera honeybees. BMC Genomics 2022; 23:282. [PMID: 35395723 PMCID: PMC8994358 DOI: 10.1186/s12864-022-08464-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bees are the most important group of pollinators worldwide and their populations are declining. In natural conditions, Apis mellifera depends exclusively on food from the field to meet its physiological demands. In the period of scarcity, available resources are insufficient and artificial supplementation becomes essential for maintaining the levels of vitamins, proteins, carbohydrates, and minerals of colonies. Among these minerals, zinc is essential in all living systems, particularly for the regulation of cell division and protein synthesis, and is a component of more than 200 metalloenzymes. RESULTS The total RNA extracted from the brain tissue of nurse bees exposed to different sources and concentrations of zinc was sequenced. A total of 1,172 genes in the treatment that received an inorganic source of zinc and 502 genes that received an organic source of zinc were found to be differentially expressed among the control group. Gene ontology enrichment showed that zinc can modulate important biological processes such as nutrient metabolism and the molting process. CONCLUSIONS Our results indicate that zinc supplementation modulates the expression of many differentially expressed genes and plays an important role in the development of Apis mellifera bees. All the information obtained in this study can contribute to future research in the field of bee nutrigenomics.
Collapse
Affiliation(s)
- Marcelo Polizel Camilli
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, UNESP São Paulo State University, São Paulo, Botucatu, Brazil.
| | - Samir Moura Kadri
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, UNESP São Paulo State University, São Paulo, Botucatu, Brazil
| | | | | | - Ricardo Oliveira Orsi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, UNESP São Paulo State University, São Paulo, Botucatu, Brazil
| |
Collapse
|
26
|
Porsani MV, Poitevin CG, Tralamazza SM, de Souza MT, de Souza MT, da Silva ÉDB, Zawadneak MAC, Pimentel IC, de Melo IS. Streptomyces spp. Isolated from Marine and Caatinga Biomes in Brazil for the Biological Control of Duponchelia fovealis. NEOTROPICAL ENTOMOLOGY 2022; 51:299-310. [PMID: 35020183 DOI: 10.1007/s13744-022-00942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Actinobacteria have been drawing attention due to their potential for the development of new pest control products. We hereby assess the effects of Streptomyces isolated from marine and caatinga biomes against Duponchelia fovealis Zeller (Lepidoptera: Crambidae), a pest associated with the strawberry culture at a global scale. To this end, eggs deposited by adults were immersed for 5 s in a bacterial suspension, and the larvae were fed on leaflets placed in glass tubes containing bacterial suspensions. In both treatments, the control was a saline solution. The bioassays demonstrated that the Streptomyces strains were able to cause the death of D. fovealis eggs (≈ 40%) and larvae (≈ 65%) compared to untreated eggs (1.4%) and larvae (2.0%). The crude extract of strain T49 and the chitinase extract of strain T26 affected larval growth when applied directly to the thorax of first-instar larvae (larval-adult lifespan of 65.3 ± 0.5 days and 67.5 ± 0.7 days, respectively; survival of 61.2 ± 1.2%) in relation to the control treatment (larval-adult lifespan of 41.75 ± 0.2 days and survival of 83.7 ± 2.6%). The Streptomyces spp. strains T41, T49, and T50 caused antifeeding activity. Apart from larval mortality, the adults that emerged from the larvae exposed to the extracts presented morphological abnormalities, and the moths' chitin spectra showed clear alterations to the pupa and wings. Our studies show, for the very first time, that Streptomyces isolated from the marine environment and the Caatinga biome are effective at provoking the mortality of D. fovealis and are promising agents for developing new products with biological control properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Itamar Soares de Melo
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna, São Paulo, Brazil
| |
Collapse
|
27
|
Kamioka T, Suzuki HC, Ugajin A, Yamaguchi Y, Nishimura M, Sasaki T, Ono M, Kawata M. Genes associated with hot defensive bee ball in the Japanese honeybee, Apis cerana japonica. BMC Ecol Evol 2022; 22:31. [PMID: 35296235 PMCID: PMC8925055 DOI: 10.1186/s12862-022-01989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Japanese honeybee, Apis cerana japonica, shows a specific defensive behavior, known as a “hot defensive bee ball,” used against the giant hornet, Vespa mandarinia. Hundreds of honeybee workers surround a hornet and make a “bee ball” during this behavior. They maintain the ball for around 30 min, and its core temperature can reach 46. Although various studies have been conducted on the characteristics of this behavior, its molecular mechanism has yet to be elucidated. Here, we performed a comprehensive transcriptomic analysis to detect candidate genes related to balling behavior. Results The expression levels of differentially expressed genes (DEGs) in the brain, flight muscle, and fat body were evaluated during ball formation and incubation at 46 °C. The DEGs detected during ball formation, but not in response to heat, were considered important for ball formation. The expression of genes related to rhodopsin signaling were increased in all tissues during ball formation. DEGs detected in one or two tissues during ball formation were also identified. Conclusions Given that rhodopsin is involved in temperature sensing in Drosophila, the rhodopsin-related DEGs in A. cerana japonica may be involved in temperature sensing specifically during ball formation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01989-9.
Collapse
Affiliation(s)
- Takahiro Kamioka
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiromu C Suzuki
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.,Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | | | - Yuta Yamaguchi
- Graduate School of Agriculture, Tamagawa University, Machida, Japan
| | | | - Tetsuhiko Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Japan.,Research Institute, Honeybee Science Research Center, Tamagawa University, Machida, Japan
| | - Masato Ono
- Graduate School of Agriculture, Tamagawa University, Machida, Japan.,Research Institute, Honeybee Science Research Center, Tamagawa University, Machida, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
28
|
Grothjan JJ, Young EB. Bacterial Recruitment to Carnivorous Pitcher Plant Communities: Identifying Sources Influencing Plant Microbiome Composition and Function. Front Microbiol 2022; 13:791079. [PMID: 35359741 PMCID: PMC8964293 DOI: 10.3389/fmicb.2022.791079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Processes influencing recruitment of diverse bacteria to plant microbiomes remain poorly understood. In the carnivorous pitcher plant Sarracenia purpurea model system, individual pitchers open to collect rainwater, invertebrates and a diverse microbial community, and this detrital food web is sustained by captured insect prey. This study examined how potential sources of bacteria affect the development of the bacterial community within pitchers, how the host plant tissue affects community development and how established vs. assembling communities differ. In a controlled greenhouse experiment, seven replicate pitchers were allocated to five treatments to exclude specific bacterial sources or host tissue: milliQ water only, milliQ + insect prey, rainwater + prey, established communities + prey, artificial pitchers with milliQ + prey. Community composition and functions were examined over 8-40 weeks using bacterial gene sequencing and functional predictions, measurements of cell abundance, hydrolytic enzyme activity and nutrient transformations. Distinct community composition and functional differences between artificial and real pitchers confirm an important influence of host plant tissue on community development, but also suggest this could be partially related to host nutrient uptake. Significant recruitment of bacteria to pitchers from air was evident from many taxa common to all treatments, overlap in composition between milliQ, milliQ + prey, and rainwater + prey treatments, and few taxa unique to milliQ only pitchers. Community functions measured as hydrolytic enzyme (chitinase, protease) activity suggested a strong influence of insect prey additions and were linked to rapid transformation of insect nutrients into dissolved and inorganic sources. Bacterial taxa found in 6 of 7 replicate pitchers within treatments, the "core microbiome" showed tighter successional trajectories over 8 weeks than all taxa. Established pitcher community composition was more stable over 8 weeks, suggesting a diversity-stability relationship and effect of microinvertebrates on bacteria. This study broadly demonstrates that bacterial composition in host pitcher plants is related to both stochastic and specific bacterial recruitment and host plants influence microbial selection and support microbiomes through capture of insect prey.
Collapse
Affiliation(s)
- Jacob J. Grothjan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Erica B. Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
29
|
Song L, Chen Y, An X, Ding C, Bu C. Chitin deacetylase 2 is essential for molting and survival of Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104962. [PMID: 34802539 DOI: 10.1016/j.pestbp.2021.104962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Chitin metabolism has long been considered promising targets for development of biorational pesticides. Considering the increasing challenges of controlling the twospotted spider mite, Tetranychus urticae Koch, the roles of chitin deacetylases (CDAs) during molting process and mite development are explored. TuCDA1 and TuCDA2 differ in expression patterns during the development process. Feeding of double-strand RNA (dsRNA) against TuCDA1 or TuCDA2 has lethal effects on the mites. Especially TuCDA2 displays a much stronger phenotype than TuCDA1 (p = 0.0003). The treated mites fail to shed the old cuticle and are trapped within exuviate until they die. The aberrant cuticle structure observed by scanning electronmicroscopy (SEM) and transmission electron microscopy (TEM) may be responsible for the lethal phenotype of TuCDA1 and TuCDA2 knocked down mites. However, treatment with both dsRNA-CDA1 and dsRNA-CDA2 cannot significantly enhance the lethal effects of dsRNA-CDA2, which indicates partially redundant function of TuCDA1 and TuCDA2. TuCDA2 may play a key role during the molting and development process. Chitin-modifying enzyme such as TuCDA2 is potential target of RNA interference through feeding.
Collapse
Affiliation(s)
- Lihong Song
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Chen
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangshun An
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Chao Ding
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
30
|
Wang M, Chen J, Lee YH, Lee JS, Wang D. Projected near-future ocean acidification decreases mercury toxicity in marine copepods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117140. [PMID: 33930777 DOI: 10.1016/j.envpol.2021.117140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Here, we examined the combinational effect of ocean acidification (OA) and mercury (Hg) in the planktonic copepod Pseudodiaptomus annandalei in cross-factored response to different pCO2 (400, 800 μatm) and Hg (control, 1.0 and 2.5 μg/L) exposures for three generations (F0-F2), followed by single-generation recovery (F3) under clean condition. Several phenotypic traits and Hg accumulation were analyzed for F0-F3. Furthermore, shotgun-based quantitative proteomics was performed for F0 and F2. Our results showed that OA insignificantly influenced the traits. During F0-F2, combined exposure reduced Hg accumulation as compared with the counterpart Hg treatment, supporting the mitigating effect of OA on Hg toxicity in copepods. Proteomics analysis indicated that the copepods probably increased energy production/storage and stress response to ensure physiological resilience against OA. However, Hg induced many toxic events (e.g., energy depletion and degenerated organomorphogenesis/embryogenesis for F0; cell cycle arrest and detrimental stress-defense for F2), which were translated to the population-level adverse outcome, i.e., compromised growth/reproduction. Particularly, compensatory proteome response was identified (e.g., increased immune defense for F0; energetic compensation and enhanced embryogenesis for F2), accounting for a negative interaction between OA and Hg. Together, this study provides the molecular mechanisms behind the effects of OA and Hg pollution in marine copepods.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| | - Jingyan Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
31
|
Li G, Gu X, Gui S, Guo J, Yi T, Jin D. Transcriptome Analysis of Hormone-and Cuticle-Related Genes in the Development Process of Deutonymph in Tetranychus urticae. INSECTS 2021; 12:insects12080736. [PMID: 34442302 PMCID: PMC8397179 DOI: 10.3390/insects12080736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
Tetranychus urticae is an important agricultural pest that feeds on more than 1100 plant species. To investigate gene expression network in development process of deutonymph, a comprehensive transcriptome analysis of different developmental time points of deutonymph in T. urticae was performed. Comparing with expression profile of 7 h, 309, 876, 2736, and 3432 differential expression genes were detected at time points 14 h, 21 h, 28 h, and 35 h, respectively. The expression dynamic analysis indicated that genes in hormone- (ecdysteroid and juvenile hormone) and cuticle- (chitin and cuticle proteins) related pathways were indispensable for development process in deutonymph. Among hormone related pathway genes, the ecdysteroid biosynthesis pathway genes were highly expressed at the growth period of development process, which is opposite to the expression patterns of juvenile hormone biosynthesis pathway genes. For cuticle related pathway genes, 13 chitinase genes were identified in the genome of T. urticae, and 8 chitinase genes were highly expressed in different time points of developmental process in the deutonymph of T. urticae. Additionally, 59 cuticle protein genes were identified from genome, and most of the cuticle protein genes were expressed in the molting period of developmental process in deutonymph. This study reveals critical genes involved in the development process of deutonymph and also provides comprehensive development transcriptome information for finding more molecular targets to control this pest.
Collapse
|
32
|
The Role of Lysobacter antibioticus HS124 on the Control of Fall Webworm ( Hyphantria cunea Drury) and Growth Promotion of Canadian Poplar ( Populus canadensis Moench) at Saemangeum Reclaimed Land in Korea. Microorganisms 2021; 9:microorganisms9081580. [PMID: 34442659 PMCID: PMC8398145 DOI: 10.3390/microorganisms9081580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Populus canadensis Moench forests established in Saemangeum-reclaimed land have been invaded by Hyphantria cunea Drury, causing defoliation and stunted growth. This study investigated the biocontrol potential of cuticle degrading chitinase and protease secreted by Lysobacter antibioticus HS124 against H. cunea larvae. In addition, L. antibioticus HS124 was examined for indole-3-acetic acid phytohormone production for plant growth promotion. To determine the larvicidal activity in the laboratory experiments, crude enzymes, bacteria culture, CY medium, and water (control) were sprayed on the larvae reared on natural diet in insect rearing dishes. Treatment with crude enzymes and bacteria culture caused 76.7% and 66.7% larvae mortality, respectively. The larvae cuticle, mainly composed of chitin and proteins, was degraded by cuticle-degrading enzymes, chitinase, and protease in both the bacteria culture and crude enzyme treatments, causing swelling and disintegration of the cuticle. Field application of the bacteria culture was achieved by vehicle-mounted sprayer. Bacterial treatment caused morphological damage on the larvae cuticles and subsequent mortality. Foliar application of the bacteria culture reduced tree defoliation by H. cunea and enhanced growth compared to the control. Especially, L. antibioticus HS124 produced auxins, and increased growth of poplar trees.
Collapse
|
33
|
Han Y, Taylor EB, Luthe D. Maize Endochitinase Expression in Response to Fall Armyworm Herbivory. J Chem Ecol 2021; 47:689-706. [PMID: 34056671 DOI: 10.1007/s10886-021-01284-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
A large percentage of crop loss is due to insect damage, especially caterpillar damage. Plant chitinases are considered excellent candidates to combat these insects since they can degrade chitin in peritrophic matrix (PM), an important protective structure in caterpillar midgut. Compared to chemical insecticides, chitinases could improve host plant resistance and be both economically and environmentally advantageous. The focus of this research was to find chitinase candidates that could improve plant resistance by effectively limiting caterpillar damage. Five classes of endochitinase (I-V) genes were characterized in the maize genome, and we isolated and cloned four chitinase genes (chitinase A, chitinase B, chitinase I, and PRm3) present in two maize (Zea mays L.) inbred lines Mp708 and Tx601, with different levels of resistance to caterpillar pests. We also investigated the expression of these maize chitinases in response to fall armyworm (Spodoptera frugiperda, FAW) attack. The results indicated that both chitinase transcript abundance and enzymatic activity increased in response to FAW feeding and mechanical wounding. Furthermore, chitinases retained activity inside the caterpillar midgut and enzymatic activity was detected in the food bolus and frass. When examined under scanning electron microscopy, PMs from Tx601-fed caterpillars showed structural damage when compared to diet controls. Analysis of chitinase transcript abundance after caterpillar feeding and proteomic analysis of maize leaf trichomes in the two inbreds implicated chitinase PRm3 found in Tx601 as a potential insecticidal protein.
Collapse
Affiliation(s)
- Yang Han
- The Pennsylvania State University, Plant Science, University Park, PA, USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Dawn Luthe
- The Pennsylvania State University, Plant Science, University Park, PA, USA.
| |
Collapse
|
34
|
Zhang X, Wang Y, Zhang S, Kong X, Liu F, Zhang Z. RNAi-Mediated Silencing of the Chitinase 5 Gene for Fall Webworm ( Hyphantria cunea) Can Inhibit Larval Molting Depending on the Timing of dsRNA Injection. INSECTS 2021; 12:insects12050406. [PMID: 33946562 PMCID: PMC8147239 DOI: 10.3390/insects12050406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
Chitinases, which are crucial enzymes required for chitin degradation and reconstruction, are often selectively considered to be effective molecular targets for pest control due to their critical roles in insect development. Although the Hyphantria cunea chitinase gene has been reported previously, its sequence characteristics, gene function, and feasibility as a potential target for pest management were absent. In the present study, we characterized the H. cunea chitinase gene and designated it HcCht5. Phylogenic and domain structure analysis suggested that HcCht5 contained the typical chitinase features and was clustered into chitinase group I. Tissue-specific and developmental expression pattern analysis with Real-Time Quantitative PCR (RT-qPCR) showed that HcCht5 was mainly expressed in the integument tissues and that the transcript levels peaked during molting. RNA interference (RNAi)-mediated silencing of HcCht5 caused 33.3% (2 ug) and 66.7% (4 ug) mortality rates after double-stranded RNA (dsRNA) injection. Importantly, the interference efficiency of HcCht5 depended on the injection time of double-stranded RNA (dsRNA), as the pre-molting treatment achieved molt arrest more effectively. In addition, transcriptome sequencing (RNA-seq) analysis of RNAi samples demonstrated silencing of the down-regulated HcCht5 genes related to chitin metabolism and molting hormone signaling, as well as genes related to detoxification metabolism. Our results indicate the essential role of HcCht5 in H. cunea development and detail the involvement of its gene function in the larval molting process.
Collapse
|
35
|
Peng Z, Ren J, Su Q, Zeng Y, Tian L, Wang S, Wu Q, Liang P, Xie W, Zhang Y. Genome-Wide Identification and Analysis of Chitinase-Like Gene Family in Bemisia tabaci (Hemiptera: Aleyrodidae). INSECTS 2021; 12:254. [PMID: 33802990 PMCID: PMC8002649 DOI: 10.3390/insects12030254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
Chitinases are of great importance in chitin degradation and remodeling in insects. However, the genome-wide distribution of chitinase-like gene family in Bemsia tabaci, a destructive pest worldwide, is still elusive. With the help of bioinformatics, we annotated 14 genes that encode putative chitinase-like proteins, including ten chitinases (Cht), three imaginal disk growth factors (IDGF), and one endo-β-N-acetylglucosaminidase (ENGase) in the genome of the whitefly, B. tabaci. These genes were phylogenetically grouped into eight clades, among which 13 genes were classified in the glycoside hydrolase family 18 groups and one in the ENGase group. Afterwards, developmental expression analysis suggested that BtCht10, BtCht5, and BtCht7 were highly expressed in nymphal stages and exhibit similar expression patterns, implying their underlying role in nymph ecdysis. Notably, nymphs exhibited a lower rate of survival when challenged by dsRNA targeting these three genes via a nanomaterial-promoted RNAi method. In addition, silencing of BtCht10 significantly resulted in a longer duration of development compared to control nymphs. These results indicate a key role of BtCht10, BtCht5, and BtCht7 in B. tabaci nymph molting. Our research depicts the differences of chitinase-like family genes in structure and function and identified potential targets for RNAi-based whitefly management.
Collapse
Affiliation(s)
- Zhengke Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.P.); (J.R.); (Y.Z.); (L.T.); (S.W.); (Q.W.); (W.X.)
- Department of Entomology, China Agricultural University, Beijing 100193, China;
| | - Jun Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.P.); (J.R.); (Y.Z.); (L.T.); (S.W.); (Q.W.); (W.X.)
| | - Qi Su
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, China;
| | - Yang Zeng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.P.); (J.R.); (Y.Z.); (L.T.); (S.W.); (Q.W.); (W.X.)
| | - Lixia Tian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.P.); (J.R.); (Y.Z.); (L.T.); (S.W.); (Q.W.); (W.X.)
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.P.); (J.R.); (Y.Z.); (L.T.); (S.W.); (Q.W.); (W.X.)
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.P.); (J.R.); (Y.Z.); (L.T.); (S.W.); (Q.W.); (W.X.)
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China;
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.P.); (J.R.); (Y.Z.); (L.T.); (S.W.); (Q.W.); (W.X.)
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.P.); (J.R.); (Y.Z.); (L.T.); (S.W.); (Q.W.); (W.X.)
| |
Collapse
|
36
|
Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol Adv 2020; 43:107553. [DOI: 10.1016/j.biotechadv.2020.107553] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
|
37
|
Lu X, Wang B, Cai X, Chen S, Chen Z, Xin Z. Feeding on tea GH19 chitinase enhances tea defense responses induced by regurgitant derived from Ectropis grisescens. PHYSIOLOGIA PLANTARUM 2020; 169:529-543. [PMID: 32196677 DOI: 10.1111/ppl.13094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/15/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Multiple isoforms of chitinases participate in plant defense against outside invaders. However, the functions of hydrolase family 19 (GH19) chitinases on pest control remain largely unknown. Here we reported the isolation and functional analysis of a gene CsChi19, which encodes a GH19 endochitinase protein of 332 amino acid residues from tea plant (Camellia sinensis). CsChi19 expression levels were upregulated in response to mechanical wounding, infestation by two important pests: the tea geometrid Ectropis grisescens and the tea green leafhopper Empoasca (Matsumurasca) onukii, a fungal pathogen Colletotrichum fructicola, and treatment with two phytohormones: jasmonic acid (JA) and salicylic acid. CsChi19 was heterologously expressed in Escherichia coli, and its catalytic function was further elucidated. The protein could hydrolyze colloidal chitin, and the optimum temperature and pH for its activity was 40°C and pH 5.0. CsChi19 were found to be toxic to tea pests when they were fed on artificial diets containing this protein. Interestingly, the regurgitant derived from E. grisescens fed with artificial diets containing CsChi19 protein induced stronger expression of CsMPK3, more JA burst, more accumulation of defense-related secondary metabolites, and more emission of volatiles than the regurgitant derived from E. grisescens fed only with artificial diets. Our results provide first evidence that CsChi19 is involved in mediating a novel defense mechanism of tea plant through altering the composition of the regurgitant.
Collapse
Affiliation(s)
- Xiaotong Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Baohui Wang
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Shenglong Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| | - Zhaojun Xin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou, 310008, China
| |
Collapse
|
38
|
Shahbaz U. Chitin, Characteristic, Sources, and Biomedical Application. Curr Pharm Biotechnol 2020; 21:1433-1443. [PMID: 32503407 DOI: 10.2174/1389201021666200605104939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitin stands at second, after cellulose, as the most abundant polysaccharide in the world. Chitin is found naturally in marine environments as it is a crucial structural component of various marine organisms. METHODS Different amounts of waste chitin and chitosan can be discovered in the environment. Chitinase producing microbes help to hydrolyze chitin waste to play an essential function for the removal of chitin pollution in the Marine Atmosphere. Chitin can be converted by using chemical and biological methods into prominent derivate chitosan. Numerous bacteria naturally have chitin degrading ability. RESULTS Chitin shows promise in terms of biocompatibility, low toxicity, complete biodegradability, nontoxicity, and film-forming capability. The application of these polymers in the different sectors of biomedical, food, agriculture, cosmetics, pharmaceuticals could be lucrative. Moreover, the most recent achievement in nanotechnology is based on chitin and chitosan-based materials. CONCLUSION In this review, we examine chitin in terms of its natural sources and different extraction methods, chitinase producing microbes and chitin, chitosan together with its derivatives for use in biomedical and agricultural applications.
Collapse
Affiliation(s)
- Umar Shahbaz
- Jiangnan University, School of Biotechnology, Jiangnan University Wuxi, Jiansu, China
| |
Collapse
|
39
|
Mahmood S, Kumar M, Kumari P, Mahapatro GK, Banerjee N, Sarin NB. Novel insecticidal chitinase from the insect pathogen Xenorhabdus nematophila. Int J Biol Macromol 2020; 159:394-401. [PMID: 32422264 DOI: 10.1016/j.ijbiomac.2020.05.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/28/2022]
Abstract
Xenorhabdus nematophila strain ATCC 19061 is an insect pathogen that produces various protein toxins which intoxicate and kill its larval host. In the present study, we have described the cloning, expression and characterization of a 76-kDa chitinase protein of X. nematophila. A 1.9 kb DNA sequence encoding the chitinase gene was PCR amplified and cloned. Further, the chitinase protein was expressed in Escherichia coli and purified by using affinity chromatography. Two highly conserved domains were identified GH18 and ChiA. The purified chitinase protein showed chitobiosidase activity, β-N-acetylglucosaminidase and endochitinase activity, when enzyme activity was measured using respective substrates. The purified chitinase protein was found to be orally toxic to the larvae of a major crop pest, Helicoverpa armigera when fed to the larvae mixed with artificial diet. It also had adverse effect on the growth and development of the surviving larvae. Surviving larvae showed 9-fold reduction in weight, as a result the transformation of larvae into pupae was adversely affected. Our results demonstrated that the chitinase protein of X. nematophila has insecticidal property and can prove to be a potent candidate for pest control in plants.
Collapse
Affiliation(s)
- Saquib Mahmood
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mukesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Punam Kumari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gagan Kumar Mahapatro
- Division of Entomology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Nirupama Banerjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Neera Bhalla Sarin
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
40
|
Zhao Y, Li Z, Gu X, Su Y, Liu L. Imaginal Disc Growth Factor 6 (Idgf6) Is Involved in Larval and Adult Wing Development in Bactrocera correcta (Bezzi) (Diptera: Tephritidae). Front Genet 2020; 11:451. [PMID: 32435262 PMCID: PMC7218075 DOI: 10.3389/fgene.2020.00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023] Open
Abstract
In insects, imaginal disk growth factors (IDGFs), an important component of the glycoside hydrolase 18 (GH18) family of chitinases, have been reported to be associated with the maintenance of the cuticle and molting. However, there is little knowledge of their function. In this study, imaginal disk growth factor 6 (Idgf6), which is an Idgf, was first identified and cloned from the guava fruit fly Bactrocera correcta (Bezzi) (Diptera: Tephritidae), one of the most serious pest insects in South China and surrounding Southeast Asian countries. This gene encodes IDGF6 protein with a conserved domain similar to ChiA chitinases, the glycoside hydrolase 18 (GH18) family of chitinases, according to NCBI BLAST. Phylogenetic analysis indicated that all Idgf6s were highly conserved among similar species. Subsequent temporal expression profiling revealed that Idgf6 was highly expressed in both the late-pupal and mid-adult stages, suggesting that this gene plays a predominant role in pupal and adult development. Furthermore, RNA interference experiments against Idgf6 in B. correcta, which led to the specific decrease in Idgf6 expression, resulted in larval death as well as adult wing malformation. The direct effects of Idgf6 silencing on B. correcta indicated its important role in development, and Idgf6 might be further exploited as a novel insecticide target in the context of pest management.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhihong Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xinyue Gu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yun Su
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lijun Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Paek A, Kim MJ, Park HY, Yoo JG, Jeong SE. Functional expression of recombinant hybrid enzymes composed of bacterial and insect's chitinase domains in E. coli. Enzyme Microb Technol 2020; 136:109492. [PMID: 32331713 DOI: 10.1016/j.enzmictec.2019.109492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
To elucidate the functional alteration of the recombinant hybrid chitinases composed of bacterial and insect's domains, we cloned the constitutional domains from chitinase-encoding cDNAs of a bacterial species, Bacillus thuringiensis (BtChi) and a lepidopteran insect species, Mamestra brassicae (MbChi), respectively, swapped one's leading signal peptide (LSP) - catalytic domain (CD) - linker region (LR) (LCL) with the other's chitin binding domain (ChBD) between the two species, and confirmed and analyzed the functional expression of the recombinant hybrid chitinases and their chitinolytic activities in the transformed E. coli strains. Each of the two recombinant cDNAs, MbChi's LCL connected with BtChi's ChBD (MbLCL-BtChBD) and BtChi's LCL connected with MbChi's ChBD (BtLCL-MbChBD), was successfully introduced and expressed in E. coli BL21 strain. Although both of the two hybrid enzymes were found to be expressed by SDS-PAGE and Western blotting, the effects of the introduced genes on the chitin metabolism appear to be dramatically different between the two transformed E. coli strains. BtLCL-MbChBD remarkably increased not only the cell proliferation rate, extracellular and cellular chitinolytic activity, but also cellular glucosamine and N-acetylglucosamine levels, while MbLCL-BtChBD showed about the same profiles in the three tested subjects as those of the strains transformed with each of the two native chitinases, indicating that a combination of the bacterial CD of TIM barrel structure with characteristic six cysteine residues and insect ChBD2 including a conserved six cysteine-rich region (6C) enhances the attachment of the enzyme molecule to chitin compound by MbChBD, and so increases the catalytic efficiency of bacterial CD.
Collapse
Affiliation(s)
- Aron Paek
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Min Jae Kim
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Hee Yun Park
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Je Geun Yoo
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Seong Eun Jeong
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea.
| |
Collapse
|
42
|
Shao ZM, Li YJ, Zhang XR, Chu J, Ma JH, Liu ZX, Wang J, Sheng S, Wu FA. Identification and Functional Study of Chitin Metabolism and Detoxification-Related Genes in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) Based on Transcriptome Analysis. Int J Mol Sci 2020; 21:ijms21051904. [PMID: 32164390 PMCID: PMC7084822 DOI: 10.3390/ijms21051904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
Glyphodes pyloalis Walker (Lepidoptera: Pyralididae) is a serious pest in the sericulture industry, which has caused damage and losses in recent years. With the widespread use of insecticides, the insecticide resistance of G. pyloalis has becomes increasingly apparent. In order to find other effective methods to control G. pyloalis, this study performed a transcriptome analysis of the midgut, integument, and whole larvae. Transcriptome data were annotated with KEGG and GO, and they have been shown to be of high quality by RT-qPCR. The different significant categories of differentially expressed genes between the midgut and the integument suggested that the transcriptome data could be used for next analysis. With the exception of Dda9 (GpCDA5), 19 genes were involved in chitin metabolism, most of which had close protein–protein interactions. Among them, the expression levels of 11 genes, including GpCHSA, GpCDA1, GpCDA2, GpCDA4, GPCHT1, GPCHT2a, GPCHT3a, GPCHT7, GpTre1, GpTre2, and GpRtv were higher in the integument than in the midgut, while the expression levels of the last eight genes, including GpCHSB, GpCDA5, GpCHT2b, GpCHT3b, GpCHT-h, GpPAGM, GpNAGK, and GpUAP, were higher in the midgut than in the integument. Moreover, 282 detoxification-related genes were identified and can be divided into 10 categories, including cytochrome P450, glutathione S-transferase, carboxylesterase, nicotinic acetylcholine receptor, aquaporin, chloride channel, methoprene-tolerant, serine protease inhibitor, sodium channel, and calcium channel. In order to further study the function of chitin metabolism-related genes, dsRNA injection knocked down the expression of GpCDA1 and GpCHT3a, resulting in the significant downregulation of its downstream genes. These results provide an overview of chitin metabolism and detoxification of G. pyloalis and lay the foundation for the effective control of this pest in the sericulture industry.
Collapse
Affiliation(s)
- Zuo-min Shao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Yi-jiangcheng Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Xiao-rui Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Jie Chu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Jia-hui Ma
- Zhenjiang Runshen Sericulture Development Co., Ltd, Zhenjiang 212001, China;
| | - Zhi-xiang Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
- Correspondence: (S.S.); (F.-a.W.)
| | - Fu-an Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (Z.-m.S.); (Y.-j.L.); (X.-r.Z.); (J.C.); (Z.-x.L.); (J.W.)
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, China
- Correspondence: (S.S.); (F.-a.W.)
| |
Collapse
|
43
|
Zhang M, Chen H, Liu L, Xu L, Wang X, Chang L, Chang Q, Lu G, Jiang J, Zhu L. The Changes in the Frog Gut Microbiome and Its Putative Oxygen-Related Phenotypes Accompanying the Development of Gastrointestinal Complexity and Dietary Shift. Front Microbiol 2020; 11:162. [PMID: 32194513 PMCID: PMC7062639 DOI: 10.3389/fmicb.2020.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/22/2020] [Indexed: 12/05/2022] Open
Abstract
There are many examples of symbiotic and reciprocal relationships in ecological systems; animal gut microbiome-host interactions are one such kind of bidirectional and complex relationship. Here, we utilized several approaches (16S rRNA gene sequencing, metagenomics, and transcriptomics) to explore potential gut microbiome-host interactions accompanying the development of gastrointestinal complexity and a dietary shift from metamorphosis to maturity in ornamented pygmy frogs (Microhyla fissipes). We identified the possible coevolution between a particular gut microbial group (increased putative fat-digesting Erysipelotrichaceae and chitin-digesting Bacteroides and Ruminococcaceae) and the host dietary shift [from herbivore to insectivore (high proportion of dietary chitin and fat)] during metamorphosis. We also found that the remodeling and complexity of the gastrointestinal system during metamorphosis might have a profound effect on the gut microbial community (decreasing facultative anaerobic Proteobacteria and increasing anaerobic Firmicutes) and its putative oxygen-related phenotypes. Moreover, a high proportion of chitin-digesting bacteria and increased carbohydrate metabolism by gut microbiomes at the climax of metamorphosis would help the frog's nutrition and energy needs during metamorphosis and development. Considering the increased expression of particular host genes (e.g., chitinase) in juvenile frogs, we speculate that host plays an important role in amphibian metamorphosis, and their symbiotic gut microbiome may help in this process by providing the nutrition and energy needs. We provide this basic information for the amphibian conservation and managements.
Collapse
Affiliation(s)
- Mengjie Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hua Chen
- Hangzhou Legenomics Bio-Pham Technology Co., Ltd., Hangzhou, China
| | - Lusha Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Liangliang Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xungang Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Liming Chang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qing Chang
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guoqing Lu
- Department of Biology, University of Nebraska Omaha, Omaha, NE, United States
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lifeng Zhu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
44
|
Termiticidal activity of chitinase enzyme of Bacillus licheniformis, a symbiont isolated from the gut of Globitermes sulphureus worker. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Loc NH, Huy ND, Quang HT, Lan TT, Thu Ha TT. Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology 2019; 11:38-48. [PMID: 32128280 PMCID: PMC7033689 DOI: 10.1080/21501203.2019.1703839] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022] Open
Abstract
Trichoderma species were known as biological control agents against phytopathogenic fungi because they produce a variety of chitinases. Chitinases are hydrolytic enzymes that break down glycosidic bonds in chitin, a major component of the cell walls of fungi. The present study shows that extracellular chitinase activity reached a maximum value of approximately 22 U/mL after 96 h of T. asperellum PQ34 strain culture. The optimal temperature and pH of enzyme are 40°C and 7, respectively, whereas the thermal and pH stability range from 25°C to 50°C and 4 to 10, respectively. Chitinase at 60 U/mL inhibited nearly completely in vitro growth of Colletotrichum sp. (about 95%) and Sclerotium rolfsii (about 97%). In peanut plants, 20 U/mL of chitinase significantly reduced the incidence of S. rolfsii infection compared to controls. The fungal infection incidence of seeds before germination and 30 days after germination was only 2.22% and 2.38%, while the control was 13.33% and 17.95%. Besides, chitinase from T. asperellum PQ34 can also prevent anthracnose that is caused by Colletotrichum sp. on both mango and chilli fruits up to 72 h after enzyme pre-treatment at 40 U/mL. In mango and chilli fruits infected with anthracnose, 40 U/mL dose of chitinase inhibited the growth of fungi after 96 h of treatment, the diameter of lesion was only 0.88 cm for mango and 1.45 cm for chilli, while the control was 1.67 cm and 2.85 cm, respectively.
Collapse
Affiliation(s)
- Nguyen Hoang Loc
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, Hue, Vietnam
| | - Nguyen Duc Huy
- Department of Applied Biology and Biotechnology, Institute of Biotechnology, Hue University, Hue, Vietnam
| | - Hoang Tan Quang
- Department of Applied Biology and Biotechnology, Institute of Biotechnology, Hue University, Hue, Vietnam
| | - Tran Thuy Lan
- Department of Applied Biology and Biotechnology, Institute of Biotechnology, Hue University, Hue, Vietnam
| | - Tran Thi Thu Ha
- Department of Plant Protection, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| |
Collapse
|
46
|
Paenibacillus lutrae sp. nov., A Chitinolytic Species Isolated from A River Otter in Castril Natural Park, Granada, Spain. Microorganisms 2019; 7:microorganisms7120637. [PMID: 31810255 PMCID: PMC6955709 DOI: 10.3390/microorganisms7120637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 11/16/2022] Open
Abstract
A highly chitinolytic facultative anaerobic, chemoheterotrophic, endospore-forming, Gram-stain-positive, rod-shaped bacterial strain N10T was isolated from the feces of a river otter in the Castril Natural Park (Granada, Spain). It is a slightly halophilic, motile, catalase-, oxidase-, ACC deaminase- and C4 and C8 lipase-positive strain. It is aerobic, respiratory and has a fermentative metabolism using oxygen as an electron acceptor, produces acids from glucose and can fix nitrogen. Phylogenetic analysis of the 16S rRNA gene sequence, multilocus sequence analysis (MLSA) of 16S rRNA, gyrB, recA and rpoB, as well as phylogenomic analyses indicate that strain N10T is a novel species of the genus Paenibacillus, with the highest 16S rRNA sequence similarity (95.4%) to P. chitinolyticus LMG 18047T and <95% similarity to other species of the genus Paenibacillus. Digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANIb) were 21.1% and <75%, respectively. Its major cellular fatty acids were anteiso-C15:0, C16:0, and iso-C15:0. G + C content ranged between 45%–50%. Using 16S rRNA phylogenetic and in silico phylogenomic analyses, together with chemotaxonomic and phenotypic data, we demonstrate that type strain N10T (= CECT 9541T =LMG 30535T) is a novel species of genus Paenibacillus and the name Paenibacillus lutrae sp. nov. is proposed.
Collapse
|
47
|
Zhang L, Guan Z, Pan Z, Ge H, Zhou D, Xu J, Zhang W. Functional expression of the Spodoptera exigua chitinase to examine the virtually screened inhibitor candidates. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:741-751. [PMID: 31113496 DOI: 10.1017/s0007485319000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chitinase is responsible for insect chitin hydrolyzation, which is a key process in insect molting and pupation. However, little is known about the chitinase of Spodoptera exigua (SeChi). In this study, based on the SeChi gene (ADI24346) identified in our laboratory, we constructed the recombinant baculovirus P-Chi for the expression of recombinant SeChi (rSeChi) in Hi5 cells. The rSeChi was purified by chelate affinity chromatography, and the purified protein showed activity comparable with that of a commercial SgChi, suggesting that we harvested active SeChi for the first time. The purified protein was subsequently tested for enzymatic properties and revealed to exhibit its highest activity at pH 8 and 40 C. Using homology modeling and molecular docking techniques, the three-dimensional model of SeChi was constructed and screened for inhibitors. In two rounds of screening, twenty compounds were selected. With the purified rSeChi, we tested each of the twenty compounds for inhibitor activity against rSeChi, and seven compounds showed obvious activity. This study provided new information for the chitinase of beet armyworm and for chitinase inhibitor development.
Collapse
Affiliation(s)
- L Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Z Guan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Z Pan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - H Ge
- Medical College, Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, China
| | - D Zhou
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - J Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - W Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
48
|
Yang WJ, Xu KK, Yan X, Li C. Knockdown of β- N-acetylglucosaminidase 2 Impairs Molting and Wing Development in Lasioderma serricorne (Fabricius). INSECTS 2019; 10:insects10110396. [PMID: 31717288 PMCID: PMC6921043 DOI: 10.3390/insects10110396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
β-N-acetylglucosaminidases (NAGs) are carbohydrate enzymes that degrade chitin oligosaccharides into N-acetylglucosamine monomers. This process is important for chitin degradation during insect development and metamorphosis. We identified and evaluated a β-N-acetylglucosaminidase 2 gene (LsNAG2) from the cigarette beetle, Lasioderma serricorne (Fabricius). The full-length open reading frame of LsNAG2 was 1776 bp and encoded a 591 amino acid protein. The glycoside hydrolase family 20 (GH20) catalytic domain and an additional GH20b domain of the LsNAG2 protein were highly conserved. Phylogenetic analysis revealed that LsNAG2 clustered with the group II NAGs. Quantitative real-time PCR analyses showed that LsNAG2 was expressed in all developmental stages and was most highly expressed in the late larval and late pupal stages. In the larval stage, LsNAG2 was predominantly expressed in the integument. Knockdown of LsNAG2 in fifth instar larvae disrupted larval-pupal molting and reduced the expression of four chitin synthesis genes (trehalase 1 (LsTRE1), UDP-N-acetylglucosamine pyrophosphorylase 1 and 2 (LsUAP1 and LsUAP2), and chitin synthase 1 (LsCHS1)). In late pupae, LsNAG2 depletion resulted in abnormal adult eclosion and wing deformities. The expression of five wing development-related genes (teashirt (LsTSH), vestigial (LsVG), wingless (LsWG), ventral veins lacking (LsVVL), and distal-less (LsDLL)) significantly declined in the LsNAG2-depleted beetles. These findings suggest that LsNAG2 is important for successful molting and wing development of L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Can Li
- Correspondence: ; Tel.: +86-851-8540-5891
| |
Collapse
|
49
|
Adeyinka OS, Tabassum B, Nasir IA, Yousaf I, Sajid IA, Shehzad K, Batcho A, Husnain T. Identification and validation of potential reference gene for effective dsRNA knockdown analysis in Chilo partellus. Sci Rep 2019; 9:13629. [PMID: 31541183 PMCID: PMC6754392 DOI: 10.1038/s41598-019-49810-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Chilo partellus is an invasive polyphagous pest that has not been effectively managed with chemical pesticides. To select potential dsRNAs for use in an alternate control strategy, it is crucial to identify and evaluate stable reference genes for knockdown expression studies. This study evaluates the expression stability of seven candidate reference genes in C. partellus larvae fed on crude bacterially-expressed dsRNAs and purified dsRNAs at different time intervals, as well as the developmental stages and sexes. The expression stabilities of the reference genes were evaluated with different software programmes, such as BestKeeper, NormFinder, deltaCt, geNorm, and RefFinder. The overall results rank ELF as the most stably expressed reference gene when larvae were fed with crude bacteria-induced dsRNAs and purified dsRNA. However, Tubulin and HSP70 were more stable under different developmental stages and sexes. The expression levels of larvae that were fed crude bacteria-induced dsRNAs of Chitinase and Acetylcholinesterase were normalized with the four most stable reference genes (ELF, HSP70, V-ATPase and Tubulin) and the least stable reference gene (18S and HSP70) based on the geNorm algorithm. The least stable reference gene showed inconsistent knockdown expression, thereby confirming that the validation of a suitable reference gene is crucial to improve assay accuracy for dsRNA-targeted gene selection in C. partellus.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Bushra Tabassum
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan.
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Iqra Yousaf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Imtiaz Ahmad Sajid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | | | - Anicet Batcho
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| |
Collapse
|
50
|
Le B, Yang SH. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 2019; 35:144. [PMID: 31493195 DOI: 10.1007/s11274-019-2721-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that catalyze chitin, nd are synthesized by a wide variety of organisms. In nature, microbial chitinases are primarily responsible for chitin decomposition. Several chitinases have been reported and characterized, and they are garnering increasing attention for their uses in a wide range of applications. In the food industry, the direct fermentation of seafood, such as crab and shrimp shells, using chitinolytic microorganisms has contributed to increased nutritional benefits through the enhancement of chitin degradation into chitooligosaccharides. These compounds have been demonstrated to improve human health through their antitumor, antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory properties. Moreover, chitinase and chitinous materials are used in the food industry for other purposes, such as the production of single-cell proteins, chitooligosaccharides, N-acetyl D-glucosamines, biocontrol, functional foods, and various medicines. The functional properties and hydrolyzed products of chitinase, however, depend upon its source and physicochemical characteristics. The present review strives to clarify these perspectives and critically discusses the advances and limitations of microbial chitinase in the further production of functional foods.
Collapse
Affiliation(s)
- Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|