1
|
Laryea MK, Boadu Ampomah G, Ekuadzi E, Dickson RA, Borquaye LS. Antimalarial compounds from the climbing stems of salacia debilis. Nat Prod Res 2024; 38:4034-4043. [PMID: 37867307 DOI: 10.1080/14786419.2023.2272288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023]
Abstract
Salacia debilis Walp., (Celastraceae) is used traditionally in West Africa for the treatment of malaria. However, no scientific reports validating these effects and its active constituents are on record. Therefore, this study is aimed at evaluating the antimalarial effects, of its ethanolic extract and isolated compounds against Plasmodium falciparum 3D7 and P. berghei ANKA strains. Using chromatographic, spectrometric and spectroscopic techniques three compounds were isolated and characterised. The extract of S. debilis was active against P. falciparum 3D7, in an in vitro assay with IC50 of 12.0 ± 0.32 µg/ml. The three isolated compounds, namely 1,10-dihydroxy-6H-benzo[c]chromen-6-one (1), 8- hydroxy-3,4-dimethoxydibenzo[b,d]furan-1-carboxylic acid (2) and benzyl-2-methoxybenzoate (3), also showed antimalarial activity against Plasmodium berghei ANKA strain in curative and suppressive in vivo assays. The ethanolic extract and isolated compounds of S. debilis possess antimalarial effects. The isolated compounds may be responsible, at least in part, for the observed activities of the extract.
Collapse
Affiliation(s)
- Michael Konney Laryea
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gilbert Boadu Ampomah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edmund Ekuadzi
- Department of Pharmacognosy, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rita Akosua Dickson
- Department of Pharmacognosy, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
2
|
Hao EJ, Zhao Y, Yu M, Li XJ, Wang KX, Su FY, Liang YR, Wang Y, Guo HM. Discovery, Synthesis, and Activity Evaluation of Novel Five-Membered Sulfur-Containing Heterocyclic Nucleosides as Potential Anticancer Agents In Vitro and In Vivo. J Med Chem 2024. [PMID: 39016216 DOI: 10.1021/acs.jmedchem.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
A series of novel five-membered sulfur-containing heterocyclic nucleoside derivatives were designed, synthesized, and evaluated for their anticancer activities in vitro and in vivo. The structure-activity relationship studies revealed that some of them showed obvious antitumor activities in several cancer cell lines. Among them, compound 22o exhibited remarkable antiproliferative activity against HeLa cells and was more potent than cisplatin (IC50 = 2.80 vs 7.99 μM). Furthermore, mechanism studies indicated that 22o inhibited cell metastasis, induced cell apoptosis, decreased mitochondrial membrane potential, and activated autophagy through the PI3K-Akt-mTOR signaling pathway. Moreover, drug affinity responsive target stability and the cellular thermal shift assay revealed that 22o targeted RPS6 and inhibited its phosphorylation. Importantly, 22o inhibited the growth of the HeLa xenograft mouse model with a low systemic toxicity. These results indicated that 22o may serve as potent anticancer agents that merit further attention in future anticancer drug discovery.
Collapse
Affiliation(s)
- Er-Jun Hao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yan Zhao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xian-Jia Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ke-Xin Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fu-Ying Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu-Ru Liang
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Takashima K, Nakamura S, Nagayama M, Marumoto S, Ishikawa F, Xie W, Nakanishi I, Muraoka O, Morikawa T, Tanabe G. Role of the thiosugar ring in the inhibitory activity of salacinol, a potent natural α-glucosidase inhibitor. RSC Adv 2024; 14:4471-4481. [PMID: 38312722 PMCID: PMC10835759 DOI: 10.1039/d3ra08485j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
Herein, ring-cleaved (24) and truncated (25) analogues of an azasugar, 1-deoxynojirimycin (23), exhibited inhibitory activity (Ki = 4-10 μM) equal to that of the parent compound (1, Ki = 14 μM). Based on this structure-activity relationship (SAR), four ring-cleaved (26a-26c and 27c) and three truncated (28a-28c) analogues of salacinol (1), a potent thiosugar-ring-containing α-glucosidase inhibitor, were synthesised. Bioassay results revealed that all the synthetics were inactive, indicating that the 5-membered thiosugar ring of 1 played an essential role in the potent activities of sulfonium-type inhibitors. The present findings are interesting and important in understanding the function of salacinol, considering that the observed inhibitory activity trend was contrary to the SAR observed in aza-compounds (23, 24, and 25) in a previous study, which suggested that the cyclic structure did not contribute to their strong inhibitory activity.
Collapse
Affiliation(s)
- Katsuki Takashima
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Shinya Nakamura
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Maiko Nagayama
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Shinsuke Marumoto
- Joint Research Centre, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Weijia Xie
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University Nanjing 2100009 P. R. China
| | - Isao Nakanishi
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
- Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| |
Collapse
|
4
|
Jung J, Park J, Lee M, Kim J, Oh D, Jun W, Kim OK, Lee J. Salacia reticulata Extract Suppresses Fat Accumulation by Regulating Lipid Metabolism. Foods 2023; 12:3149. [PMID: 37685080 PMCID: PMC10487061 DOI: 10.3390/foods12173149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The excessive storage of triglycerides in adipose tissue is a characteristic feature of obesity, which arises from an imbalance between energy intake and expenditure. In this study, we aimed to explore the potential anti-obesity effects of Salacia reticulata extracts (SC) in a high-fat diet (HFD)-induced in obese mice and 3T3-L1 adipocytes, with a specific focus on understanding the underlying lipid mechanisms. Mice were fed with a normal diet (NC; normal control), HFD (60% high-fat diet), Met (HFD containing metformin 250 mg/kg b.w.), SC25 (HFD containing SC 25 mg/kg b.w.), SC50 (HFD containing SC 50 mg/kg b.w.), or SC 100 (HFD containing SC 100 mg/kg b.w.) for 12 weeks. Notably, SC supplementation led to significant reductions in body weight gain, adipose tissue weight, adipose tissue mass, and adipocyte size in HFD-fed mice. Furthermore, SC supplementation exerted inhibitory effects on the adipogenesis and lipogenesis pathways while promoting lipolysis and thermogenesis pathways in the adipose tissues of HFD-fed mice. In vitro experiments using 3T3-L1 cells demonstrated that SC treatment during the differentiation phase suppressed adipogenesis and lipogenesis, whereas SC treatment after differentiation, activated lipolysis and thermogenesis. Collectively, these findings indicate that SC exhibits a direct influence on the lipid metabolism of adipocytes, making it an effective candidate for weight loss interventions.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea; (J.J.); (M.L.)
| | - Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea; (J.P.); (W.J.)
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea; (J.J.); (M.L.)
| | - Jinhak Kim
- R&D Division, Daehan Chemtech Co., Ltd., Seoul 01811, Republic of Korea; (J.K.); (D.O.)
| | - Dongchan Oh
- R&D Division, Daehan Chemtech Co., Ltd., Seoul 01811, Republic of Korea; (J.K.); (D.O.)
| | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea; (J.P.); (W.J.)
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea; (J.P.); (W.J.)
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea; (J.J.); (M.L.)
| |
Collapse
|
5
|
Lu L, Chen J, Tao W, Wang Z, Liu D, Zhou J, Wu X, Sun H, Li W, Tanabe G, Muraoka O, Zhao B, Wu L, Xie W. Design and Synthesis of Sulfonium Derivatives: A Novel Class of α-Glucosidase Inhibitors with Potent In Vivo Antihyperglycemic Activities. J Med Chem 2023; 66:3484-3498. [PMID: 36812150 DOI: 10.1021/acs.jmedchem.2c01984] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We report the first attempt of double-spot structural modification on a side-chain moiety of sulfonium-type α-glucosidase inhibitors isolated from genus Salacia. A series of sulfonium salts with benzylidene acetal linkage at the C3' and C5' positions were designed and synthesized. In vitro enzyme inhibition evaluation showed that compounds with a strong electron-withdrawing group attached at the ortho position on the phenyl ring present stronger inhibitory activities. Notably, the most potent inhibitor 21b (1.0 mpk) can exhibit excellent hypoglycemic effects in mice, which can still compete with those of acarbose (20.0 mpk). Molecular docking of 21b demonstrated that besides conventional interacting patterns, the newly introduced benzylidene acetal moiety plays an important role in anchoring the whole molecule in a concave pocket of the enzyme. The successful identification of 21b as a lead compound for new drug discovery may provide a means for structure modification and diversification of the distinguished sulfonium-type α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jingyi Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenxiang Tao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhimei Wang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dan Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiahui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haopeng Sun
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Genzoh Tanabe
- Faculty of Pharmacy Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Osamu Muraoka
- Faculty of Pharmacy Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Bo Zhao
- Department of Chemical and Material Science, Nanjing Normal University, Nanjing 210009, P. R. China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weijia Xie
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
6
|
Morikawa T. Pharmaceutical Food Science: Search for Bio-Functional Molecules Obtained from Natural Resources to Prevent and Ameliorate Lifestyle Diseases. Chem Pharm Bull (Tokyo) 2023; 71:756-765. [PMID: 37779077 DOI: 10.1248/cpb.c23-00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In this review, our resent pharmaceutical food science research for bio-functional molecules obtained from natural resources that contribute to i) suppression of postprandial blood glucose elevation and/or improvement of glucose tolerance and ii) reduction of visceral fat accumulation and improvement of lipid metabolism were summarized. Based on studies using MONOTORI science, salacinol (1), neokotalanol (4), and trans-tiliroside (20) have been approved or notified by the Consumer Affairs Agency in Japan as functional substances in food with health claims, Food for Specified Health Use and Food with Functional Claims.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University
- Antiaging Center, Kindai University
| |
Collapse
|
7
|
Ding Y, Chen J, Liu D, Zhou J, Tao W, Yang Z, Tanabe G, Muraoka O, Xie W. Synthetic studies on naturally occurring sulfonium-type α-glucosidase inhibitors: progress and perspective. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ying Ding
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jingyi Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Dan Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jiahui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Wenxiang Tao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Zhizhong Yang
- SINOPEC Nanjing chemical industries CO., LTD, Nanjing, P. R. China
| | | | | | - Weijia Xie
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
8
|
Rodrigues L, Tilve SG, Majik MS. Synthetic access to thiolane-based therapeutics and biological activity studies. Eur J Med Chem 2021; 224:113659. [PMID: 34237621 DOI: 10.1016/j.ejmech.2021.113659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022]
Abstract
Secondary metabolites isolated from bioactive extracts of natural sources iteratively pioneer the research in drug discovery. Modern medicine is often inspired by bioactive natural products or the bio-functional motifs embedded in them. One of such consequential bio-functional motifs is the thiolane unit. Thiolane-based bioactive organic compounds have manifested a plethora of astonishing biological activities such as anti-viral, anti-cancer, anti-platelet, α-glucosidase inhibition, anti-HIV, immunosuppressive and anti-microbial activities which renders them excellent candidates in drug discovery. Hence, to scale up the accessibility of thiolane-based therapeutics its chemical syntheses is essential and in addition; a sneak peek in its biosynthesis would give a perspective for developing biomimetic syntheses. This review highlights the development of important thiolane-based therapeutics such as (i) Nuphar sesquiterpene thioalkaloids (ii) Thiosugar sulphonium salts from Salacia sp. (iii) Albomycins (iv) Thiolane-based therapeutics from Allium sp. (v) 4'-thionucleosides summarizing various synthetic strategies, biosynthesis and biological activity studies, covering literature till 2021. We anticipate that this review will inspire chemists and biochemists to take up the challenges encountered in the synthesis and development of thiolane-based therapeutics.
Collapse
Affiliation(s)
- Lima Rodrigues
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403 206, India
| | - Santosh G Tilve
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403 206, India
| | - Mahesh S Majik
- Department of Chemistry, Government College of Arts, Science and Commerce, Khandola Marcela, Goa, 403 107, India; Directorate of Higher Education, Porvorim, Goa 403 521, India.
| |
Collapse
|
9
|
Morikawa T, Ninomiya K, Tanabe G, Matsuda H, Yoshikawa M, Muraoka O. A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia. J Nat Med 2021; 75:449-466. [PMID: 33900535 PMCID: PMC8159842 DOI: 10.1007/s11418-021-01522-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
During our studies characterizing functional substances from food resources for the prevention and treatment of lifestyle-related diseases, we isolated the active constituents, salacinol (1) and neokotalanol (4), and related thiosugar sulfoniums, from the roots and stems of the genus Salacia plants [Celastraceae (Hippocrateaceae)] such as Salacia reticulata Wight, S. oblonga Wall., and S. chinensis L., and observed their antidiabetic effects. These plant materials have been used traditionally in Ayurvedic medicine as a specific remedy at the early stage of diabetes, and have been extensively consumed in Japan, the United States, and other countries as a food supplement for the prevention of obesity and diabetes. Here, we review our studies on the antidiabetic effects of plants from the genus Salacia, from basic chemical and pharmacological research to their application and development as new functional food ingredients.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Okayama, 703-8516, Japan
| | - Genzoh Tanabe
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Hisashi Matsuda
- Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Masayuki Yoshikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
10
|
Ishikawa F, Hirano A, Yoshimori Y, Nishida K, Nakamura S, Takashima K, Marumoto S, Ninomiya K, Nakanishi I, Xie W, Morikawa T, Muraoka O, Tanabe G. Ligand compatibility of salacinol-type α-glucosidase inhibitors toward the GH31 family. RSC Adv 2021; 11:3221-3225. [PMID: 35424309 PMCID: PMC8694024 DOI: 10.1039/d0ra10038b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
We show that salacinol-type α-glucosidase inhibitors are ligand-compatible with the GH 31 family. Salacinol and its 3′-O-benzylated analogs inhibit human lysosomal α-glucosidase at submicromolar levels. Simple structure-activity relationship studies reveal that the salacinol side-chain stereochemistry significantly influences binding to GH31 α-glucosidases. Salacinol-type α-glucosidase inhibitors are ligand-compatible with the GH 31 family. Salacinol and its 3′-O-benzylated analogs inhibit human lysosomal α-glucosidase at submicromolar levels.![]()
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Pharmaceutical Organic Chemistry Lab, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Aiko Hirano
- Pharmaceutical Organic Chemistry Lab, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Yuuto Yoshimori
- Pharmaceutical Organic Chemistry Lab, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Kana Nishida
- Pharmaceutical Organic Chemistry Lab, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Shinya Nakamura
- Computational Drug Design and Discovery Lab, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Katsuki Takashima
- Pharmaceutical Organic Chemistry Lab, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Shinsuke Marumoto
- Joint Research Center, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Isao Nakanishi
- Computational Drug Design and Discovery Lab, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Weijia Xie
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University Nanjing 2100009 P. R. China
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Genzoh Tanabe
- Pharmaceutical Organic Chemistry Lab, Faculty of Pharmacy, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan.,Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
11
|
Huang KX, Xie MS, Sang JW, Qu GR, Guo HM. Asymmetric Synthesis of 3-Amine-tetrahydrothiophenes with a Quaternary Stereocenter via Nickel(II)/Trisoxazoline-Catalyzed Sulfa-Michael/Aldol Cascade Reaction: Divergent Access to Chiral Thionucleosides. Org Lett 2021; 23:81-86. [PMID: 33332122 DOI: 10.1021/acs.orglett.0c03747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A generally useful Ni(II)/trisoxazoline-catalyzed asymmetric sulfa-Michael/Aldol cascade reaction is introduced to access chiral 3-amine-tetrahydrothiophene derivatives containing a quaternary stereocenter (32 examples, up to 93% yield, > 20:1 dr and 92% ee). Moreover, the novel strategy offers an efficient and convenient approach to construct chiral thionucleoside analogues.
Collapse
Affiliation(s)
- Ke-Xin Huang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, Henan 473000, China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ji-Wei Sang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
Li S, Tan J, Li X. Synthesis of Novel
4ʹ-Hydroxy-2ʹ,3-diaryl-3,4,4ʹ,5ʹ-tetrahydro-2H,2ʹH,6H-spiro[thiazolo[3,2-a][1,3,5]triazine-7,3ʹ-thiophen]-6-one Derivatives via Sulfa-Michael/Aldol
Cascade Reactions. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Elongation of the side chain by linear alkyl groups increases the potency of salacinol, a potent α-glucosidase inhibitor from the Ayurvedic traditional medicine "Salacia," against human intestinal maltase. Bioorg Med Chem Lett 2020; 33:127751. [PMID: 33347966 DOI: 10.1016/j.bmcl.2020.127751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022]
Abstract
Four chain-extended analogs (12a-12d) and two related de-O-sulfonated analogs (13a and 13c) by introducing alkyl groups (a: R = C3H7, b R = C6H13, c: R = C8H17, d: R = C10H21) to the side chains of salacinol (1), a natural α-glucosidase inhibitor from Ayurvedic traditional medicine "Salacia", were synthesized. The α-glucosidase inhibitory activities of all the synthesized analogs were evaluated in vitro. Against human intestinal maltase, the inhibitory activities of 12a and 13a with seven-carbon side chain were equal to that of 1. In contrast, analogs (12b-12d, and 13c) exhibited higher level of inhibitory activity against the same enzyme than 1 and had equal or higher potency than those of the clinically used anti-diabetics, voglibose, acarbose, and miglitol. Thus, elongation of the side chains of 1 was effective for specifically increasing the inhibitory activity against human intestinal maltase.
Collapse
|
14
|
Neobavaisoflavone Inhibits Melanogenesis through the Regulation of Akt/GSK-3β and MEK/ERK Pathways in B16F10 Cells and a Reconstructed Human 3D Skin Model. Molecules 2020; 25:molecules25112683. [PMID: 32527040 PMCID: PMC7321173 DOI: 10.3390/molecules25112683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies have confirmed the anti-melanogenic effect of the aerial part of Pueraria lobata, however, due to its inherent color, P. lobata has limited commercial use. In this study, an extract (GALM-DC) of the aerial part of P. lobata having improved color by the use of activated carbon was obtained. Furthermore, the active compound neobavaisoflavone (NBI) was identified from GALM-DC. The effect of NBI on melanogenesis, tyrosinase activity, α-glucosidase activity, and mechanism of action in melanocytes was investigated. Tyrosinase activity, melanin contents and the expression of melanin-related genes and proteins were determined in B16F10 cells. NBI reduced melanin synthesis and tyrosinase activity. Furthermore, NBI treatment reduced the mRNA and protein expression levels of MITF, TRP-1, and tyrosinase. NBI also works by phosphorylating and activating proteins that inhibit melanogenesis, such as GSK3β and ERK. Specific inhibitors of Akt/GSK-3β (LY294002) and MEK/ERK (PD98059) signaling prevented the inhibition of melanogenesis by NBI. NBI inhibited melanin production through the regulation of MEK/ERK and Akt/GSK-3β signaling pathways in α-MSH-stimulated B16F10 cells. NBI suppresses tyrosinase activity and melanogenesis through inhibition of α-glucosidase activity. Besides, NBI significantly reduced melanogenesis in a reconstructed human 3D skin model. In conclusion, these results suggest that NBI has potential as a skin-whitening agent for hyperpigmentation.
Collapse
|
15
|
Iida A, Saito H, Amao A, Fujita T, Kato A, Ueda F. The effects of a nutritional supplement containing salacinol in neonatal Thoroughbred foals. J Equine Sci 2020; 31:11-15. [PMID: 32206034 PMCID: PMC7078488 DOI: 10.1294/jes.31.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/06/2020] [Indexed: 01/17/2023] Open
Abstract
A nutritional supplement containing salacinol (NSS) was administered to Thoroughbred foals daily beginning 21 days after birth, and clinical signs and intestinal microbiota were analyzed. The average number of days for which foals exhibited a fever between 21 and 110 days after birth was determined. The number of days was significantly reduced, by approximately 1/3, in the NSS group compared with the control group. Furthermore, improved weight gain was observed in the NSS group compared with the control group. By analyzing the intestinal microbiota, it was determined that the ratio of Clostridium cluster XIVa increased after 3 weeks of NSS administration. These results demonstrate that the daily administration of NSS might improve the intestinal environment of neonatal foals and be useful for health.
Collapse
Affiliation(s)
- Atsushi Iida
- Bio Science & Engineering Laboratory Research & Development Management Headquarters, FUJIFILM Corporation, Kanagawa 258-8577, Japan
| | - Hitomi Saito
- Bio Science & Engineering Laboratory Research & Development Management Headquarters, FUJIFILM Corporation, Kanagawa 258-8577, Japan
| | - Akihito Amao
- Highly Functional Materials Business Development Headquarters, FUJIFILM Corporation, Tokyo 107-0052, Japan
| | | | | | - Fumitaka Ueda
- Bio Science & Engineering Laboratory Research & Development Management Headquarters, FUJIFILM Corporation, Kanagawa 258-8577, Japan
| |
Collapse
|
16
|
Ueda A, Pi J, Makura Y, Tanaka M, Uenishi J. Stereoselective synthesis of (+)-5-thiosucrose and (+)-5-thioisosucrose. RSC Adv 2020; 10:9730-9735. [PMID: 35497214 PMCID: PMC9050154 DOI: 10.1039/d0ra01033b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/28/2020] [Indexed: 01/16/2023] Open
Abstract
(+)-5-Thiosucrose 1, a novel isosteric sulfur analog of sucrose, was synthesized stereoselectively for the first time via indirect β-d-fructofuranosidation involving selective β-d-psicofuranosidation, followed by stereo-inversion of the secondary hydroxy group at the C-3 position on the furanose ring. Glycosidation of protected 5-thio-d-glucose with a d-psicofuranosyl donor provided β-d-psicofuranosyl 5-thio-α-d-glucopyranoside and that with d-fructofuranosyl donor gave α-d-fructofuranosyl 5-thio-α-d-glucopyranoside. Two anomeric stereocenters of the glycosyl donor and acceptor were controlled correctly to provide a single disaccharide among four possible anomeric isomers in the glycosylation. Conversion of the resulting disaccharides afforded (+)-5-thiosucrose 1 and (+)-5-thioisosucrose 2 in excellent yields, respectively. Inhibitory activities of 1 and 2 against α-glucosidase in vitro were also examined.
Collapse
Affiliation(s)
- Atsushi Ueda
- Kyoto Pharmaceutical University Misasagi, Yamashina Kyoto 607-8412 Japan
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Jinhong Pi
- Kyoto Pharmaceutical University Misasagi, Yamashina Kyoto 607-8412 Japan
| | - Yui Makura
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Jun'ichi Uenishi
- Kyoto Pharmaceutical University Misasagi, Yamashina Kyoto 607-8412 Japan
- Graduate School of Pharmaceutical Sciences, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
17
|
Furman BL, Candasamy M, Bhattamisra SK, Veettil SK. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112264. [PMID: 31600561 DOI: 10.1016/j.jep.2019.112264] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/03/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The global problem of diabetes, together with the limited access of large numbers of patients to conventional antidiabetic medicines, continues to drive the search for new agents. Ancient Asian systems such as traditional Chinese medicine, Japanese Kampo medicine, and Indian Ayurvedic medicine, as well as African traditional medicine and many others have identified numerous plants reported anecdotally to treat diabetes; there are probably more than 800 such plants for which there is scientific evidence for their activity, mostly from studies using various models of diabetes in experimental animals. AIM OF THE REVIEW Rather than a comprehensive coverage of the literature, this article aims to identify discrepancies between findings in animal and human studies, and to highlight some of the problems in developing plant extract-based medicines that lower blood glucose in patients with diabetes, as well as to suggest potential ways forward. METHODS In addition to searching the 2018 PubMed literature using the terms 'extract AND blood glucose, a search of the whole literature was conducted using the terms 'plant extracts' AND 'blood glucose' AND 'diabetes' AND 'double blind' with 'clinical trials' as a filter. A third search using PubMed and Medline was undertaken for systematic reviews and meta-analyses investigating the effects of plant extracts on blood glucose/glycosylated haemoglobin in patients with relevant metabolic pathologies. FINDINGS Despite numerous animal studies demonstrating the effects of plant extracts on blood glucose, few randomised, double-blind, placebo-controlled trials have been conducted to confirm efficacy in treating humans with diabetes; there have been only a small number of systematic reviews with meta-analyses of clinical studies. Qualitative and quantitative discrepancies between animal and human clinical studies in some cases were marked; the factors contributing to this included variations in the products among different studies, the doses used, differences between animal models and the human disease, and the impact of concomitant therapy in patients, as well as differences in the duration of treatment, and the fact that treatment in animals may begin before or very soon after the induction of diabetes. CONCLUSION The potential afforded by natural products has not yet been realised in the context of treating diabetes mellitus. A systematic, coordinated, international effort is required to achieve the goal of providing anti-diabetic treatments derived from medicinal plants.
Collapse
Affiliation(s)
- Brian L Furman
- Strathclyde Institute of Pharmacy & Biomedical Sciences, 161, Cathedral Street Glasgow, G4 ORE, Scotland, UK.
| | - Mayuren Candasamy
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Subrat Kumar Bhattamisra
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Sajesh K Veettil
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Huang Y, Tang G, Ren D, Zeng JL, Li X. Synthesis of novel 2'-aryl-4'-hydroxy-4',5,5',6-tetrahydro- 2'H,8H-spiro[indolizine-7,3'-thiophen]-8-one derivatives via sulfa-Michael/aldol cascade reactions. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Morikawa T, Nagatomo A, Oka T, Miki Y, Taira N, Shibano-Kitahara M, Hori Y, Muraoka O, Ninomiya K. Glucose Tolerance-Improving Activity of Helichrysoside in Mice and Its Structural Requirements for Promoting Glucose and Lipid Metabolism. Int J Mol Sci 2019; 20:ijms20246322. [PMID: 31847420 PMCID: PMC6941121 DOI: 10.3390/ijms20246322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
An acylated flavonol glycoside, helichrysoside, at a dose of 10 mg/kg/day per os for 14 days, improved the glucose tolerance in mice without affecting the food intake, visceral fat weight, liver weight, and other plasma parameters. In this study, using hepatoblastoma-derived HepG2 cells, helichrysoside, trans-tiliroside, and kaempferol 3-O-β-d-glucopyranoside enhanced glucose consumption from the medium, but their aglycones and p-coumaric acid did not show this activity. In addition, several acylated flavonol glycosides were synthesized to clarify the structural requirements for lipid metabolism using HepG2 cells. The results showed that helichrysoside and related analogs significantly inhibited triglyceride (TG) accumulation in these cells. The inhibition by helichrysoside was more potent than that by other acylated flavonol glycosides, related flavonol glycosides, and organic acids. As for the TG metabolism-promoting activity in high glucose-pretreated HepG2 cells, helichrysoside, related analogs, and their aglycones were found to significantly reduce the TG contents in HepG2 cells. However, the desacyl flavonol glycosides and organic acids derived from the acyl groups did not exhibit an inhibitory impact on the TG contents in HepG2 cells. These results suggest that the existence of the acyl moiety at the 6′′ position in the D-glucopyranosyl part is essential for glucose and lipid metabolism-promoting activities.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- Correspondence: ; Tel.: +81-6-4307-4306; Fax: +81-6-6729-3577
| | - Akifumi Nagatomo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Takahiro Oka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Yoshinobu Miki
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Norihisa Taira
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Megumi Shibano-Kitahara
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Yuichiro Hori
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; (A.N.); (T.O.); (Y.M.); (N.T.); (M.S.-K.); (Y.H.); (O.M.); (K.N.)
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
20
|
Borthakur U, Saikia AK. Bismuth(III)‐Triflate‐Catalyzed Highly Diastereoselective Synthesis of Substituted Tetrahydrothiophene via Tandem Isomerization, Michael and Aldol Reactions. ChemistrySelect 2019. [DOI: 10.1002/slct.201902871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Upasana Borthakur
- Department of chemistryIndian Institude of technology Guwahati Guwahati 781039 India
| | - Anil K Saikia
- Department of chemistryIndian Institude of technology Guwahati Guwahati 781039 India
| |
Collapse
|
21
|
Lu L, Li X, Yang Y, Xie W. Recent Progress in the Construction of Natural De-O-Sulfonated Sulfonium Sugars with Antidiabetic Activities. Chemistry 2019; 25:13458-13471. [PMID: 31314135 DOI: 10.1002/chem.201902562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Indexed: 12/16/2022]
Abstract
A group of sulfonium salts equipped with a polyhydroxylated side-chain structure have been isolated and identified as potent α-glycosidase inhibitors. Consequently, they have become an attractive target in diverse research disciplines, including organic synthesis, drug discovery, and chemical biology. To this end, the development of practical and effective synthetic strategies, especially for more bioactive de-O-sulfonated sulfonium salts, is a significant research area in organic synthesis. An ideal synthetic methodology should provide easily accessible intermediates with high chemical stability for the key coupling reaction to diastereoselectively construct the sulfonium cation center. This minireview summarizes recently developed strategies applied in the construction of natural de-O-sulfonated sulfonium sugars: 1) acid-catalyzed de-O-sulfonation of sulfonium sulfate inner salts, 2) a coupling reaction between side-chain fragments containing leaving groups and a thiosugar, 3) a coupling reaction between side-chain fragments containing epoxide structures and a thiosugar, and 4) a two-step sequential SN 2 nucleophilic substitution between side-chain fragments containing thiol groups and a diiodide derivative.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Xiaoya Li
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, P.R. China
| | - Weijia Xie
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
| |
Collapse
|
22
|
Luo X, Li Y, Chen X, Song Z, Liang J, Liao C, Zhu Z, Chen L. (Z)-Tetrahydrothiophene and (Z)-tetrahydrothiopyran synthesis through nucleophilic substitution and intramolecular cycloaddition of alkynyl halides and EtOCS 2K. Org Biomol Chem 2019; 17:7315-7319. [PMID: 31342046 DOI: 10.1039/c9ob01370a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This protocol provides a novel, environmentally friendly and simple method for the synthesis of (Z)-tetrahydrothiophene derivatives using the nucleophilic thiyl radical intramolecular cycloaddition cascade process to construct C-S bonds under transition-metal-free conditions. This transformation process offers a broad substrate scope, good functional group tolerance, and excellent stereoselectivity (Z/E ratios up to 99/1). Moreover, the process uses odourless, stable and cheap EtOCS2K as the sulfur source.
Collapse
Affiliation(s)
- Xianglin Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529020, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Morikawa T, Xie H, Pan Y, Ninomiya K, Yuan D, Jia X, Yoshikawa M, Nakamura S, Matsuda H, Muraoka O. A Review of Biologically Active Natural Products from a Desert Plant Cistanche tubulosa. Chem Pharm Bull (Tokyo) 2019; 67:675-689. [PMID: 31257323 DOI: 10.1248/cpb.c19-00008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An Orobanchaceae plant Cistanche tubulosa (SCHENK) WIGHT (Kanka-nikujuyou in Japanese), which is one of the authorized plant resources as Cistanches Herba in both Japanese and Chinese Pharmacopoeias, is a perennial parasitic plant growing on roots of sand-fixing plants. The stems of C. tubulosa have traditionally been used for treatment of impotence, sterility, lumbago, and body weakness as well as a promoting agent of blood circulation. In recent years, Cistanches Herba has also been widely used as a health food supplement in Japan, China, and Southeast Asian countries. Here we review our recent studies on chemical constituents from the stems of C. tubulosa as well as their bioactivities such as vasorelaxtant, hepatoprotective, and glucose tolerance improving effects.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Haihui Xie
- Kyoto Pharmaceutical University.,South China Botanical Garden, Chinese Academy of Sciences
| | - Yingni Pan
- Pharmaceutical Research and Technology Institute, Kindai University.,School of Traditional Chinese Medicines, Shenyang Pharmaceutical University
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Dan Yuan
- School of Traditional Chinese Medicines, Shenyang Pharmaceutical University
| | - Xiaoguang Jia
- Kyoto Pharmaceutical University.,Xinjiang Institute of Chinese Materia Medica and Ethnodrug
| | - Masayuki Yoshikawa
- Pharmaceutical Research and Technology Institute, Kindai University.,Kyoto Pharmaceutical University
| | | | | | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| |
Collapse
|
24
|
Lei J, Fu X, Huang Y, Li X. Synthesis of spiro[benzo[4,5]imidazo[2,1-b][1,3]thiazole-2,3-thiolane]s via sulfa-Michael/aldol cascade reactions. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819831898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sulfa-Michael/aldol cascade reaction of ( Z)-2-arylmethylidene-benzo[4,5]imidazo[2,1- b]thiazol-3(2H)-ones and 1,4-dithiane-2,5-diol afforded novel 2-aryl-4-hydroxy-spiro[benzo[4,5]imidazo[2,1- b][1,3]thiazole-2,3-thiolan]-3-ones in moderate yields. The structures of all the products were characterized thoroughly by nuclear magnetic resonance, infrared and high-resolution mass spectrometry together with X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Jiaying Lei
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xinliang Fu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yulin Huang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xiaofang Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
25
|
Salacia chinensis stem extract and its thiosugar sulfonium constituent, neokotalanol, improves HbA1c levels in ob/ob mice. J Nat Med 2019; 73:584-588. [DOI: 10.1007/s11418-019-01311-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022]
|
26
|
Huang Y, Gao Y, He W, Wang Z, Li W, Lin A, Xu J, Tanabe G, Muraoka O, Wu X, Xie W. Practical Route to Neokotalanol and Its Natural Analogues: Sulfonium Sugars with Antidiabetic Activities. Angew Chem Int Ed Engl 2019; 58:6400-6404. [PMID: 30815962 DOI: 10.1002/anie.201900761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/22/2019] [Indexed: 11/09/2022]
Abstract
An efficient and divergent approach toward the synthesis of all four de-O-sulfonated sulfonium type α-glucosidase inhibitors, originally isolated from plants of genus Salacia, is reported for the first time. The key strategy features a coupling reaction between thiol derivatives and a diiodide counterpart. The newly designed thiol coupling partner presents high chemical stability, while the diiodide partner could be easily obtained with increased overall yields compared with conventional routes. The intermolecular nucleophilic substitution reaction followed by a diastereoselective intramolecular cyclization provided the target five-member sulfonium salt structure, which was connected in an α-orientation to a polyhydroxylated side-chain moiety.
Collapse
Affiliation(s)
- Yuhao Huang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yunlong Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Weigang He
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Zihao Wang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Wei Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka, 577-8502, Osaka, Japan
| | - Osamu Muraoka
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka, 577-8502, Osaka, Japan
| | - Xiaoming Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Weijia Xie
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
27
|
Huang Y, Gao Y, He W, Wang Z, Li W, Lin A, Xu J, Tanabe G, Muraoka O, Wu X, Xie W. Practical Route to Neokotalanol and Its Natural Analogues: Sulfonium Sugars with Antidiabetic Activities. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuhao Huang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Yunlong Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Weigang He
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Zihao Wang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Wei Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Genzoh Tanabe
- Faculty of PharmacyKinki University 3-4-1 Kowakae, Higashi-osaka 577-8502 Osaka Japan
| | - Osamu Muraoka
- Faculty of PharmacyKinki University 3-4-1 Kowakae, Higashi-osaka 577-8502 Osaka Japan
| | - Xiaoming Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Weijia Xie
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
28
|
Xanthenone-based hydrazones as potent α-glucosidase inhibitors: Synthesis, solid state self-assembly and in silico studies. Bioorg Chem 2019; 84:372-383. [DOI: 10.1016/j.bioorg.2018.11.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 11/23/2022]
|
29
|
Liu D, Xie W, Liu L, Xu J, Yao H, Tanabe G, Muraoka O, Wu X. Practical Synthesis of Neoponkoranol and its Related Sulfonium Salt, an Optimised Protocol using Isopropylidene as an Effective Protecting Group. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/174751913x13823645011477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dan Liu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Weijia Xie
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Long Liu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Hequan Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Genzoh Tanabe
- School of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Osamu Muraoka
- School of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Xiaoming Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P.R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
30
|
Cascade reactions as efficient and universal tools for construction and modification of 6-, 5-, 4- and 3-membered sulfur heterocycles of biological relevance. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Matsumoto Y, Nakatake D, Yazaki R, Ohshima T. An Expeditious Route to trans
-Configured Tetrahydrothiophenes Enabled by Fe(OTf)3
-Catalyzed [3+2] Cycloaddition of Donor-Acceptor Cyclopropanes with Thionoesters. Chemistry 2018; 24:6062-6066. [DOI: 10.1002/chem.201800957] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Yohei Matsumoto
- Graduate School of Pharmaceutical Sciences; Kyushu University Maidashi Higashi-ku; Fukuoka 812-8582 Japan
| | - Daiki Nakatake
- Graduate School of Pharmaceutical Sciences; Kyushu University Maidashi Higashi-ku; Fukuoka 812-8582 Japan
| | - Ryo Yazaki
- Graduate School of Pharmaceutical Sciences; Kyushu University Maidashi Higashi-ku; Fukuoka 812-8582 Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences; Kyushu University Maidashi Higashi-ku; Fukuoka 812-8582 Japan
| |
Collapse
|
32
|
Base-catalyzed cascade 1,6-sulfur-Michael/Henry reaction of trifluoromethyl-substituted styrylisoxazoles: Diastereoselective synthesis of tetrahydrothiophenes with a trifluoromethylated quaternary center. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Tanabe G, Teramae S, Marumoto S, Okugawa S, Ishikawa F, Xie W, Morikawa T, Muraoka O, Kunikata Y. Synthesis of Salacinol-d4 as an Internal Standard for Mass-Spectrometric Quantitation of Salacinol, a Potent α-Glucosidase Inhibitor Found in a Traditional Ayurvedic Medicine “Salacia”. HETEROCYCLES 2018. [DOI: 10.3987/com-18-s(t)21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Tian H, Li Y, Ding R, Liu Y, Ma B, Sun B. Syntheses of 4-Acetoxy- or Acetylthio-2-substituted Tetrahydrothiophene. HETEROCYCLES 2018. [DOI: 10.3987/com-17-13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Ishikawa F, Jinno K, Kinouchi E, Ninomiya K, Marumoto S, Xie W, Muraoka O, Morikawa T, Tanabe G. Diastereoselective Synthesis of Salacinol-Type α-Glucosidase Inhibitors. J Org Chem 2017; 83:185-193. [PMID: 29189010 DOI: 10.1021/acs.joc.7b02566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A facile and highly diastereoselective approach toward the synthesis of potent salacinol-type α-glucosidase inhibitors, originally isolated from plants of the genus "Salacia", was developed using the S-alkylation of thiosugars with epoxides in HFIP (∼90%, dr, α/β = ∼ 26/1). The dr ratio of the product was significantly improved by the protocol as compared to that of the conventional S-alkylation of thiosugars (dr, α/β = ∼ 8/1). The protocol could be used for gram scale synthesis of the desired compounds. The 3'-O-benzylated salacinol analogs, which are the most potent in vitro inhibitors to date, were synthesized and evaluated in vivo; all analogs suppressed blood glucose levels in maltose-loaded mice, at levels comparable to those of the antidiabetic agent, voglibose.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijia Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University , Nanjing 210009, P. R. China
| | | | | | | |
Collapse
|
36
|
Laoud A, Ferkous F, Maccari L, Maccari G, Saihi Y, Kraim K. Identification of novel nt-MGAM inhibitors for potential treatment of type 2 diabetes: Virtual screening, atom based 3D-QSAR model, docking analysis and ADME study. Comput Biol Chem 2017; 72:122-135. [PMID: 29274684 DOI: 10.1016/j.compbiolchem.2017.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/27/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
In this study, a virtual screening procedure was applied to identify new potential nt-MGAM inhibitors as a possible medication for type 2 diabetes. To this aim, a series of salacinol analogues were first investigated by docking analysis for their binding to the X-ray structure of the biological target nt-MGAM. Key interactions for ligand binding into the receptor active site were identified which shared common features to those found for other known inhibitors, which strengthen the results of this study. 3D QSAR model was then built and showed to be statistically significant and with a good predictive power for the training (R2 = 0.99, SD = 0.17, F = 555.3 and N = 27) and test set (Q2 = 0.81, Pearson(r) = 0.92, RMSE = 0.52, N = 08). The model was then used to virtually screen the ZINC database with the aim of identifying novel chemical scaffolds as potential nt-MGAM inhibitors. Further, in silico predicted ADME properties were investigated for the most promising molecules. The outcome of this investigation sheds light on the molecular characteristics of the binding of salacinol analogues to nt-MGAM enzyme and identifies new possible inhibitors which have the potential to be developed into drugs, thus significantly contributing to the design and optimization of therapeutic strategies against type 2 diabetes.
Collapse
Affiliation(s)
- Aicha Laoud
- LCOA: Laboratoire de Chimie Organique Appliquée, Département de Chimie, Faculté des Sciences, Université Badji-Mokhtar - Annaba, BP 12, Annaba, Algeria
| | - Fouad Ferkous
- LCOA: Laboratoire de Chimie Organique Appliquée, Département de Chimie, Faculté des Sciences, Université Badji-Mokhtar - Annaba, BP 12, Annaba, Algeria
| | - Laura Maccari
- Lead Discovery Siena s.r.l, Via Vittorio Alfieri 31, I-53019, Castelnuovo Berardenga, Italy
| | - Giorgio Maccari
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100, Siena, Italy
| | - Youcef Saihi
- LCOA: Laboratoire de Chimie Organique Appliquée, Département de Chimie, Faculté des Sciences, Université Badji-Mokhtar - Annaba, BP 12, Annaba, Algeria
| | - Khaireddine Kraim
- LCOA: Laboratoire de Chimie Organique Appliquée, Département de Chimie, Faculté des Sciences, Université Badji-Mokhtar - Annaba, BP 12, Annaba, Algeria; ENSET: Ecole Normale Supérieure d'Enseignement Technologique, Azzaba, Skikda, Algeria.
| |
Collapse
|
37
|
Yan J, Fu X, Li W. Synthesis of Spiro Thiazolo[3,2-a]Pyrimidine-Tetrahydrothiophenes via Sulfa-Michael/Aldol Cascade Reactions. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x15125690124282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sulfa-Michael/aldol cascade reaction of 2-arylmethylidene-6,7-dihydro-2 H-thiazolo[3,2- a]pyrimidin-3(5 H)-ones and 1,4-dithiane-2,5-diol afforded novel 2′-aryl-4′-hydroxy-4′,5′,6,7-tetrahydro-2′ H-spiro[thiazolo[3,2- a]pyrimidine-2,3′-thiophen]-3(5 H)-ones in good yields. The structures of all products were characterised thoroughly by NMR, IR, HRMS, together with X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Jinlong Yan
- Department of Biology and Chemical Engineering, Jiaozuo Teachers College, Jiaozuo, Henan 454001, P.R. China
| | - Xinliang Fu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Wei Li
- Department of Biology and Chemical Engineering, Jiaozuo Teachers College, Jiaozuo, Henan 454001, P.R. China
| |
Collapse
|
38
|
Zhang S, Ren D, Hu X, Fu X, Li X. Synthesis of Spiro Indazole-Tetrahydrothiophenes via Sulfa-Michael/Aldol Cascade Reactions. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x15094552081170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sulfa-Michael/aldol cascade reaction of 5-arylmethylidene-1-phenyl-6,7-dihydro-1H-indazol-4(5H)-ones and 1,4-dithiane-2,5-diol yielded novel 2′-(4-aryl)-4′-hydroxy-1-phenyl-4′,5′,6,7-tetrahydro-2′H-spiro[indazole-5,3′-thiophen]-4(1H)-ones in moderate yields. The structures of all the products were characterised thoroughly by NMR, IR and HRMS, together with X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Shaowei Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Demin Ren
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Xiaolian Hu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Xingliang Fu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| | - Xiaofang Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P.R. China
| |
Collapse
|
39
|
Gabbia D, Dall'Acqua S, Di Gangi IM, Bogialli S, Caputi V, Albertoni L, Marsilio I, Paccagnella N, Carrara M, Giron MC, De Martin S. The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH. Mar Drugs 2017; 15:E41. [PMID: 28212301 PMCID: PMC5334621 DOI: 10.3390/md15020041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose (p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | | | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Laura Albertoni
- Department of Medicine, General Pathology and Cytopathology Unit, University of Padova, 35128 Padova, Italy.
| | - Ilaria Marsilio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Nicola Paccagnella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
40
|
Bagri P, Chester K, Khan W, Ahmad S. Aspects of extraction and biological evaluation of naturally occurring sugar-mimicking sulfonium-ion and their synthetic analogues as potent α-glucosidase inhibitors from Salacia: a review. RSC Adv 2017. [DOI: 10.1039/c7ra02955a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A review of the selective inhibitory activities of sulfonium compounds ofSalaciaagainst intestinal α-glucosidases, structural features important for effective inhibition and the toggling approach for controlling starch digestion and glucose release.
Collapse
Affiliation(s)
- Priyanka Bagri
- School of Pharmaceutical Education and Research
- Bioactive Natural Product Laboratory
- Department of Pharmacognosy and Phytochemistry
- Jamia Hamdard
- New Delhi
| | | | - Washim Khan
- School of Pharmaceutical Education and Research
- Bioactive Natural Product Laboratory
- Department of Pharmacognosy and Phytochemistry
- Jamia Hamdard
- New Delhi
| | - Sayeed Ahmad
- School of Pharmaceutical Education and Research
- Bioactive Natural Product Laboratory
- Department of Pharmacognosy and Phytochemistry
- Jamia Hamdard
- New Delhi
| |
Collapse
|
41
|
Ram RN, Gupta DK, Soni VK. Copper(I)-Promoted Synthesis of Highly Substituted and Functionalized Tetrahydrothiophenes. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ram N. Ram
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas 110016 New Delhi India
| | - Dharmendra Kumar Gupta
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas 110016 New Delhi India
| | - Vineet Kumar Soni
- Department of Chemistry; Indian Institute of Technology Delhi; Hauz Khas 110016 New Delhi India
- Department of Chemistry; Indian Institute of Technology Jodhpur; Ratanada 342011 Jodhpur India
| |
Collapse
|
42
|
Tanabe G, Xie W, Balakishan G, Amer MFA, Tsutsui N, Takemura H, Nakamura S, Akaki J, Ninomiya K, Morikawa T, Nakanishi I, Muraoka O. Hydrophobic substituents increase the potency of salacinol, a potent α-glucosidase inhibitor from Ayurvedic traditional medicine 'Salacia'. Bioorg Med Chem 2016; 24:3705-15. [PMID: 27325449 DOI: 10.1016/j.bmc.2016.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
Abstract
Using an in silico method, seven analogs bearing hydrophobic substituents (8a: Me, 8b: Et, 8c: n-Pent, 8d: n-Hept, 8e: n-Tridec, 8f: isoBu and 8g: neoPent) at the 3'-O-position in salacinol (1), a highly potent natural α-glucosidase inhibitor from Ayurvedic traditional medicine 'Salacia', were designed and synthesized. In order to verify the computational SAR assessments, their α-glucosidase inhibitory activities were evaluated in vitro. All analogs (8a-8g) exhibited an equal or considerably higher level of inhibitory activity against rat small intestinal α-glucosidases compared with the original sulfonate (1), and were as potent as or higher in potency than the clinically used anti-diabetics, voglibose, acarbose or miglitol. Their activities against human maltase exhibited good relationships to the results obtained with enzymes of rat origin. Among the designed compounds, the one with a 3'-O-neopentyl moiety (8g) was most potent, with an approximately ten fold increase in activity against human maltase compared to 1.
Collapse
Affiliation(s)
- Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Weijia Xie
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, Jiang su 210009, PR China
| | - Gorre Balakishan
- Department of Organic Chemistry, Telangana University, Nizamabad 503322, Telangana State, India
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Al Arab St 21, Amman 11931, Jordan
| | - Nozomi Tsutsui
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Haruka Takemura
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Shinya Nakamura
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Junji Akaki
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Isao Nakanishi
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Osamu Muraoka
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan.
| |
Collapse
|
43
|
Worawalai W, Sompornpisut P, Wacharasindhu S, Phuwapraisirisan P. Voglibose-inspired synthesis of new potent α-glucosidase inhibitors N-1,3-dihydroxypropylaminocyclitols. Carbohydr Res 2016; 429:155-62. [DOI: 10.1016/j.carres.2016.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 11/28/2022]
|
44
|
Tanabe G, Matsuda Y, Oka M, Kunikata Y, Tsutsui N, Xie W, Balakishan G, Amer MFA, Marumoto S, Muraoka O. Highly Diastereoselective Route to α-Glucosidase Inhibitors, Neosalacinol and Neoponkoranol. J Org Chem 2016; 81:3407-15. [DOI: 10.1021/acs.joc.5b02894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | - Weija Xie
- State
Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Gorre Balakishan
- Department
of Organic Chemistry, Telangana University, Nizamabad 503322, Telangana State, India
| | - Mumen F. A. Amer
- Faculty
of Pharmacy, Applied Science Private University, Al Arab St 21, Amman 11931, Jordan
| | | | | |
Collapse
|
45
|
Meninno S, Volpe C, Della Sala G, Capobianco A, Lattanzi A. Stereoselective amine-thiourea-catalysed sulfa-Michael/nitroaldol cascade approach to 3,4,5-substituted tetrahydrothiophenes bearing a quaternary stereocenter. Beilstein J Org Chem 2016; 12:643-7. [PMID: 27340455 PMCID: PMC4901985 DOI: 10.3762/bjoc.12.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/12/2016] [Indexed: 02/04/2023] Open
Abstract
An investigation on the stereoselective cascade sulfa-Michael/aldol reaction of nitroalkenes and commercially available 1,4-dithiane-2,5-diol to 3,4,5-substituted tetrahydrothiophenes, bearing a quaternary stereocenter, is presented. A secondary amine thiourea derived from (R,R)-1,2-diphenylethylamine was found to be the most effective catalyst when using trans-β-methyl-β-nitrostyrenes affording the heterocyclic products in good yields and moderate stereoselectivities.
Collapse
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia "A. Zambelli", Via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Chiara Volpe
- Dipartimento di Chimica e Biologia "A. Zambelli", Via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Giorgio Della Sala
- Dipartimento di Chimica e Biologia "A. Zambelli", Via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia "A. Zambelli", Via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia "A. Zambelli", Via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
46
|
Liu D, He W, Wang Z, Liu L, Wang C, Zhang C, Wang C, Wang Y, Tanabe G, Muraoka O, Wu X, Wu L, Xie W. Design, synthesis and biological evaluation of 3′-benzylated analogs of 3′-epi-neoponkoranol as potent α-glucosidase inhibitors. Eur J Med Chem 2016; 110:224-36. [DOI: 10.1016/j.ejmech.2016.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
47
|
|
48
|
Improvement in Human Immune Function with Changes in Intestinal Microbiota by Salacia reticulata Extract Ingestion: A Randomized Placebo-Controlled Trial. PLoS One 2015; 10:e0142909. [PMID: 26630568 PMCID: PMC4667990 DOI: 10.1371/journal.pone.0142909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Plants belonging to the genus Salacia in the Hippocrateaceae family are known to inhibit sugar absorption. In a previous study, administration of Salacia reticulata extract in rats altered the intestinal microbiota and increased expression of immune-relevant genes in small intestinal epithelial cells. This study aimed to investigate the effect of S. reticulata extract in human subjects by examining the gene expression profiles of blood cells, immunological indices, and intestinal microbiota. The results revealed an improvement in T-cell proliferation activity and some other immunological indices. In addition, the intestinal microbiota changed, with an increase in Bifidobacterium and a decrease in Clostridium bacteria. The expression levels of many immune-relevant genes were altered in blood cells. We concluded that S. reticulata extract ingestion in humans improved immune functions and changed the intestinal microbiota. TRIAL REGISTRATION UMIN Clinical Trials Registry UMIN000011732.
Collapse
|
49
|
Ma B, Yang S, Tao F, Sun B, Liu Y, Tian H. A Fortuitously Straightforward Synthesis of 4-Acetoxy-2-Propyltetrahydrothiophene. JOURNAL OF CHEMICAL RESEARCH 2015. [DOI: 10.3184/174751915x14476078040135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
4-Acetoxy-2-propyltetrahydrothiophene was synthesised from 1-hepten-4-ol by a three-step route involving epoxidation and mesylation to 1,2-epoxy-4-heptyl mesylate and then reaction with thioacetate. An acetoxylated cyclic product was formed instead of the expected thioacetate, and a mechanism for its formation using an intramolecular transesterification is proposed.
Collapse
Affiliation(s)
- Bianbian Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour Chemistry, Beijing Technology and Business University, Beijing 100048, P.R. China
| | - Shaoxiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour Chemistry, Beijing Technology and Business University, Beijing 100048, P.R. China
| | - Feiyan Tao
- Technical Research & Development Center, Chuanyu Branch of China Tobacco Corporation, Chengdu, P.R. China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour Chemistry, Beijing Technology and Business University, Beijing 100048, P.R. China
| | - Yongguo Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour Chemistry, Beijing Technology and Business University, Beijing 100048, P.R. China
| | - Hongyu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavour Chemistry, Beijing Technology and Business University, Beijing 100048, P.R. China
| |
Collapse
|
50
|
Oda Y, Yuasa A, Ueda F, Kakinuma C. A subchronic oral toxicity study of Salacia reticulata extract powder in rats. Toxicol Rep 2015; 2:1136-1144. [PMID: 28962454 PMCID: PMC5598469 DOI: 10.1016/j.toxrep.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/25/2015] [Accepted: 07/02/2015] [Indexed: 12/19/2022] Open
Abstract
The safety of Salacia plant (Salacia reticulata) extract powder, which is used in Ayurvedic medical practices, was studied in a dose range-finding subchronic toxicity study in Crl:CD Sprague-Dawley rats. Male and female rats were randomly assigned to 4 treatment groups and were treated by oral gavage with 0, 10, 65, and 400 mg/kg body weight/day of the powder for 91 days. Body weight, food consumption, and clinical signs were assessed during the treatment period. Urinalysis, hematology, blood chemistry, and organ weights were determined one day after the final treatment. The animals were euthanized at the end of the treatment and were examined for necropsy and histopathological purposes. No adverse toxicity was observed in the Salacia powder-treated groups with a No Observed Adverse Effect Level of ≧400 mg/kg body weight/day in both male and female SD rats.
Collapse
Affiliation(s)
- Yuriko Oda
- Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Atsuko Yuasa
- Safety Evaluation Center, FUJIFILM Corporation, 210, Nakanuma, Minamiashigara-shi, Kanagawa 250-1093, Japan
| | - Fumitaka Ueda
- Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Chihaya Kakinuma
- Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| |
Collapse
|