1
|
Naudi-Fabra S, Elena-Real CA, Vedel IM, Tengo M, Motzny K, Jiang PL, Schmieder P, Liu F, Milles S. An extended interaction site determines binding between AP180 and AP2 in clathrin mediated endocytosis. Nat Commun 2024; 15:5884. [PMID: 39003270 PMCID: PMC11246429 DOI: 10.1038/s41467-024-50212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
The early phases of clathrin mediated endocytosis are organized through a highly complex interaction network mediated by clathrin associated sorting proteins (CLASPs) that comprise long intrinsically disordered regions (IDRs). AP180 is a CLASP exclusively expressed in neurons and comprises a long IDR of around 600 residues, whose function remains partially elusive. Using NMR spectroscopy, we discovered an extended and strong interaction site within AP180 with the major adaptor protein AP2, and describe its binding dynamics at atomic resolution. We find that the 70 residue-long site determines the overall interaction between AP180 and AP2 in a dynamic equilibrium between its bound and unbound states, while weaker binding sites contribute to the overall affinity at much higher concentrations of AP2. Our data suggest that this particular interaction site might play a central role in recruitment of adaptors to the clathrin coated pit, whereas more transient and promiscuous interactions allow reshaping of the interaction network until cargo uptake inside a coated vesicle.
Collapse
Affiliation(s)
- Samuel Naudi-Fabra
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Carlos A Elena-Real
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Ida Marie Vedel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Maud Tengo
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Kathrin Motzny
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Pin-Lian Jiang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Sigrid Milles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France.
| |
Collapse
|
2
|
Cowan DB, Wu H, Chen H. Epsin Endocytic Adaptor Proteins in Angiogenic and Lymphangiogenic Signaling. Cold Spring Harb Perspect Med 2024; 14:a041165. [PMID: 37217282 PMCID: PMC10759987 DOI: 10.1101/cshperspect.a041165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Circulating vascular endothelial growth factor (VEGF) ligands and receptors are central regulators of vasculogenesis, angiogenesis, and lymphangiogenesis. In response to VEGF ligand binding, VEGF receptor tyrosine kinases initiate the chain of events that transduce extracellular signals into endothelial cell responses such as survival, proliferation, and migration. These events are controlled by intricate cellular processes that include the regulation of gene expression at multiple levels, interactions of numerous proteins, and intracellular trafficking of receptor-ligand complexes. Endocytic uptake and transport of macromolecular complexes through the endosome-lysosome system helps fine-tune endothelial cell responses to VEGF signals. Clathrin-dependent endocytosis remains the best understood means of macromolecular entry into cells, although the importance of non-clathrin-dependent pathways is increasingly recognized. Many of these endocytic events rely on adaptor proteins that coordinate internalization of activated cell-surface receptors. In the endothelium of both blood and lymphatic vessels, epsins 1 and 2 are functionally redundant adaptors involved in receptor endocytosis and intracellular sorting. These proteins are capable of binding both lipids and proteins and are important for promoting curvature of the plasma membrane as well as binding ubiquitinated cargo. Here, we discuss the role of epsin proteins and other endocytic adaptors in governing VEGF signaling in angiogenesis and lymphangiogenesis and discuss their therapeutic potential as molecular targets.
Collapse
Affiliation(s)
- Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
3
|
Roterman I, Stapor K, Konieczny L. Engagement of intrinsic disordered proteins in protein-protein interaction. Front Mol Biosci 2023; 10:1230922. [PMID: 37583961 PMCID: PMC10423874 DOI: 10.3389/fmolb.2023.1230922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Proteins from the intrinsically disordered group (IDP) focus the attention of many researchers engaged in protein structure analysis. The main criteria used in their identification are lack of secondary structure and significant structural variability. This variability takes forms that cannot be identified in the X-ray technique. In the present study, different criteria were used to assess the status of IDP proteins and their fragments recognized as intrinsically disordered regions (IDRs). The status of the hydrophobic core in proteins identified as IDPs and in their complexes was assessed. The status of IDRs as components of the ordering structure resulting from the construction of the hydrophobic core was also assessed. The hydrophobic core is understood as a structure encompassing the entire molecule in the form of a centrally located high concentration of hydrophobicity and a shell with a gradually decreasing level of hydrophobicity until it reaches a level close to zero on the protein surface. It is a model assuming that the protein folding process follows a micellization pattern aiming at exposing polar residues on the surface, with the simultaneous isolation of hydrophobic amino acids from the polar aquatic environment. The use of the model of hydrophobicity distribution in proteins in the form of the 3D Gaussian distribution described on the protein particle introduces the possibility of assessing the degree of similarity to the assumed micelle-like distribution and also enables the identification of deviations and mismatch between the actual distribution and the idealized distribution. The FOD (fuzzy oil drop) model and its modified FOD-M version allow for the quantitative assessment of these differences and the assessment of the relationship of these areas to the protein function. In the present work, the sections of IDRs in protein complexes classified as IDPs are analyzed. The classification "disordered" in the structural sense (lack of secondary structure or high flexibility) does not always entail a mismatch with the structure of the hydrophobic core. Particularly, the interface area, often consisting of IDRs, in many analyzed complexes shows the compliance of the hydrophobicity distribution with the idealized distribution, which proves that matching to the structure of the hydrophobic core does not require secondary structure ordering.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, Kraków, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Zaccai NR, Kadlecova Z, Dickson VK, Korobchevskaya K, Kamenicky J, Kovtun O, Umasankar PK, Wrobel AG, Kaufman JGG, Gray SR, Qu K, Evans PR, Fritzsche M, Sroubek F, Höning S, Briggs JAG, Kelly BT, Owen DJ, Traub LM. FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P 2-dependent switch. SCIENCE ADVANCES 2022; 8:eabn2018. [PMID: 35486718 PMCID: PMC9054013 DOI: 10.1126/sciadv.abn2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.
Collapse
Affiliation(s)
- Nathan R. Zaccai
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Zuzana Kadlecova
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Kseniya Korobchevskaya
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Jan Kamenicky
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Oleksiy Kovtun
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Perunthottathu K. Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Antoni G. Wrobel
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | | | - Sally R. Gray
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kun Qu
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK
| | - Filip Sroubek
- Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodarenskou vezi 4, 182 08 Prague 8, Czech Republic
| | - Stefan Höning
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
| | - John A. G. Briggs
- MRC LMB Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bernard T. Kelly
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - David J. Owen
- CIMR, University of Cambridge, Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Linton M. Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Duan D, Hanson M, Holland DO, Johnson ME. Integrating protein copy numbers with interaction networks to quantify stoichiometry in clathrin-mediated endocytosis. Sci Rep 2022; 12:5413. [PMID: 35354856 PMCID: PMC8967901 DOI: 10.1038/s41598-022-09259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Proteins that drive processes like clathrin-mediated endocytosis (CME) are expressed at copy numbers within a cell and across cell types varying from hundreds (e.g. auxilin) to millions (e.g. clathrin). These variations contain important information about function, but without integration with the interaction network, they cannot capture how supply and demand for each protein depends on binding to shared and distinct partners. Here we construct the interface-resolved network of 82 proteins involved in CME and establish a metric, a stoichiometric balance ratio (SBR), that quantifies whether each protein in the network has an abundance that is sub- or super-stoichiometric dependent on the global competition for binding. We find that highly abundant proteins (like clathrin) are super-stoichiometric, but that not all super-stoichiometric proteins are highly abundant, across three cell populations (HeLa, fibroblast, and neuronal synaptosomes). Most strikingly, within all cells there is significant competition to bind shared sites on clathrin and the central AP-2 adaptor by other adaptor proteins, resulting in most being in excess supply. Our network and systematic analysis, including response to perturbations of network components, show how competition for shared binding sites results in functionally similar proteins having widely varying stoichiometries, due to variations in both abundance and their unique network of binding partners.
Collapse
Affiliation(s)
- Daisy Duan
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Meretta Hanson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | | | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.
| |
Collapse
|
6
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Candida albicans ENT2 Contributes to Efficient Endocytosis, Cell Wall Integrity, Filamentation, and Virulence. mSphere 2021; 6:e0070721. [PMID: 34585966 PMCID: PMC8550084 DOI: 10.1128/msphere.00707-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epsins play a pivotal role in the formation of endocytic vesicles and potentially provide a linkage between endocytic and other trafficking pathways. We identified a Candida albicans epsin, ENT2, that bears homology to the Saccharomyces cerevisiae early endocytosis genes ENT1 and ENT2 and studied its functions by a reverse genetic approach utilizing CRISPR-Cas9-mediated gene deletion. The C. albicans ent2Δ/Δ null mutant displayed cell wall defects and altered antifungal drug sensitivity. To define the role of C. albicans ENT2 in endocytosis, we performed assays with the lipophilic dye FM4-64 that revealed greatly reduced uptake in the ent2Δ/Δ mutant. Next, we showed that the C. albicans ent2Δ/Δ mutant was unable to form hyphae and biofilms. Assays for virulence properties in an in vitro keratinocyte infection model demonstrated reduced damage of mammalian adhesion zippers and host cell death from the ent2Δ/Δ mutant. We conclude that C. albicans ENT2 has a role in efficient endocytosis, a process that is required for maintaining cell wall integrity, hyphal formation, and virulence-defining traits. IMPORTANCE The opportunistic fungal pathogen Candida albicans is an important cause of invasive infections in hospitalized patients and a source of considerable morbidity and mortality. Despite its clinical importance, we still need to improve our ability to diagnose and treat this common pathogen. In order to support these advancements, a greater understanding of the biology of C. albicans is needed. In these studies, we are focused on the fundamental biological process of endocytosis, of which little is directly known in C. albicans. In addition to studying the function of a key gene in this process, we are examining the role of endocytosis in the virulence-related processes of filamentation, biofilm formation, and tissue invasion. These studies will provide greater insight into the role of endocytosis in causing invasive fungal infections.
Collapse
|
8
|
Lee SK, Hong WJ, Silva J, Kim EJ, Park SK, Jung KH, Kim YJ. Global Identification of ANTH Genes Involved in Rice Pollen Germination and Functional Characterization of a Key Member, OsANTH3. FRONTIERS IN PLANT SCIENCE 2021; 12:609473. [PMID: 33927731 PMCID: PMC8076639 DOI: 10.3389/fpls.2021.609473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Pollen in angiosperms plays a critical role in double fertilization by germinating and elongating pollen tubes rapidly in one direction to deliver sperm. In this process, the secretory vesicles deliver cell wall and plasma membrane materials, and excessive materials are sequestered via endocytosis. However, endocytosis in plants is poorly understood. AP180 N-terminal homology (ANTH) domain-containing proteins function as adaptive regulators for clathrin-mediated endocytosis in eukaryotic systems. Here, we identified 17 ANTH domain-containing proteins from rice based on a genome-wide investigation. Motif and phylogenomic analyses revealed seven asparagine-proline-phenylalanine (NPF)-rich and 10 NPF-less subgroups of these proteins, as well as various clathrin-mediated endocytosis-related motifs in their C-terminals. To investigate their roles in pollen germination, we performed meta-expression analysis of all genes encoding ANTH domain-containing proteins in Oryza sativa (OsANTH genes) in anatomical samples, including pollen, and identified five mature pollen-preferred OsANTH genes. The subcellular localization of four OsANTH proteins that were preferentially expressed in mature pollen can be consistent with their role in endocytosis in the plasma membrane. Of them, OsANTH3 represented the highest expression in mature pollen. Functional characterization of OsANTH3 using T-DNA insertional knockout and gene-edited mutants revealed that a mutation in OsANTH3 decreased seed fertility by reducing the pollen germination percentage in rice. Thus, our study suggests OsANTH3-mediated endocytosis is important for rice pollen germination.
Collapse
Affiliation(s)
- Su Kyoung Lee
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jeniffer Silva
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Eui-Jung Kim
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| |
Collapse
|
9
|
Mishra R, Sengül GF, Candiello E, Schu P. Synaptic AP2 CCV life cycle regulation by the Eps15, ITSN1, Sgip1/AP2, synaptojanin1 interactome. Sci Rep 2021; 11:8007. [PMID: 33850201 PMCID: PMC8044098 DOI: 10.1038/s41598-021-87591-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
The AP1/σ1B knockout causes impaired synaptic vesicle recycling and enhanced protein sorting into endosomes, leading to severe intellectual disability. These disturbances in synaptic protein sorting induce as a secondary phenotype the upregulation of AP2 CCV mediated endocytosis. Synapses contain canonical AP2 CCV and AP2 CCV with a more stable coat and thus extended life time. In AP1/σ1B knockout synapses, pool sizes of both CCV classes are doubled. Additionally, stable CCV of the knockout are more stabilised than stable wt CCV. One mechanism responsible for enhanced CCV stabilisation is the reduction of synaptojanin1 CCV levels, the PI-4,5-P2 phosphatase essential for AP2 membrane dissociation. To identify mechanisms regulating synaptojanin1 recruitment, we compared synaptojanin1 CCV protein interactome levels and CCV protein interactions between both CCV classes from wt and knockout mice. We show that ITSN1 determines synaptojanin1 CCV levels. Sgip1/AP2 excess hinders synaptojanin1 binding to ITSN1, further lowering its levels. ITSN1 levels are determined by Eps15, not Eps15L1. In addition, the data reveal that reduced amounts of pacsin1 can be counter balanced by its enhanced activation. These data exemplify the complexity of CCV life cycle regulation and indicate how cargo proteins determine the life cycle of their CCV.
Collapse
Affiliation(s)
- R Mishra
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, England, UK
| | - G F Sengül
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - E Candiello
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Institute for Cancer Research and Treatment (IRCC), Turin, Italy
| | - P Schu
- Department of Cellular Biochemistry, University Medical Center, Georg-August University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
10
|
Hua XY, Bie XX, Cheng X, Zhang SG. High expression of CIN85 promotes proliferation and invasion of human esophageal squamous cell carcinoma. Mol Med Rep 2020; 23:12. [PMID: 33179079 PMCID: PMC7673327 DOI: 10.3892/mmr.2020.11650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023] Open
Abstract
SH3 domain-containing kinase-binding protein 1 (CIN85), an 85 kDa protein known to be a member of the signal adaptor family, is abnormally expressed in several human malignancies and has been found to be involved in the growth, migration and invasion of these tumors. The objective of the present study was to clarify the clinical significance of CIN85 in human esophageal squamous cell carcinoma (ESCC), as well as its in vitro functions. CIN85 expression was evaluated in 129 cases of ESCC and its adjacent normal tissues using immunohistochemistry to explore its clinical relevance and prognostic value. The functions of CIN85 in the ESCC TE1 cell line were analyzed in vitro using the interfering short hairpin RNA silencing technique. MTS, wound healing, clone formation and Transwell assays were used to detect the proliferation, migration and invasion of ESCC cells. CIN85 expression was identified mainly in ESCCs and their adjacent normal tissues, and the high expression of CIN85 was significantly associated with advanced Tumor Node Metastasis stage and lymph node metastasis. CIN85 gene silencing significantly inhibited TE1 cell proliferation, migration and invasion. These results demonstrated that CIN85 was highly expressed in advanced stage ESCC and lymph node metastasis, and played a critical role in tumor proliferation and progression. Therefore, CIN85 may be a promising therapeutic target for human ESCC.
Collapse
Affiliation(s)
- Xiao-Yang Hua
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing-Xing Bie
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shu-Guang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11
|
Chen Z, Schmid SL. Evolving models for assembling and shaping clathrin-coated pits. J Cell Biol 2020; 219:e202005126. [PMID: 32770195 PMCID: PMC7480099 DOI: 10.1083/jcb.202005126] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
Clathrin-mediated endocytosis occurs via the assembly of clathrin-coated pits (CCPs) that invaginate and pinch off to form clathrin-coated vesicles (CCVs). It is well known that adaptor protein 2 (AP2) complexes trigger clathrin assembly on the plasma membrane, and biochemical and structural studies have revealed the nature of these interactions. Numerous endocytic accessory proteins collaborate with clathrin and AP2 to drive CCV formation. However, many questions remain as to the molecular events involved in CCP initiation, stabilization, and curvature generation. Indeed, a plethora of recent evidence derived from cell perturbation, correlative light and EM tomography, live-cell imaging, modeling, and high-resolution structural analyses has revealed more complexity and promiscuity in the protein interactions driving CCP maturation than anticipated. After briefly reviewing the evidence supporting prevailing models, we integrate these new lines of evidence to develop a more dynamic and flexible model for how redundant, dynamic, and competing protein interactions can drive endocytic CCV formation and suggest new approaches to test emerging models.
Collapse
Affiliation(s)
| | - Sandra L. Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
12
|
Commer B, Schultzhaus Z, Shaw BD. Localization of NPFxD motif-containing proteins in Aspergillus nidulans. Fungal Genet Biol 2020; 141:103412. [PMID: 32445863 DOI: 10.1016/j.fgb.2020.103412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
During growth, filamentous fungi produce polarized cells called hyphae. It is generally presumed that polarization of hyphae is dependent upon secretion through the Spitzenkörper, as well as a mechanism called apical recycling, which maintains a balance between the tightly coupled processes of endocytosis and exocytosis. Endocytosis predominates in an annular domain called the sub-apical endocytic collar, which is located in the region of plasma membrane 1-5 μm distal to the Spitzenkörper. It has previously been proposed that one function of the sub-apical endocytic collar is to maintain the apical localization of polarization proteins. These proteins mark areas of polarization at the apices of hyphae. However, as hyphae grow, these proteins are displaced along the membrane and some must then be removed at the sub-apical endocytic collar in order to maintain the hyphoid shape. While endocytosis is fairly well characterized in yeast, comparatively little is known about the process in filamentous fungi. Here, a bioinformatics approach was utilized to identify 39 Aspergillus nidulans proteins that are predicted to be cargo of endocytosis based on the presence of an NPFxD peptide motif. This motif is a necessary endocytic signal sequence first established in Saccharomyces cerevisiae, where it marks proteins for endocytosis through an interaction with the adapter protein Sla1p. It is hypothesized that some proteins that contain this NPFxD peptide sequence in A. nidulans will be potential targets for endocytosis, and therefore will localize either to the endocytic collar or to more proximal polarized regions of the cell, e.g. the apical dome or the Spitzenkörper. To test this, a subset of the motif-containing proteins in A. nidulans was tagged with GFP and the dynamic localization was evaluated. The documented localization patterns support the hypothesis that the motif marks proteins for localization to the polarized cell apex in growing hyphae.
Collapse
Affiliation(s)
- Blake Commer
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA.
| | - Zachary Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA.
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Singh SK, Gui M, Koh F, Yip MC, Brown A. Structure and activation mechanism of the BBSome membrane protein trafficking complex. eLife 2020; 9:53322. [PMID: 31939736 PMCID: PMC7018513 DOI: 10.7554/elife.53322] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a currently incurable ciliopathy caused by the failure to correctly establish or maintain cilia-dependent signaling pathways. Eight proteins associated with BBS assemble into the BBSome, a key regulator of the ciliary membrane proteome. We report the electron cryomicroscopy (cryo-EM) structures of the native bovine BBSome in inactive and active states at 3.1 and 3.5 Å resolution, respectively. In the active state, the BBSome is bound to an Arf-family GTPase (ARL6/BBS3) that recruits the BBSome to ciliary membranes. ARL6 recognizes a composite binding site formed by BBS1 and BBS7 that is occluded in the inactive state. Activation requires an unexpected swiveling of the β-propeller domain of BBS1, the subunit most frequently implicated in substrate recognition, which widens a central cavity of the BBSome. Structural mapping of disease-causing mutations suggests that pathogenesis results from folding defects and the disruption of autoinhibition and activation.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Fujiet Koh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Matthew Cj Yip
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
14
|
Slee JA, Levine TP. Systematic prediction of FFAT motifs across eukaryote proteomes identifies nucleolar and eisosome proteins with the predicted capacity to form bridges to the endoplasmic reticulum. ACTA ACUST UNITED AC 2019; 2:1-21. [PMID: 31777772 DOI: 10.1177/2515256419883136] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER), the most pervasive organelle, exchanges information and material with many other organelles, but the extent of its inter-organelle connections and the proteins that form bridges are not well known. The integral ER membrane protein VAMP-associated protein (VAP) is found in multiple bridges, interacting with many proteins that contain a short linear motif consisting of "two phenylalanines in an acidic tract" (FFAT). The VAP-FFAT interaction is the most common mechanism by which cytoplasmic proteins, particularly inter-organelle bridges, target the ER. Therefore, predicting new FFAT motifs may both find new individual peripheral ER proteins and identify new routes of communication involving the ER. Here we searched for FFAT motifs across whole proteomes. The excess of eukaryotic proteins with FFAT motifs over background was ≥0.8%, suggesting this is the minimum number of peripheral ER proteins. In yeast, where VAP was previously known to bind 4 proteins with FFAT motifs, a detailed analysis of a subset of proteins predicted 20 FFAT motifs. Extrapolating these findings to the whole proteome estimated the number of FFAT motifs in yeast at approximately 50-55 (0.9% of proteome). Among these previously unstudied FFAT motifs, most have known functions outside the ER, so could be involved in inter-organelle communication. Many of these can target well-characterised membrane contact sites, however some are in nucleoli and eisosomes, organelles previously unknown to have molecular bridges to the ER. We speculate that the nucleolar and eisosomal proteins with predicted motifs may function while bridging to the ER, indicating novel ER-nucleolus and ER-eisosome routes of inter-organelle communication.
Collapse
Affiliation(s)
| | - Timothy P Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
15
|
Beacham GM, Partlow EA, Hollopeter G. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic 2019; 20:741-751. [PMID: 31313456 DOI: 10.1111/tra.12677] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Abstract
Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4-phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5-bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane-associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.
Collapse
Affiliation(s)
| | - Edward A Partlow
- Department of Molecular Medicine, Cornell University, Ithaca, New York
| | | |
Collapse
|
16
|
Seitz O. Templated chemistry for bioorganic synthesis and chemical biology. J Pept Sci 2019; 25:e3198. [PMID: 31309674 PMCID: PMC6771651 DOI: 10.1002/psc.3198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
In light of the 2018 Max Bergmann Medal, this review discusses advancements on chemical biology-driven templated chemistry developed in the author's laboratories. The focused review introduces the template categories applied to orient functional units such as functional groups, chromophores, biomolecules, or ligands in space. Unimolecular templates applied in protein synthesis facilitate fragment coupling of unprotected peptides. Templating via bimolecular assemblies provides control over proximity relationships between functional units of two molecules. As an instructive example, the coiled coil peptide-templated labelling of receptor proteins on live cells will be shown. Termolecular assemblies provide the opportunity to put the proximity of functional units on two (bio)molecules under the control of a third party molecule. This allows the design of conditional bimolecular reactions. A notable example is DNA/RNA-triggered peptide synthesis. The last section shows how termolecular and multimolecular assemblies can be used to better characterize and understand multivalent protein-ligand interactions.
Collapse
Affiliation(s)
- Oliver Seitz
- Department of ChemistryHumboldt University BerlinBerlinGermany
| |
Collapse
|
17
|
Moshkanbaryans L, Chan LS, Engholm-Keller K, Wark JR, Robinson PJ, Graham ME. The interaction of assembly protein AP180 and clathrin is inhibited by multi-site phospho-mimetics. Neurochem Int 2019; 129:104474. [PMID: 31129113 DOI: 10.1016/j.neuint.2019.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Clathrin-mediated endocytosis at the nerve terminal is dependent on assembly protein 180 (AP180) and adapter protein complex 2 (AP2). Both membrane adapter proteins bind to each other and to clathrin, to drive assembly of the clathrin coat over nascent synaptic vesicles. Using knowledge of in vivo phosphorylation sites, AP180 was mutated to determine the effect on binding. N-terminally truncated AP180 exhibited phospho-mimetic (Ser/Thr to Glu)-dependent interaction with AP2, but not clathrin. C-terminally truncated and full length phospho-mutant AP180 bound less AP2 than wild type. However, there was no difference in AP2 binding for the phospho-mimetic or phospho-deficient (Ser/Thr to Ala) AP180 mutants. Thus, the phospho-mutant approach did not provide clarity for the role of phosphorylation in AP180-AP2 binding. Clathrin exhibited a phospho-mimetic-dependent interaction with full-length AP180. Furthermore, phospho-mimetic AP180 was deficient at assembling clathrin cages. These latter discoveries support a model where AP180 phosphorylation inhibits clathrin binding and assembly.
Collapse
Affiliation(s)
- Lia Moshkanbaryans
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Ling-Shan Chan
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Kasper Engholm-Keller
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Jesse Ray Wark
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Phillip James Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | - Mark Evan Graham
- Children's Medical Research Institute, The University of Sydney, Westmead, Australia.
| |
Collapse
|
18
|
Dubel N, Liese S, Scherz F, Seitz O. Untersuchungen zu Grenzen der Bivalenz mit DNA-basierter räumlicher Rasterung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Natali Dubel
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Susanne Liese
- Institut für Theoretische Physik; Freie Universität Berlin; Arnimallee 14 14195 Berlin Deutschland
| | - Franziska Scherz
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Oliver Seitz
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
19
|
Dubel N, Liese S, Scherz F, Seitz O. Exploring the Limits of Bivalency by DNA-Based Spatial Screening. Angew Chem Int Ed Engl 2018; 58:907-911. [DOI: 10.1002/anie.201810996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/19/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Natali Dubel
- Institute of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Susanne Liese
- Institute for Theoretical Physics; Free University Berlin; Arnimallee 14 14195 Berlin Germany
| | - Franziska Scherz
- Institute of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Oliver Seitz
- Institute of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
20
|
Yang Q, Peng L, Wu Y, Li Y, Wang L, Luo JH, Xu J. Endocytic Adaptor Protein HIP1R Controls Intracellular Trafficking of Epidermal Growth Factor Receptor in Neuronal Dendritic Development. Front Mol Neurosci 2018; 11:447. [PMID: 30574069 PMCID: PMC6291753 DOI: 10.3389/fnmol.2018.00447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Huntington-interacting protein 1-related protein (HIP1R) was identified on the basis of its structural homology with HIP1. Based on its domain structure, HIP1R is a putative endocytosis-related protein. Our previous study had shown that knockdown of HIP1R induces a dramatic decrease of dendritic growth and branching in cultured rat hippocampal neurons. However, the underlying mechanism remains elucidative. In this study, we found that knockdown of HIP1R impaired the endocytosis of activated epidermal growth factor receptor (EGFR) and the consequent activation of the downstream ERK and Akt proteins. Meanwhile, it blocked the EGF-induced dendritic outgrowth. We also showed that the HIP1R fragment, amino acids 633–822 (HIP1R633–822), interacted with EGFR and revealed a dominant negative effect in disrupting the HIP1R-EGFR interaction-mediated neuronal development. Collectively, these results reveal a novel mechanism that HIP1R plays a critical role in neurite initiation and dendritic branching in cultured hippocampal neurons via mediating the endocytosis of EGFR and downstream signaling.
Collapse
Affiliation(s)
- Qian Yang
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Peng
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Yu Wu
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanan Li
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Wang
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Hong Luo
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyu Xu
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Rak MA, Buehler J, Zeltzer S, Reitsma J, Molina B, Terhune S, Goodrum F. Human Cytomegalovirus UL135 Interacts with Host Adaptor Proteins To Regulate Epidermal Growth Factor Receptor and Reactivation from Latency. J Virol 2018; 92:e00919-18. [PMID: 30089695 PMCID: PMC6158428 DOI: 10.1128/jvi.00919-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus, HCMV, is a betaherpesvirus that establishes a lifelong latent infection in its host that is marked by recurrent episodes of reactivation. The molecular mechanisms by which the virus and host regulate entry into and exit from latency remain poorly understood. We have previously reported that UL135 is critical for reactivation, functioning in part by overcoming suppressive effects of the latency determinant UL138 We have demonstrated a role for UL135 in diminishing cell surface levels and targeting epidermal growth factor receptor (EGFR) for turnover. The attenuation of EGFR signaling promotes HCMV reactivation in combination with cellular differentiation. In this study, we sought to define the mechanisms by which UL135 functions in regulating EGFR turnover and viral reactivation. Screens to identify proteins interacting with pUL135 identified two host adaptor proteins, CIN85 and Abi-1, with overlapping activities in regulating EGFR levels in the cell. We mapped the amino acids in pUL135 necessary for interaction with Abi-1 and CIN85 and generated recombinant viruses expressing variants of pUL135 that do not interact with CIN85 or Abi-1. These recombinant viruses replicate in fibroblasts but are defective for reactivation in an experimental model for latency using primary CD34+ hematopoietic progenitor cells (HPCs). These UL135 variants have altered trafficking of EGFR and are defective in targeting EGFR for turnover. These studies demonstrate a requirement for pUL135 interactions with Abi-1 and CIN85 for regulation of EGFR and mechanistically link the regulation of EGFR to reactivation.IMPORTANCE Human cytomegalovirus (HCMV) establishes a lifelong latent infection in the human host. While the infection is typically asymptomatic in healthy individuals, HCMV infection poses life-threatening disease risk in immunocompromised individuals and is the leading cause of birth defects. Understanding how HCMV controls the lifelong latent infection and reactivation of replication from latency is critical to developing strategies to control HCMV disease. Here, we identify the host factors targeted by a viral protein that is required for reactivation. We define the importance of this virus-host interaction in reactivation from latency, providing new insights into the molecular underpinnings of HCMV latency and reactivation.
Collapse
Affiliation(s)
- Michael A Rak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Sebastian Zeltzer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Justin Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Belen Molina
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Scott Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Felicia Goodrum
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- University of Arizona Center on Aging, Tucson, Arizona, USA
| |
Collapse
|
22
|
Chen X, Liu Z, Shan Z, Yao W, Gu A, Wen W. Structural determinants controlling 14-3-3 recruitment to the endocytic adaptor Numb and dissociation of the Numb·α-adaptin complex. J Biol Chem 2018; 293:4149-4158. [PMID: 29382713 DOI: 10.1074/jbc.ra117.000897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Traffic of cargo across membranes helps establish, maintain, and reorganize distinct cellular compartments and is fundamental to many metabolic processes. The cargo-selective endocytic adaptor Numb participates in clathrin-dependent endocytosis by attaching cargoes to the clathrin adaptor α-adaptin. The phosphorylation of Numb at Ser265 and Ser284 recruits the regulatory protein 14-3-3, accompanied by the dissociation of Numb from α-adaptin and Numb's translocation from the cortical membrane to the cytosol. However, the molecular mechanisms underlying the Numb-α-adaptin interaction and its regulation by Numb phosphorylation and 14-3-3 recruitment remain poorly understood. Here, biochemical and structural analyses of the Numb·14-3-3 complex revealed that Numb phosphorylation at both Ser265 and Ser284 is required for Numb's efficient interaction with 14-3-3. We also discovered that an RQFRF motif surrounding Ser265 in Numb functions together with the canonical C-terminal DPF motif, required for Numb's interaction with α-adaptin, to form a stable complex with α-adaptin. Of note, we provide evidence that the phosphorylation-induced binding of 14-3-3 to Numb directly competes with the binding of α-adaptin to Numb. Our findings suggest a potential mechanism governing the dynamic assembly of Numb with α-adaptin or 14-3-3. This dual-site recognition of Numb by α-adaptin may have implications for other α-adaptin targets. We propose that the newly identified α-adaptin-binding site surrounding Ser265 in Numb functions as a triggering mechanism for the dynamic dissociation of the Numb·α-adaptin complex.
Collapse
Affiliation(s)
- Xing Chen
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ziheng Liu
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zelin Shan
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weiyi Yao
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Aihong Gu
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wenyu Wen
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Park CJ, Wei T, Sharma R, Ronald PC. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2017; 10:27. [PMID: 28577284 PMCID: PMC5457384 DOI: 10.1186/s12284-017-0166-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/24/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). RESULTS Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. CONCLUSION These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- Department of Bioresources Engineering and the Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea
| | - Tong Wei
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rita Sharma
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA, 95616, USA.
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
24
|
Smith SM, Baker M, Halebian M, Smith CJ. Weak Molecular Interactions in Clathrin-Mediated Endocytosis. Front Mol Biosci 2017; 4:72. [PMID: 29184887 PMCID: PMC5694535 DOI: 10.3389/fmolb.2017.00072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Clathrin-mediated endocytosis is a process by which specific molecules are internalized from the cell periphery for delivery to early endosomes. The key stages in this step-wise process, from the starting point of cargo recognition, to the later stage of assembly of the clathrin coat, are dependent on weak interactions between a large network of proteins. This review discusses the structural and functional data that have improved our knowledge and understanding of the main weak molecular interactions implicated in clathrin-mediated endocytosis, with a particular focus on the two key proteins: AP2 and clathrin.
Collapse
Affiliation(s)
- Sarah M Smith
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Michael Baker
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Mary Halebian
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Corinne J Smith
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
25
|
Archuleta TL, Frazier MN, Monken AE, Kendall AK, Harp J, McCoy AJ, Creanza N, Jackson LP. Structure and evolution of ENTH and VHS/ENTH-like domains in tepsin. Traffic 2017; 18:590-603. [PMID: 28691777 PMCID: PMC5567745 DOI: 10.1111/tra.12499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
Tepsin is currently the only accessory trafficking protein identified in adaptor-related protein 4 (AP4)-coated vesicles originating at the trans-Golgi network (TGN). The molecular basis for interactions between AP4 subunits and motifs in the tepsin C-terminus have been characterized, but the biological role of tepsin remains unknown. We determined X-ray crystal structures of the tepsin epsin N-terminal homology (ENTH) and VHS/ENTH-like domains. Our data reveal unexpected structural features that suggest key functional differences between these and similar domains in other trafficking proteins. The tepsin ENTH domain lacks helix0, helix8 and a lipid binding pocket found in epsin1/2/3. These results explain why tepsin requires AP4 for its membrane recruitment and further suggest ENTH domains cannot be defined solely as lipid binding modules. The VHS domain lacks helix8 and thus contains fewer helices than other VHS domains. Structural data explain biochemical and biophysical evidence that tepsin VHS does not mediate known VHS functions, including recognition of dileucine-based cargo motifs or ubiquitin. Structural comparisons indicate the domains are very similar to each other, and phylogenetic analysis reveals their evolutionary pattern within the domain superfamily. Phylogenetics and comparative genomics further show tepsin within a monophyletic clade that diverged away from epsins early in evolutionary history (~1500 million years ago). Together, these data provide the first detailed molecular view of tepsin and suggest tepsin structure and function diverged away from other epsins. More broadly, these data highlight the challenges inherent in classifying and understanding protein function based only on sequence and structure.
Collapse
Affiliation(s)
- Tara L. Archuleta
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Meredith N. Frazier
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Anderson E. Monken
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Joel Harp
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Airlie J. McCoy
- Cambridge Institute for Medical Research, Department of Clinical
Biochemistry, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Nicole Creanza
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN,
USA
| |
Collapse
|
26
|
Lažetić V, Fay DS. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans. Genetics 2017; 205:273-293. [PMID: 27799278 PMCID: PMC5223508 DOI: 10.1534/genetics.116.194464] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022] Open
Abstract
Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
27
|
Johnson A, Vert G. Single Event Resolution of Plant Plasma Membrane Protein Endocytosis by TIRF Microscopy. FRONTIERS IN PLANT SCIENCE 2017; 8:612. [PMID: 28484480 PMCID: PMC5401915 DOI: 10.3389/fpls.2017.00612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 05/02/2023]
Abstract
Endocytosis is a key process in the internalization of extracellular materials and plasma membrane proteins, such as receptors and transporters, thereby controlling many aspects of cell signaling and cellular homeostasis. Endocytosis in plants has an essential role not only for basic cellular functions but also for growth and development, nutrient delivery, toxin avoidance, and pathogen defense. The precise mechanisms of endocytosis in plants remain quite elusive. The lack of direct visualization and examination of single events of endocytosis has greatly hampered our ability to precisely monitor the cell surface lifetime and the recruitment profile of proteins driving endocytosis or endocytosed cargos in plants. Here, we discuss the necessity to systematically implement total internal reflection fluorescence microcopy (TIRF) in the Plant Cell Biology community and present reliable protocols for high spatial and temporal imaging of endocytosis in plants using clathrin-mediated endocytosis as a test case, since it represents the major route for internalization of cell-surface proteins in plants. We developed a robust method to directly visualize cell surface proteins using TIRF microscopy combined to a high throughput, automated and unbiased analysis pipeline to determine the temporal recruitment profile of proteins to single sites of endocytosis, using the departure of clathrin as a physiological reference for scission. Using this 'departure assay', we assessed the recruitment of two different AP-2 subunits, alpha and mu, to the sites of endocytosis and found that AP2A1 was recruited in concert with clathrin, while AP2M was not. This validated approach therefore offers a powerful solution to better characterize the plant endocytic machinery and the dynamics of one's favorite cargo protein.
Collapse
|
28
|
Mrozowska PS, Fukuda M. Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells. Small GTPases 2016; 7:231-238. [PMID: 27463697 DOI: 10.1080/21541248.2016.1211068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The characteristic feature of polarity establishment in MDCK II cells is transcytosis of apical glycoprotein podocalyxin (PCX) from the outer plasma membrane to the newly formed apical domain. This transcytotic event consists of multiple steps, including internalization from the plasma membrane, transport through early endosomes and Rab11-positive recycling endosomes, and delivery to the apical membrane. These steps are known to be tightly coordinated by Rab small GTPases, which act as molecular switches cycling between active GTP-bound and inactive GDP-bound states. However, our knowledge regarding which sets of Rabs regulate particular steps of PCX trafficking was rather limited. Recently, we have performed a comprehensive analysis of Rab GTPase engagement in the transcytotic pathway of PCX during polarity establishment in 2-dimensional (2D) and 3-dimensional (3D) MDCK II cell cultures. In this Commentary we summarize our findings and set them in the context of previous reports.
Collapse
Affiliation(s)
- Paulina S Mrozowska
- a Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences , Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi , Japan
| | - Mitsunori Fukuda
- a Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences , Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi , Japan
| |
Collapse
|
29
|
Ma L, Umasankar PK, Wrobel AG, Lymar A, McCoy AJ, Holkar SS, Jha A, Pradhan-Sundd T, Watkins SC, Owen DJ, Traub LM. Transient Fcho1/2⋅Eps15/R⋅AP-2 Nanoclusters Prime the AP-2 Clathrin Adaptor for Cargo Binding. Dev Cell 2016; 37:428-43. [PMID: 27237791 PMCID: PMC4921775 DOI: 10.1016/j.devcel.2016.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
Clathrin-coated vesicles form by rapid assembly of discrete coat constituents into a cargo-sorting lattice. How the sequential phases of coat construction are choreographed is unclear, but transient protein-protein interactions mediated by short interaction motifs are pivotal. We show that arrayed Asp-Pro-Phe (DPF) motifs within the early-arriving endocytic pioneers Eps15/R are differentially decoded by other endocytic pioneers Fcho1/2 and AP-2. The structure of an Eps15/R⋅Fcho1 μ-homology domain complex reveals a spacing-dependent DPF triad, bound in a mechanistically distinct way from the mode of single DPF binding to AP-2. Using cells lacking FCHO1/2 and with Eps15 sequestered from the plasma membrane, we establish that without these two endocytic pioneers, AP-2 assemblies are fleeting and endocytosis stalls. Thus, distinct DPF-based codes within the unstructured Eps15/R C terminus direct the assembly of temporary Fcho1/2⋅Eps15/R⋅AP-2 ternary complexes to facilitate conformational activation of AP-2 by the Fcho1/2 interdomain linker to promote AP-2 cargo engagement. The endocytic pioneer protein Eps15 engages AP-2 and Fcho1/2 noncompetitively Structural analysis shows arrayed DPF motif triad in Eps15 for Fcho1/2 μHD binding DPF-based codes direct transient Fcho1/2⋅Eps15/R⋅AP-2 ternary complex formation In ternary complex, Fcho1 interdomain linker primes AP-2 for cargo capture
Collapse
Affiliation(s)
- Li Ma
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Perunthottathu K Umasankar
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Antoni G Wrobel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Anastasia Lymar
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Airlie J McCoy
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Sachin S Holkar
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Tirthadipa Pradhan-Sundd
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - David J Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA.
| |
Collapse
|
30
|
Structural basis for the recognition of two consecutive mutually interacting DPF motifs by the SGIP1 μ homology domain. Sci Rep 2016; 6:19565. [PMID: 26822536 PMCID: PMC4731787 DOI: 10.1038/srep19565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/10/2015] [Indexed: 12/24/2022] Open
Abstract
FCHo1, FCHo2, and SGIP1 are key regulators of clathrin-mediated endocytosis. Their μ homology domains (μHDs) interact with the C-terminal region of an endocytic scaffold protein, Eps15, containing fifteen Asp-Pro-Phe (DPF) motifs. Here, we show that the high-affinity μHD-binding site in Eps15 is a region encompassing six consecutive DPF motifs, while the minimal μHD-binding unit is two consecutive DPF motifs. We present the crystal structures of the SGIP1 μHD in complex with peptides containing two DPF motifs. The peptides bind to a novel ligand-binding site of the μHD, which is distinct from those of other distantly related μHD-containing proteins. The two DPF motifs, which adopt three-dimensional structures stabilized by sequence-specific intramotif and intermotif interactions, are extensively recognized by the μHD and are both required for binding. Thus, consecutive and singly scattered DPF motifs play distinct roles in μHD binding.
Collapse
|
31
|
Tolvanen TA, Dash SN, Polianskyte-Prause Z, Dumont V, Lehtonen S. Lack of CD2AP disrupts Glut4 trafficking and attenuates glucose uptake in podocytes. J Cell Sci 2015; 128:4588-600. [PMID: 26546360 DOI: 10.1242/jcs.175075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
The adapter protein CD2-associated protein (CD2AP) functions in various signaling and vesicle trafficking pathways, including endosomal sorting and/or trafficking and degradation pathways. Here, we investigated the role of CD2AP in insulin-dependent glucose transporter 4 (Glut4, also known as SLC2A4) trafficking and glucose uptake. Glucose uptake was attenuated in CD2AP(-/-) podocytes compared with wild-type podocytes in the basal state, and CD2AP(-/-) podocytes failed to increase glucose uptake in response to insulin. Live-cell imaging revealed dynamic trafficking of HA-Glut4-GFP in wild-type podocytes, whereas in CD2AP(-/-) podocytes, HA-Glut4-GFP clustered perinuclearly. In subcellular membrane fractionations, CD2AP co-fractionated with Glut4, IRAP (also known as LNPEP) and sortilin, constituents of Glut4 storage vesicles (GSVs). We further found that CD2AP forms a complex with GGA2, a clathrin adaptor, which sorts Glut4 to GSVs, suggesting a role for CD2AP in this process. We also found that CD2AP forms a complex with clathrin and connects clathrin to actin in the perinuclear region. Furthermore, clathrin recycling back to trans-Golgi membranes from the vesicular fraction containing GSVs was defective in the absence of CD2AP. This leads to reduced insulin-stimulated trafficking of GSVs and attenuated glucose uptake into CD2AP(-/-) podocytes.
Collapse
Affiliation(s)
- Tuomas A Tolvanen
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| | | | | | - Vincent Dumont
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
32
|
Mattera R, Guardia CM, Sidhu SS, Bonifacino JS. Bivalent Motif-Ear Interactions Mediate the Association of the Accessory Protein Tepsin with the AP-4 Adaptor Complex. J Biol Chem 2015; 290:30736-49. [PMID: 26542808 DOI: 10.1074/jbc.m115.683409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 01/11/2023] Open
Abstract
The heterotetrameric (ϵ-β4-μ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the β4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the β4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat.
Collapse
Affiliation(s)
- Rafael Mattera
- From the Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Carlos M Guardia
- From the Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Juan S Bonifacino
- From the Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
33
|
Schroeder B, McNiven MA. Importance of endocytic pathways in liver function and disease. Compr Physiol 2015; 4:1403-17. [PMID: 25428849 DOI: 10.1002/cphy.c140001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular endocytosis is a highly dynamic process responsible for the internalization of a variety of different receptor ligand complexes, trophic factors, lipids, and, unfortunately, many different pathogens. The uptake of these external agents has profound effects on seminal cellular processes including signaling cascades, migration, growth, and proliferation. The hepatocyte, like other well-polarized epithelial cells, possesses a host of different endocytic mechanisms and entry routes to ensure the selective internalization of cargo molecules. These pathways include receptor-mediated endocytosis, lipid raft associated endocytosis, caveolae, or fluid-phase uptake, although there are likely many others. Understanding and defining the regulatory mechanisms underlying these distinct entry routes, sorting and vesicle formation, as well as the postendocytic trafficking pathways is of high importance especially in the liver, as their mis-regulation can contribute to aberrant liver pathology and liver diseases. Further, these processes can be "hijacked" by a variety of different infectious agents and viruses. This review provides an overview of common components of the endocytic and postendocytic trafficking pathways utilized by hepatocytes. It will also discuss in more detail how these general themes apply to liver-specific processes including iron homeostasis, HBV infection, and even hepatic steatosis.
Collapse
Affiliation(s)
- Barbara Schroeder
- Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota
| | | |
Collapse
|
34
|
Inoue K, Ishibe S. Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am J Physiol Renal Physiol 2015; 309:F398-405. [PMID: 26084928 DOI: 10.1152/ajprenal.00136.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Severe defects in the glomerular filtration barrier result in nephrotic syndrome, which is characterized by massive proteinuria. The podocyte, a specialized epithelial cell with interdigitating foot processes separated by a slit diaphragm, plays a vital role in regulating the passage of proteins from the capillary lumen to Bowman's space. Recent findings suggest a critical role for endocytosis in podocyte biology as highlighted by genetic mouse models of disease and human genetic mutations that result in the loss of the integrity of the glomerular filtration barrier. In vitro podocyte studies have also unraveled a plethora of constituents that are differentially internalized to maintain homeostasis. These observations provide a framework and impetus for understanding the precise regulation of podocyte endocytic machinery in both health and disease.
Collapse
Affiliation(s)
- Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
35
|
Daniel JA, Chau N, Abdel-Hamid MK, Hu L, von Kleist L, Whiting A, Krishnan S, Maamary P, Joseph SR, Simpson F, Haucke V, McCluskey A, Robinson PJ. Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis. Traffic 2015; 16:635-54. [PMID: 25693808 DOI: 10.1111/tra.12272] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 01/13/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022]
Abstract
Chlorpromazine is a phenothiazine-derived antipsychotic drug (APD) that inhibits clathrin-mediated endocytosis (CME) in cells by an unknown mechanism. We examined whether its action and that of other APDs might be mediated by the GTPase activity of dynamin. Eight of eight phenothiazine-derived APDs inhibited dynamin I (dynI) in the 2-12 µm range, the most potent being trifluoperazine (IC50 2.6 ± 0.7 µm). They also inhibited dynamin II (dynII) at similar concentrations. Typical and atypical APDs not based on the phenothiazine scaffold were 8- to 10-fold less potent (haloperidol and clozapine) or were inactive (droperidol, olanzapine and risperidone). Kinetic analysis showed that phenothiazine-derived APDs were lipid competitive, while haloperidol was uncompetitive with lipid. Accordingly, phenothiazine-derived APDs inhibited dynI GTPase activity stimulated by lipids but not by various SH3 domains. All dynamin-active APDs also inhibited transferrin (Tfn) CME in cells at related potencies. Structure-activity relationships (SAR) revealed dynamin inhibition to be conferred by a substituent group containing a terminal tertiary amino group at the N2 position. Chlorpromazine was previously proposed to target AP-2 recruitment in the formation of clathrin-coated vesicles (CCV). However, neither chlorpromazine nor thioridazine affected AP-2 interaction with amphiphysin or clathrin. Super-resolution microscopy revealed that chlorpromazine blocks neither clathrin recruitment by AP-2, nor AP-2 recruitment, showing that CME inhibition occurs downstream of CCV formation. Overall, potent dynamin inhibition is a shared characteristic of phenothiazine-derived APDs, but not other typical or atypical APDs, and the data indicate that dynamin is their likely in-cell target in endocytosis.
Collapse
Affiliation(s)
- James A Daniel
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia.,Present address: Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Ngoc Chau
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Mohammed K Abdel-Hamid
- Centre for Chemical Biology, Chemistry, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lingbo Hu
- Epithelial Cancer Group, The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Lisa von Kleist
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, 13125, Berlin, Germany
| | - Ainslie Whiting
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Sai Krishnan
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Peter Maamary
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| | - Shannon R Joseph
- Epithelial Cancer Group, The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Fiona Simpson
- Epithelial Cancer Group, The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie & Freie Universität Berlin, 13125, Berlin, Germany
| | - Adam McCluskey
- Centre for Chemical Biology, Chemistry, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, 2145, Australia
| |
Collapse
|
36
|
Diezmann F, von Kleist L, Haucke V, Seitz O. Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening. Org Biomol Chem 2015; 13:8008-15. [DOI: 10.1039/c5ob00943j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The DNA-programmed peptide display in brain extract revealed a co-operation between the binding sites on the AP-2 alpha-appendage domain.
Collapse
Affiliation(s)
- F. Diezmann
- Humboldt-Universität zu Berlin
- Institut für Chemie
- D-12489 Berlin
- Germany
| | - L. von Kleist
- Freie Universität Berlin
- Department of Biology
- Chemistry and Pharmacy and Leibniz Institut für Molekulare Pharmakologie (FMP)
- D-13125 Berlin
- Germany
| | - V. Haucke
- Freie Universität Berlin
- Department of Biology
- Chemistry and Pharmacy and Leibniz Institut für Molekulare Pharmakologie (FMP)
- D-13125 Berlin
- Germany
| | - O. Seitz
- Humboldt-Universität zu Berlin
- Institut für Chemie
- D-12489 Berlin
- Germany
| |
Collapse
|
37
|
Bhowmick P, Guharoy M, Tompa P. Bioinformatics Approaches for Predicting Disordered Protein Motifs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:291-318. [PMID: 26387106 DOI: 10.1007/978-3-319-20164-1_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Short, linear motifs (SLiMs) in proteins are functional microdomains consisting of contiguous residue segments along the protein sequence, typically not more than 10 consecutive amino acids in length with less than 5 defined positions. Many positions are 'degenerate' thus offering flexibility in terms of the amino acid types allowed at those positions. Their short length and degenerate nature confers evolutionary plasticity meaning that SLiMs often evolve convergently. Further, SLiMs have a propensity to occur within intrinsically unstructured protein segments and this confers versatile functionality to unstructured regions of the proteome. SLiMs mediate multiple types of protein interactions based on domain-peptide recognition and guide functions including posttranslational modifications, subcellular localization of proteins, and ligand binding. SLiMs thus behave as modular interaction units that confer versatility to protein function and SLiM-mediated interactions are increasingly being recognized as therapeutic targets. In this chapter we start with a brief description about the properties of SLiMs and their interactions and then move on to discuss algorithms and tools including several web-based methods that enable the discovery of novel SLiMs (de novo motif discovery) as well as the prediction of novel occurrences of known SLiMs. Both individual amino acid sequences as well as sets of protein sequences can be scanned using these methods to obtain statistically overrepresented sequence patterns. Lists of putatively functional SLiMs are then assembled based on parameters such as evolutionary sequence conservation, disorder scores, structural data, gene ontology terms and other contextual information that helps to assess the functional credibility or significance of these motifs. These bioinformatics methods should certainly guide experiments aimed at motif discovery.
Collapse
Affiliation(s)
- Pallab Bhowmick
- VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mainak Guharoy
- VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Peter Tompa
- VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium. .,Institute of Enzymology, Research Center of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
38
|
Affiliation(s)
- Yusong Guo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Daniel W. Sirkis
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| |
Collapse
|
39
|
Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA. Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 2014; 15:677-89. [PMID: 25207437 DOI: 10.1038/nrm3869] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
Collapse
Affiliation(s)
- Marc Edwards
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| | - Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| |
Collapse
|
40
|
Brodsky FM, Sosa RT, Ybe JA, O'Halloran TJ. Unconventional functions for clathrin, ESCRTs, and other endocytic regulators in the cytoskeleton, cell cycle, nucleus, and beyond: links to human disease. Cold Spring Harb Perspect Biol 2014; 6:a017004. [PMID: 25183831 DOI: 10.1101/cshperspect.a017004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The roles of clathrin, its regulators, and the ESCRT (endosomal sorting complex required for transport) proteins are well defined in endocytosis. These proteins can also participate in intracellular pathways that are independent of endocytosis and even independent of the membrane trafficking function of these proteins. These nonendocytic functions involve unconventional biochemical interactions for some endocytic regulators, but can also exploit known interactions for nonendocytic functions. The molecular basis for the involvement of endocytic regulators in unconventional functions that influence the cytoskeleton, cell cycle, signaling, and gene regulation are described here. Through these additional functions, endocytic regulators participate in pathways that affect infection, glucose metabolism, development, and cellular transformation, expanding their significance in human health and disease.
Collapse
Affiliation(s)
- Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, Departments of Pharmaceutical Chemistry and Microbiology and Immunology, The G.W. Hooper Foundation, University of California, San Francisco, San Francisco, California 94143-0552
| | - R Thomas Sosa
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| | - Joel A Ybe
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Theresa J O'Halloran
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712-1095
| |
Collapse
|
41
|
Joo H, Tsai J. An amino acid code for β-sheet packing structure. Proteins 2014; 82:2128-40. [PMID: 24668690 DOI: 10.1002/prot.24569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 11/09/2022]
Abstract
To understand the relationship between protein sequence and structure, this work extends the knob-socket model in an investigation of β-sheet packing. Over a comprehensive set of β-sheet folds, the contacts between residues were used to identify packing cliques: sets of residues that all contact each other. These packing cliques were then classified based on size and contact order. From this analysis, the two types of four-residue packing cliques necessary to describe β-sheet packing were characterized. Both occur between two adjacent hydrogen bonded β-strands. First, defining the secondary structure packing within β-sheets, the combined socket or XY:HG pocket consists of four residues i, i+2 on one strand and j, j+2 on the other. Second, characterizing the tertiary packing between β-sheets, the knob-socket XY:H+B consists of a three-residue XY:H socket (i, i+2 on one strand and j on the other) packed against a knob B residue (residue k distant in sequence). Depending on the packing depth of the knob B residue, two types of knob-sockets are found: side-chain and main-chain sockets. The amino acid composition of the pockets and knob-sockets reveal the sequence specificity of β-sheet packing. For β-sheet formation, the XY:HG pocket clearly shows sequence specificity of amino acids. For tertiary packing, the XY:H+B side-chain and main-chain sockets exhibit distinct amino acid preferences at each position. These relationships define an amino acid code for β-sheet structure and provide an intuitive topological mapping of β-sheet packing.
Collapse
Affiliation(s)
- Hyun Joo
- Department of Chemistry, University of the Pacific, Stockton, California, 95212
| | | |
Collapse
|
42
|
Gadeyne A, Sánchez-Rodríguez C, Vanneste S, Di Rubbo S, Zauber H, Vanneste K, Van Leene J, De Winne N, Eeckhout D, Persiau G, Van De Slijke E, Cannoot B, Vercruysse L, Mayers J, Adamowski M, Kania U, Ehrlich M, Schweighofer A, Ketelaar T, Maere S, Bednarek S, Friml J, Gevaert K, Witters E, Russinova E, Persson S, De Jaeger G, Van Damme D. The TPLATE Adaptor Complex Drives Clathrin-Mediated Endocytosis in Plants. Cell 2014; 156:691-704. [DOI: 10.1016/j.cell.2014.01.039] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/28/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|
43
|
Thévenin AF, Kowal TJ, Fong JT, Kells RM, Fisher CG, Falk MM. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda) 2014; 28:93-116. [PMID: 23455769 DOI: 10.1152/physiol.00038.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gap junctions (GJs) are the only known cellular structures that allow a direct cell-to-cell transfer of signaling molecules by forming densely packed arrays or "plaques" of hydrophilic channels that bridge the apposing membranes of neighboring cells. The crucial role of GJ-mediated intercellular communication (GJIC) for all aspects of multicellular life, including coordination of development, tissue function, and cell homeostasis, has been well documented. Assembly and degradation of these membrane channels is a complex process that includes biosynthesis of the connexin (Cx) subunit proteins (innexins in invertebrates) on endoplasmic reticulum (ER) membranes, oligomerization of compatible subunits into hexameric hemichannels (connexons), delivery of the connexons to the plasma membrane (PM), head-on docking of compatible connexons in the extracellular space at distinct locations, arrangement of channels into dynamic spatially and temporally organized GJ channel plaques, as well as internalization of GJs into the cytoplasm followed by their degradation. Clearly, precise modulation of GJIC, biosynthesis, and degradation are crucial for accurate function, and much research currently addresses how these fundamental processes are regulated. Here, we review posttranslational protein modifications (e.g., phosphorylation and ubiquitination) and the binding of protein partners (e.g., the scaffolding protein ZO-1) known to regulate GJ biosynthesis, internalization, and degradation. We also look closely at the atomic resolution structure of a GJ channel, since the structure harbors vital cues relevant to GJ biosynthesis and turnover.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Endocytosis is an essential process of eukaryotic cells that facilitates numerous cellular and organismal functions. The formation of vesicles from the plasma membrane serves the internalization of ligands and receptors and leads to their degradation or recycling. A number of distinct mechanisms have been described over the years, several of which are only partially characterized in terms of mechanism and function. These are often referred to as novel endocytic pathways. The pathways differ in their mode of uptake and in their intracellular destination. Here, an overview of the set of cellular proteins that facilitate the different pathways is provided. Further, the approaches to distinguish between the pathways by different modes of perturbation are critically discussed, emphasizing the use of genetic tools such as dominant negative mutant proteins.
Collapse
Affiliation(s)
- Lena Kühling
- Emmy Noether Group: Virus Endocytosis, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, Westphalian Wilhelms University of Münster, Von-Esmarch-Str. 56, Münster, 48149, Germany
| | | |
Collapse
|
45
|
Traub LM, Bonifacino JS. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 2013; 5:a016790. [PMID: 24186068 DOI: 10.1101/cshperspect.a016790] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endosomal system is expansive and complex, characterized by swift morphological transitions, dynamic remodeling of membrane constituents, and intracellular positioning changes. To properly navigate this ever-altering membrane labyrinth, transmembrane protein cargoes typically require specific sorting signals that are decoded by components of protein coats. The best-characterized sorting process within the endosomal system is the rapid internalization of select transmembrane proteins within clathrin-coated vesicles. Endocytic signals consist of linear motifs, conformational determinants, or covalent modifications in the cytosolic domains of transmembrane cargo. These signals are interpreted by a diverse set of clathrin-associated sorting proteins (CLASPs) that translocate from the cytosol to the inner face of the plasma membrane. Signal recognition by CLASPs is highly cooperative, involving additional interactions with phospholipids, Arf GTPases, other CLASPs, and clathrin, and is regulated by large conformational changes and covalent modifications. Related sorting events occur at other endosomal sorting stations.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
46
|
Structural disorder provides increased adaptability for vesicle trafficking pathways. PLoS Comput Biol 2013; 9:e1003144. [PMID: 23874186 PMCID: PMC3715437 DOI: 10.1371/journal.pcbi.1003144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 06/02/2013] [Indexed: 01/07/2023] Open
Abstract
Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (∼23%) than the other two, COPI (∼9%) and COPII (∼8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of evolutionary adaptability in the three routes. Vesicle trafficking systems are fundamental among cellular transport mechanisms; various cargo molecules are transported via different coated vesicles to their specific destinations in every eukaryotic cell. Clathrin-coated vesicles mediate endocytosis and the late secretory route, while the COat Protein I and II (COPI and COPII) vesicle trafficking routes are responsible for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar basic principles, regulatory mechanisms and structural features of the three systems, their molecular machinery, functions, and evolutionary characteristics vastly differ. We investigated and compared these three routes and their basic functional protein groups from the structural disorder point of view, since disordered protein regions could provide a broad variety of functional and evolutionary advantages for them. We found that structurally disordered protein segments are most abundant in the clathrin system, which might explain the observed inherent plasticity, increased adaptability and exceptional robustness of this route. We support our hypothesis by two analyses on protein multi-functionality and tissue specificity, both being indicative of evolutionary adaptability. Clathrin pathway proteins stand out in both measures, with their disordered regions being largely responsible for their outstanding capabilities.
Collapse
|
47
|
Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol 2013; 23:279-88. [DOI: 10.1016/j.tcb.2013.01.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 01/03/2023]
|
48
|
Soda K, Balkin DM, Ferguson SM, Paradise S, Milosevic I, Giovedi S, Volpicelli-Daley L, Tian X, Wu Y, Ma H, Son SH, Zheng R, Moeckel G, Cremona O, Holzman LB, De Camilli P, Ishibe S. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J Clin Invest 2012. [PMID: 23187129 DOI: 10.1172/jci65289] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Podocytes are specialized cells that play an integral role in the renal glomerular filtration barrier via their foot processes. The foot processes form a highly organized structure, the disruption of which causes nephrotic syndrome. Interestingly, several similarities have been observed between mechanisms that govern podocyte organization and mechanisms that mediate neuronal synapse development. Dynamin, synaptojanin, and endophilin are functional partners in synaptic vesicle recycling via interconnected actions in clathrin-mediated endocytosis and actin dynamics in neurons. A role of dynamin in the maintenance of the kidney filtration barrier via an action on the actin cytoskeleton of podocytes was suggested. Here we used a conditional double-KO of dynamin 1 (Dnm1) and Dnm2 in mouse podocytes to confirm dynamin's role in podocyte foot process maintenance. In addition, we demonstrated that while synaptojanin 1 (Synj1) KO mice and endophilin 1 (Sh3gl2), endophilin 2 (Sh3gl1), and endophilin 3 (Sh3gl3) triple-KO mice had grossly normal embryonic development, these mutants failed to establish a normal filtration barrier and exhibited severe proteinuria due to abnormal podocyte foot process formation. These results strongly implicate a protein network that functions at the interface between endocytosis and actin at neuronal synapses in the formation and maintenance of the kidney glomerular filtration barrier.
Collapse
Affiliation(s)
- Keita Soda
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mullen GP, Grundahl KM, Gu M, Watanabe S, Hobson RJ, Crowell JA, McManus JR, Mathews EA, Jorgensen EM, Rand JB. UNC-41/stonin functions with AP2 to recycle synaptic vesicles in Caenorhabditis elegans. PLoS One 2012; 7:e40095. [PMID: 22808098 PMCID: PMC3393740 DOI: 10.1371/journal.pone.0040095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/31/2012] [Indexed: 11/20/2022] Open
Abstract
The recycling of synaptic vesicles requires the recovery of vesicle proteins and membrane. Members of the stonin protein family (Drosophila Stoned B, mammalian stonin 2) have been shown to link the synaptic vesicle protein synaptotagmin to the endocytic machinery. Here we characterize the unc-41 gene, which encodes the stonin ortholog in the nematode Caenorhabditis elegans. Transgenic expression of Drosophila stonedB rescues unc-41 mutant phenotypes, demonstrating that UNC-41 is a bona fide member of the stonin family. In unc-41 mutants, synaptotagmin is present in axons, but is mislocalized and diffuse. In contrast, UNC-41 is localized normally in synaptotagmin mutants, demonstrating a unidirectional relationship for localization. The phenotype of snt-1 unc-41 double mutants is stronger than snt-1 mutants, suggesting that UNC-41 may have additional, synaptotagmin-independent functions. We also show that unc-41 mutants have defects in synaptic vesicle membrane endocytosis, including a ∼50% reduction of vesicles in both acetylcholine and GABA motor neurons. These endocytic defects are similar to those observed in apm-2 mutants, which lack the µ2 subunit of the AP2 adaptor complex. However, no further reduction in synaptic vesicles was observed in unc-41 apm-2 double mutants, suggesting that UNC-41 acts in the same endocytic pathway as µ2 adaptin.
Collapse
Affiliation(s)
- Gregory P. Mullen
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kiely M. Grundahl
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Mingyu Gu
- Howard Hughes Medical Institute and Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Shigeki Watanabe
- Howard Hughes Medical Institute and Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Robert J. Hobson
- Howard Hughes Medical Institute and Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - John A. Crowell
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - John R. McManus
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Eleanor A. Mathews
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Erik M. Jorgensen
- Howard Hughes Medical Institute and Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - James B. Rand
- Genetic Models of Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
50
|
Structural Determinants of MALT1 Protease Activity. J Mol Biol 2012; 419:4-21. [PMID: 22366302 DOI: 10.1016/j.jmb.2012.02.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 11/21/2022]
|