1
|
Lau K, Reichheld S, Xian M, Sharpe SJ, Cerruti M. Directed Assembly of Elastic Fibers via Coacervate Droplet Deposition on Electrospun Templates. Biomacromolecules 2024; 25:3519-3531. [PMID: 38742604 DOI: 10.1021/acs.biomac.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Elastic fibers provide critical elasticity to the arteries, lungs, and other organs. Elastic fiber assembly is a process where soluble tropoelastin is coacervated into liquid droplets, cross-linked, and deposited onto and into microfibrils. While much progress has been made in understanding the biology of this process, questions remain regarding the timing of interactions during assembly. Furthermore, it is unclear to what extent fibrous templates are needed to guide coacervate droplets into the correct architecture. The organization and shaping of coacervate droplets onto a fiber template have never been previously modeled or employed as a strategy for shaping elastin fiber materials. Using an in vitro system consisting of elastin-like polypeptides (ELPs), genipin cross-linker, electrospun polylactic-co-glycolic acid (PLGA) fibers, and tannic acid surface coatings for fibers, we explored ELP coacervation, cross-linking, and deposition onto fiber templates. We demonstrate that integration of coacervate droplets into a fibrous template is primarily influenced by two factors: (1) the balance of coacervation and cross-linking and (2) the surface energy of the fiber templates. The success of this integration affects the mechanical properties of the final fiber network. Our resulting membrane materials exhibit highly tunable morphologies and a range of elastic moduli (0.8-1.6 MPa) comparable to native elastic fibers.
Collapse
Affiliation(s)
- Kirklann Lau
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| | - Sean Reichheld
- Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Room 20.9714, Toronto, Ontario M5G 1X8, Canada
| | - Mingqian Xian
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| | - Simon J Sharpe
- Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Room 20.9714, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 5207, Toronto, Ontario M5S 1A8, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building 2250, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
2
|
Zens B, Fäßler F, Hansen JM, Hauschild R, Datler J, Hodirnau VV, Zheden V, Alanko J, Sixt M, Schur FK. Lift-out cryo-FIBSEM and cryo-ET reveal the ultrastructural landscape of extracellular matrix. J Cell Biol 2024; 223:e202309125. [PMID: 38506714 PMCID: PMC10955043 DOI: 10.1083/jcb.202309125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
The extracellular matrix (ECM) serves as a scaffold for cells and plays an essential role in regulating numerous cellular processes, including cell migration and proliferation. Due to limitations in specimen preparation for conventional room-temperature electron microscopy, we lack structural knowledge on how ECM components are secreted, remodeled, and interact with surrounding cells. We have developed a 3D-ECM platform compatible with sample thinning by cryo-focused ion beam milling, the lift-out extraction procedure, and cryo-electron tomography. Our workflow implements cell-derived matrices (CDMs) grown on EM grids, resulting in a versatile tool closely mimicking ECM environments. This allows us to visualize ECM for the first time in its hydrated, native context. Our data reveal an intricate network of extracellular fibers, their positioning relative to matrix-secreting cells, and previously unresolved structural entities. Our workflow and results add to the structural atlas of the ECM, providing novel insights into its secretion and assembly.
Collapse
Affiliation(s)
- Bettina Zens
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian Fäßler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M. Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Vanessa Zheden
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jonna Alanko
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Florian K.M. Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
3
|
Godwin ARF, Dajani R, Zhang X, Thomson J, Holmes DF, Adamo CS, Sengle G, Sherratt MJ, Roseman AM, Baldock C. Fibrillin microfibril structure identifies long-range effects of inherited pathogenic mutations affecting a key regulatory latent TGFβ-binding site. Nat Struct Mol Biol 2023; 30:608-618. [PMID: 37081316 DOI: 10.1038/s41594-023-00950-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/28/2023] [Indexed: 04/22/2023]
Abstract
Genetic mutations in fibrillin microfibrils cause serious inherited diseases, such as Marfan syndrome and Weill-Marchesani syndrome (WMS). These diseases typically show major dysregulation of tissue development and growth, particularly in skeletal long bones, but links between the mutations and the diseases are unknown. Here we describe a detailed structural analysis of native fibrillin microfibrils from mammalian tissue by cryogenic electron microscopy. The major bead region showed pseudo eightfold symmetry where the amino and carboxy termini reside. On the basis of this structure, we show that a WMS deletion mutation leads to the induction of a structural rearrangement that blocks interaction with latent TGFβ-binding protein-1 at a remote site. Separate deletion of this binding site resulted in the assembly of shorter fibrillin microfibrils with structural alterations. The integrin αvβ3-binding site was also mapped onto the microfibril structure. These results establish that in complex extracellular assemblies, such as fibrillin microfibrils, mutations may have long-range structural consequences leading to the disruption of growth factor signaling and the development of disease.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rana Dajani
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Xinyang Zhang
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jennifer Thomson
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David F Holmes
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Christin S Adamo
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics, Cologne, Germany
| | - Michael J Sherratt
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alan M Roseman
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
4
|
Trębacz H, Barzycka A. Mechanical Properties and Functions of Elastin: An Overview. Biomolecules 2023; 13:biom13030574. [PMID: 36979509 PMCID: PMC10046833 DOI: 10.3390/biom13030574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Human tissues must be elastic, much like other materials that work under continuous loads without losing functionality. The elasticity of tissues is provided by elastin, a unique protein of the extracellular matrix (ECM) of mammals. Its function is to endow soft tissues with low stiffness, high and fully reversible extensibility, and efficient elastic-energy storage. Depending on the mechanical functions, the amount and distribution of elastin-rich elastic fibers vary between and within tissues and organs. The article presents a concise overview of the mechanical properties of elastin and its role in the elasticity of soft tissues. Both the occurrence of elastin and the relationship between its spatial arrangement and mechanical functions in a given tissue or organ are overviewed. As elastin in tissues occurs only in the form of elastic fibers, the current state of knowledge about their mechanical characteristics, as well as certain aspects of degradation of these fibers and their mechanical performance, is presented. The overview also outlines the latest understanding of the molecular basis of unique physical characteristics of elastin and, in particular, the origin of the driving force of elastic recoil after stretching.
Collapse
Affiliation(s)
- Hanna Trębacz
- Department of Biophysics, Medical University of Lublin, Al. Racławickie 1, 20-059 Lublin, Poland
| | - Angelika Barzycka
- Department of Biophysics, Medical University of Lublin, Al. Racławickie 1, 20-059 Lublin, Poland
| |
Collapse
|
5
|
Ozsvar J, Yang C, Cain SA, Baldock C, Tarakanova A, Weiss AS. Tropoelastin and Elastin Assembly. Front Bioeng Biotechnol 2021; 9:643110. [PMID: 33718344 PMCID: PMC7947355 DOI: 10.3389/fbioe.2021.643110] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Elastic fibers are an important component of the extracellular matrix, providing stretch, resilience, and cell interactivity to a broad range of elastic tissues. Elastin makes up the majority of elastic fibers and is formed by the hierarchical assembly of its monomer, tropoelastin. Our understanding of key aspects of the assembly process have been unclear due to the intrinsic properties of elastin and tropoelastin that render them difficult to study. This review focuses on recent developments that have shaped our current knowledge of elastin assembly through understanding the relationship between tropoelastin’s structure and function.
Collapse
Affiliation(s)
- Jazmin Ozsvar
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Chengeng Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Stuart A Cain
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Anna Tarakanova
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States.,Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Investigation of structural proteins in sea cucumber (Apostichopus japonicus) body wall. Sci Rep 2020; 10:18744. [PMID: 33127976 PMCID: PMC7599334 DOI: 10.1038/s41598-020-75580-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/16/2020] [Indexed: 02/04/2023] Open
Abstract
Structural proteins play critical roles in the food quality, especially texture properties, of sea cucumbers and their products. Most of the previous studies on sea cucumbers focused on few individual proteins, which limited our understanding of how structural proteins influenced the quality of sea cucumbers. Inspired by the clarification of sea cucumber (Apostichopus japonicus) genome, we established an integrated data of structural proteins in the sea cucumber body wall. A portfolio of 2018 structural proteins was screened out from the sea cucumber annotated proteome by bioinformatics analysis. The portfolio was divided into three divisions, including extracellular matrix proteins, muscle proteins, and proteases, and further classified into 18 categories. The presence of 472 proteins in the sea cucumber body wall was confirmed by using a proteomics approach. Moreover, comparative proteomics analysis revealed the spatial distribution heterogeneity of structural proteins in the sea cucumber body wall at a molecular scale. This study suggested that future researches on sea cucumbers could be performed from an integrated perspective, which would reshape the component map of sea cucumber and provide novel insights into the understanding of how the food quality of sea cucumber was determined on a molecular level.
Collapse
|
8
|
Targeting feed-forward signaling of TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ axis with anti-TGFβ and folic acid attenuates formation of aortic aneurysms: Novel mechanisms and therapeutics. Redox Biol 2020; 38:101757. [PMID: 33126053 PMCID: PMC7585948 DOI: 10.1016/j.redox.2020.101757] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/29/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023] Open
Abstract
In the present study we aimed to identify novel mechanisms and therapeutics for thoracic aortic aneurysm (TAA) in Fbn1C1039G/+ Marfan Syndrome (MFS) mice. The expression of mature/active TGFβ and its downstream effector NOX4 were upregulated while tetrahydrobiopterin (H4B) salvage enzyme dihydrofolate reductase (DHFR) was downregulated in Fbn1C1039G/+ mice. In vivo treatment with anti-TGFβ completely attenuated NOX4 expression, restored DHFR protein abundance, reduced ROS production, recoupled eNOS and attenuated aneurysm formation. Intriguingly, oral administration with folic acid (FA) to recouple eNOS markedly alleviated expansion of aortic roots and abdominal aortas in Fbn1C1039G/+ mice, which was attributed to substantially upregulated DHFR expression and activity in the endothelium to restore tissue and circulating levels of H4B. Notably, circulating H4B levels were accurately predictive of tissue H4B bioavailability, and negatively associated with expansion of aortic roots, indicating a novel biomarker role of circulating H4B for TAA. Furthermore, FA diet abrogated TGFβ and NOX4 expression, disrupting the feed-forward loop to inactivate TGFβ/NOX4/DHFR/eNOS uncoupling axis in vivo and in vitro, while PTIO, a NO scavenger, reversed this effect in cultured human aortic endothelial cells (HAECs). Besides, expression of the rate limiting H4B synthetic enzyme GTP cyclohydrolase 1 (GTPCHI), was downregulated in Fbn1C1039G/+ mice at baseline. In cultured HAECs, RNAi inhibition of fibrillin resulted in reduced GTPCHI expression, while this response was abrogated by anti-TGFβ, indicating TGFβ-dependent downregulation of GTPCHI in response to fibrillin deficiency. Taken together, our data for the first time reveal that uncoupled eNOS plays a central role in TAA formation, while anti-TGFβ and FA diet robustly abolish aneurysm formation via inactivation of a novel TGFβ/NOX4/DHFR/eNOS uncoupling/TGFβ feed-forward pathway. Correction of fibrillin deficiency is additionally beneficial via preservation of GTPCHI function.
Collapse
|
9
|
Adamo CS, Zuk AV, Sengle G. The fibrillin microfibril/elastic fibre network: A critical extracellular supramolecular scaffold to balance skin homoeostasis. Exp Dermatol 2020; 30:25-37. [PMID: 32920888 DOI: 10.1111/exd.14191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Supramolecular networks composed of fibrillins (fibrillin-1 and fibrillin-2) and associated ligands form intricate cellular microenvironments which balance skin homoeostasis and direct remodelling. Fibrillins assemble into microfibrils which are not only indispensable for conferring elasticity to the skin, but also control the bioavailability of growth factors targeted to the extracellular matrix architecture. Fibrillin microfibrils (FMF) represent the core scaffolds for elastic fibre formation, and they also decorate the surface of elastic fibres and form independent networks. In normal dermis, elastic fibres are suspended in a three-dimensional basket-like lattice of FMF intersecting basement membranes at the dermal-epidermal junction and thus conferring pliability to the skin. The importance of FMF for skin homoeostasis is illustrated by the clinical features caused by mutations in the human fibrillin genes (FBN1, FBN2), summarized as "fibrillinopathies." In skin, fibrillin mutations result in phenotypes ranging from thick, stiff and fibrotic skin to thin, lax and hyperextensible skin. The most plausible explanation for this spectrum of phenotypic outcomes is that FMF regulate growth factor signalling essential for proper growth and homoeostasis of the skin. Here, we will give an overview about the current understanding of the underlying pathomechanisms leading to fibrillin-dependent fibrosis as well as forms of cutis laxa caused by mutational inactivation of FMF-associated ligands.
Collapse
Affiliation(s)
- Christin S Adamo
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexandra V Zuk
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
10
|
Åström Malm I, Alehagen U, Blomstrand P, Dahlström U, De Basso R. Higher blood pressure in elderly hypertensive females, with increased arterial stiffness and blood pressure in females with the Fibrillin-1 2/3 genotype. BMC Cardiovasc Disord 2020; 20:180. [PMID: 32303188 PMCID: PMC7165376 DOI: 10.1186/s12872-020-01454-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Elderly patients have a relatively high cardiovascular risk due to increased arterial stiffness, elevated blood pressure and decreased amounts of elastin in the arteries. The composition of the media layer in the arterial wall, comprising elastin, collagen, smooth muscle cells, proteoglycans, fibronectin and fibrillin-1, influences its mechanical properties. Mutations in the fibrillin-1 gene leads to increased aortic stiffness, elevated pulse pressure and aortic root dilatation. This study investigates whether there is a sex difference among hypertensive elderly patients regarding blood pressure, arterial stiffness and fibrillin-1 genotypes. METHODS A total of 315 hypertensive subjects (systolic blood pressure > 140 mmHg) were included in this study (155 men and 160 women aged 71-88 years). Aortic pulse wave velocity and augmentation index were determined using SphygmoCor, and brachial blood pressure was measured using an oscillometric technique. Fibrillin-1 was genotyped by polymerase chain reaction and with a capillary electrophoresis system. RESULTS Females showed a significantly higher peripheral mean arterial pressure (females; 107.20 mmHg, males 101.6 mmHg, p = 0.008), central mean arterial pressure (females; 107.2 mmHg, males 101.6 mmHg p = 0.008), central systolic blood pressure (females; 148.1 mmHg, males 139.2 mmHg, p < 0.001) and central pulse pressure (females; 68.9 mmHg, males 61.6 mmHg, p = 0.035) than males. Females with the Fibrillin-1 2/3 genotype showed a significantly higher augmentation index (FBN1 2/3; 39.9%, FBN1 2/2 35.0%, FBN1 2/4 35.8, p = 0.029) and systolic blood pressure (FBN1 2/3; 174.6 mmHg, FBN1 2/2168.9 mmHg, FBN1 2/4169.9 mmHg, p = 0.025) than females with the 2/2 and 2/4 genotypes. CONCLUSION The findings of this study may indicate that hypertensive elderly females, especially elderly females with Fibrillin-1 2/3, have increased systolic blood pressure and arterial stiffness.
Collapse
Affiliation(s)
- Ida Åström Malm
- School of Health and Welfare, Jönköping University, Jönköping, Sweden.
| | - Urban Alehagen
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Blomstrand
- School of Health and Welfare, Jönköping University, Jönköping, Sweden.,Department of Clinical Physiology, County Hospital Ryhov, Jönköping, Sweden
| | - Ulf Dahlström
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Department of Cardiology Linköping University, Linköping, Sweden
| | - Rachel De Basso
- School of Health and Welfare, Jönköping University, Jönköping, Sweden
| |
Collapse
|
11
|
Godwin ARF, Singh M, Lockhart-Cairns MP, Alanazi YF, Cain SA, Baldock C. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biol 2019; 84:17-30. [PMID: 31226403 PMCID: PMC6943813 DOI: 10.1016/j.matbio.2019.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Fibrillin is a large evolutionarily ancient extracellular glycoprotein that assembles to form beaded microfibrils which are essential components of most extracellular matrices. Fibrillin microfibrils have specific biomechanical properties to endow animal tissues with limited elasticity, a fundamental feature of the durable function of large blood vessels, skin and lungs. They also form a template for elastin deposition and provide a platform for microfibril-elastin binding proteins to interact in elastic fibre assembly. In addition to their structural role, fibrillin microfibrils mediate cell signalling via integrin and syndecan receptors, and microfibrils sequester transforming growth factor (TGF)β family growth factors within the matrix to provide a tissue store which is critical for homeostasis and remodelling.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Michael P Lockhart-Cairns
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Yasmene F Alanazi
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Stuart A Cain
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| |
Collapse
|
12
|
|
13
|
Godwin ARF, Starborg T, Smith DJ, Sherratt MJ, Roseman AM, Baldock C. Multiscale Imaging Reveals the Hierarchical Organization of Fibrillin Microfibrils. J Mol Biol 2018; 430:4142-4155. [PMID: 30120953 PMCID: PMC6193142 DOI: 10.1016/j.jmb.2018.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 01/17/2023]
Abstract
Fibrillin microfibrils are evolutionarily ancient, structurally complex extracellular polymers found in mammalian elastic tissues where they endow elastic properties, sequester growth factors and mediate cell signalling; thus, knowledge of their structure and organization is essential for a more complete understanding of cell function and tissue morphogenesis. By combining multiple imaging techniques, we visualize three levels of hierarchical organization of fibrillin structure ranging from micro-scale fiber bundles in the ciliary zonule to nano-scale individual microfibrils. Serial block-face scanning electron microscopy imaging suggests that bundles of zonule fibers are bound together by circumferential wrapping fibers, which is mirrored on a shorter-length scale where individual zonule fibers are interwoven by smaller fibers. Electron tomography shows that microfibril directionality varies from highly aligned and parallel, connecting to the basement membrane, to a meshwork at the zonule fiber periphery, and microfibrils within the zonule are connected by short cross-bridges, potentially formed by fibrillin-binding proteins. Three-dimensional reconstructions of negative-stain electron microscopy images of purified microfibrils confirm that fibrillin microfibrils have hollow tubular structures with defined bead and interbead regions, similar to tissue microfibrils imaged in our tomograms. These microfibrils are highly symmetrical, with an outer ring and interwoven core in the bead and four linear prongs, each accommodating a fibrillin dimer, in the interbead region. Together these data show how a single molecular building block is organized into different levels of hierarchy from microfibrils to tissue structures spanning nano- to macro-length scales. Furthermore, the application of these combined imaging approaches has wide applicability to other tissue systems. Extracellular matrix fibrillin microfibrils assemble to form ocular ligaments. Individual beaded fibrillin microfibrils are highly symmetric biological polymers. Zonule fibers are composed of aligned, organized arrays of fibrillin microfibrils. Bundles of zonule fibers are wrapped by large fibers providing structural support. Fibrillin organization shows how a single building block constructs an elastic tissue.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK; Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Tobias Starborg
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - David J Smith
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Michael J Sherratt
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Alan M Roseman
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK; Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
14
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2018; 150:207-208. [PMID: 30076464 DOI: 10.1007/s00418-018-1702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
15
|
A heart for fibrillin: spatial arrangement in adult wild-type murine myocardial tissue. Histochem Cell Biol 2018; 150:271-280. [DOI: 10.1007/s00418-018-1686-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2018] [Indexed: 01/03/2023]
|
16
|
Kielty CM. Fell-Muir Lecture: Fibrillin microfibrils: structural tensometers of elastic tissues? Int J Exp Pathol 2017; 98:172-190. [PMID: 28905442 PMCID: PMC5639267 DOI: 10.1111/iep.12239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Fibrillin microfibrils are indispensable structural elements of connective tissues in multicellular organisms from early metazoans to humans. They have an extensible periodic beaded organization, and support dynamic tissues such as ciliary zonules that suspend the lens. In tissues that express elastin, including blood vessels, skin and lungs, microfibrils support elastin deposition and shape the functional architecture of elastic fibres. The vital contribution of microfibrils to tissue form and function is underscored by the heritable fibrillinopathies, especially Marfan syndrome with severe elastic, ocular and skeletal tissue defects. Research since the early 1990s has advanced our knowledge of biology of microfibrils, yet understanding of their mechanical and homeostatic contributions to tissues remains far from complete. This review is a personal reflection on key insights, and puts forward the conceptual hypothesis that microfibrils are structural 'tensometers' that direct cells to monitor and respond to altered tissue mechanics.
Collapse
Affiliation(s)
- Cay M Kielty
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Langton AK, Sherratt MJ, Griffiths CEM, Watson REB. A new wrinkle on old skin: the role of elastic fibres in skin ageing. Int J Cosmet Sci 2015; 32:330-9. [PMID: 20572890 DOI: 10.1111/j.1468-2494.2010.00574.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cutaneous ageing is the result of two distinct, biological processes which may occur concurrently: (i) the passage of time, termed intrinsic ageing and (ii) environmental influences, termed extrinsic ageing. Intrinsic ageing of the skin is a slow process which causes changes in tissue structure and impairs function in the absence of additional biological, chemical and physical factors. The clinical features of intrinsically aged skin are not usually evident until old age when, although smooth and unblemished, the skin surface appears pale and is characterized by fine wrinkles with occasional exaggerated expression lines. Functionally, intrinsically aged skin is dry and less elastic than more youthful skin. In contrast, extrinsically aged skin is exemplified by deep, coarse wrinkles, mottled hyperpigmentation and a marked loss of elasticity and recoil. The two major environmental influences which induce extrinsic ageing are: (i) chronic exposure to solar ultraviolet (UV) irradiation (termed photoageing) and (ii) smoking. This review discusses the changes associated with the ageing process in the skin, with particular emphasis on the role played by the elastic fibre network in maintaining dermal function. The review concludes with a discussion of a short-term assay for independent assessment of the efficacy of anti-ageing cosmetic products using the elastic fibre component fibrillin-1 as a biomarker of extracellular matrix repair.
Collapse
Affiliation(s)
- A K Langton
- Dermatological Sciences, School of Translational Medicine
| | | | | | | |
Collapse
|
18
|
Hiraoka M, Inoue K, Senoo H, Takada M. Morphological study of the accommodative apparatus in the monkey eye. Anat Rec (Hoboken) 2014; 298:630-6. [PMID: 25403484 PMCID: PMC4350428 DOI: 10.1002/ar.23100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/21/2014] [Indexed: 12/20/2022]
Abstract
For more than a century there has been debate concerning the mechanism of accommodation—whether the lens capsule or lens material itself determines the functional relationship between ciliary muscle contractility and lens deformation during refractive adaptation. This morphological study in monkey eyes investigates the composition and distribution of several connective tissue components in the accommodative apparatus relaying muscle force to lens organization. Elastin distributes on the marginal surface of the ciliary process. A zonule is composed of fibrillin produced by epithelial cells of the process. In the progress of extension over the posterior chamber, fibrils unite into strands and possess longitudinal plasticity. By induction of the elastin network, strands extend in a concentric direction covering the equatorial region of the capsule. Upon tethering to the lens, the strand ramifies into fibrils, penetrating deeply close to the epithelial layer of the lens and binding with the collagen of the intercellular spaces. Tight linkage of the zonule with the capsule transmits precise contractility. Inside the lens, the cortical layer's elastic connective tissue network forms widely spaced lamellae of crystalline fibers. In contrast, the central nuclear lamellae are tightly opposed. The accumulation of lamellae is greater in the anterior cortex than in the posterior, yielding a more variable anterior chamber depth in the visual axis. The plasticity of the zonule and connective tissue distribution inside the lens produces an adjustable configuration. Thus, tight linkage between the dynamism of the capsule with interaction of the lenticular flexibility provides a novel understanding of accommodation. Anat Rec, 298:630–636, 2015.
Collapse
Affiliation(s)
- Mari Hiraoka
- Central Eye Infirmary, 1-24-15 Nukui-kitamachi, Koganei, Tokyo, Japan; Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | | | | | | |
Collapse
|
19
|
Chen J, Yang S, Zhao X, Shen J, Wang H, Chen Y, Ji Y, Wang W, Zhou W, Wang X, Tang J, Lu X, Chen S, Wang L, Li H, Shen C, Zhao Y. Association study of common variations of FBN1 gene and essential hypertension in Han Chinese population. Mol Biol Rep 2014; 41:2257-64. [DOI: 10.1007/s11033-014-3078-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 01/04/2014] [Indexed: 11/30/2022]
|
20
|
Lai KK, Renneberg R, Mak WC. Bioinspired protein microparticles fabrication by peptide mediated disulfide interchange. RSC Adv 2014. [DOI: 10.1039/c4ra00102h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A bioinspired green chemistry approach for the fabrication of pure protein microparticles based on peptide mediated disulfide interchange reactions.
Collapse
Affiliation(s)
- Kwok Kei Lai
- Department of Chemistry
- Hong Kong University of Science and Technology
- Hong Kong, P. R. China
| | - Reinhard Renneberg
- Department of Chemistry
- Hong Kong University of Science and Technology
- Hong Kong, P. R. China
| | - Wing Cheung Mak
- Department of Physics, Chemistry and Biology
- Biosensors and Bioelectronics Centre
- Linköping University
- 58183 Linköping, Sweden
- Department of Clinical and Experimental Medicine
| |
Collapse
|
21
|
Hiraoka M, Kuroda T, Inoue K, Senoo H, Takada M. Developmental anatomy in the zonular connection with lens capsule in macaque eye. Anat Rec (Hoboken) 2013; 296:726-35. [PMID: 23468417 DOI: 10.1002/ar.22684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/04/2013] [Indexed: 01/31/2023]
Abstract
Morphological analyses of zonule conjugated with lens capsule were performed on the developmental change in eyes from the age of fetus to 7 years old of the rhesus macaques (Macaca fuscata). The zonule was filamentous network in late fetus. After birth, the zonular microfibrils originated from the nonpigmented epithelium of the ciliary process. On the extending path toward the lens capsule through the chamber, microfibril assembled with neighbor fibril and also cohered with one another forming bundle. With growth, these bundles bifurcated into anterior and posterior groups on the equatorial region of capsule. The developmental distribution of bundles in the capsule was characteristic on anterior group, that is, bifurcation into radial and circumferential extension. On the other hand, the posterior bundle undivided but radially extended within short distance from the equator. In the process of fixating with capsule, bundles untangled into fibrils and penetrated circumferentially into the superficial layer and radially into deep apical layer of the capsule. Zonule was composed fibrillin 1 microfibrils and on the extending path toward the lens capsule through the chamber, microfibril self-assembled with neighbored fibril in composition of fascicle and also cohered with one another forming bundle. Each bundle had alternating pale and dense horizontal bands in the intracapsular extension and the stripe pattern changed in flaccid or extensive tension of zonule between capsule and process. Zonular fibril intermingled with collagen fibril of capsule with interlacing molecule of laminin. At the base of ciliary muscle, elastin-positive connective tissue intercalated circumferentially between ciliary processes. The developmental changes of the intralamellar distribution and extension of zonule with striped pattern informed the functional role upon the elasticity in coordination with the lens capsule micromolecules.
Collapse
Affiliation(s)
- Mari Hiraoka
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.
| | | | | | | | | |
Collapse
|
22
|
Fhayli W, Ghandour Z, Mariko B, Pezet M, Faury G. [Elastin and microfibrils in vascular development and ageing: complementary or opposite roles?]. Biol Aujourdhui 2012; 206:87-102. [PMID: 22748047 DOI: 10.1051/jbio/2012009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Indexed: 06/01/2023]
Abstract
Large arteries allow the vascular system to be more than a simple route in which the blood circulates within the organism. The elastic fibers present in the wall endow these vessels with elasticity and are responsible for the smoothing of the blood pressure and flow, which are delivered discontinuously by the heart. This function is very important to ensure appropriate hemodynamics. Elastic fibers are composed of elastin (90%) and fibrillin-rich microfibrils (10%) which provide the vessels with elasticity and are also signals able to bind to relatively specific cell membrane receptors. Stimulation of the high affinity elastin receptor by elastin peptides or tropoelastin--the elastin precursor--triggers an increase in intracellular free calcium in vascular cells, especially endothelial cells, associated with attachment, migration or proliferation. Similar effects of the stimulation of endothelial cells by microfibrils or fibrillin-1 fragments, which bind to integrins, have been demonstrated. This dual function--mechanical and in signaling--makes the elastic fibers an important actor of the development and ageing processes taking place in blood vessels. An alteration of the elastin (Eln) or fibrillin (Fbn) gene products leads to severe genetic pathologies of the cardiovascular system, such as supravalvular aortic stenosis, or Williams Beuren syndrome--in which elastin deficiency induces aortic stenoses--or Marfan syndrome, in which on the contrary fibrillin-1 deficiency promotes the appearance of aortic aneurysms. Genetically-engineered mouse models of these pathologies (such as Eln+/- mice and Fbn-1+/mgΔ mice, Eln+/-Fbn-1+/- mice) have permitted a better understanding of the pathogenesis of these syndromes. In particular, it has been shown that elastin and fibrillin-1 roles can be complementary in some aspects, while they can be opposed in some other situations. For instance, the double heterozygosity in elastin and fibrillin-1 leads to increased arterial wall stress--compared to the level induced by one of these two deficiencies alone--while the decrease in diameter induced by Eln deficiency is partly compensated by an additional deficiency in Fbn-1. Also, it is now clear that early modifications of elastin or fibrillin-1 availability can alter the normal signaling action of these proteins and lead to long term modifications of the vascular physiology and ageing processes.
Collapse
Affiliation(s)
- Wassim Fhayli
- Laboratoire Hypoxie: Physiopathologie Cardiovasculaire et Respiratoire (HP2), INSERM U 1042, Université Joseph Fourier, Bâtiment Jean Roget, Facultés de Médecine et de Pharmacie, Domaine de La Merci, 38706 La Tronche, France
| | | | | | | | | |
Collapse
|
23
|
Yeo GC, Keeley FW, Weiss AS. Coacervation of tropoelastin. Adv Colloid Interface Sci 2011; 167:94-103. [PMID: 21081222 DOI: 10.1016/j.cis.2010.10.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 12/14/2022]
Abstract
The coacervation of tropoelastin represents the first major stage of elastic fiber assembly. The process has been modeled in vitro by numerous studies, initially with mixtures of solubilized elastin, and subsequently with synthetic elastin peptides that represent hydrophobic repeat units, isolated hydrophobic domains, segments of alternating hydrophobic and cross-linking domains, or the full-length monomer. Tropoelastin coacervation in vitro is characterized by two stages: an initial phase separation, which involves a reversible inverse temperature transition of monomer to n-mer; and maturation, which is defined by the irreversible coalescence of coacervates into large species with fibrillar structures. Coacervation is an intrinsic ability of tropoelastin. It is primarily influenced by the number, sequence, and contextual arrangement of hydrophobic domains, although hydrophilic sequences can also affect the behavior of the hydrophobic domains and thus affect coacervation. External conditions including ionic strength, pH, and temperature also directly influence the propensity of tropoelastin to self-associate. Coacervation is an endothermic, entropically-driven process driven by the cooperative interactions of hydrophobic domains following destabilization of the clathrate-like water shielding these regions. The formation of such assemblies is believed to follow a helical nucleation model of polymerization. Coacervation is closely associated with conformational transitions of the monomer, such as increased β-structures in hydrophobic domains and α-helices in cross-linking domains. Tropoelastin coacervation in vivo is thought to mainly involve the central hydrophobic domains. In addition, cell-surface glycosaminoglycans and microfibrillar proteins may regulate the process. Coacervation is essential for progression to downstream elastogenic stages, and impairment of the process can result in elastin haploinsufficiency disorders such as supravalvular aortic stenosis.
Collapse
|
24
|
Localised micro-mechanical stiffening in the ageing aorta. Mech Ageing Dev 2011; 132:459-67. [PMID: 21777602 PMCID: PMC3192262 DOI: 10.1016/j.mad.2011.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/09/2011] [Accepted: 07/05/2011] [Indexed: 12/31/2022]
Abstract
Age-related loss of tissue elasticity is a common cause of human morbidity and arteriosclerosis (vascular stiffening) is associated with the development of both fatal strokes and heart failure. However, in the absence of appropriate micro-mechanical testing methodologies, multiple structural remodelling events have been proposed as the cause of arteriosclerosis. Therefore, using a model of ageing in female sheep aorta (young: <18 months, old: >8 years) we: (i) quantified age-related macro-mechanical stiffness, (ii) localised in situ micro-metre scale changes in acoustic wave speed (a measure of tissue stiffness) and (iii) characterised collagen and elastic fibre remodelling. With age, there was an increase in both macro-mechanical stiffness and mean microscopic wave speed (and hence stiffness; young wave speed: 1701 ± 1 m s−1, old wave speed: 1710 ± 1 m s−1, p < 0.001) which was localized to collagen fibril-rich regions located between large elastic lamellae. These micro-mechanical changes were associated with increases in both collagen and elastic fibre content (collagen tissue area, young: 31 ± 2%, old: 40 ± 4%, p < 0.05; elastic fibre tissue area, young: 55 ± 3%, old: 69 ± 4%, p < 0.001). Localised collagen fibrosis may therefore play a key role in mediating age-related arteriosclerosis. Furthermore, high frequency scanning acoustic microscopy is capable of co-localising micro-mechanical and micro-structural changes in ageing tissues.
Collapse
|
25
|
Akhtar R, Sherratt MJ, Cruickshank JK, Derby B. Characterizing the elastic properties of tissues. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2011; 14:96-105. [PMID: 22723736 PMCID: PMC3378034 DOI: 10.1016/s1369-7021(11)70059-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The quality of life of ageing populations is increasingly determined by age-related changes to the mechanical properties of numerous biological tissues. Degradation and mechanical failure of these tissues has a profound effect on human morbidity and mortality. Soft tissues have complex and intricate structures and, similar to engineering materials, their mechanical properties are controlled by their microstructure. Thus age-relate changes in mechanical behavior are determined by changes in the properties and relative quantities of microstructural tissue components. This review focuses on the cardiovascular system; it discusses the techniques used both in vivo and ex vivo to determine the age-related changes in the mechanical properties of arteries.
Collapse
Affiliation(s)
- Riaz Akhtar
- School of Materials, The University of Manchester, Grosvenor Street, Manchester, M1 7HS, UK
- Cardiovascular Sciences Research Group, Manchester Academic Health Science Centre, The University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Michael J. Sherratt
- Regenerative Biomedicine, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - J. Kennedy Cruickshank
- Cardiovascular Sciences Research Group, Manchester Academic Health Science Centre, The University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Brian Derby
- School of Materials, The University of Manchester, Grosvenor Street, Manchester, M1 7HS, UK
| |
Collapse
|
26
|
Gustafsson OSE, Ekström P, Kröger RHH. A fibrous membrane suspends the multifocal lens in the eyes of lampreys and African lungfishes. J Morphol 2010; 271:980-9. [PMID: 20623650 DOI: 10.1002/jmor.10849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sharpness and thus information content of the retinal image in the eye depends on the optical quality of the lens and its accurate positioning in the eye. Multifocal lenses create well-focused color images and are present in the eyes of all vertebrate groups studied to date (mammals, reptiles including birds, amphibians, and ray-finned fishes) and occur even in lampreys, i.e., the most basal vertebrates with well-developed eyes. Results from photoretinoscopy obtained in this study indicate that the Dipnoi (lungfishes), i.e., the closest piscine relatives to tetrapods, also possess multifocal lenses. Suspension of the lens is complex and sophisticated in teleosts (bony fishes) and tetrapods. We studied lens suspension using light and electron microscopy in one species of lamprey (Lampetra fluviatilis) and two species of African lungfish (Protopterus aethiopicus aethiopicus and Protopterus annectens annectens). A fibrous and highly transparent membrane suspends the lens in both of these phylogenetically widely separated vertebrate groups. The membrane attaches to the lens approximately along the lens equator, from where it extends to the ora retinalis. The material forming the membrane is similar in ultrastructure to microfibrils in the zonule fibers of tetrapods. The membrane, possibly in conjunction with the cornea, iris, and vitreous body, seems suitable for keeping the lens in the correct position for well-focused imaging. Suspension of the lens by a multitude of zonule fibers in tetrapods may have evolved from a suspensory membrane similar to that in extant African lungfishes, a structure that seems to have appeared first in the lamprey-like ancestors of allextant vertebrates.
Collapse
Affiliation(s)
- Ola S E Gustafsson
- Department of Biology, Lund University, Zoology Building, Helgonavägen 3, 223 62 Lund, Sweden.
| | | | | |
Collapse
|
27
|
Mizobuchi M, Towler D, Slatopolsky E. Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol 2009; 20:1453-64. [PMID: 19478096 DOI: 10.1681/asn.2008070692] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular complications are the leading cause of death in patients with chronic kidney disease (CKD). Vascular calcification is a common complication in CKD, and investigators have demonstrated that the extent and histoanatomic type of vascular calcification are predictors of subsequent vascular mortality. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in vascular calcification in patients with kidney disease, many questions remain unanswered. No longer can we accept the concept that vascular calcification in CKD is a passive process resulting from an elevated calcium-phosphate product. Rather, as a result of the metabolic insults of diabetes, dyslipidemia, oxidative stress, uremia, and hyperphosphatemia, "osteoblast-like" cells form in the vessel wall. These mineralizing cells as well as the recruitment of undifferentiated progenitors to the osteochondrocyte lineage play a critical role in the calcification process. Important transcription factors such as Msx 2, osterix, and RUNX2 are crucial in the programming of osteogenesis. Thus, the simultaneous increase in arterial osteochondrocytic programs and reduction in active cellular defense mechanisms creates the "perfect storm" of vascular calcification seen in ESRD. Innovative clinical studies addressing the combined use of inhibitors that work on vascular calcification through distinct molecular mechanisms, such as fetuin-A, osteopontin, and bone morphogenic protein 7, among others, will be necessary to reduce significantly the accrual of vascular calcifications and cardiovascular mortality in kidney disease. In addition, the roles of oxidative stress and inflammation on the fate of smooth muscle vascular cells and their function deserve further translational investigation.
Collapse
Affiliation(s)
- Masahide Mizobuchi
- Department of Medicine, Renal Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
28
|
Rossi A, Pasqui D, Barbucci R, Gerli R, Weber E. The topography of microstructured surfaces differently affects fibrillin deposition by blood and lymphatic endothelial cells in culture. Tissue Eng Part A 2009; 15:525-33. [PMID: 18759668 DOI: 10.1089/ten.tea.2007.0421] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While tissue-engineered blood vessels have already been successfully used in surgical practice, artificially restoring lymphatic circulation when needed is still far to be realized. Stability of arterial vessel wall depends on proper fibrillin deposition; fibrillin in fact is the scaffold for elastic fiber formation. In lymphatic vessels fibrillin is probably implied in lymph formation in response to interstitial requirements. This study was designed to verify whether fibrillin deposition is influenced by the topography of the substrate on which blood and lymphatic endothelial cells grow. Blood and lymphatic endothelial cells were cultured on microstructured surfaces with different topography: stripes of different widths (25, 50, and 100 microm), squares and rectangles, and spiral geometry, obtained by the photoimmobilization of Hyaluronan (Hyal) on aminosilanized glass. Cell orientation and fibrillin deposition were influenced by the topography of the microstructure. Blood endothelial cells deposited fibrillin as a bundle running parallel to the major axis of stripes and spirals, whereas the irregular network of fibrillin deposited by lymphatic endothelial cells was affected by the topography of the substrate only in the smallest stripes. These data bring a contribution to the basic knowledge required to design tissue-engineered blood and lymphatic vessels capable of adapting to the functional requirements of the surrounding environment.
Collapse
Affiliation(s)
- Antonella Rossi
- Department of Neuroscience, Molecular Medicine Section, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
29
|
Akhtar R, Schwarzer N, Sherratt M, Watson R, Graham H, Trafford A, Mummery P, Derby B. Nanoindentation of histological specimens: Mapping the elastic properties of soft tissues. JOURNAL OF MATERIALS RESEARCH 2009; 24:638-646. [PMID: 20396607 PMCID: PMC2854807 DOI: 10.1557/jmr.2009.0130] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although alterations in the gross mechanical properties of dynamic and compliant tissues have a major impact on human health and morbidity, there are no well-established techniques to characterize the micromechanical properties of tissues such as blood vessels and lungs. We have used nanoindentation to spatially map the micromechanical properties of 5-mum-thick sections of ferret aorta and vena cava and to relate these mechanical properties to the histological distribution of fluorescent elastic fibers. To decouple the effect of the glass substrate on our analysis of the nanoindentation data, we have used the extended Oliver and Pharr method. The elastic modulus of the aorta decreased progressively from 35 MPa in the adventitial (outermost) layer to 8 MPa at the intimal (innermost) layer. In contrast, the vena cava was relatively stiff, with an elastic modulus >30 MPa in both the extracellular matrix-rich adventitial and intimal regions of the vessel. The central, highly cellularized, medial layer of the vena cava, however, had an invariant elastic modulus of ~20 MPa. In extracellular matrix-rich regions of the tissue, the elastic modulus, as determined by nanoindentation, was inversely correlated with elastic fiber density. Thus, we show it is possible to distinguish and spatially resolve differences in the micromechanical properties of large arteries and veins, which are related to the tissue microstructure.
Collapse
Affiliation(s)
- R. Akhtar
- Address all correspondence to this author. e-mail:
| | - N. Schwarzer
- Saxonian Institute of Surface Mechanics (SIO), Ummanz 18569, Germany
| | - M.J. Sherratt
- Tissue Injury and Repair Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - R.E.B. Watson
- Dermatological Sciences Research Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - H.K. Graham
- Unit of Cardiac Physiology, Division of Cardiovascular and Endocrine Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - A.W. Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular and Endocrine Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - P.M. Mummery
- School of Materials, University of Manchester, Manchester M1 7HS, United Kingdom
| | - B. Derby
- School of Materials, University of Manchester, Manchester M1 7HS, United Kingdom
| |
Collapse
|
30
|
Glab J, Wess T. Changes in the Molecular Packing of Fibrillin Microfibrils During Extension Indicate Intrafibrillar and Interfibrillar Reorganization in Elastic Response. J Mol Biol 2008; 383:1171-80. [DOI: 10.1016/j.jmb.2008.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 11/24/2022]
|
31
|
Marfan Syndrome-causing Mutations in Fibrillin-1 Result in Gross Morphological Alterations and Highlight the Structural Importance of the Second Hybrid Domain. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84100-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Mellody KT, Freeman LJ, Baldock C, Jowitt TA, Siegler V, Raynal BDE, Cain SA, Wess TJ, Shuttleworth CA, Kielty CM. Marfan syndrome-causing mutations in fibrillin-1 result in gross morphological alterations and highlight the structural importance of the second hybrid domain. J Biol Chem 2006; 281:31854-62. [PMID: 16905551 DOI: 10.1074/jbc.m602743200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in fibrillin-1 result in Marfan syndrome, which affects the cardiovascular, skeletal and ocular systems. The multiorgan involvement and wide spectrum of associated phenotypes highlights the complex pathogenesis underlying Marfan syndrome. To elucidate the genotype to phenotype correlations, we engineered four Marfan syndrome causing mutations into a fibrillin-1 fragment encoded by exons 18-25, a region known to interact with tropoelastin. Biophysical and biochemical approaches, including small angle x-ray scattering, analytical ultracentrifugation, and circular dichroism, were used to study the impact of these mutations upon the structure and function of the protein. Mutations G880S, C862R, and C908R, situated within the second hybrid domain, disrupted the ratio of alpha-helix to beta-sheet leading to a more compact conformation. These data clearly demonstrate the importance of the previously uncharacterized hybrid domain in fibrillin-1 structure. In contrast, mutation K1023N situated within the linker region between the third eight cysteine motif and cbEGF 11 markedly extended the length of the fragment. However, none of the mutations affected tropoelastin binding. The profound effects of all four mutations on fragment conformation suggest that they contribute to the pathogenesis of Marfan syndrome by disrupting protein folding and its assembly into fibrillin-rich microfibrils.
Collapse
Affiliation(s)
- Kieran T Mellody
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Costa AMA, Maximiano EBB, Avvad-Portari E, Jésus NR, Levy RA, Porto LC. Contractile cells and fibrillin-1 distribution is disturbed in terminal villi of placentae from patients with preeclampsia and systemic lupus erythematosus. Placenta 2006; 27:234-43. [PMID: 16338469 DOI: 10.1016/j.placenta.2005.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 11/19/2004] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Placentae from patients with preeclampsia (PE) and systemic lupus erythematosus (SLE) present many alterations that may impair materno-fetal exchange. We investigated the distribution of contractile cells and fibrillin-1 in terminal villi of term placentae from patients with PE or SLE and compared to control placentae. Stroma in terminal villi exhibited intense labelling for fibrillin-1. The fibrillin-1 villi surface fraction was greater in PE and SLE placentae than in controls (13+/-0.4%, 14+/-0.5%, 10+/-0.4%; p=0.0001). Immunohistochemistry for alpha-smooth muscle (SM) actin showed few contractile cells in control terminal villi stroma, localized around fetal capillaries and showed rare processes in vasculo-syncytial membrane. PE and SLE placentae exhibited an increase in the number of capillaries presenting alpha-SM actin adventitial positive cells. The presence of alpha-SM actin processes interposed in the vasculo-syncytial membrane was greater in SLE villi than in PE and controls. Ultrastructural observations confirmed in SLE and PE terminal villi the presence of these processes in vasculo-syncytial membrane and also showed a thickened trophoblastic basement membrane. The present study demonstrates that an important myofibroelastic system is present in term terminal villi, and that this system is actively remodelled in PE and SLE placentae.
Collapse
Affiliation(s)
- A M A Costa
- Histology and Embryology Department, State University of Rio de Janeiro, Rua Prof Manoel de Abreu, 20550-170 Rio de Janeiro RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
34
|
O'Shaughnessy KM, McEniery CM, Cockcroft JR, Wilkinson IB. Genetic variation in fibrillin-1 gene is not associated with arterial stiffness in apparently healthy individuals. J Hypertens 2006; 24:499-502. [PMID: 16467653 DOI: 10.1097/01.hjh.0000209986.74477.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Arterial stiffness is an independent determinant of cardiovascular risk, and there is evidence that it has a strong genetic component. Fibrillin-1 (FBN-1) is the disease gene for Marfan's syndrome and an FBN-1 polymorphism has been associated with large artery stiffening and elevated pulse pressure (PP) in patients with cardiovascular disease. The aim of this study was to investigate the possible influence of the common FBN-1 genotypes on arterial stiffness in a large cohort of healthy individuals. SUBJECTS AND METHODS A total of 742 individuals free from cardiovascular disease or risk factors were studied. Aortic pulse wave velocity (PWV) and augmentation index (AIx), blood pressure, lipids and glucose were assessed. Genomic DNA was extracted, and genotyping for the FBN-1 variable nucleotide tandem repeat (VNTR) was performed using a CEQ 8000 sequencer. RESULTS The mean age (+/- SEM) of the cohort was 49 +/- 1 years. The three common VNTR genotypes accounted for 87.1% of the population frequency. Their frequencies were: 52.3%, 2-2; 16.3%, 2-3; 18.5% 2-4. There were no significant differences in the blood pressure, AIx, PWV, lipids or body mass index among the common genotypes. Moreover, the FBN-1 genotype was not associated with either aortic PWV or other measures of stiffness after correction for other confounding factors. CONCLUSION These data do not support the hypothesis that aortic PWV or PP are influenced by the FBN-1 VNTR genotype. Although we cannot exclude small effects, this negative finding also suggests that there is not a major allele for stiffness or blood pressure in apparently healthy individuals linked to this VNTR.
Collapse
|
35
|
Chen E, Larson JD, Ekker SC. Functional analysis of zebrafish microfibril-associated glycoprotein-1 (Magp1) in vivo reveals roles for microfibrils in vascular development and function. Blood 2006; 107:4364-74. [PMID: 16469878 PMCID: PMC1895789 DOI: 10.1182/blood-2005-02-0789] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations in fibrillin-1 (FBN1) result in Marfan syndrome, demonstrating a critical requirement for microfibrils in vessel structure and function. However, the identity and function of many microfibril-associated molecules essential for vascular development and function have yet to be characterized. In our morpholino-based screen for members of the secretome required for vascular development, we identified a key player in microfibril formation in zebrafish embryogenesis. Microfibril-associated glycoprotein-1 (MAGP1) is a conserved protein found in mammalian and zebrafish microfibrils. Expression of magp1 mRNA is detected in microfibril-producing cells. Analysis of a functional Magp1-mRFP fusion protein reveals localization along the midline and in the vasculature during embryogenesis. Underexpression and overexpression analyses demonstrate that specific Magp1 protein levels are critical for vascular development. Integrin function is compromised in magp1 morphant embryos, suggesting that reduced integrin-matrix interaction is the main mechanism for the vascular defects in magp1 morphants. We further show that Magp1 and fibrillin-1 interact in vivo. This study implicates MAGP1 as a key player in microfibril formation and integrity during development. The essential role for MAGP1 in vascular morphogenesis and function also supports a wide range of clinical applications, including therapeutic targets in vascular disease and cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Eleanor Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
36
|
Hinek A, Pshezhetsky AV, von Itzstein M, Starcher B. Lysosomal Sialidase (Neuraminidase-1) Is Targeted to the Cell Surface in a Multiprotein Complex That Facilitates Elastic Fiber Assembly. J Biol Chem 2006; 281:3698-710. [PMID: 16314420 DOI: 10.1074/jbc.m508736200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have established previously that the 67-kDa elastin-binding protein (EBP), identical to the spliced variant of beta-galactosidase, acts as a recyclable chaperone that facilitates secretion of tropoelastin. (Hinek, A., Keeley, F. W., and Callahan, J. W. (1995) Exp. Cell Res. 220, 312-324). We now demonstrate that EBP also forms a cell surface-targeted molecular complex with protective protein/cathepsin A and sialidase (neuraminidase-1), and provide evidence that this sialidase activity is a prerequisite for the subsequent release of tropoelastin. We found that treatment with sialidase inhibitors repressed assembly of elastic fibers in cultures of human skin fibroblasts, aortic smooth muscle cells, and ear cartilage chondrocytes and caused impaired elastogenesis in developing chick embryos. Fibroblasts derived from patients with congenital sialidosis (primary deficiency of neuraminidase-1) and galactosialidosis (secondary deficiency of neuraminidase-1) demonstrated impaired elastogenesis, which could be reversed after their transduction with neuraminidase-1 cDNA or after treatment with bacterial sialidase, which has a similar substrate specificity to human neuraminidase-1. We postulate that neuraminidase-1 catalyzes removal of the terminal sialic acids from carbohydrate chains of microfibrillar glycoproteins and other adjacent matrix glycoconjugates, unmasking their penultimate galactosugars. In turn, the exposed galactosugars interact with the galectin domain of EBP, thereby inducing the release of transported tropoelastin molecules and facilitating their subsequent assembly into elastic fibers.
Collapse
MESH Headings
- Aorta/metabolism
- Blotting, Western
- Carbohydrates/chemistry
- Cartilage/metabolism
- Catalysis
- Cell Membrane/enzymology
- Cells, Cultured
- Chondrocytes/metabolism
- Chromatography, Affinity
- Clostridium perfringens/metabolism
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Fibroblasts/metabolism
- Galectins/chemistry
- Humans
- Immunohistochemistry
- Lysosomes/metabolism
- Microscopy, Electron
- Microscopy, Fluorescence
- Models, Biological
- Muscle, Smooth/cytology
- Muscle, Smooth/metabolism
- Neuraminidase/biosynthesis
- Protein Binding
- Protein Structure, Tertiary
- Sialic Acids/chemistry
- Skin/metabolism
- Tropoelastin/chemistry
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Aleksander Hinek
- Cardiovascular Research Program, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
37
|
Powell JT, Turner RJ, Sian M, Debasso R, Länne T. Influence of fibrillin-1 genotype on the aortic stiffness in men. J Appl Physiol (1985) 2005; 99:1036-40. [PMID: 16103519 DOI: 10.1152/japplphysiol.00554.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aortic stiffness is a predictor of cardiovascular mortality. The mechanical properties of the arterial wall depend on the connective tissue framework, with variation in fibrillin-1 and collagen I genes being associated with aortic stiffness and/or pulse pressure elevation. The aim of this study was to investigate whether variation in fibrillin-1 genotype was associated with aortic stiffness in men. The mechanical properties of the abdominal aorta of 79 healthy men (range 28–81 yr) were investigated by ultrasonographic phase-locked echo tracking. Fibrillin-1 genotype, characterized by the variable tandem repeat in intron 28, and collagen type I alpha 1 genotype characterized by the 2,064 G>T polymorphism, were determined by using DNA from peripheral blood cells. Three common fibrillin-1 genotypes, 2-2, 2-3, and 2-4, were observed in 50 (64%), 10 (13%), and 11 (14%) of the men, respectively. Those of 2-3 genotype had higher pressure strain elastic modulus and aortic stiffness compared with men of 2-2 or 2-4 genotype ( P = 0.005). Pulse pressure also was increased in the 2-3 genotype ( P = 0.04). There was no significant association between type 1 collagen genotype and aortic stiffness in this cohort. In conclusion, the fibrillin-1 2-3 genotype in men was associated with increased aortic stiffness and pulse pressure, indicative of an increased risk for cardiovascular disease.
Collapse
Affiliation(s)
- J T Powell
- University Hospital of Coventry, Walsgrave, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Bobryshev YV. Calcification of elastic fibers in human atherosclerotic plaque. Atherosclerosis 2005; 180:293-303. [PMID: 15910855 DOI: 10.1016/j.atherosclerosis.2005.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Accepted: 12/08/2004] [Indexed: 10/25/2022]
Abstract
The present study was undertaken to systematically investigate whether calcification of elastic fibers occurs in human atherosclerotic plaques. Fourteen carotid artery segments obtained by endarterectomy were examined by a combination of electron microscopy and cytochemistry. The analysis demonstrated that calcification of elastic fibers occurred in all 14 specimens. Two distinct types of calcification of elastic fibers were identified. In type I calcification, elastin itself was observed to undergo calcification and no visible structural alterations preceded the calcification. In type II of calcification, structural alteration of elastin preceded calcification of elastic fibers and included vacuolization of elastin accompanied by the accumulation of neutral lipids and unesterified cholesterol within altered elastic fibers. In type II calcification, calcified deposits were found to form in an association with unesterified cholesterol. Type II calcification was widespread throughout the plaque matrix while type I calcification occurred only in the deep portions of plaques.
Collapse
Affiliation(s)
- Yuri V Bobryshev
- Surgical Professorial Unit, Level 5, DeLacy Building, St. Vincent's Hospital Sydney, University of New South Wales, Darlinghurst NSW 2010, Australia.
| |
Collapse
|
39
|
Functional morphology of the compass-rotular ligament of Echinus esculentus (Echinodermata: Echinoida): a non-mutable collagenous component of Aristotle?s lantern. ZOOMORPHOLOGY 2005. [DOI: 10.1007/s00435-005-0107-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Abstract
Fibrillin microfibrils are widely distributed extracellular matrix assemblies that endow elastic and nonelastic connective tissues with long-range elasticity. They direct tropoelastin deposition during elastic fibrillogenesis and form an outer mantle for mature elastic fibers. Microfibril arrays are also abundant in dynamic tissues that do not express elastin, such as the ciliary zonules of the eye. Mutations in fibrillin-1-the principal structural component of microfibrils-cause Marfan syndrome, a heritable disease with severe aortic, ocular, and skeletal defects. Isolated fibrillin-rich microfibrils have a complex 56 nm "beads-on-a-string" appearance; the molecular basis of their assembly and elastic properties, and their role in higher-order elastic fiber formation, remain incompletely understood.
Collapse
Affiliation(s)
- Cay M Kielty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
41
|
Lee SS, Knott V, Jovanović J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI, Handford PA. Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure 2004; 12:717-29. [PMID: 15062093 PMCID: PMC5582136 DOI: 10.1016/j.str.2004.02.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 12/19/2003] [Accepted: 12/22/2003] [Indexed: 11/20/2022]
Abstract
Human fibrillin-1, the major structural protein of extracellular matrix (ECM) 10-12 nm microfibrils, is dominated by 43 calcium binding epidermal growth factor-like (cbEGF) and 7 transforming growth factor beta binding protein-like (TB) domains. Crystal structures reveal the integrin binding cbEGF22-TB4-cbEGF23 fragment of human fibrillin-1 to be a Ca(2+)-rigidified tetragonal pyramid. We suggest that other cbEGF-TB pairs within the fibrillins may adopt a similar orientation to cbEGF22-TB4. In addition, we have located a flexible RGD integrin binding loop within TB4. Modeling, cell attachment and spreading assays, immunocytochemistry, and surface plasmon resonance indicate that cbEGF22 bound to TB4 is a requirement for integrin activation and provide insight into the molecular basis of the fibrillin-1 interaction with alphaVbeta3. In light of our data, we propose a novel model for the assembly of the fibrillin microfibril and a mechanism to explain its extensibility.
Collapse
Affiliation(s)
- Stephen S.J. Lee
- The Henry Wellcome Building of Genomic Medicine Roosevelt Drive Oxford OX3 7BN
| | - Vroni Knott
- Division of Molecular and Cellular Biochemistry Department of Biochemistry University of Oxford South Parks Road Oxford OX1 3QU
| | - Jelena Jovanović
- Division of Molecular and Cellular Biochemistry Department of Biochemistry University of Oxford South Parks Road Oxford OX1 3QU
| | - Karl Harlos
- The Henry Wellcome Building of Genomic Medicine Roosevelt Drive Oxford OX3 7BN
| | - Jonathan M. Grimes
- The Henry Wellcome Building of Genomic Medicine Roosevelt Drive Oxford OX3 7BN
| | - Laurence Choulier
- Division of Medical Sciences Nuffield Department of Obstetrics & Gynaecology The Women's Centre Level 3 John Radcliffe Hospital Headington, Oxford OX3 9DU United Kingdom
| | - Helen J. Mardon
- Division of Medical Sciences Nuffield Department of Obstetrics & Gynaecology The Women's Centre Level 3 John Radcliffe Hospital Headington, Oxford OX3 9DU United Kingdom
| | - David I. Stuart
- The Henry Wellcome Building of Genomic Medicine Roosevelt Drive Oxford OX3 7BN
| | - Penny A. Handford
- Division of Molecular and Cellular Biochemistry Department of Biochemistry University of Oxford South Parks Road Oxford OX1 3QU
- Correspondence:
| |
Collapse
|
42
|
Sherratt MJ, Holmes DF, Shuttleworth CA, Kielty CM. Substrate-dependent morphology of supramolecular assemblies: fibrillin and type-VI collagen microfibrils. Biophys J 2004; 86:3211-22. [PMID: 15111434 PMCID: PMC1304186 DOI: 10.1016/s0006-3495(04)74369-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Substrate hydrophobicity/hydrophilicity has previously been shown to affect the morphology and biological function of isolated proteins. We have employed atomic force microscopy to investigate substrate dependent morphologies of two biochemically distinct native supramolecular assemblies: fibrillin and type-VI collagen microfibrils. These morphologically heterogeneous microfibrillar systems are found in many vertebrate tissues where they perform structural and cell-signaling roles. Fibrillin microfibrils adsorbed to a hydrophilic mica substrate adopted a diffuse morphology. Fibrillin microfibrils adsorbed to mica coated with poly-L-lysine or to borosilicate glass substrates had a more compact morphology and a directional asymmetry to the bead, which was not present on mica alone. Intermediate morphologies were observed along a substrate gradient. The classical double-beaded appearance of type-VI collagen microfibrils was evident on mica coated with poly-L-lysine and on glass. On hydrophilic mica, morphology was severely disrupted and there was a major conformational reorganization along the whole collagen microfibril repeat. These observations of substrate dependent conformation have important implications for the interpretation of data from in vitro protein interaction assays and cellular signaling studies. Furthermore, conformational changes may be induced by local charge environments in vivo, revealing or hiding binding sites.
Collapse
Affiliation(s)
- Michael J Sherratt
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom.
| | | | | | | |
Collapse
|
43
|
Werneck CC, Trask BC, Broekelmann TJ, Trask TM, Ritty TM, Segade F, Mecham RP. Identification of a major microfibril-associated glycoprotein-1-binding domain in fibrillin-2. J Biol Chem 2004; 279:23045-51. [PMID: 15044481 DOI: 10.1074/jbc.m402656200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using yeast two-hybrid, ligand blotting, and solid phase binding assays, we have shown that microfibril-associated glycoprotein-1 (MAGP-1) interacts with the 8-cysteine motif of fibrillin-2 encoded by exon 24. Binding to this sequence was demonstrated for full-length MAGP-1 as well as for the MAGP-1 matrix-binding domain encoded by exons 7 and 8. The matrix-binding domain, but not the full-length protein, also bound to regions of fibrillin-2 defined by exons 16 and 17, exon 20, and exons 23 and 24. Interestingly, no binding was detected to sequences near the N or C terminus where MAGP-1 and MAGP-2, respectively, were shown to interact with fibrillin-1. The localization of MAGP-1 binding to the 8-Cys domain encoded by exon 24 suggests that the bead structure of microfibrils consists of exon 24 and portions of the central region of fibrillin-2. Exon 24 in fibrillin lies in the region of the molecule where mutations produce the most severe phenotypes associated with Marfan syndrome (fibrillin-1) and congenital contractural arachnodactyly (fibrillin-2). It is possible that these mutations alter the ability of fibrillin to bind MAGP-1, which may contribute to the severity of the disease.
Collapse
Affiliation(s)
- Claudio C Werneck
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Hansen U, Bruckner P. Macromolecular specificity of collagen fibrillogenesis: fibrils of collagens I and XI contain a heterotypic alloyed core and a collagen I sheath. J Biol Chem 2003; 278:37352-9. [PMID: 12869566 DOI: 10.1074/jbc.m304325200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suprastructures of the extracellular matrix, such as banded collagen fibrils, microfibrils, filaments, or networks, are composites comprising more than one type of macromolecule. The suprastructural diversity reflects tissue-specific requirements and is achieved by formation of macromolecular composites that often share their main molecular components alloyed with minor components. Both, the mechanisms of formation and the final macromolecular organizations depend on the identity of the components and their quantitative contribution. Collagen I is the predominant matrix constituent in many tissues and aggregates with other collagens and/or fibril-associated macromolecules into distinct types of banded fibrils. Here, we studied co-assembly of collagens I and XI, which co-exist in fibrils of several normal and pathologically altered tissues, including fibrous cartilage and bone, or osteoarthritic joints. Immediately upon initiation of fibrillogenesis, the proteins co-assembled into alloy-like stubby aggregates that represented efficient nucleation sites for the formation of composite fibrils. Propagation of fibrillogenesis occurred by exclusive accretion of collagen I to yield composite fibrils of highly variable diameters. Therefore, collagen I/XI fibrils strikingly differed from the homogeneous fibrillar alloy generated by collagens II and XI, although the constituent polypeptides of collagens I and II are highly homologous. Thus, the mode of aggregation of collagens into vastly diverse fibrillar composites is finely tuned by subtle differences in molecular structures through formation of macromolecular alloys.
Collapse
Affiliation(s)
- Uwe Hansen
- Universitätsklinikum Münster, Institut für Physiologische Chemie und Pathobiochemie, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | |
Collapse
|
45
|
Sherratt MJ, Baldock C, Haston JL, Holmes DF, Jones CJP, Shuttleworth CA, Wess TJ, Kielty CM. Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol 2003; 332:183-93. [PMID: 12946356 DOI: 10.1016/s0022-2836(03)00829-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fibrillin-rich microfibrils have endowed tissues with elasticity throughout multicellular evolution. We have used molecular combing techniques to determine Young's modulus for individual microfibrils and X-ray diffraction of zonular filaments of the eye to establish the linearity of microfibril periodic extension. Microfibril periodicity is not altered at physiological zonular tissue extensions and Young's modulus is between 78 MPa and 96 MPa, which is two orders of magnitude stiffer than elastin. We conclude that elasticity in microfibril-containing tissues arises primarily from reversible alterations in supra-microfibrillar arrangements rather than from intrinsic elastic properties of individual microfibrils which, instead, act as reinforcing fibres in fibrous composite tissues.
Collapse
Affiliation(s)
- Michael J Sherratt
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Manchester M13 9PT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kassner A, Hansen U, Miosge N, Reinhardt DP, Aigner T, Bruckner-Tuderman L, Bruckner P, Grässel S. Discrete integration of collagen XVI into tissue-specific collagen fibrils or beaded microfibrils. Matrix Biol 2003; 22:131-43. [PMID: 12782140 DOI: 10.1016/s0945-053x(03)00008-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural and functional diversity of extracellular matrices is determined, not only by individual macromolecules, but even more decisively, by the alloyed aggregates they form. Although quantitatively major matrix molecules can occur ubiquitously, their organization varies from one tissue to another due to their amalgamation with specific sets of minor components. Here, we show that the fibril-associated collagen with interrupted triple helices collagen XVI is unique in that, depending on the tissue context, it can be incorporated into distinct suprastructural aggregates. In papillary dermis, the protein unexpectedly does not occur in banded collagen fibrils, but rather, is a component of specialized fibrillin-1-containing microfibrils. In territorial cartilage matrix, however, collagen XVI is not a component of aggregates containing fibrillin-1. Instead, the protein resides in a discrete population of thin, weakly banded collagen fibrils also containing collagens II and XI. Collagen IX also occurs in this population of fibrils, but at longitudinal locations discrete from those of collagen XVI. This suprastructural versatility of a collagen is without precedent and highlights pivotal differences in the tissue-specific organization of matrix aggregate structures.
Collapse
Affiliation(s)
- Anja Kassner
- Institut für Physiologische Chemie und Pathobiochemie, Universitätsklinikum Münster, Waldeyerstrasse 15, 48129 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Penner AS, Rock MJ, Kielty CM, Shipley JM. Microfibril-associated glycoprotein-2 interacts with fibrillin-1 and fibrillin-2 suggesting a role for MAGP-2 in elastic fiber assembly. J Biol Chem 2002; 277:35044-9. [PMID: 12122015 DOI: 10.1074/jbc.m206363200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elastic fibers are composed of the protein elastin and a network of 10-12 nm microfibrils. The microfibrillar proteins include, among others, the fibrillins and microfibril-associated glycoproteins-1 and -2 (MAGP-1 and MAGP-2). Little is known about how microfibrillar proteins interact to support fiber assembly. We used the C-terminal half of MAGP-2 in a yeast two-hybrid library screen to identify relevant ligands. Six of 13 positive clones encoded known microfibrillar proteins, including fibrillin-1 and -2. Deletion analysis of partial fibrillin-1 and -2 clones revealed a calcium-binding epidermal growth factor repeat-containing region near the C terminus responsible for binding. This region is distinct from the region of fibrillin-1 reported by others to bind MAGP-1. The MAGP-2 bait was unable to interact productively with other epidermal growth factor repeats in fibrillin-1, demonstrating specificity of the interaction. Deletion analysis of the MAGP-2 bait demonstrated that binding occurred in a core region containing 48% identity and 7 conserved cysteine residues with MAGP-1. Immunoprecipitation of MAGP-2 from transfected COS-7 cells resulted in the coprecipitation of fibrillin. These results demonstrate that MAGP-2 specifically interacts with fibrillin-1 and -2 and suggest that MAGP-2 may help regulate microfibrillar assembly. The results also demonstrate the utility of the yeast two-hybrid system to study protein-protein interactions of the extracellular matrix.
Collapse
Affiliation(s)
- Akiyo S Penner
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Barnes-Jewish Hospital at Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Conventional electron microscopy and rotary shadowing techniques have provided conflicting interpretations of microfibril ultrastructure. To address this issue, we have used quick-freeze deep-etch (QFDE) microscopy to obtain 3-dimensional surface views of microfibrils that have not been fixed, dehydrated, or stained with heavy metals. By this approach, microfibrils appear as tightly packed rows of bead-like subunits that do not display the interbead filamentous links seen by other methods. At regular 50-nm intervals along the microfibril length, a larger bead is often recognized which tends to be aligned with those from adjacent microfibrils when the microfibrils are in bundles. This evidence of organized lateral associations of microfibrils is supported by the observation of small filaments that span between the adjacent microfibrils. When QFDE microscopy was used to examine microfibrils exposed to sonication, partially dissociated microfibrils with the more typical "beads on a string" appearance were observed. Beads are also seen alone, as monomers, often with an array of small thread-like filaments extending from the bead in a "crab-like" manner. Our results suggest that the beads on a string appearance of sonicated microfibrils may result from a partial loss of protein components from the interbead domains, thus leading to exposure of a filamentous substructure. It is possible, therefore, that this phenomenon might also contribute to the beads on a string appearance of microfibrils seen using other electron microscopy techniques.
Collapse
Affiliation(s)
- Elaine C Davis
- Department of Cell Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Elastic fibres are essential extracellular matrix macromolecules comprising an elastin core surrounded by a mantle of fibrillin-rich microfibrils. They endow connective tissues such as blood vessels, lungs and skin with the critical properties of elasticity and resilience. The biology of elastic fibres is complex because they have multiple components, a tightly regulated developmental deposition, a multi-step hierarchical assembly and unique biomechanical functions. However, their molecular complexity is at last being unravelled by progress in identifying interactions between component molecules, ultrastructural analyses and studies of informative mouse models.
Collapse
Affiliation(s)
- Cay M Kielty
- School of Medicine, University of Manchester, UK.
| | | | | |
Collapse
|
50
|
Baldock C, Gilpin CJ, Koster AJ, Ziese U, Kadler KE, Kielty CM, Holmes DF. Three-dimensional reconstructions of extracellular matrix polymers using automated electron tomography. J Struct Biol 2002; 138:130-6. [PMID: 12160709 DOI: 10.1016/s1047-8477(02)00028-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The extracellular matrix is an intricate network of macromolecules which provides support for cells and a framework for tissues. The detailed structure and organisation of most matrix polymers is poorly understood. These polymers have a complex ultrastructure, and it has proved a major challenge both to define their structural organisation and to relate this to their biological function. However, new approaches using automated electron tomography are beginning to reveal important insights into the molecular assembly and structural organisation of two of the most abundant polymer systems in the extracellular matrix. We have generated three-dimensional reconstructions of collagen fibrils from bovine cornea and fibrillin microfibrils from ciliary zonules. Analysis of these data has provided new insights into the organisation and function of these large macromolecular assemblies.
Collapse
Affiliation(s)
- C Baldock
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|