1
|
Neuroanatomical characterization of the G protein-coupled receptor activity evoked by galanin-related ligands. J Chem Neuroanat 2023; 128:102226. [PMID: 36566994 DOI: 10.1016/j.jchemneu.2022.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Galanin neuropeptide is distributed throughout the mammalian nervous system modulating a plethora of diverse physiological functions, including nociception, cognition and neuroendocrine regulation. The regulation of the galaninergic system is an interesting approach for the treatment of different diseases associated to those systems. Nevertheless, the pharmacological selectivity and activities of some galanin receptor (GalR) ligands are still in discussion and seem to depend on the dose, the receptor subtype and the second messengers to which they are coupled at different brain areas. The activity of different GalR ligands on Gi/o proteins, was evaluated by the guanosine 5'-(γ-[35S]thio)triphosphate ([35S]GTPγS) autoradiography in vitro assay applied to rat brain tissue slices in the presence of galanin, M15, M35, M40, gal(2-11) or galnon. The enhancement of the [35S]GTPγS binding induced by the chimerical peptides M15, M35 and M40 was similar to that produced by Gal in those brain areas showing the highest stimulations, such as dorsal part of the olfactory nucleus and ventral subiculum. In contrast to these peptides, using gal(2-11) no effect was measured on Gi/o protein coupling in areas of the rat brain with high GalR1 density such as posterior hypothalamic nucleus and amygdala, indicating low selectivity for GalR1 receptors. The effects evoked by the non-peptide ligand, galnon, were different from those induced by galanin, behaving as agonist or antagonist depending on the brain area, but the stimulations were always blocked by M35. Thus, the activity of most used GalR ligands on Gi/o protein mediated signalling is complex and depends on the brain area. More selective and potent GalR ligands are necessary to develop new treatments aimed to modulate the galaninergic system.
Collapse
|
2
|
Khan SA, Zia K, Ashraf S, Khan A, Ul-Haq Z. Theoretical investigation of selective ligand binding mode of galanin receptors. J Biomol Struct Dyn 2022; 40:12964-12974. [PMID: 34632940 DOI: 10.1080/07391102.2021.1977703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Galaninergic system consist of Galanin and its receptors, involved in neuromodulation and neurotransmission. Galanin regulate its physiologic and pathologic functions by interacting with three G-protein coupled receptors; GalR1, GalR2 and GalR3. The widespread distribution of Galanin and its receptor subtypes in central and peripheral nervous system makes them an attractive drug target for the treatment of neurological diseases. However, subtypes selective ligands paucity and little structural information related to either Galanin receptors and Galanin receptor-ligand complexes hampered the structure-based drug design. Thus computational modeling characterization strategy was utilized for Galanin receptor 3D structure prediction and subtypes ligands binding selectivity. Reported ligands with experimental activity were docked against the homology model of Galanin receptors. Further, the MD simulation and binding free energy calculation were carried out to determine the binding interactions pattern consistency and selectivity towards receptor subtype. Results of binding free energy of per residue indicate key contribution of GalR1 Phe115 and His267 in the selective binding of ligands while Tyr103, Tyr270 and His277 play major role in the selective binding of GalR3 ligands. Our study provide rationale for further in silico virtual screening of small molecules for the development of selective ligands against Galanin receptor subtypes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Salman Ali Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Alamgir Khan
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
3
|
Sánchez ML, Coveñas R. The Galaninergic System: A Target for Cancer Treatment. Cancers (Basel) 2022; 14:3755. [PMID: 35954419 PMCID: PMC9367524 DOI: 10.3390/cancers14153755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to show the involvement of the galaninergic system in neuroendocrine (phaeochromocytomas, insulinomas, neuroblastic tumors, pituitary tumors, small-cell lung cancer) and non-neuroendocrine (gastric cancer, colorectal cancer, head and neck squamous cell carcinoma, glioma) tumors. The galaninergic system is involved in tumorigenesis, invasion/migration of tumor cells and angiogenesis, and this system has been correlated with tumor size/stage/subtypes, metastasis and recurrence rate. In the galaninergic system, epigenetic mechanisms have been related with carcinogenesis and recurrence rate. Galanin (GAL) exerts both proliferative and antiproliferative actions in tumor cells. GAL receptors (GALRs) mediate different signal transduction pathways and actions, depending on the particular G protein involved and the tumor cell type. In general, the activation of GAL1R promoted an antiproliferative effect, whereas the activation of GAL2R induced antiproliferative or proliferative actions. GALRs could be used in certain tumors as therapeutic targets and diagnostic markers for treatment, prognosis and surgical outcome. The current data show the importance of the galaninergic system in the development of certain tumors and suggest future potential clinical antitumor applications using GAL agonists or antagonists.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratorio de Neuroanatomía de los Sistema Peptidérgicos (Lab. 14), Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain;
| | - Rafael Coveñas
- Laboratorio de Neuroanatomía de los Sistema Peptidérgicos (Lab. 14), Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain;
- Grupo GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Firoozi N, Bakavoli M, Eshghi H, Ramazanian N, Akbarzadeh M. Synthesis of pyrimido[4′,5′:5,6][1,4]dithiepino[2,3-b]quinoxalines: Derivatives of a novel seven membered ring system. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2016.1248290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Neda Firoozi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Bakavoli
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Navid Ramazanian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marziyeh Akbarzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Abstract
Since the neuropeptide galanin’s discovery in 1983, information has accumulated that implicates it in a wide range of functions, including pain sensation, stress responses, appetite regulation, and learning and memory. This article reviews the evidence for specific functions of galanin in cognitive processes. Consistencies as well as gaps in the literature are organized around basic questions of methodology and theory. This review shows that although regularities are evident in the observed behavioral effects of galanin across several methods for measuring learning and memory, generalization from these findings is tempered with concerns about confounds and a restricted range of testing conditions. Furthermore, it is revealed that many noncognitive behavioral constructs that are relevant for assessing potential roles for galanin in cognition have not been thoroughly examined. The review concludes by laying out how future theory and experimental work can overcome these concerns and confidently define the nature of the association of galanin with particular cognitive constructs.
Collapse
|
6
|
Zhang Z, Fang P, He B, Guo L, Runesson J, Langel Ü, Shi M, Zhu Y, Bo P. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats. J Diabetes Res 2016; 2016:9095648. [PMID: 27127795 PMCID: PMC4835658 DOI: 10.1155/2016/9095648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/18/2023] Open
Abstract
Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adiponectin/blood
- Animals
- Biomarkers/blood
- Bradykinin/administration & dosage
- Bradykinin/analogs & derivatives
- C-Reactive Protein/analysis
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Disease Models, Animal
- GTPase-Activating Proteins/metabolism
- Galanin/administration & dosage
- Glucose Transporter Type 4/genetics
- Glucose Transporter Type 4/metabolism
- Hypoglycemic Agents/pharmacology
- Injections, Intraventricular
- Insulin/pharmacology
- Insulin Resistance
- Male
- Peptide Fragments/administration & dosage
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Wistar
- Receptor, Galanin, Type 1/agonists
- Receptor, Galanin, Type 1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Penghua Fang
- Department of Physiology, School of Hanlin, Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, China
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Biao He
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Lili Guo
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Johan Runesson
- Department of Neurochemistry, Arrhenius Laboratories for Natural Sciences Stockholm University, 10691 Stockholm, Sweden
| | - Ülo Langel
- Department of Neurochemistry, Arrhenius Laboratories for Natural Sciences Stockholm University, 10691 Stockholm, Sweden
| | - Mingyi Shi
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
- *Yan Zhu: and
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
- Key Laboratory of Gerontology, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
- *Ping Bo:
| |
Collapse
|
7
|
Fang P, He B, Shi M, Kong G, Dong X, Zhu Y, Bo P, Zhang Z. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides 2015; 71:240-9. [PMID: 26188174 DOI: 10.1016/j.peptides.2015.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/27/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
It is essential for the species survival that an efficient coordination between energy storage and reproduction through endocrine regulation. The neuropeptide galanin, one of the endocrine hormones, can potently coordinate energy metabolism and the activities of hypothalamic-pituitary-gonadal reproductive axis to adjust synthesis and release of metabolic and reproductive hormones in animals and humans. However, few papers have summarized the regulative effect of the galanin family members on the link of energy storage and reproduction as yet. To address this issue, this review attempts to summarize the current information available about the regulative effect of galanin, galanin-like peptide and alarin on the metabolic and reproductive events, with special emphasis on the interactions between galanin and hypothalamic gonadotropin-releasing hormone, pituitary luteinizing hormone and ovarian hormones. This research line will further deepen our understanding of the physiological roles of the galanin family in regulating the link of energy metabolism and reproduction.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Biao He
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Guimei Kong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Xiaoyun Dong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
8
|
Muthusamy S, Sivaguru M, Suresh E. Indium(III) chloride catalyzed highly diastereoselective domino synthesis of indenodithiepines and indenodithiocines. Chem Commun (Camb) 2015; 51:707-10. [PMID: 25418338 DOI: 10.1039/c4cc07280d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An atom-economical diastereoselective synthesis of indenodithiepines and indenodithiocines has been developed via a domino reaction of propargylic alcohols and dithioacetals in the presence of InCl3 as a catalyst. A range of functionalized dithiepines and dithiocines, fused to the indene ring, were obtained in good to excellent yields under mild conditions.
Collapse
|
9
|
Freimann K, Kurrikoff K, Langel Ü. Galanin receptors as a potential target for neurological disease. Expert Opin Ther Targets 2015. [PMID: 26220265 DOI: 10.1517/14728222.2015.1072513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Galanin is a 29/30 amino acid long neuropeptide that is widely expressed in the brains of many mammals. Galanin exerts its biological activities through three different G protein-coupled receptors, GalR1, GalR2 and GalR3. The widespread distribution of galanin and its receptors in the CNS and the various physiological and pharmacological effects of galanin make the galanin receptors attractive drug targets. AREAS COVERED This review provides an overview of the role of galanin and its receptors in the CNS, the involvement of the galaninergic system in various neurological diseases and the development of new galanin receptor-specific ligands. EXPERT OPINION Recent advances and novel approaches in migrating the directions of subtype-selective ligand development and chemical modifications of the peptide backbone highlight the importance of the galanin neurochemical system as a potential target for drug development.
Collapse
Affiliation(s)
- Krista Freimann
- a 1 University of Tartu, Institute of Technology , Tartu, Estonia +372 737 4871 ;
| | - Kaido Kurrikoff
- b 2 University of Tartu, Institute of Technology , Tartu, Estonia
| | - Ülo Langel
- c 3 University of Tartu, Institute of Technology , Tartu, Estonia.,d 4 Stockholm University, Arrhenius Laboratories for Natural Science, Department of Neurochemistry , Stockholm, Sweden
| |
Collapse
|
10
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
11
|
Zhang X, Zou X, Yan H. Synthesis of Boron-Fused 1,4-Dithiin via Cobalt-Mediated Disulfuration of Alkyne at the o-Carborane-9,12-dithiolate Unit. Organometallics 2014. [DOI: 10.1021/om500411b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaolei Zhang
- State Key Laboratory
of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Zou
- State Key Laboratory
of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hong Yan
- State Key Laboratory
of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
12
|
Wen LR, Men LB, He T, Ji GJ, Li M. Switching Regioselectivity of β-Ketothioamides by Means of Iodine Catalysis: Synthesis of Thiazolylidenes and 1,4-Dithiines. Chemistry 2014; 20:5028-33. [DOI: 10.1002/chem.201304497] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Indexed: 11/06/2022]
|
13
|
Zhao SS, Su Q, Peng ZH, An DL. 2,6-Bis(4-meth-oxy-phen-yl)-1,4-dithiine. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o137. [PMID: 24764863 PMCID: PMC3998302 DOI: 10.1107/s1600536814000397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 11/16/2022]
Abstract
The title molecule, C18H16O2S2, reveals crystallographic twofold rotation symmetry (with both S atoms lying on the axis) and one half-molecule defines an asymmetric unit. The dithiine ring is in a boat conformation. The aromatic ring and the C=C bond are nearly coplanar, with small torsion angles of −171.26 (19) and 8.5 (3)°. The two S—C bond lengths [1.7391 (19) and 1.7795 (18) Å] are shorter than single C—S bonds and longer than analogous C=S double bonds, which indicates a certain degree of conjugation between the lone pair on the S atom and π electrons of the C=C bond. The crystal packing only features van der Waals interactions.
Collapse
Affiliation(s)
- Sha-Sha Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Qiong Su
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhi-Hong Peng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - De-Lie An
- Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
14
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
15
|
Chee GL, Bhattarai B, Nash JD, Madec K, Hasinoff BB, Brewer AD. Chemical reactivity and biological activity of dihydro-1,4-dithiin tetraoxides. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Certain dihydro-1,4-dithiin tetraoxides such as dimethipin, a commercial plant growth regulant, have been reported to exhibit highly selective biological activities depending on the type and number of substitutions on the α,β-unsaturated bond in the dithiin ring. Despite the abundant reports on this class of compounds, the study of chemical reactivity of the α,β-unsaturated bond in the dithiin ring has not been reported and the factors governing the biological selectivity of these compounds are still unknown. In this study, the reactivity of eight dithiin compounds substituted in varying degrees at the α,β-unsaturated bond towards biologically important nucleophilic groups at pH 7.4 were investigated using UV-vis, fluorescence, and 1H NMR spectroscopies. Their reactivity towards glutathione correlated strongly with their cell growth inhibitory activity and inhibition of DNA topoisomerase II, an enzyme containing critical sulfhydryl groups. On this basis, the mechanism by which these dithiins achieve the biological selectivity previously reported was proposed. Excellent correlations between glutathione reactivity and Taft’s polar substituent constants or electrostatic atomic charges of the dithiins were also demonstrated, suggesting that these descriptors might be useful for predicting the reactivity of other dithiins towards sulfhydryl nucleophiles.
Collapse
Affiliation(s)
- Gaik-Lean Chee
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Bharat Bhattarai
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jordan D. Nash
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Kim Madec
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Brian B. Hasinoff
- Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | | |
Collapse
|
16
|
Fang P, Yu M, Shi M, Zhang Z, Sui Y, Guo L, Bo P. Galanin peptide family as a modulating target for contribution to metabolic syndrome. Gen Comp Endocrinol 2012; 179:115-20. [PMID: 22909974 DOI: 10.1016/j.ygcen.2012.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MetS) is defined as abdominal central obesity, atherogenic dyslipidemia, insulin resistance, glucose intolerance and hypertension. The rapid increasing prevalence of MetS and the consequent diseases, such as type 2 diabetes mellitus and cardiovascular disorder, are becoming a global epidemic health problem. Despite considerable research into the etiology of this complex disease, the precise mechanism underlying MetS and the association of this complex disease with the development of type 2 diabetes mellitus and increased cardiovascular disease remains elusive. Therefore, researchers continue to actively search for new MetS treatments. Recent animal studies have indicated that the galanin peptide family of peptides may increase food intake, glucose intolerance, fat preference and the risk for obesity and dyslipidemia while decreasing insulin resistance and blood pressure, which diminishes the probability of type 2 diabetes mellitus and hypertension. To date, however, few papers have summarized the role of the galanin peptide family in modulating MetS. Through a summary of available papers and our recent studies, this study reviews the updated evidences of the effect that the galanin peptide family has on the clustering of MetS components, including obesity, dyslipidemia, insulin resistance and hypertension. This line of research will further deepen our understanding of the relationship between the galanin peptide family and the mechanisms underlying MetS, which will help develop new therapeutic strategies for this complex disease.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Fang P, Yu M, Guo L, Bo P, Zhang Z, Shi M. Galanin and its receptors: a novel strategy for appetite control and obesity therapy. Peptides 2012; 36:331-9. [PMID: 22664322 DOI: 10.1016/j.peptides.2012.05.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 12/14/2022]
Abstract
The rapid increase in the prevalence of overweight and obesity is becoming an important health problem. Overweight and obesity may cause several metabolic complications, including type 2 diabetes mellitus, hyperlipidemia, high cholesterol, coronary artery disease as well as hypertension. Prevention and treatment of obesity will benefit the treatment of these related diseases. Current strategies for treatment of obesity are not adequately effective and are frequently companied with many side effects. Thus, new ways to treat obesity are urgently needed. Galanin is undoubtedly involved in the regulation of food intake and body weight. The aim of this review is to provide up-to-date knowledge concerning the roles of central and peripheral galanin as well as its receptors in the regulation of metabolism, obesity and appetite. We also highlight the mechanisms of galanin and its receptors in experimental obesity, trying to establish a novel anti-obesity strategy.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Yangzhou University, Yangzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
18
|
Webling KEB, Runesson J, Bartfai T, Langel Ü. Galanin receptors and ligands. Front Endocrinol (Lausanne) 2012; 3:146. [PMID: 23233848 PMCID: PMC3516677 DOI: 10.3389/fendo.2012.00146] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/08/2012] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide galanin was first discovered 30 years ago. Today, the galanin family consists of galanin, galanin-like peptide (GALP), galanin-message associated peptide (GMAP), and alarin and this family has been shown to be involved in a wide variety of biological and pathological functions. The effect is mediated through three GPCR subtypes, GalR1-3. The limited number of specific ligands to the galanin receptor subtypes has hindered the understanding of the individual effects of each receptor subtype. This review aims to summarize the current data of the importance of the galanin receptor subtypes and receptor subtype specific agonists and antagonists and their involvement in different biological and pathological functions.
Collapse
Affiliation(s)
- Kristin E. B. Webling
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- *Correspondence: Kristin E. B. Webling, Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm University, Svante Arrheniusv. 21A, 10691 Stockholm, Sweden. e-mail:
| | - Johan Runesson
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
| | - Tamas Bartfai
- Molecular and Integrative Neurosciences Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Ülo Langel
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- Institute of Technology, University of TartuTartu, Estonia
| |
Collapse
|
19
|
Robertson CR, Flynn SP, White HS, Bulaj G. Anticonvulsant neuropeptides as drug leads for neurological diseases. Nat Prod Rep 2011; 28:741-62. [PMID: 21340067 DOI: 10.1039/c0np00048e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anticonvulsant neuropeptides are best known for their ability to suppress seizures and modulate pain pathways. Galanin, neuropeptide Y, somatostatin, neurotensin, dynorphin, among others, have been validated as potential first-in-class anti-epileptic or/and analgesic compounds in animal models of epilepsy and pain, but their therapeutic potential extends to other neurological indications, including neurodegenerative and psychatric disorders. Disease-modifying properties of neuropeptides make them even more attractive templates for developing new-generation neurotherapeutics. Arguably, efforts to transform this class of neuropeptides into drugs have been limited compared to those for other bioactive peptides. Key challenges in developing neuropeptide-based anticonvulsants are: to engineer optimal receptor-subtype selectivity, to improve metabolic stability and to enhance their bioavailability, including penetration across the blood–brain barrier (BBB). Here, we summarize advances toward developing systemically active and CNS-penetrant neuropeptide analogs. Two main objectives of this review are: (1) to provide an overview of structural and pharmacological properties for selected anticonvulsant neuropeptides and their analogs and (2) to encourage broader efforts to convert these endogenous natural products into drug leads for pain, epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Charles R Robertson
- College of Pharmacy, Department of Medicinal Chemistry, 421 Wakara Way, STE. 360 Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
20
|
Gülten SÌ. The synthesis and characterization of solvatochromic maleimide-fused N-allyl- and N-alkyl-substituted 1,4-dithiines and DielsâAlder reactions with anthracene. J Heterocycl Chem 2010. [DOI: 10.1002/jhet.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
|
22
|
|
23
|
Anselmi L, Stella SL, Brecha NC, Sternini C. Galanin inhibition of voltage-dependent Ca(2+) influx in rat cultured myenteric neurons is mediated by galanin receptor 1. J Neurosci Res 2009; 87:1107-14. [PMID: 19006083 DOI: 10.1002/jnr.21923] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Galanin activates three receptors, the galanin receptor 1 (GalR1), GalR2, and GalR3. In the gastrointestinal tract, GalR1 mediates the galanin inhibition of cholinergic transmission to the longitudinal muscle and reduction of peristalsis efficiency in the small intestine. Galanin has also been shown to inhibit depolarization-evoked Ca2+ increases in cultured myenteric neurons. Because GalR1 immunoreactivity is localized to cholinergic myenteric neurons, we hypothesized that this inhibitory action of galanin on myenteric neurons is mediated by GalR1. We investigated the effect of galanin 1-16, which has high affinity for GalR1 and GalR2, in the presence or absence of the selective GalR1 antagonist, RWJ-57408, and of galanin 2-11, which has high affinity for GalR2 and GalR3, on Ca2+ influx through voltage-dependent Ca2+ channels in cultured myenteric neurons. Myenteric neurons were loaded with fluo-4 and depolarized by high K+ concentration to activate voltage-dependent Ca2+ channels. Intracellular Ca2+ levels were quantified with confocal microscopy. Galanin 1-16 (0.01-1 microM) inhibited the depolarization-evoked Ca2+ increase in a dose-dependent manner with an EC(50) of 0.172 microM. The selective GalR1 antagonist, RWJ-57408 (10 microM), blocked the galanin 1-16 (1 microM)-mediated inhibition of voltage-dependent Ca2+ channel. By contrast, the GalR2/GalR3 agonist, galanin 2-11 did not affect the K+-evoked Ca2+ influx in myenteric neurons. GalR1 immunoreactivity was localized solely to myenteric neurons in culture, as previously observed in intact tissue. These findings indicate that the inhibition of depolarization-evoked Ca2+ influx in myenteric neurons in culture is mediated by GalR1 and confirm the presence of functional GalR1 in the myenteric plexus. This is consonant with the hypothesis that GalR1 mediates galanin inhibition of transmitter release from myenteric neurons.
Collapse
Affiliation(s)
- Laura Anselmi
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA.
| | | | | | | |
Collapse
|
24
|
Harrison DJ, Fekl U. Catalytic production of sulfur heterocycles (dihydrobenzodithiins): a new application of ligand-based alkene reactivity. Chem Commun (Camb) 2009:7572-4. [DOI: 10.1039/b915614c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Blakeney JS, Reid RC, Le GT, Fairlie DP. Nonpeptidic Ligands for Peptide-Activated G Protein-Coupled Receptors. Chem Rev 2007; 107:2960-3041. [PMID: 17622179 DOI: 10.1021/cr050984g] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jade S Blakeney
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
26
|
Evdokimov NM, Kireev AS, Yakovenko AA, Antipin MY, Magedov IV, Kornienko A. One-Step Synthesis of Heterocyclic Privileged Medicinal Scaffolds by a Multicomponent Reaction of Malononitrile with Aldehydes and Thiols. J Org Chem 2007; 72:3443-53. [PMID: 17408286 DOI: 10.1021/jo070114u] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterocyclic privileged medicinal scaffolds involving pyridine, 1,4-dihydropyridine, chromeno[2,3-b]pyridine, and dihydro-1,4-dithiepine frameworks are prepared via a single-step multicomponent reaction of structurally diverse aldehydes with various thiols and malononitrile. Mechanistic studies of the synthetic pathway leading to pyridines reveal that 1,4-dihydropyridines undergo oxidation by the intermediate Knoevenagel adducts rather than by air oxygen. The use of o,o'-disubstituted aromatic aldehydes leads to the corresponding 1,4-dihydropyridines, whereas salicylic aldehydes result in chromeno[2,3-b]pyridines. Reactions of ethanedithiol as a thiol component produce dimeric pyridines with sterically unencumbered aldehydes, while o,o'-disubstituted aromatic aldehydes give dihydro-1,4-dithiepines. Thus, depending on the aldehyde and thiol types, diverse libraries of medicinally relevant compounds can be prepared by a simple one-step process involving no chromatography.
Collapse
Affiliation(s)
- Nikolai M Evdokimov
- Department of Organic Chemistry, Timiryazev Agriculture Academy, Moscow 127550, Russia
| | | | | | | | | | | |
Collapse
|
27
|
Murru S, Kavala V, Singh C, Patel BK. A one-pot synthesis of 1,4-dithiins and 1,4-benzodithiins from ketones using the recyclable reagent 1,1′-(ethane-1,2-diyl)dipyridinium bistribromide (EDPBT). Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2006.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Konkel MJ, Lagu B, Boteju LW, Jimenez H, Noble S, Walker MW, Chandrasena G, Blackburn TP, Nikam SS, Wright JL, Kornberg BE, Gregory T, Pugsley TA, Akunne H, Zoski K, Wise LD. 3-arylimino-2-indolones are potent and selective galanin GAL3 receptor antagonists. J Med Chem 2006; 49:3757-8. [PMID: 16789730 DOI: 10.1021/jm060001n] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 3-imino-2-indolones are the first published, high-affinity antagonists of the galanin GAL3 receptor. One example, 1,3-dihydro-1-phenyl-3-[[3-(trifluoromethyl)phenyl]imino]-2H-indol-2-one (9), was shown to have high affinity for the human GAL3 receptor (Ki=17 nM) and to be highly selective for GAL3 over a broad panel of targets, including GAL1 and GAL2. Compound 9 was also shown to be an antagonist in a human GAL3 receptor functional assay (Kb=29 nM).
Collapse
Affiliation(s)
- Michael J Konkel
- Lundbeck Research USA, Inc., 215 College Road, Paramus, New Jersey 07652, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kozoriz MG, Kuzmiski JB, Hirasawa M, Pittman QJ. Galanin modulates neuronal and synaptic properties in the rat supraoptic nucleus in a use and state dependent manner. J Neurophysiol 2006; 96:154-64. [PMID: 16611841 DOI: 10.1152/jn.01028.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The magnocellular neurons of the hypothalamic supraoptic nucleus (SON) synthesize and secrete oxytocin (OXT) and vasopressin (AVP) from their dendrites. These peptides, and several other neurotransmitters, have been shown to modulate afferent glutamatergic neurotransmission in the SON. The neuropeptide, galanin (GAL) is also localized in SON magnocellular neurons and in afferent fibers in the nucleus. We show that GAL dose-dependently reduces evoked excitatory postsynaptic currents (eEPSCs), alters paired pulse ratio and decreases mEPSC frequency, but not amplitude or decay kinetics in both OXT and AVP neurons. GAL therefore modulates excitatory neurotransmission at a likely presynaptic receptor. Neither OXT/AVP, GABA(B) nor cannabinoid antagonists blocked this effect. A GAL2/3 agonist mimicked GAL's action while GAL1 antagonist did not block GAL's effect, suggesting that GAL2/3 receptors mediate the presynaptic effect. In nondehydrated rats GAL causes a small postsynaptic response, as assessed by input resistance measurements. When the rats were water deprived for 2 days the presynaptic response to GAL was unaltered; however, the postsynaptic decrease in input resistance and hyperpolarization was increased, an effect consistent with a previously described increase in GAL1 receptor expression in dehydration. A GAL1 receptor antagonist blocked the postsynaptic effects. Last, when a train of eEPSCs was elicited, GAL was found to inhibit the earlier events in a train but not the latter. This indicates that GAL may modulate a single synaptic event more effectively than trains of synaptic inputs, thereby acting as a high-pass filter.
Collapse
Affiliation(s)
- Michael G Kozoriz
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
30
|
Alexander SPH, Mathie A, Peters JA. Galanin. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
31
|
Dong D, Sun R, Yu H, Ouyang Y, Zhang Q, Liu Q. Facile synthesis of substituted dihydro-1,4-dithiins and -1,4-dithiepins from α-oxo ketene cyclic dithioacetals. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.08.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Abstract
The three galanin receptor subtypes (GalR1-3) belong to the G protein-coupled receptor superfamily. The widespread distribution of galanin and its receptors in the CNS and PNS and the numerous physiological and pharmacological effects of galanin (for review, cf. Vrontakis, 2002) render the three galanin receptors attractive drug targets. The industrial efforts, however, have not yet resulted in a wealth of receptor subtype specific agonists or antagonists with high affinity and selectivity. The present paper summarizes the properties of the galanin ligands used at the end of 2004 in the ca. 2000 publications and complements their pharmacological characterization with new data.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Neuropharmacology, The Harold L. Dorris Neurological Research Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
33
|
Sollenberg U, Bartfai T, Langel U. Galnon--a low-molecular weight ligand of the galanin receptors. Neuropeptides 2005; 39:161-3. [PMID: 15944006 DOI: 10.1016/j.npep.2004.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Accepted: 12/08/2004] [Indexed: 11/21/2022]
Abstract
Galnon is a low-molecular weight galanin receptor ligand, with affinity towards the three galanin receptors in the micromolar range. Galnon is of interest as a drug candidate due to its stability and ability to pass the blood-brain barrier. Like galanin, galnon has also been shown to affect various physiological functions; however, occasionally galanin and galnon act in opposing ways. Since its introduction in 2002, galnon has been characterized to inhibit seizures, decrease feeding behaviour, diminish physical signs of opiate withdrawal and to alleviate heat-hyperalgesic response to partial sciatic nerve injury. In this review, we will summarize what is known about galnon to date.
Collapse
Affiliation(s)
- Ulla Sollenberg
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Svante Arrhenius väg 21A, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
34
|
Anselmi L, Cervio E, Guerrini S, Vicini R, Agazzi A, Dellabianca A, Reeve JR, Tonini M, Sternini C. Identification of galanin receptor 1 on excitatory motor neurons in the guinea pig ileum. Neurogastroenterol Motil 2005; 17:273-80. [PMID: 15787947 DOI: 10.1111/j.1365-2982.2004.00590.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exogenously administered galanin inhibits cholinergic transmission to the longitudinal muscle and reduces peristaltic efficiency in the guinea pig ileum with a mechanism partially mediated by galanin receptor 1 (GAL-R1). We investigated the effect of exogenous galanin 1-16, which has high affinity for GAL-R1, on the ascending excitatory reflex of the circular muscle elicited by radial distension in isolated segments of guinea pig ileum. We used a three-compartment bath that allows dissecting the ascending pathway into the oral (site of excitatory motor neurons), intermediate (site of ascending interneurons) and caudal compartment (site of intrinsic primary afferent neurons). Galanin 1-16 (0.3-3 micromol L(-1)) applied to the oral compartment inhibited in a concentration-dependent manner the ascending excitatory reflex elicited by the wall distension in the caudal compartment. This effect was antagonized by the GAL-R1 antagonist, RWJ-57408 (1 and 10 micromol L(-1)). By contrast, galanin 1-16 was ineffective when added to the intermediate or caudal compartment up to 3 micromol L(-1). GAL-R1 immunoreactive neurons did not contain neuron-specific nuclear protein, a marker for intrinsic primary afferent neurons. These findings indicate that GAL-R1s are present on motor neurons responsible for the ascending excitatory reflex, but not on ascending interneurons and intrinsic primary afferent neurons.
Collapse
Affiliation(s)
- L Anselmi
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Veterans Administration Greater Los Angeles Healthcare System, Bldg. 115, Room 224, Vaglahs, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Firouzabadi H, Iranpoor N, Garzan A, Shaterian H, Ebrahimzadeh F. Facile Ring-Expansion Substitution Reactions of 1,3-Dithiolanes and 1,3-Dithianes Initiated by Electrophilic Reagents to Produce Monohalo-, -cyano-, -azido- and -thiocyanato-1,4-dithiins and -1,4-dithiepins. European J Org Chem 2005. [DOI: 10.1002/ejoc.200400502] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Ceide SC, Trembleau L, Haberhauer G, Somogyi L, Lu X, Bartfai T, Rebek J. Synthesis of galmic: a nonpeptide galanin receptor agonist. Proc Natl Acad Sci U S A 2004; 101:16727-32. [PMID: 15557002 PMCID: PMC534730 DOI: 10.1073/pnas.0407543101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin is a neuropeptide with a wide variety of biological functions. Few nonpeptide ligands, capable of activating galanin receptors, are available today. Based on known pharmacophores of galanin and the tripeptidomimetic galnon, a combinatorial library was formulated, synthesized, and screened against the galanin receptor. An active compound, galmic, was identified and tested in vitro and in vivo for its affinity and efficacy at galanin receptors. The present work describes the total synthesis of galmic, the synthesis of its oxazole precursors, the coupling of the building blocks into a linear trimer, and the macrolactamization reaction.
Collapse
Affiliation(s)
- Susana Conde Ceide
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Guerrini S, Raybould HE, Anselmi L, Agazzi A, Cervio E, Reeve JR, Tonini M, Sternini C. Role of galanin receptor 1 in gastric motility in rat. Neurogastroenterol Motil 2004; 16:429-38. [PMID: 15305998 DOI: 10.1111/j.1365-2982.2004.00534.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Galanin actions are mediated by distinct galanin receptors (GAL-R), GAL-R1, -R2 and -R3. We investigated the role of GAL-R1 in gastric motility and the expression of GAL-R1 in the rat stomach. In vivo, in urethane-anaesthetized rats, galanin (equipotent for all GAL-Rs) induced a short inhibition of gastric motility, followed by increase in tonic and phasic gastric motility; the latter was significantly reduced by the GAL-R1 antagonist, RWJ-57408. Galanin 1-16 (high affinity for GAL-R1 and -R2) induced a long-lasting decrease of intragastric pressure, which was not modified by RWJ-57408. In vitro, galanin and galanin 1-16 induced increase of intragastric pressure that was not affected by RWJ-57408. Tetrodotoxin (TTX) did not suppress the galanin excitatory effect, whereas the effect of galanin 1-16 on gastric contraction was increased by TTX- or N-nitro-L-arginine, an inhibitor of nitric oxide synthase. GAL-R1 immunoreactivity was localized to cholinergic and tachykinergic neurons and to neurons immunoreactive for nitric oxide synthase or vasoactive intestinal polypeptide. This study suggests that an extrinsic GAL-R1 pathway mediates the galanin excitatory action, whereas an extrinsic, non GAL-R1 pathway is likely to mediate the galanin inhibitory effect in vivo. GAL-R1 intrinsic neurons do not appear to play a major role in the control of gastric motility.
Collapse
Affiliation(s)
- S Guerrini
- CURE Digestive Diseases Research Center, Division of Digestive Diseases, VAGLAHS, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bartfai T, Lu X, Badie-Mahdavi H, Barr AM, Mazarati A, Hua XY, Yaksh T, Haberhauer G, Ceide SC, Trembleau L, Somogyi L, Kröck L, Rebek J. Galmic, a nonpeptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proc Natl Acad Sci U S A 2004; 101:10470-5. [PMID: 15240875 PMCID: PMC478593 DOI: 10.1073/pnas.0403802101] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pharmacological exploitation of the galanin receptors as drug targets for treatment of epilepsy, depression, and pain has been hampered by the lack of workable compounds for medicinal chemists from random screening of large chemical libraries. The present work uses the tripeptidomimetic galnon and displays its presumed pharmacophores on a rigid molecular scaffold. The scaffold is related to marine natural products and presents three functional groups near one another in space, in a manner reminiscent of a protein surface. An active compound, Galmic, was identified from a small synthetic library and tested in vitro and in vivo for its affinity and efficacy at galanin receptors. Galmic has micromolar affinity for GalR1 receptors (Ki = 34.2 microM) and virtually no affinity for GalR2 receptors. In vitro, Galmic, like galanin, suppresses long-term potentiation in the dentate gyrus; it blocks status epilepticus when injected intrahippocampally or administered i.p. Galmic applied i.p. shows antidepressant-like effects in the forced-swim test, and it is a potent inhibitor of flinching behavior in the inflammatory pain model induced by formalin injection. These data further implicate brain and spinal cord galanin receptors as drug targets and provide an example of a systemically active compound based on a scaffold that mimics protein surfaces.
Collapse
Affiliation(s)
- Tamas Bartfai
- Department of Neuropharmacology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sternini C, Anselmi L, Guerrini S, Cervio E, Pham T, Balestra B, Vicini R, Baiardi P, D'agostino GL, Tonini M. Role of galanin receptor 1 in peristaltic activity in the guinea pig ileum. Neuroscience 2004; 125:103-12. [PMID: 15051149 DOI: 10.1016/j.neuroscience.2003.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2003] [Indexed: 11/23/2022]
Abstract
Galanin effects are mediated by distinct receptors, galanin receptor 1 (GAL-R1), GAL-R2 and GAL-R3. Here, we analyzed 1) the role of GAL-R1 in cholinergic transmission and peristalsis in the guinea-pig ileum using longitudinal muscle-myenteric plexus preparations and intact segments of the ileum in organ bath, and 2) the distribution of GAL-R1 immunoreactivity in the myenteric plexus with immunohistochemistry and confocal microscopy. Galanin inhibited electrically stimulated contractions of longitudinal muscle-myenteric plexus preparations with a biphasic curve. Desensitization with 1 microM galanin suppressed the high potency phase of the curve, whereas the GAL-R1 antagonist, RWJ-57408 (1 microM), inhibited the low potency phase. Galanin (3 microM) reduced the longitudinal muscle contraction and the peak pressure, and decreased the compliance of the circular muscle. All these effects were antagonized by RWJ-57408 (1 or 10 microM). RWJ-57408 (10 microM) per se did not affect peristalsis parameters in normal conditions, nor when peristalsis efficiency was reduced by partial nicotinic transmission blockade with hexamethonium. In the myenteric plexus, GAL-R1 immunoreactivity was localized to neurons and to fibers projecting within the plexus and to the muscle. GAL-R1 was expressed mostly by cholinergic neurons and by some neurons containing vasoactive intestinal polypeptide or nitric oxide synthase. This study indicates that galanin inhibits cholinergic transmission to the longitudinal muscle via two separate receptors; GAL-R1 mediates the low potency phase. The reduced peristalsis efficiency could be explained by inhibition of the cholinergic drive, whereas the decreased compliance is probably due to inhibition of descending neurons and/or to the activation of an excitatory muscular receptor. Endogenous galanin does not appear to affect neuronal pathways subserving peristalsis in physiologic conditions via GAL-R1.
Collapse
Affiliation(s)
- C Sternini
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Holmes A, Heilig M, Rupniak NMJ, Steckler T, Griebel G. Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003; 24:580-8. [PMID: 14607081 DOI: 10.1016/j.tips.2003.09.011] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The health burden of stress-related diseases, including depression and anxiety disorders, is rapidly increasing, whereas the range of available pharmacotherapies to treat these disorders is limited and suboptimal with regard to efficacy and tolerability. Recent findings support a major role for neuropeptides in mediating the response to stress and thereby identify neuropeptide systems as potential novel therapeutic targets for the treatment of depression and anxiety disorders. In preclinical models, pharmacological and/or genetic manipulation of substance P, corticotropin-releasing factor (CRF), vasopressin, neuropeptide Y and galanin function alters anxiety- and depression-related responses. Recently, specific and highly potent small-molecule neuropeptide receptor agonists and antagonists have been developed that can readily cross the blood-brain barrier. Clinical assessment of several compounds is currently underway, with antidepressant efficacy confirmed in double-blind, placebo-controlled trials of tachykinin NK(1) (substance P) receptor antagonists, and preliminary evidence of antidepressant activity in an open-label trial of a CRF(1) receptor antagonist.
Collapse
MESH Headings
- Animals
- Antidiuretic Hormone Receptor Antagonists
- Anxiety Disorders/drug therapy
- Anxiety Disorders/metabolism
- Clinical Trials as Topic
- Depressive Disorder/drug therapy
- Depressive Disorder/metabolism
- Humans
- Neurokinin-1 Receptor Antagonists
- Receptors, Corticotropin-Releasing Hormone/agonists
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Galanin/agonists
- Receptors, Galanin/antagonists & inhibitors
- Receptors, Galanin/metabolism
- Receptors, Neurokinin-1/agonists
- Receptors, Neurokinin-1/metabolism
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide Y/agonists
- Receptors, Neuropeptide Y/antagonists & inhibitors
- Receptors, Neuropeptide Y/metabolism
- Receptors, Vasopressin/agonists
- Receptors, Vasopressin/metabolism
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Science and Genetics, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
42
|
Holmes A, Kinney JW, Wrenn CC, Li Q, Yang RJ, Ma L, Vishwanath J, Saavedra MC, Innerfield CE, Jacoby AS, Shine J, Iismaa TP, Crawley JN. Galanin GAL-R1 receptor null mutant mice display increased anxiety-like behavior specific to the elevated plus-maze. Neuropsychopharmacology 2003; 28:1031-44. [PMID: 12700679 DOI: 10.1038/sj.npp.1300164] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neuropeptide galanin coexists with norepinephrine and serotonin in neural systems mediating emotion. Previous findings suggested that galanin modulates anxiety-related behaviors in rodents. Three galanin receptor subtypes have been cloned; however, understanding their functions has been limited by the lack of galanin receptor subtype-selective ligands. To study the role of the galanin GAL-R1 receptor subtype in mediating anxiety-related behavior, we generated mice with a null mutation in the Galr1 gene. GAL-R1 -/- are viable and show no abnormalities in health, neurological reflexes, motoric functions, or sensory abilities. On a battery of tests for anxiety-like behavior, GAL-R1 -/- showed increased anxiety-like behavior on the elevated plus-maze test. Anxiety-related behaviors on the light/dark exploration, emergence, and open field tests were normal in GAL-R1 -/-. This test-specific anxiety-like phenotype was confirmed in a second, independent cohort of GAL-R1 null mutant mice and +/+ controls. Principal components factor analysis of behavioral scores from 279 mice suggested that anxiety-like behavior on the elevated plus-maze was qualitatively distinct from behavior on other tests in the battery. In addition, exposure to the elevated plus-maze produced a significantly greater neuroendocrine response than exposure to the light/dark exploration test, as analyzed in normal C57BL/6J mice. These behavioral findings in the first galanin receptor null mutant mouse are consistent with the hypothesis that galanin exerts anxiolytic actions via the GAL-R1 receptor under conditions of relatively high stress.
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Genomics, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Expression of the neuropeptide galanin is markedly upregulated within the adult dorsal root ganglion (DRG) after peripheral nerve injury. We demonstrated previously that the rate of peripheral nerve regeneration is reduced in galanin knock-out mice, with similar deficits observed in neurite outgrowth from cultured mutant DRG neurons. Here, we show that the addition of galanin peptide significantly enhanced neurite outgrowth from wild-type sensory neurons and fully rescued the observed deficits in mutant cultures. Furthermore, neurite outgrowth in wild-type cultures was reduced to levels observed in the mutants by the addition of the galanin antagonist M35 [galanin(1-13)bradykinin(2-9)]. Study of the first galanin receptor (GalR1) knock-out animals demonstrated no differences in neurite outgrowth compared with wild-type animals. Similarly, use of a GalR1-specific antagonist had no effect on neuritogenesis. In contrast, use of a GalR2-specific agonist had equipotent effects on neuritogenesis to galanin peptide, and inhibition of PKC reduced neurite outgrowth from wild-type sensory neurons to that observed in galanin knock-out cultures. These results demonstrate that adult sensory neurons are dependent, in part, on galanin for neurite extension and that this crucial physiological process is mediated by activation of the GalR2 receptor in a PKC-dependent manner.
Collapse
|
44
|
D'Andrea MR, Lee DH, Wang HY, Nagele RG. Targeting intracellular A?42 for Alzheimer's disease drug discovery. Drug Dev Res 2002. [DOI: 10.1002/ddr.10075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Saar K, Mazarati AM, Mahlapuu R, Hallnemo G, Soomets U, Kilk K, Hellberg S, Pooga M, Tolf BR, Shi TS, Hökfelt T, Wasterlain C, Bartfai T, Langel U. Anticonvulsant activity of a nonpeptide galanin receptor agonist. Proc Natl Acad Sci U S A 2002; 99:7136-41. [PMID: 12011470 PMCID: PMC124541 DOI: 10.1073/pnas.102163499] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin is a neuropeptide with a wide variety of biological functions, including that of a strong endogenous anticonvulsant. No nonpeptide ligands, capable of activating galanin receptors, are available today. Based on known pharmacophores of galanin, a combinatorial library was designed, synthesized, and screened at the rat hippocampal galanin receptor. A low molecular weight galanin receptor agonist, 7-((9-fluorenylmethoxycarbonyl)cyclohexylalanyllysyl)amino-4-methylcoumarin (galnon) was found to displace (125)I-galanin with micromolar affinity at Bowes cellular and rat hippocampal membranes. Autoradiographic binding assay on rat spinal cord sections confirmed the ability of galnon to displace (125)I-galanin from its binding sites. Galnon inhibited adenylate cyclase activity, suggesting an agonist action at galanin receptors. When injected i.p. galnon reduced the severity and increased the latency of pentylenetetrazole-induced seizures in mice and reversed the proconvulsant effects of the galanin receptor antagonist M35, injected into a lateral ventricle. Intrahippocampal injection of galnon also shortened the duration of self-sustaining status epilepticus in rats, confirming its agonist properties in vivo. Pretreatment of rats with antisense peptide nucleic acid targeted to galanin receptor type 1 mRNA abolished the effect of galnon, suggesting mediation of its anticonvulsant properties through this receptor subtype. These findings introduce a systemically active nonpeptide galanin agonist anticonvulsant.
Collapse
Affiliation(s)
- Külliki Saar
- Department of Neurochemistry and Neurotoxicology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gundlach AL. Galanin/GALP and galanin receptors: role in central control of feeding, body weight/obesity and reproduction? Eur J Pharmacol 2002; 440:255-68. [PMID: 12007540 DOI: 10.1016/s0014-2999(02)01433-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scientific and commercial pharmacological interest in the role of galanin and galanin receptors in the regulation of food intake, energy balance, and obesity has waned recently, following initial enthusiasm during the 1980-1990s. It has been replaced by efforts to understand the role of newly discovered peptide systems such as the hypocretin/orexins, melanocortins and cocaine- and amphetamine-regulated transcript (CART) and their relationship to the important hormones, leptin and insulin. Thus, while numerous studies have revealed the ability of galanin to stimulate food intake via actions at sites within the hypothalamus, and shown reliable changes in hypothalamic galanin synthesis in response to food ingestion; findings including the lack of a 'body weight/obesity' phenotype in galanin transgenic mouse strains and a lack of agonists/antagonists for galanin receptor subtypes have probably served to reduce enthusiasm. However, as more is learnt about the general and galanin-related neurochemistry of brain pathways involved in feeding, metabolism and body weight control, the potential importance of galanin systems is again in focus. Studies of the newly discovered galanin family peptide, 'galanin-like peptide' (GALP), highlight the likely role of galanin peptides and receptors in the physiological coupling of body weight, adiposity and reproductive function. GALP is produced by a discrete population of neurons within the basomedial arcuate nucleus (and median eminence) that send projections to the anterior paraventricular nucleus and that make close contacts with leutinizing hormone-releasing hormone (LHRH) neurons in basal forebrain. Furthermore, GALP neurons express leptin receptors and respond to leptin treatment by increasing their expression of GALP mRNA. Centrally administered GALP activates LHRH-immunoreactive neurons and increases plasma LH levels. These findings suggest a direct stimulatory action of endogenous GALP on gonadotropin secretion via actions within the hypothalamus/basal forebrain, with leptin actions linking this system to body adipose levels.
Collapse
Affiliation(s)
- Andrew L Gundlach
- Howard Florey Institute of Experimental Physiology and Medicine, and Department of Medicine, Austin and Repatriation Medical Centre, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
47
|
Counts SE, Perez SE, Kahl U, Bartfai T, Bowser RP, Deecher DC, Mash DC, Crawley JN, Mufson EJ. Galanin: neurobiologic mechanisms and therapeutic potential for Alzheimer's disease. CNS DRUG REVIEWS 2001; 7:445-70. [PMID: 11830760 PMCID: PMC6741671 DOI: 10.1111/j.1527-3458.2001.tb00210.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuropeptide galanin (GAL) is widely distributed in the mammalian CNS. Several lines of evidence suggest that GAL may play a critical role in cognitive processes such as memory and attention through an inhibitory modulation of cholinergic basal forebrain activity. Furthermore, GAL fibers hyperinnervate remaining cholinergic basal forebrain neurons in Alzheimer's disease (AD). This suggests that GAL activity impacts cholinergic dysfunction in advanced AD. Pharmacological and in vitro autoradiographic studies indicate the presence of heterogeneous populations of GAL receptor (GALR) sites in the basal forebrain which bind GAL with both high and low affinity. Interestingly, we have recently observed that GALR binding sites increase in the anterior basal forebrain in late-stage AD. Three G protein-coupled GALRs have been identified to date that signal through a diverse array of effector pathways in vitro, including adenylyl cyclase inhibition and phospholipase C activation. The repertoire and distribution of GALR expression in the basal forebrain remains unknown, as does the nature of GAL and GALR plasticity in the AD basal forebrain. Recently, GAL knockout and overexpressing transgenic mice have been generated to facilitate our understanding of GAL activity in basal forebrain function. GAL knockout mice result in fewer cholinergic basal forebrain neurons and memory deficits. On the other hand, mice overexpressing GAL display hyperinnervation of basal forebrain and memory deficits. These data highlight the need to explore further the putative mechanisms by which GAL signaling might be beneficial or deleterious for cholinergic cell survival and activity within basal forebrain. This information will be critical to understanding whether pharmacological manipulation of GALRs would be effective for the amelioration of cognitive deficits in AD.
Collapse
Affiliation(s)
- Scott E. Counts
- Department of Neurological Sciences, Rush‐Presbyterian‐St. Luke's Medical Center, Chicago, IL, USA
| | - Sylvia E. Perez
- Department of Neurological Sciences, Rush‐Presbyterian‐St. Luke's Medical Center, Chicago, IL, USA
| | - Ulrika Kahl
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tamas Bartfai
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert P. Bowser
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Deborah C. Mash
- Department of Neurology, University of Miami School of Medicine, Miami, FL, USA
| | - Jacqueline N. Crawley
- Section on Behavioral Neuropharmacology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush‐Presbyterian‐St. Luke's Medical Center, Chicago, IL, USA
| |
Collapse
|
48
|
Liu HX, Brumovsky P, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, Hökfelt T. Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: selective actions via GalR1 and GalR2 receptors. Proc Natl Acad Sci U S A 2001; 98:9960-4. [PMID: 11481429 PMCID: PMC55560 DOI: 10.1073/pnas.161293598] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2001] [Indexed: 11/18/2022] Open
Abstract
Galanin is a 29-aa neuropeptide with a complex role in pain processing. Several galanin receptor subtypes are present in dorsal root ganglia and spinal cord with a differential distribution. Here, we describe a generation of a specific galanin R2 (GalR2) agonist, AR-M1896, and its application in studies of a rat neuropathic pain model (Bennett). The results show that in normal rats mechanical and cold allodynia of the hindpaw are induced after intrathecal infusion of low-dose galanin (25 ng per 0.5 microl/h). The same effect is seen with equimolar doses of AR-M1896 or AR-M961, an agonist both at GalR1 and GalR2 receptors. In allodynic Bennett model rats, the mechanical threshold increased dose-dependently after intrathecal injection of a high dose of AR-M961, whereas no effect was observed in the control or AR-M1896 group. No effect of either of the two compounds was observed in nonallodynic Bennett model rats. These data indicate that a low dose of galanin has a nociceptive role at the spinal cord level mediated by GalR2 receptors, whereas the antiallodynic effect of high-dose galanin on neuropathic pain is mediated by the GalR1 receptors. Thus, a selective GalR1 agonist may be used to treat neuropathic pain.
Collapse
MESH Headings
- Analgesics, Non-Narcotic/administration & dosage
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Non-Narcotic/therapeutic use
- Animals
- Causalgia/chemically induced
- Causalgia/drug therapy
- Causalgia/physiopathology
- Cold Temperature/adverse effects
- Dose-Response Relationship, Drug
- Galanin/administration & dosage
- Galanin/chemistry
- Galanin/pharmacology
- Galanin/physiology
- Galanin/therapeutic use
- Galanin/toxicity
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/drug effects
- Hindlimb/innervation
- Hyperesthesia/chemically induced
- Hyperesthesia/drug therapy
- Hyperesthesia/etiology
- Hyperesthesia/physiopathology
- Infusion Pumps, Implantable
- Male
- Models, Animal
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/physiology
- Pain Threshold/drug effects
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Protein Isoforms/agonists
- Protein Isoforms/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Galanin
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/physiology
- Sciatic Nerve/injuries
- Sciatica/drug therapy
- Sciatica/etiology
- Sciatica/physiopathology
- Spinal Cord/chemistry
- Spinal Cord/physiopathology
- Stress, Mechanical
- Substrate Specificity
Collapse
Affiliation(s)
- H X Liu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|