1
|
Márquez-Moñino MÁ, Ortega-García R, Whitfield H, Riley AM, Infantes L, Garrett SW, Shipton ML, Brearley CA, Potter BVL, González B. Substrate promiscuity of inositol 1,4,5-trisphosphate kinase driven by structurally-modified ligands and active site plasticity. Nat Commun 2024; 15:1502. [PMID: 38374076 PMCID: PMC10876669 DOI: 10.1038/s41467-024-45917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
D-myo-inositol 1,4,5-trisphosphate (InsP3) is a fundamental second messenger in cellular Ca2+ mobilization. InsP3 3-kinase, a highly specific enzyme binding InsP3 in just one mode, phosphorylates InsP3 specifically at its secondary 3-hydroxyl group to generate a tetrakisphosphate. Using a chemical biology approach with both synthetised and established ligands, combining synthesis, crystallography, computational docking, HPLC and fluorescence polarization binding assays using fluorescently-tagged InsP3, we have surveyed the limits of InsP3 3-kinase ligand specificity and uncovered surprisingly unforeseen biosynthetic capacity. Structurally-modified ligands exploit active site plasticity generating a helix-tilt. These facilitated uncovering of unexpected substrates phosphorylated at a surrogate extended primary hydroxyl at the inositol pseudo 3-position, applicable even to carbohydrate-based substrates. Crystallization experiments designed to allow reactions to proceed in situ facilitated unequivocal characterization of the atypical tetrakisphosphate products. In summary, we define features of InsP3 3-kinase plasticity and substrate tolerance that may be more widely exploitable.
Collapse
Affiliation(s)
- María Ángeles Márquez-Moñino
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Raquel Ortega-García
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Hayley Whitfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew M Riley
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Lourdes Infantes
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Shane W Garrett
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Megan L Shipton
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Barry V L Potter
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Beatriz González
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
2
|
Suganuma T, Workman JL. Chromatin balances cell redox and energy homeostasis. Epigenetics Chromatin 2023; 16:46. [PMID: 38017471 PMCID: PMC10683155 DOI: 10.1186/s13072-023-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Chromatin plays a central role in the conversion of energy in cells: alteration of chromatin structure to make DNA accessible consumes energy, and compaction of chromatin preserves energy. Alteration of chromatin structure uses energy sources derived from carbon metabolism such as ATP and acetyl-CoA; conversely, chromatin compaction and epigenetic modification feedback to metabolism and energy homeostasis by controlling gene expression and storing metabolites. Coordination of these dual chromatin events must be flexibly modulated in response to environmental changes such as during development and exposure to stress. Aging also alters chromatin structure and the coordination of metabolism, chromatin dynamics, and other cell processes. Noncoding RNAs and other RNA species that associate directly with chromatin or with chromatin modifiers contribute to spatiotemporal control of transcription and energy conversion. The time required for generating the large amounts of RNAs and chromatin modifiers observed in super-enhancers may be critical for regulation of transcription and may be impacted by aging. Here, taking into account these factors, we review alterations of chromatin that are fundamental to cell responses to metabolic changes due to stress and aging to maintain redox and energy homeostasis. We discuss the relationship between spatiotemporal control of energy and chromatin function, as this emerging concept must be considered to understand how cell homeostasis is maintained.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| |
Collapse
|
3
|
De Rose SA, Isupov MN, Worthy HL, Stracke C, Harmer NJ, Siebers B, Littlechild JA. Structural characterization of a novel cyclic 2,3-diphosphoglycerate synthetase involved in extremolyte production in the archaeon Methanothermus fervidus. Front Microbiol 2023; 14:1267570. [PMID: 38045033 PMCID: PMC10690619 DOI: 10.3389/fmicb.2023.1267570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 12/05/2023] Open
Abstract
The enzyme cyclic di-phosphoglycerate synthetase that is involved in the production of the osmolyte cyclic 2,3-diphosphoglycerate has been studied both biochemically and structurally. Cyclic 2,3-diphosphoglycerate is found exclusively in the hyperthermophilic archaeal methanogens, such as Methanothermus fervidus, Methanopyrus kandleri, and Methanothermobacter thermoautotrophicus. Its presence increases the thermostability of archaeal proteins and protects the DNA against oxidative damage caused by hydroxyl radicals. The cyclic 2,3-diphosphoglycerate synthetase enzyme has been crystallized and its structure solved to 1.7 Å resolution by experimental phasing. It has also been crystallized in complex with its substrate 2,3 diphosphoglycerate and the co-factor ADP and this structure has been solved to 2.2 Å resolution. The enzyme structure has two domains, the core domain shares some structural similarity with other NTP-dependent enzymes. A significant proportion of the structure, including a 127 amino acid N-terminal domain, has no structural similarity to other known enzyme structures. The structure of the complex shows a large conformational change that occurs in the enzyme during catalytic turnover. The reaction involves the transfer of the γ-phosphate group from ATP to the substrate 2,3 -diphosphoglycerate and the subsequent SN2 attack to form a phosphoanhydride. This results in the production of the unusual extremolyte cyclic 2,3 -diphosphoglycerate which has important industrial applications.
Collapse
Affiliation(s)
- Simone A. De Rose
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michail N. Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Harley L. Worthy
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Christina Stracke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Nicholas J. Harmer
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jennifer A. Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Saurabh S, Nadendla K, Purohit SS, Sivakumar PM, Cetinel S. Fuzzy Drug Targets: Disordered Proteins in the Drug-Discovery Realm. ACS OMEGA 2023; 8:9729-9747. [PMID: 36969402 PMCID: PMC10034788 DOI: 10.1021/acsomega.2c07708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) form a large part of the eukaryotic proteome. Contrary to the structure-function paradigm, the disordered proteins perform a myriad of functions in vivo. Consequently, they are involved in various disease pathways and are plausible drug targets. Unlike folded proteins, that have a defined structure and well carved out drug-binding pockets that can guide lead molecule selection, the disordered proteins require alternative drug-development methodologies that are based on an acceptable picture of their conformational ensemble. In this review, we discuss various experimental and computational techniques that contribute toward understanding IDP "structure" and describe representative pursuances toward IDP-targeting drug development. We also discuss ideas on developing rational drug design protocols targeting IDPs.
Collapse
Affiliation(s)
- Suman Saurabh
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Karthik Nadendla
- Center
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield
Road, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Shubh Sanket Purohit
- Department
of Clinical Haematology, Sahyadri Superspeciality
Hospital, Pune, Maharashtra 411038, India
| | - Ponnurengam Malliappan Sivakumar
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of
Engineering and Natural Sciences, Molecular Biology, Genetics and
Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
5
|
Ezagui J, Stern LA. Tyrosine Phosphorylation Screening on the Yeast Surface by Magnetic Bead Selection and FACS. Methods Mol Biol 2023; 2681:275-290. [PMID: 37405653 DOI: 10.1007/978-1-0716-3279-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The ability to understand and characterize phosphorylation is important to the study of cell signaling and to synthetic biology approaches. Current methods for characterizing kinase-substrate interactions are limited by their inherently low throughput and the heterogeneity of samples analyzed. Recent advances in yeast surface display techniques provide new opportunities for studying individual kinase-substrate interactions in a stimulus-independent fashion. Here, we describe techniques for building substrate libraries into full-length domains of interest that, when co-localized intracellularly with individual kinases, result in the display of phosphorylated domains on the yeast surface, as well as fluorescence-activated cell sorting and magnetic bead selection techniques for enriching from these libraries based on phosphorylation state.
Collapse
Affiliation(s)
- Jose Ezagui
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA
| | - Lawrence A Stern
- Department of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
6
|
Hajredini F, Alphonse S, Ghose R. BY-kinases: Protein tyrosine kinases like no other. J Biol Chem 2022; 299:102737. [PMID: 36423682 PMCID: PMC9800525 DOI: 10.1016/j.jbc.2022.102737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
BY-kinases (for bacterial tyrosine kinases) constitute a family of protein tyrosine kinases that are highly conserved in the bacterial kingdom and occur most commonly as essential components of multicomponent assemblies responsible for the biosynthesis, polymerization, and export of complex polysaccharides involved in biofilm or capsule formation. BY-kinase function has been attributed to a cyclic process involving formation of an oligomeric species, its disassembly into constituent monomers, and subsequent reassembly, depending on the overall phosphorylation level of a C-terminal cluster of tyrosine residues. However, the relationship of this process to the active/inactive states of the enzyme and the mechanism of its integration into the polysaccharide production machinery remain unclear. Here, we synthesize the substantial body of biochemical, cell-biological, structural, and computational data, acquired over the nearly 3 decades since the discovery of BY-kinases, to suggest means by which they fulfill their physiological function. We propose a mechanism involving temporal coordination of the assembly/disassembly process with the autokinase activity of the enzyme and its ability to be dephosphorylated by its counteracting phosphatase. We speculate that this temporal control enables BY-kinases to function as molecular timers that coordinate the diverse processes involved in the synthesis, polymerization, and export of complex sugar derivatives. We suggest that BY-kinases, which deploy distinctive catalytic domains resembling P-loop nucleoside triphosphatases, have uniquely adapted this ancient fold to drive functional processes through exquisite spatiotemporal control over protein-protein interactions and conformational changes. It is our hope that the hypotheses proposed here will facilitate future experiments targeting these unique protein kinases.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA
| | - Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA,PhD Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Chemistry, The Graduate Center of CUNY, New York, New York, USA,PhD Programs in Physics, The Graduate Center of CUNY, New York, New York, USA,For correspondence: Ranajeet Ghose
| |
Collapse
|
7
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
8
|
Dillenberger M, Rahlfs S, Becker K, Fritz-Wolf K. Prominent role of cysteine residues C49 and C343 in regulating Plasmodiumfalciparum pyruvate kinase activity. Structure 2022; 30:1452-1461.e3. [PMID: 35998635 DOI: 10.1016/j.str.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
The protozoan parasite Plasmodium falciparum causes the most severe form of malaria and is highly dependent on glycolysis. Glycolytic enzymes were shown to be massively redox regulated, inter alia via oxidative post-translational modifications (oxPTMs) of their cysteine residues. In this study, we identified P. falciparum pyruvate kinase (PfPK) C49 and C343 as amino acid residues essentially involved in maintaining structural and functional integrity of the enzyme. The mutation of these cysteines resulted in an altered substrate affinity, lower enzymatic activities, and, as studied by X-ray crystallography, conformational changes within the A-domain where the substrate binding site is located. Although the loss of a cysteine evoked an impaired catalysis in both mutants, the effects observed for mutant C49A were more severe: multiple conformational changes, caused by the loss of two hydrogen bonds, impeded proper substrate binding and thus the transfer of phosphate upon catalysis.
Collapse
Affiliation(s)
- Melissa Dillenberger
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, 35392 Giessen, Germany; Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Targeting protein kinases in cancer stem cells. Essays Biochem 2022; 66:399-412. [PMID: 35607921 DOI: 10.1042/ebc20220002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are subpopulations of cancer cells within the tumor bulk that have emerged as an attractive therapeutic target for cancer therapy. Accumulating evidence has shown the critical involvement of protein kinase signaling pathways in driving tumor development, cancer relapse, metastasis, and therapeutic resistance. Given that protein kinases are druggable targets for cancer therapy, tremendous efforts are being made to target CSCs with kinase inhibitors. In this review, we summarize the current knowledge and overview of the roles of protein kinases in various signaling pathways in CSC regulation and drug resistance. Furthermore, we provide an update on the preclinical and clinical studies for the use of kinase inhibitors alone or in combination with current therapies for effective cancer therapy. Despite great premises for the use of kinase inhibitors against CSCs, further investigations are needed to evaluate their efficiencies without any adverse effects on normal stem cells.
Collapse
|
10
|
Wang Y, Hanrahan G, Azar FA, Mittermaier A. Binding interactions in a kinase active site modulate background ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140720. [PMID: 34597835 DOI: 10.1016/j.bbapap.2021.140720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Kinases play central roles in many cellular processes, transferring the terminal phosphate groups of nucleoside triphosphates (NTPs) onto substrates. In the absence of substrates, kinases can also hydrolyse NTPs producing NDPs and inorganic phosphate. Hydrolysis is usually much less efficient than the native phosphoryl transfer reaction. This may be related to the fact that NTP hydrolysis is metabolically unfavorable as it unproductively consumes the cell's energy stores. It has been suggested that substrate interactions could drive changes in NTP binding pocket, activating catalysis only when substrates are present. Structural data show substrate-induced conformational rearrangements, however there is a lack of corresponding functional information. To better understand this phenomenon, we developed a suite of isothermal titration calorimetry (ITC) kinetics methods to characterize ATP hydrolysis by the antibiotic resistance enzyme aminoglycoside-3'-phosphotransferase-IIIa (APH(3')-IIIa). We measured Km, kcat, and product inhibition constants and single-turnover kinetics in the presence and absence of non-substrate aminoglycosides (nsAmgs) that are structurally similar to the native substrates. We found that the presence of an nsAmg increased the chemical step of cleaving the ATP γ-phosphate by at least 10- to 20-fold under single-turnover conditions, supporting the existence of interactions that link substrate binding to substantially enhanced catalytic rates. Our detailed kinetic data on the association and dissociation rates of nsAmgs and ADP shed light on the biophysical processes underlying the enzyme's Theorell-Chance reaction mechanism. Furthermore, they provide clues on how to design small-molecule effectors that could trigger efficient ATP hydrolysis and generate selective pressure against bacteria harboring the APH(3')-IIIa.
Collapse
Affiliation(s)
- Yun Wang
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Grace Hanrahan
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Frederic Abou Azar
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Anthony Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
11
|
Ghosh A, Niland CN, Cahill SM, Karadkhelkar NM, Schramm VL. Mechanism of Triphosphate Hydrolysis by Human MAT2A at 1.07 Å Resolution. J Am Chem Soc 2021; 143:18325-18330. [PMID: 34668717 DOI: 10.1021/jacs.1c09328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human methionine adenosyltransferase MAT2A provides S-adenosyl-l-methionine (AdoMet) for methyl-transfer reactions. Epigenetic methylations influence expression patterns in development and in cancer. Transition-state analysis and kinetic studies have described the mechanism of AdoMet and triphosphate formation at the catalytic site. Hydrolysis of triphosphate to pyrophosphate and phosphate by MAT2A is required for product release and proceeds through a second chemical transition state. Crystal structures of MAT2A with analogues of AdoMet and pyrophosphate were obtained in the presence of Mg2+, Al3+, and F-. MgF3- is trapped as a PO3- mimic in a structure with malonate filling the pyrophosphate site. NMR demonstrates that MgF3- and AlF30 are bound by MAT2A as mimics of the departing phosphoryl group. Crystallographic analysis reveals a planar MgF3- acting to mimic a phosphoryl (PO3-) leaving group. The modeled transition state with PO3- has the phosphorus atom sandwiched symmetrically and equidistant (approximately 2 Å) between a pyrophosphate oxygen and the water nucleophile. A catalytic site arginine directs the nucleophilic water to the phosphoryl leaving group. The catalytic geometry of the transition-state reconstruction predicts a loose transition state with characteristics of symmetric nucleophilic displacement.
Collapse
Affiliation(s)
- Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Courtney N Niland
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Sean M Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Nishant M Karadkhelkar
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
12
|
Hajredini F, Ghose R. An ATPase with a twist: A unique mechanism underlies the activity of the bacterial tyrosine kinase, Wzc. SCIENCE ADVANCES 2021; 7:eabj5836. [PMID: 34550748 PMCID: PMC8457666 DOI: 10.1126/sciadv.abj5836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the Escherichia coli BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage. In BY-kinases, the reactive state of ATP is enabled by ATP·Mg2+-induced global conformational transitions coupled to the conformation of the Walker-A lysine. While the BY-kinase arginine finger does promote the desolvation of ATP, it does so indirectly by generating an ordered active site in combination with other structural elements. Bacteria, using these mechanistic variations, have thus repurposed an ancient fold to phosphorylate on tyrosine.
Collapse
Affiliation(s)
- Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
- Corresponding author.
| |
Collapse
|
13
|
Nilkanth VV, Mande SC. Structure-sequence features based prediction of phosphosites of serine/threonine protein kinases of Mycobacterium tuberculosis. Proteins 2021; 90:131-141. [PMID: 34329517 DOI: 10.1002/prot.26195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Elucidation of signaling events in a pathogen is potentially important to tackle the infection caused by it. Such events mediated by protein phosphorylation play important roles in infection, and therefore, to predict the phosphosites and substrates of the serine/threonine protein kinases, we have developed a Machine learning-based approach for Mycobacterium tuberculosis serine/threonine protein kinases using kinase-peptide structure-sequence data. This approach utilizes features derived from kinase three-dimensional-structure environment and known phosphosite sequences to generate support vector machine (SVM)-based kinase-specific predictions of phosphosites of serine/threonine protein kinases (STPKs) with no or scarce data of their substrates. SVM outperformed the four machine learning algorithms we tried (random forest, logistic regression, SVM, and k-nearest neighbors) with an area under the curve receiver-operating characteristic value of 0.88 on the independent testing dataset and a 10-fold cross-validation accuracy of ~81.6% for the final model. Our predicted phosphosites of M. tuberculosis STPKs form a useful resource for experimental biologists enabling elucidation of STPK mediated posttranslational regulation of important cellular processes.
Collapse
Affiliation(s)
- Vipul V Nilkanth
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Shekhar C Mande
- Council of Scientific and Industrial Research, New Delhi, India
| |
Collapse
|
14
|
Abstract
Microorganisms contend with numerous and unusual chemical threats and have evolved a catalog of resistance mechanisms in response. One particularly ancient, pernicious threat is posed by fluoride ion (F-), a common xenobiotic in natural environments that causes broad-spectrum harm to metabolic pathways. This review focuses on advances in the last ten years toward understanding the microbial response to cytoplasmic accumulation of F-, with a special emphasis on the structure and mechanisms of the proteins that microbes use to export fluoride: the CLCF family of F-/H+ antiporters and the Fluc/FEX family of F- channels.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Michal T Ruprecht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
15
|
Perlinska AP, Kalek M, Christian T, Hou YM, Sulkowska JI. Mg 2+-Dependent Methyl Transfer by a Knotted Protein: A Molecular Dynamics Simulation and Quantum Mechanics Study. ACS Catal 2020; 10:8058-8068. [PMID: 32904895 PMCID: PMC7462349 DOI: 10.1021/acscatal.0c00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/18/2020] [Indexed: 11/27/2022]
Abstract
![]()
Mg2+ is required for the catalytic activity of TrmD,
a bacteria-specific methyltransferase that is made up of a protein
topological knot-fold, to synthesize methylated m1G37-tRNA
to support life. However, neither the location of Mg2+ in
the structure of TrmD nor its role in the catalytic mechanism is known.
Using molecular dynamics (MD) simulations, we identify a plausible
Mg2+ binding pocket within the active site of the enzyme,
wherein the ion is coordinated by two aspartates and a glutamate.
In this position, Mg2+ additionally interacts with the
carboxylate of a methyl donor cofactor S-adenosylmethionine (SAM).
The computational results are validated by experimental mutation studies,
which demonstrate the importance of the Mg2+-binding residues
for the catalytic activity. The presence of Mg2+ in the
binding pocket induces SAM to adopt a unique bent shape required for
the methyl transfer activity and causes a structural reorganization
of the active site. Quantum mechanical calculations show that the
methyl transfer is energetically feasible only when Mg2+ is bound in the position revealed by the MD simulations, demonstrating
that its function is to align the active site residues within the
topological knot-fold in a geometry optimal for catalysis. The obtained
insights provide the opportunity for developing a strategy of antibacterial
drug discovery based on targeting of Mg2+-binding to TrmD.
Collapse
Affiliation(s)
- Agata P. Perlinska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw 02-097, Poland
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Joanna I. Sulkowska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
16
|
Chen CL, Paul LN, Mermoud JC, Steussy CN, Stauffacher CV. Visualizing the enzyme mechanism of mevalonate diphosphate decarboxylase. Nat Commun 2020; 11:3969. [PMID: 32769976 PMCID: PMC7414129 DOI: 10.1038/s41467-020-17733-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 06/30/2020] [Indexed: 01/04/2023] Open
Abstract
Mevalonate diphosphate decarboxylases (MDDs) catalyze the ATP-dependent-Mg2+-decarboxylation of mevalonate-5-diphosphate (MVAPP) to produce isopentenyl diphosphate (IPP), which is essential in both eukaryotes and prokaryotes for polyisoprenoid synthesis. The substrates, MVAPP and ATP, have been shown to bind sequentially to MDD. Here we report crystals in which the enzyme remains active, allowing the visualization of conformational changes in Enterococcus faecalis MDD that describe sequential steps in an induced fit enzymatic reaction. Initial binding of MVAPP modulates the ATP binding pocket with a large loop movement. Upon ATP binding, a phosphate binding loop bends over the active site to recognize ATP and bring the molecules to their catalytically favored configuration. Positioned substrates then can chelate two Mg2+ ions for the two steps of the reaction. Closure of the active site entrance brings a conserved lysine to trigger dissociative phosphoryl transfer of γ-phosphate from ATP to MVAPP, followed by the production of IPP.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Lake N Paul
- BioAnalysis, LLC, 1135 Dunton Street, Unit 2, Philadelphia, PA, 19123, USA
- Biophysical Analysis Laboratory, Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47906, USA
| | - James C Mermoud
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Center for Cancer Research (PUCCR), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
17
|
Kinetic and structural analysis of Escherichia coli phosphoenolpyruvate carboxykinase mutants. Biochim Biophys Acta Gen Subj 2020; 1864:129517. [DOI: 10.1016/j.bbagen.2020.129517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/07/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
|
18
|
Awuni E. Status of Targeting MreB for the Development of Antibiotics. Front Chem 2020; 7:884. [PMID: 31998684 PMCID: PMC6965359 DOI: 10.3389/fchem.2019.00884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Although many prospective antibiotic targets are known, bacterial infections and resistance to antibiotics remain a threat to public health partly because the druggable potentials of most of these targets have yet to be fully tapped for the development of a new generation of therapeutics. The prokaryotic actin homolog MreB is one of the important antibiotic targets that are yet to be significantly exploited. MreB is a bacterial cytoskeleton protein that has been widely studied and is associated with the determination of rod shape as well as important subcellular processes including cell division, chromosome segregation, cell wall morphogenesis, and cell polarity. Notwithstanding that MreB is vital and conserved in most rod-shaped bacteria, no approved antibiotics targeting it are presently available. Here, the status of targeting MreB for the development of antibiotics is concisely summarized. Expressly, the known therapeutic targets and inhibitors of MreB are presented, and the way forward in the search for a new generation of potent inhibitors of MreB briefly discussed.
Collapse
Affiliation(s)
- Elvis Awuni
- Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
19
|
Berg A, Sperl B, Berg T. ATP Inhibits the Transcription Factor STAT5b. Chembiochem 2019; 20:2227-2231. [PMID: 30985989 DOI: 10.1002/cbic.201900173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Although naturally occurring low-molecular-weight compounds have many known roles within the cell, these do not usually involve the direct inhibition of protein-protein interactions. Based on the results of high-throughput screening of a library of bioactive compounds and neurotransmitters, we report here that the four nucleoside triphosphates ATP, GTP, CTP and UTP inhibit the SH2 domain of the tumor-related transcription factor STAT5b. ATP and GTP are the most active nucleoside triphosphates and show specificity for STAT5b over STAT5a, STAT3, STAT6 and the p53-binding protein HDM2. As the inhibition constant of ATP against STAT5b is significantly lower than published values for the intracellular ATP concentration, our data suggest that ATP might inhibit the protein-protein interactions of STAT5b in living cells.
Collapse
Affiliation(s)
- Angela Berg
- Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Bianca Sperl
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Thorsten Berg
- Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Molecular Fingerprints for a Novel Enzyme Family in Actinobacteria with Glucosamine Kinase Activity. mBio 2019; 10:mBio.00239-19. [PMID: 31088917 PMCID: PMC6520443 DOI: 10.1128/mbio.00239-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The discovery of novel enzymes involved in antibiotic biosynthesis pathways is currently a topic of utmost importance. The high levels of antibiotic resistance detected worldwide threaten our ability to combat infections and other 20th-century medical achievements, namely, organ transplantation or cancer chemotherapy. We have identified and characterized a unique family of enzymes capable of phosphorylating glucosamine to glucosamine-6-phosphate, a crucial molecule directly involved in the activation of antibiotic production pathways in Actinobacteria, nature’s main source of antimicrobials. The consensus sequence identified for these glucosamine kinases will help establish a molecular fingerprint to reveal yet-uncharacterized sequences in antibiotic producers, which should have an important impact in biotechnological and biomedical applications, including the enhancement and optimization of antibiotic production. Actinobacteria have long been the main source of antibiotics, secondary metabolites with tightly controlled biosynthesis by environmental and physiological factors. Phosphorylation of exogenous glucosamine has been suggested as a mechanism for incorporation of this extracellular material into secondary metabolite biosynthesis, but experimental evidence of specific glucosamine kinases in Actinobacteria is lacking. Here, we present the molecular fingerprints for the identification of a unique family of actinobacterial glucosamine kinases. Structural and biochemical studies on a distinctive kinase from the soil bacterium Streptacidiphilus jiangxiensis unveiled its preference for glucosamine and provided structural evidence of a phosphoryl transfer to this substrate. Conservation of glucosamine-contacting residues across a large number of uncharacterized actinobacterial proteins unveiled a specific glucosamine binding sequence motif. This family of kinases and their genetic context may represent the missing link for the incorporation of environmental glucosamine into the antibiotic biosynthesis pathways in Actinobacteria and can be explored to enhance antibiotic production.
Collapse
|
21
|
Puvar K, Luo ZQ, Das C. Uncovering the Structural Basis of a New Twist in Protein Ubiquitination. Trends Biochem Sci 2018; 44:467-477. [PMID: 30583962 DOI: 10.1016/j.tibs.2018.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Members of the SidE effector family from Legionella pneumophila represent a new paradigm in the ubiquitin world. These enzymes catalyze ubiquitination of target proteins via a mechanism different from that of conventional E1-E2-E3 biochemistry and play important roles in L. pneumophila virulence. They combine mono-ADP-ribosylation and phosphodiesterase activities to attach ubiquitin onto substrates, in great contrast to the orthodox pathway. A series of recent structural and mechanistic studies have clarified the action of these enzymes. Herein, we summarize the key insights into the structure and function of these proteins, emphasizing their modular nature, and discuss the biochemical implications of these proteins as well as areas of further exploration.
Collapse
Affiliation(s)
- Kedar Puvar
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47906, USA
| | - Zhao-Qing Luo
- Purdue Institute of Immunology, Inflammation, and Infectious Diseases and the Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47906, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
22
|
Shalaeva DN, Cherepanov DA, Galperin MY, Golovin AV, Mulkidjanian AY. Evolution of cation binding in the active sites of P-loop nucleoside triphosphatases in relation to the basic catalytic mechanism. eLife 2018; 7:e37373. [PMID: 30526846 PMCID: PMC6310460 DOI: 10.7554/elife.37373] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous P-loop fold nucleoside triphosphatases (NTPases) are typically activated by an arginine or lysine 'finger'. Some of the apparently ancestral NTPases are, instead, activated by potassium ions. To clarify the activation mechanism, we combined comparative structure analysis with molecular dynamics (MD) simulations of Mg-ATP and Mg-GTP complexes in water and in the presence of potassium, sodium, or ammonium ions. In all analyzed structures of diverse P-loop NTPases, the conserved P-loop motif keeps the triphosphate chain of bound NTPs (or their analogs) in an extended, catalytically prone conformation, similar to that imposed on NTPs in water by potassium or ammonium ions. MD simulations of potassium-dependent GTPase MnmE showed that linking of alpha- and gamma phosphates by the activating potassium ion led to the rotation of the gamma-phosphate group yielding an almost eclipsed, catalytically productive conformation of the triphosphate chain, which could represent the basic mechanism of hydrolysis by P-loop NTPases.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of PhysicsUniversity of OsnabrückOsnabrückGermany
- A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| | - Dmitry A Cherepanov
- A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Andrey V Golovin
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| | - Armen Y Mulkidjanian
- School of PhysicsUniversity of OsnabrückOsnabrückGermany
- A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
23
|
Nocek BP, Khusnutdinova AN, Ruszkowski M, Flick R, Burda M, Batyrova K, Brown G, Mucha A, Joachimiak A, Berlicki Ł, Yakunin AF. Structural Insights into Substrate Selectivity and Activity of Bacterial Polyphosphate Kinases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03151] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boguslaw P. Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, Illinois 60439, United States
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Malgorzata Burda
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Khorcheska Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| |
Collapse
|
24
|
Kalayil S, Bhogaraju S, Bonn F, Shin D, Liu Y, Gan N, Basquin J, Grumati P, Luo ZQ, Dikic I. Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature 2018; 557:734-738. [PMID: 29795347 PMCID: PMC5980784 DOI: 10.1038/s41586-018-0145-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Conventional ubiquitination regulates key cellular processes by catalysing the ATP-dependent formation of an isopeptide bond between ubiquitin (Ub) and primary amines in substrate proteins 1 . Recently, the SidE family of bacterial effector proteins (SdeA, SdeB, SdeC and SidE) from pathogenic Legionella pneumophila were shown to use NAD+ to mediate phosphoribosyl-linked ubiquitination of serine residues in host proteins2, 3. However, the molecular architecture of the catalytic platform that enables this complex multistep process remains unknown. Here we describe the structure of the catalytic core of SdeA, comprising mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains, and shed light on the activity of two distinct catalytic sites for serine ubiquitination. The mART catalytic site is composed of an α-helical lobe (AHL) that, together with the mART core, creates a chamber for NAD+ binding and ADP-ribosylation of ubiquitin. The catalytic site in the PDE domain cleaves ADP-ribosylated ubiquitin to phosphoribosyl ubiquitin (PR-Ub) and mediates a two-step PR-Ub transfer reaction: first to a catalytic histidine 277 (forming a transient SdeA H277-PR-Ub intermediate) and subsequently to a serine residue in host proteins. Structural analysis revealed a substrate binding cleft in the PDE domain, juxtaposed with the catalytic site, that is essential for positioning serines for ubiquitination. Using degenerate substrate peptides and newly identified ubiquitination sites in RTN4B, we show that disordered polypeptides with hydrophobic residues surrounding the target serine residues are preferred substrates for SdeA ubiquitination. Infection studies with L. pneumophila expressing substrate-binding mutants of SdeA revealed that substrate ubiquitination, rather than modification of the cellular ubiquitin pool, determines the pathophysiological effect of SdeA during acute bacterial infection.
Collapse
Affiliation(s)
- Sissy Kalayil
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sagar Bhogaraju
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
| | - Donghyuk Shin
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yaobin Liu
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ninghai Gan
- Purdue Institute of Immunology, Inflammation and Infectious Diseases and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Jérôme Basquin
- Max Planck Institute of Biochemistry, Department of Structural Cell Biology, Martinsried, Germany
| | - Paolo Grumati
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany
| | - Zhao-Qing Luo
- Purdue Institute of Immunology, Inflammation and Infectious Diseases and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Jongkon N, Gleeson D, Gleeson MP. Elucidation of the catalytic mechanism of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase using QM/MM calculations. Org Biomol Chem 2018; 16:6239-6249. [DOI: 10.1039/c8ob01428k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This account describes the application of QM/MM calculations to understand the reaction mechanism of HPPK, an important pharmacological target on the folate pathway for the treatment of diseases including anti-microbial resistance, malaria and cancer.
Collapse
Affiliation(s)
- Nathjanan Jongkon
- Department of Social and Applied Science
- College of Industrial Technology
- King Mongkut's University of Technology North Bangkok
- Bangkok 10800
- Thailand
| | - Duangkamol Gleeson
- Department of Chemistry
- Faculty of Science
- King Mongkut's Institute of Technology Ladkrabang
- Thailand
| | - M. Paul Gleeson
- Department of Biomedical Engineering
- Faculty of Engineering
- King Mongkut's Institute of Technology Ladkrabang
- Bangkok 10520
- Thailand
| |
Collapse
|
26
|
Meanwell NA. Drug-target interactions that involve the replacement or displacement of magnesium ions. Bioorg Med Chem Lett 2017; 27:5355-5372. [DOI: 10.1016/j.bmcl.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 01/11/2023]
|
27
|
Gu C, Wen S, Doig P, Gangl E, Zheng X, Wang Y, Johannes JW. Mouse Red Blood Cell-Mediated Rare Xenobiotic Phosphorylation of a Drug Molecule Not Intended to Be a Kinase Substrate. Drug Metab Dispos 2017; 45:1345-1353. [PMID: 28986473 DOI: 10.1124/dmd.117.076869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of xenobiotics is rare, probably owing to a strong evolutionary pressure against it. This rarity may have attracted more attention recently as a result of intentionally designed kinase-substrate analogs that depend on kinase-catalyzed activation to form phosphorylated active drugs. We report a rare phosphorylated metabolite observed unexpectedly in mouse plasma samples after an oral dose of a Tankyrase inhibitor that was not intended to be a kinase substrate, i.e., (S)-2-(4-(6-(3,4-dimethylpiperazin-1-yl)-4-methylpyridin-3-yl)phenyl)-8-(hydroxymethyl)quinazolin-4(3H)-one (AZ2381). The phosphorylated metabolite was not generated in mouse hepatocytes. In vitro experiments showed that the phosphorylation of AZ2381 occurred in mouse whole blood with heparin as anticoagulant but not in mouse plasma. The phosphorylated metabolite was also produced in rat, dog, and human blood, albeit at lower yields than in mouse. Divalent metal ions are required for the phosphorylation since the reaction is inhibited by the metal chelator EDTA. Further investigations with different cellular fractions of mouse blood revealed that the phosphorylation of AZ2381 was mediated by erythrocytes but did not occur with leukocytes. The levels of 18O incorporation into the phosphorylated metabolite when inorganic 18O4-phosphate and γ-18O4-ATP were added to the mouse blood incubations separately suggested that the phosphoryl transfer was from inorganic phosphate rather than ATP. It remains unclear which enzyme present in red blood cells is responsible for this rare phosphorylation.
Collapse
Affiliation(s)
- Chungang Gu
- Oncology DMPK (C.G., E.G.), Oncology Biosciences (S.W., Y.W.), Discovery Sciences (P.D.), and Oncology Medicinal Chemistry (X.Z., J.W.J.), Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts
| | - Shenghua Wen
- Oncology DMPK (C.G., E.G.), Oncology Biosciences (S.W., Y.W.), Discovery Sciences (P.D.), and Oncology Medicinal Chemistry (X.Z., J.W.J.), Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts
| | - Peter Doig
- Oncology DMPK (C.G., E.G.), Oncology Biosciences (S.W., Y.W.), Discovery Sciences (P.D.), and Oncology Medicinal Chemistry (X.Z., J.W.J.), Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts
| | - Eric Gangl
- Oncology DMPK (C.G., E.G.), Oncology Biosciences (S.W., Y.W.), Discovery Sciences (P.D.), and Oncology Medicinal Chemistry (X.Z., J.W.J.), Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts
| | - Xiaolan Zheng
- Oncology DMPK (C.G., E.G.), Oncology Biosciences (S.W., Y.W.), Discovery Sciences (P.D.), and Oncology Medicinal Chemistry (X.Z., J.W.J.), Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts
| | - Yanjun Wang
- Oncology DMPK (C.G., E.G.), Oncology Biosciences (S.W., Y.W.), Discovery Sciences (P.D.), and Oncology Medicinal Chemistry (X.Z., J.W.J.), Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts
| | - Jeffrey W Johannes
- Oncology DMPK (C.G., E.G.), Oncology Biosciences (S.W., Y.W.), Discovery Sciences (P.D.), and Oncology Medicinal Chemistry (X.Z., J.W.J.), Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts
| |
Collapse
|
28
|
Li J, Vervoorts J, Carloni P, Rossetti G, Lüscher B. Structural prediction of the interaction of the tumor suppressor p27 KIP1 with cyclin A/CDK2 identifies a novel catalytically relevant determinant. BMC Bioinformatics 2017; 18:15. [PMID: 28056778 PMCID: PMC5217639 DOI: 10.1186/s12859-016-1411-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cyclin-dependent kinase 2 (CDK2) together with its cyclin E and A partners is a central regulator of cell growth and division. Deregulation of CDK2 activity is associated with diseases such as cancer. The analysis of substrates identified S/T-P-X-R/K/H as the CDK2 consensus sequence. The crystal structure of cyclin A/CDK2 with a short model peptide supports this sequence and identifies key interactions. However, CDKs use additional determinants to recognize substrates, including the RXL motif that is read by the cyclin subunits. We were interested to determine whether additional amino acids beyond the minimal consensus sequence of the well-studied substrate and tumor suppressor p27KIP1 were relevant for catalysis. RESULTS To address whether additional amino acids, close to the minimal consensus sequence, play a role in binding, we investigate the interaction of cyclin A/CDK2 with an in vivo cellular partner and CDK inhibitor p27KIP1. This protein is an intrinsically unfolded protein and, in particular, the C-terminal half of the protein has not been accessible to structural analysis. This part harbors the CDK2 phosphorylation site. We used bioinformatics tools, including MODELLER, iTASSER and HADDOCK, along with partial structural information to build a model of the C-terminal region of p27KIP1 with cyclin A/CDK2. This revealed novel interactions beyond the consensus sequence with a proline and a basic amino acid at the P + 1 and the P + 3 sites, respectively. We suggest that the lysine at P + 2 might regulate the reversible association of the second counter ion in the active site of CDK2. The arginine at P + 7 interacts with both cyclin A and CDK2 and is important for the catalytic turnover rate. CONCLUSION Our modeling identifies additional amino acids in p27KIP1 beyond the consensus sequence that contribute to the efficiency of substrate phosphorylation.
Collapse
Affiliation(s)
- Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350002, China.,Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany.,Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jörg Vervoorts
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany. .,Department of Oncology, Hematology and Stem Cell Transplantation, Medical School, RWTH Aachen University, Aachen, Germany. .,Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057, Aachen, Germany.
| |
Collapse
|
29
|
Masoko P, Mabusa IH, Howard RL. Isolation of alpha-linolenic acid from Sutherlandia frutescens and its inhibition of Mycobacterium tuberculosis' shikimate kinase enzyme. Altern Ther Health Med 2016; 16:366. [PMID: 27639973 PMCID: PMC5027073 DOI: 10.1186/s12906-016-1344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 09/08/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sutherlandia frutescens (L) R.Br. is one of traditional herbal medicines that formed the basis of primary health care systems since the earliest days and is still widely used. Sutherlandia is prescribed for people with tuberculosis (TB), but is still not known which compound(s) acts against M. tuberculosis and its mode of action. The aim of this study was to identify and isolate antimycobacterial compounds from S. frutescens extracts against shikimate kinase, a drug target for M. tuberculosis. METHODS S. frutescens were dried, ground and extracted with ethanol, dichloromethane: methanol and water. Fractionation and separation of compounds was done with column chromatography. Chromatograms were developed in butanol/acetic acid/water (BAW) [21:6:3]; chloroform/methanol/water/formic acid (CMWF1) [60:15:2:1] and (CMWF2) [21:9:1:0.3]. Separation and isolation of active compounds were done using preparative HPLC. The activity of the plant extracts were also screened against shikimate kinase enzyme (MtbSK) using the MtbSK inhibition assay. RESULTS The DCM: MeOH (1:1) extract showed a high percentage inhibition (with an IC50 of 0.1 μg/ml) of MtbSK and the purified inhibitor was an Alpha-Linolenic Acid (ALA) compound and it had a significant IC50 of 3.7 μg/ml. CONCLUSIONS This study demonstrated that ALA from S. frustescens is an inhibitor of shikimate kinase a good drug target for M. tuberculosis.
Collapse
|
30
|
Awuni Y, Jiang S, Robinson RC, Mu Y. Exploring the A22-Bacterial Actin MreB Interaction through Molecular Dynamics Simulations. J Phys Chem B 2016; 120:9867-74. [PMID: 27600765 DOI: 10.1021/acs.jpcb.6b05199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MreB is an actin-like cytoskeleton protein that plays a vital role in the maintenance of the rod-shaped morphology of many bacteria. S-(3,4-Dichlorobenzyl) isothiourea (A22) is an antibiotic-like small molecule that perturbs the rod cell shape and has been suggested to inhibit MreB by targeting ATP hydrolysis. However, without the elucidation of the structure of the ATP-bound state of MreB in the presence of A22, the mechanism of A22 inhibition is still not clear. Here we apply conventional molecular dynamics simulations to explore the dynamics of the active site of MreB in complex with A22 and different nucleotides. We observe that hydrogen bonding between A22 and the catalytic Glu140 residue is not favored in the ATP-A22-bound state of MreB. Water dynamics analysis in the MreB active site reveals that in the presence of A22 water molecules are able to occupy positions suitable for ATP hydrolysis. Overall, our results are consistent with a mechanism in which A22 affects MreB polymerization/depolymerization dynamics in part through slowing phosphate release rather than by inhibiting ATP hydrolysis. These data can be incorporated in the design/development of the next generation of MreB inhibitors.
Collapse
Affiliation(s)
- Yaw Awuni
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | - Shimin Jiang
- Institute of Molecular and Cell Biology , A*STAR, Biopolis, Singapore 138673
| | - Robert C Robinson
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551.,Institute of Molecular and Cell Biology , A*STAR, Biopolis, Singapore 138673.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore 117597.,Institute of Structural Biology, Nanyang Technological University , 59 Nanyang Drive, Singapore 636921.,Lee Kong Chian School of Medicine , 50 Nanyang Avenue, Singapore 639798
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
31
|
Dedic E, Alsarraf H, Welner DH, Østergaard O, Klychnikov OI, Hensbergen PJ, Corver J, van Leeuwen HC, Jørgensen R. A Novel Fic (Filamentation Induced by cAMP) Protein from Clostridium difficile Reveals an Inhibitory Motif-independent Adenylylation/AMPylation Mechanism. J Biol Chem 2016; 291:13286-300. [PMID: 27076635 DOI: 10.1074/jbc.m115.705491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 02/04/2023] Open
Abstract
Filamentation induced by cAMP (Fic) domain proteins have been shown to catalyze the transfer of the AMP moiety from ATP onto a protein target. This type of post-translational modification was recently shown to play a crucial role in pathogenicity mediated by two bacterial virulence factors. Herein we characterize a novel Fic domain protein that we identified from the human pathogen Clostridium difficile The crystal structure shows that the protein adopts a classical all-helical Fic fold, which belongs to class II of Fic domain proteins characterized by an intrinsic N-terminal autoinhibitory α-helix. A conserved glutamate residue in the inhibitory helix motif was previously shown in other Fic domain proteins to prevent proper binding of the ATP γ-phosphate. However, here we demonstrate that both ATP binding and autoadenylylation activity of the C. difficile Fic domain protein are independent of the inhibitory motif. In support of this, the crystal structure of a mutant of this Fic protein in complex with ATP reveals that the γ-phosphate adopts a conformation unique among Fic domains that seems to override the effect of the inhibitory helix. These results provide important structural insight into the adenylylation reaction mechanism catalyzed by Fic domains. Our findings reveal the presence of a class II Fic domain protein in the human pathogen C. difficile that is not regulated by autoinhibition and challenge the current dogma that all class I-III Fic domain proteins are inhibited by the inhibitory α-helix.
Collapse
Affiliation(s)
- Emil Dedic
- From the Departments of Microbiology and Infection Control and
| | - Husam Alsarraf
- From the Departments of Microbiology and Infection Control and
| | | | - Ole Østergaard
- Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen S, Denmark and
| | | | | | - Jeroen Corver
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Hans C van Leeuwen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - René Jørgensen
- From the Departments of Microbiology and Infection Control and
| |
Collapse
|
32
|
Bugg TDH, Rodolis MT, Mihalyi A, Jamshidi S. Inhibition of phospho-MurNAc-pentapeptide translocase (MraY) by nucleoside natural product antibiotics, bacteriophage ϕX174 lysis protein E, and cationic antibacterial peptides. Bioorg Med Chem 2016; 24:6340-6347. [PMID: 27021004 DOI: 10.1016/j.bmc.2016.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
This review covers recent developments in the inhibition of translocase MraY and related phospho-GlcNAc transferases WecA and TagO, and insight into the inhibition and catalytic mechanism of this class of integral membrane proteins from the structure of Aquifex aeolicus MraY. Recent studies have also identified a protein-protein interaction site in Escherichia coli MraY, that is targeted by bacteriophage ϕX174 lysis protein E, and also by cationic antimicrobial peptides containing Arg-Trp close to their N- or C-termini.
Collapse
Affiliation(s)
- Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Maria T Rodolis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Agnes Mihalyi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Shirin Jamshidi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
33
|
Altan I, Charbonneau P, Snell EH. Computational crystallization. Arch Biochem Biophys 2016; 602:12-20. [PMID: 26792536 DOI: 10.1016/j.abb.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/22/2015] [Accepted: 01/07/2016] [Indexed: 11/28/2022]
Abstract
Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.
Collapse
Affiliation(s)
- Irem Altan
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, NC 27708, USA; Department of Physics, Duke University, Durham, NC 27708, USA
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott St., NY 14203, USA; Department of Structural Biology, SUNY University of Buffalo, 700 Ellicott St., NY 14203, USA.
| |
Collapse
|
34
|
Richter JP, Goroncy AK, Ronimus RS, Sutherland-Smith AJ. The Structural and Functional Characterization of Mammalian ADP-dependent Glucokinase. J Biol Chem 2015; 291:3694-704. [PMID: 26555263 DOI: 10.1074/jbc.m115.679902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 12/24/2022] Open
Abstract
The enzyme-catalyzed phosphorylation of glucose to glucose-6-phosphate is a reaction central to the metabolism of all life. ADP-dependent glucokinase (ADPGK) catalyzes glucose-6-phosphate production, utilizing ADP as a phosphoryl donor in contrast to the more well characterized ATP-requiring hexokinases. ADPGK is found in Archaea and metazoa; in Archaea, ADPGK participates in a glycolytic role, but a function in most eukaryotic cell types remains unknown. We have determined structures of the eukaryotic ADPGK revealing a ribokinase-like tertiary fold similar to archaeal orthologues but with significant differences in some secondary structural elements. Both the unliganded and the AMP-bound ADPGK structures are in the "open" conformation. The structures reveal the presence of a disulfide bond between conserved cysteines that is positioned at the nucleotide-binding loop of eukaryotic ADPGK. The AMP-bound ADPGK structure defines the nucleotide-binding site with one of the disulfide bond cysteines coordinating the AMP with its main chain atoms, a nucleotide-binding motif that appears unique to eukaryotic ADPGKs. Key amino acids at the active site are structurally conserved between mammalian and archaeal ADPGK, and site-directed mutagenesis has confirmed residues essential for enzymatic activity. ADPGK is substrate inhibited by high glucose concentration and shows high specificity for glucose, with no activity for other sugars, as determined by NMR spectroscopy, including 2-deoxyglucose, the glucose analogue used for tumor detection by positron emission tomography.
Collapse
Affiliation(s)
- Jan P Richter
- From the Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand and
| | - Alexander K Goroncy
- From the Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand and
| | - Ron S Ronimus
- AgResearch Limited, Palmerston North 4442, New Zealand
| | - Andrew J Sutherland-Smith
- From the Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand and
| |
Collapse
|
35
|
Li J, Flick F, Verheugd P, Carloni P, Lüscher B, Rossetti G. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2). PLoS One 2015; 10:e0139095. [PMID: 26407304 PMCID: PMC4583397 DOI: 10.1371/journal.pone.0139095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications.
Collapse
Affiliation(s)
- Jinyu Li
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Franziska Flick
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Patricia Verheugd
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
- Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52057, Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425, Jülich, Germany
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
36
|
Catalytic pathway, substrate binding and stability in SAICAR synthetase: A structure and molecular dynamics study. J Struct Biol 2015; 191:22-31. [PMID: 26072057 DOI: 10.1016/j.jsb.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 11/21/2022]
Abstract
The de novo purine biosynthesis is one of the highly conserved pathways among all organisms and is essential for the cell viability. A clear understanding of the enzymes in this pathway would pave way for the development of antimicrobial and anticancer drugs. Phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase is one of the enzymes in this pathway that catalyzes ATP dependent ligation of carboxyaminoimidazole ribotide (CAIR) with l-aspartate (ASP). Here, we describe eight crystal structures of this enzyme, in C2221 and H3 space groups, bound to various substrates and substrate mimics from a hyperthermophilic archaea Pyrococcus horikoshii along with molecular dynamics simulations of the structures with substrates. Complexes exhibit minimal deviation from its apo structure. The CAIR binding site displays a preference for pyrimidine nucleotides. In the ADP·TMP·ASP complex, the ASP binds at a position equivalent to that found in Saccharomyces cerevisiae structure (PDB: 2CNU) and thus, clears the ambiguity regarding ASP's position. A possible mode for the inhibition of the enzyme by CTP and UTP, observed earlier in the yeast enzyme, is clearly illustrated in the structures bound to CMP and UMP. The ADP.Mg(2+)·PO4·CD/MP complex having a phosphate ion between the ATP and CAIR sites strengthens one of the two probable pathways (proposed in Escherichia coli study) of catalytic mechanism and suggests the possibility of a phosphorylation taking place before the ASP's attack on CAIR. Molecular dynamic simulations of this enzyme along with its substrates at 90°C reveal the relative strengths of substrate binding, possible antagonism and the role of Mg(2+) ions.
Collapse
|
37
|
Summerton JC, Martin GM, Evanseck JD, Chapman MS. Common hydrogen bond interactions in diverse phosphoryl transfer active sites. PLoS One 2014; 9:e108310. [PMID: 25238155 PMCID: PMC4169622 DOI: 10.1371/journal.pone.0108310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Phosphoryl transfer reactions figure prominently in energy metabolism, signaling, transport and motility. Prior detailed studies of selected systems have highlighted mechanistic features that distinguish different phosphoryl transfer enzymes. Here, a top-down approach is developed for comparing statistically the active site configurations between populations of diverse structures in the Protein Data Bank, and it reveals patterns of hydrogen bonding that transcend enzyme families. Through analysis of large samples of structures, insights are drawn at a level of detail exceeding the experimental precision of an individual structure. In phosphagen kinases, for example, hydrogen bonds with the O3β of the nucleotide substrate are revealed as analogous to those in unrelated G proteins. In G proteins and other enzymes, interactions with O3β have been understood in terms of electrostatic favoring of the transition state. Ground state quantum mechanical calculations on model compounds show that the active site interactions highlighted in our database analysis can affect substrate phosphate charge and bond length, in ways that are consistent with prior experimental observations, by modulating hyperconjugative orbital interactions that weaken the scissile bond. Testing experimentally the inference about the importance of O3β interactions in phosphagen kinases, mutation of arginine kinase Arg280 decreases kcat, as predicted, with little impact upon KM.
Collapse
Affiliation(s)
- Jean C. Summerton
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Gregory M. Martin
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jeffrey D. Evanseck
- Center for Computational Sciences and the Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Michael S. Chapman
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
38
|
Bruno AE, Ruby AM, Luft JR, Grant TD, Seetharaman J, Montelione GT, Hunt JF, Snell EH. Comparing chemistry to outcome: the development of a chemical distance metric, coupled with clustering and hierarchal visualization applied to macromolecular crystallography. PLoS One 2014; 9:e100782. [PMID: 24971458 PMCID: PMC4074061 DOI: 10.1371/journal.pone.0100782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Many bioscience fields employ high-throughput methods to screen multiple biochemical conditions. The analysis of these becomes tedious without a degree of automation. Crystallization, a rate limiting step in biological X-ray crystallography, is one of these fields. Screening of multiple potential crystallization conditions (cocktails) is the most effective method of probing a proteins phase diagram and guiding crystallization but the interpretation of results can be time-consuming. To aid this empirical approach a cocktail distance coefficient was developed to quantitatively compare macromolecule crystallization conditions and outcome. These coefficients were evaluated against an existing similarity metric developed for crystallization, the C6 metric, using both virtual crystallization screens and by comparison of two related 1,536-cocktail high-throughput crystallization screens. Hierarchical clustering was employed to visualize one of these screens and the crystallization results from an exopolyphosphatase-related protein from Bacteroides fragilis, (BfR192) overlaid on this clustering. This demonstrated a strong correlation between certain chemically related clusters and crystal lead conditions. While this analysis was not used to guide the initial crystallization optimization, it led to the re-evaluation of unexplained peaks in the electron density map of the protein and to the insertion and correct placement of sodium, potassium and phosphate atoms in the structure. With these in place, the resulting structure of the putative active site demonstrated features consistent with active sites of other phosphatases which are involved in binding the phosphoryl moieties of nucleotide triphosphates. The new distance coefficient, CDcoeff, appears to be robust in this application, and coupled with hierarchical clustering and the overlay of crystallization outcome, reveals information of biological relevance. While tested with a single example the potential applications related to crystallography appear promising and the distance coefficient, clustering, and hierarchal visualization of results undoubtedly have applications in wider fields.
Collapse
Affiliation(s)
- Andrew E. Bruno
- Center for Computational Research, State University of New York (SUNY), Buffalo, New York, United States of America
| | - Amanda M. Ruby
- Center for Computational Research, State University of New York (SUNY), Buffalo, New York, United States of America
| | - Joseph R. Luft
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
- SUNY Buffalo Dept. of Structural Biology, Buffalo, New York, United States of America
| | - Thomas D. Grant
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
| | - Jayaraman Seetharaman
- Department of Biological Sciences, The Northeast Structural Genomics Consortium, Columbia University, New York, New York, United States of America
| | - Gaetano T. Montelione
- Northeast Structural Genomics Consortium, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine and Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - John F. Hunt
- Department of Biological Sciences, The Northeast Structural Genomics Consortium, Columbia University, New York, New York, United States of America
| | - Edward H. Snell
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
- SUNY Buffalo Dept. of Structural Biology, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Sciara G, Clarke OB, Tomasek D, Kloss B, Tabuso S, Byfield R, Cohn R, Banerjee S, Rajashankar KR, Slavkovic V, Graziano JH, Shapiro L, Mancia F. Structural basis for catalysis in a CDP-alcohol phosphotransferase. Nat Commun 2014; 5:4068. [PMID: 24923293 PMCID: PMC4098843 DOI: 10.1038/ncomms5068] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022] Open
Abstract
The CDP-alcohol phosphotransferase (CDP-AP) family of integral membrane enzymes catalyses the transfer of a substituted phosphate group from a CDP-linked donor to an alcohol acceptor. This is an essential reaction for phospholipid biosynthesis across all kingdoms of life, and it is catalysed solely by CDP-APs. Here we report the 2.0 Å resolution crystal structure of a representative CDP-AP from Archaeoglobus fulgidus. The enzyme (AF2299) is a homodimer, with each protomer consisting of six transmembrane helices and an N-terminal cytosolic domain. A polar cavity within the membrane accommodates the active site, lined with the residues from an absolutely conserved CDP-AP signature motif (D(1)xxD(2)G(1)xxAR...G(2)xxxD(3)xxxD(4)). Structures in the apo, CMP-bound, CDP-bound and CDP-glycerol-bound states define functional roles for each of these eight conserved residues and allow us to propose a sequential, base-catalysed mechanism universal for CDP-APs, in which the fourth aspartate (D4) acts as the catalytic base.
Collapse
Affiliation(s)
- Giuliano Sciara
- 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2]
| | - Oliver B Clarke
- 1] Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA [2]
| | - David Tomasek
- 1] Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA [2]
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA
| | - Shantelle Tabuso
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA
| | - Rushelle Byfield
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Raphael Cohn
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Advanced Photon Source, Argonne, Illinois 60439, USA
| | - Kanagalaghatta R Rajashankar
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Advanced Photon Source, Argonne, Illinois 60439, USA
| | - Vesna Slavkovic
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
40
|
Dikfidan A, Loll B, Zeymer C, Magler I, Clausen T, Meinhart A. RNA specificity and regulation of catalysis in the eukaryotic polynucleotide kinase Clp1. Mol Cell 2014; 54:975-986. [PMID: 24813946 DOI: 10.1016/j.molcel.2014.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/27/2014] [Accepted: 04/03/2014] [Indexed: 12/19/2022]
Abstract
RNA-specific polynucleotide kinases of the Clp1 subfamily are key components of various RNA maturation pathways. However, the structural basis explaining their substrate specificity and the enzymatic mechanism is elusive. Here, we report crystal structures of Clp1 from Caenorhabditis elegans (ceClp1) in a number of nucleotide- and RNA-bound states along the reaction pathway. The combined structural and biochemical analysis of ceClp1 elucidates the RNA specificity and lets us derive a general model for enzyme catalysis of RNA-specific polynucleotide kinases. We identified an RNA binding motif referred to as "clasp" as well as a conformational switch that involves the essential Walker A lysine (Lys127) and regulates the enzymatic activity of ceClp1. Structural comparison with other P loop proteins, such as kinases, adenosine triphosphatases (ATPases), and guanosine triphosphatases (GTPases), suggests that the observed conformational switch of the Walker A lysine is a broadly relevant mechanistic feature.
Collapse
Affiliation(s)
- Aytac Dikfidan
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Bernhard Loll
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany; Institute for Chemistry and Biochemistry/Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Cathleen Zeymer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Iris Magler
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna 1030, Austria
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.
| |
Collapse
|
41
|
Kapnick SM, Zhang Y. New tuberculosis drug development: targeting the shikimate pathway. Expert Opin Drug Discov 2013; 3:565-77. [PMID: 23484927 DOI: 10.1517/17460441.3.5.565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide, yet no new drugs have been developed in the last 40 years. OBJECTIVE The exceedingly lengthy TB chemotherapy and the increasing emergence of drug resistance complicated by HIV co-infection call for the development of new TB drugs. These problems are further compounded by a poor understanding of the biology of persister bacteria. METHODS New molecular tools have offered insights into potential new drug targets, particularly the enzymes of the shikimate pathway, which is the focus of this review. RESULTS/CONCLUSION Shikimate pathway enzymes, especially shikimate kinase, may offer attractive targets for new TB drug and vaccine development.
Collapse
Affiliation(s)
- Senta M Kapnick
- Johns Hopkins University, Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA +1 410 614 2975 ; +1 410 955 0105 ;
| | | |
Collapse
|
42
|
González-Páez GE, Wolan DW. Ultrahigh and high resolution structures and mutational analysis of monomeric Streptococcus pyogenes SpeB reveal a functional role for the glycine-rich C-terminal loop. J Biol Chem 2012; 287:24412-26. [PMID: 22645124 DOI: 10.1074/jbc.m112.361576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 Å resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC(50) values for trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.
Collapse
Affiliation(s)
- Gonzalo E González-Páez
- Department of Molecular and Experimental, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
43
|
Lassila JK, Zalatan JG, Herschlag D. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Annu Rev Biochem 2011; 80:669-702. [PMID: 21513457 DOI: 10.1146/annurev-biochem-060409-092741] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field.
Collapse
Affiliation(s)
- Jonathan K Lassila
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
44
|
Pompeo F, Luciano J, Brochier-Armanet C, Galinier A. The GTPase function of YvcJ and its subcellular relocalization are dependent on growth conditions in Bacillus subtilis. J Mol Microbiol Biotechnol 2011; 20:156-67. [PMID: 21709426 DOI: 10.1159/000329298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have recently shown that the Bacillus subtilis GTPase YvcJ is involved in the phosphorylation of an unidentified cellular component and that the deletion of yvcJ induced a decrease in competence efficiency. In this paper, we report that growth conditions influence both the YvcJ-dependent phosphorylation event and the localization of this protein. More precisely, we have observed that YvcJ can be localized in the cell either as a helical-like pattern or as foci close to the poles and the septa depending on growth phase and on growth medium. In addition, we show that the mutation of the catalytic lysine residue (K22) located in the Walker A motif of YvcJ, and necessary for its GTPase activity, induces a decrease in competence efficiency similar to that observed for the yvcJ null mutant. This mutation also inhibits the YvcJ-dependent phosphorylation event. Furthermore, a phylogenetic analysis of the YvcJ homologues shows that this protein is ancient in Bacteria (being possibly present in their last common ancestor) and has been conserved in a number of major bacterial phyla, suggesting that this protein has an important function in this domain of life. To sum up, even if the precise cellular role of this ancient protein remains unknown, our data show that the GTPase activity of B. subtilis YvcJ and its function in the phosphorylation of a cellular component are influenced by the growth conditions, and are important for the effect of YvcJ on competence efficiency.
Collapse
Affiliation(s)
- Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université, France. fpompeo @ ifr88.cnrs-mrs.fr
| | | | | | | |
Collapse
|
45
|
Bacik JP, Whitworth GE, Stubbs KA, Yadav AK, Martin DR, Bailey-Elkin BA, Vocadlo DJ, Mark BL. Molecular basis of 1,6-anhydro bond cleavage and phosphoryl transfer by Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase. J Biol Chem 2011; 286:12283-91. [PMID: 21288904 DOI: 10.1074/jbc.m110.198317] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anhydro-N-acetylmuramic acid kinase (AnmK) catalyzes the ATP-dependent conversion of the Gram-negative peptidoglycan (PG) recycling intermediate 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) to N-acetylmuramic acid-6-phosphate (MurNAc-6-P). Here we present crystal structures of Pseudomonas aeruginosa AnmK in complex with its natural substrate, anhMurNAc, and a product of the reaction, ADP. AnmK is homodimeric, with each subunit comprised of two subdomains that are separated by a deep active site cleft, which bears similarity to the ATPase core of proteins belonging to the hexokinase-hsp70-actin superfamily of proteins. The conversion of anhMurNAc to MurNAc-6-P involves both cleavage of the 1,6-anhydro ring of anhMurNAc along with addition of a phosphoryl group to O6 of the sugar, and thus represents an unusual enzymatic mechanism involving the formal addition of H3PO4 to anhMurNAc. The structural complexes and NMR analysis of the reaction suggest that a water molecule, activated by Asp-182, attacks the anomeric carbon of anhMurNAc, aiding cleavage of the 1,6-anhydro bond and facilitating the capture of the γ phosphate of ATP by O6 via an in-line phosphoryl transfer. AnmK is active only against anhMurNAc and not the metabolically related 1,6-anhydro-N-acetylmuramyl peptides, suggesting that the cytosolic N-acetyl-anhydromuramyl-l-alanine amidase AmpD must first remove the stem peptide from these PG muropeptide catabolites before anhMurNAc can be acted upon by AnmK. Our studies provide the foundation for a mechanistic model for the dual activities of AnmK as a hydrolase and a kinase of an unusual heterocyclic monosaccharide.
Collapse
Affiliation(s)
- John-Paul Bacik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nocek B, Stein AJ, Jedrzejczak R, Cuff ME, Li H, Volkart L, Joachimiak A. Structural studies of ROK fructokinase YdhR from Bacillus subtilis: insights into substrate binding and fructose specificity. J Mol Biol 2010; 406:325-42. [PMID: 21185308 DOI: 10.1016/j.jmb.2010.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/29/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
Abstract
The main pathway of bacterial sugar phosphorylation utilizes specific phosphoenolpyruvate phosphotransferase system (PTS) enzymes. In addition to the classic PTS system, a PTS-independent secondary system has been described in which nucleotide-dependent sugar kinases are used for monosaccharide phosphorylation. Fructokinase (FK), which phosphorylates d-fructose with ATP as a cofactor, has been shown to be a member of this secondary system. Bioinformatic analysis has shown that FK is a member of the "ROK" (bacterial Repressors, uncharacterized Open reading frames, and sugar Kinases) sequence family. In this study, we report the crystal structures of ROK FK from Bacillus subtilis (YdhR) (a) apo and in the presence of (b) ADP and (c) ADP/d-fructose. All structures show that YdhR is a homodimer with a monomer composed of two similar α/β domains forming a large cleft between domains that bind ADP and D-fructose. Enzymatic activity assays support YdhR function as an ATP-dependent fructose kinase.
Collapse
Affiliation(s)
- B Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, IL 60439, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Harding MM, Nowicki MW, Walkinshaw MD. Metals in protein structures: a review of their principal features. CRYSTALLOGR REV 2010. [DOI: 10.1080/0889311x.2010.485616] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marjorie M. Harding
- a Centre for Translational and Chemical Biology, University of Edinburgh, Michael Swann Building , Mayfield Road, Edinburgh , EH9 3JR , UK
| | - Matthew W. Nowicki
- a Centre for Translational and Chemical Biology, University of Edinburgh, Michael Swann Building , Mayfield Road, Edinburgh , EH9 3JR , UK
| | - Malcolm D. Walkinshaw
- a Centre for Translational and Chemical Biology, University of Edinburgh, Michael Swann Building , Mayfield Road, Edinburgh , EH9 3JR , UK
| |
Collapse
|
48
|
Varga A, Szabó J, Flachner B, Gugolya Z, Vonderviszt F, Závodszky P, Vas M. Thermodynamic analysis of substrate induced domain closure of 3-phosphoglycerate kinase. FEBS Lett 2009; 583:3660-4. [PMID: 19854185 DOI: 10.1016/j.febslet.2009.10.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 11/26/2022]
Abstract
The energetic changes accompanying domain closure of 3-phosphoglycerate kinase, a typical hinge-bending enzyme, were assessed. Calorimetric titrations of the enzyme with each substrate, both in the absence and presence of the other one, provide information not only about the energetics of substrate binding, but of the associated conformational changes, including domain closure. Our results suggest that conformational rearrangements in the hinge generated by binding of both substrates provide the main driving force for domain closure overcoming the slightly unfavourable contact interactions between the domains.
Collapse
Affiliation(s)
- Andrea Varga
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, PO Box 7, H-1518 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
49
|
Biterova EI, Barycki JJ. Mechanistic details of glutathione biosynthesis revealed by crystal structures of Saccharomyces cerevisiae glutamate cysteine ligase. J Biol Chem 2009; 284:32700-8. [PMID: 19726687 DOI: 10.1074/jbc.m109.025114] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione is a thiol-disulfide exchange peptide critical for buffering oxidative or chemical stress, and an essential cofactor in several biosynthesis and detoxification pathways. The rate-limiting step in its de novo biosynthesis is catalyzed by glutamate cysteine ligase, a broadly expressed enzyme for which limited structural information is available in higher eukaryotic species. Structural data are critical to the understanding of clinical glutathione deficiency, as well as rational design of enzyme modulators that could impact human disease progression. Here, we have determined the structures of Saccharomyces cerevisiae glutamate cysteine ligase (ScGCL) in the presence of glutamate and MgCl(2) (2.1 A; R = 18.2%, R(free) = 21.9%), and in complex with glutamate, MgCl(2), and ADP (2.7 A; R = 19.0%, R(free) = 24.2%). Inspection of these structures reveals an unusual binding pocket for the alpha-carboxylate of the glutamate substrate and an ATP-independent Mg(2+) coordination site, clarifying the Mg(2+) dependence of the enzymatic reaction. The ScGCL structures were further used to generate a credible homology model of the catalytic subunit of human glutamate cysteine ligase (hGCLC). Examination of the hGCLC model suggests that post-translational modifications of cysteine residues may be involved in the regulation of enzymatic activity, and elucidates the molecular basis of glutathione deficiency associated with patient hGCLC mutations.
Collapse
Affiliation(s)
- Ekaterina I Biterova
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
50
|
Simmons CR, Stomel JM, McConnell MD, Smith DA, Watkins JL, Allen JP, Chaput JC. A synthetic protein selected for ligand binding affinity mediates ATP hydrolysis. ACS Chem Biol 2009; 4:649-58. [PMID: 19522480 DOI: 10.1021/cb900109w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How primitive enzymes emerged from a primordial pool remains a fundamental unanswered question with important practical implications in synthetic biology. Here we show that a de novo evolved ATP binding protein, selected solely on the basis of its ability to bind ATP, mediates the regiospecific hydrolysis of ATP to ADP when crystallized with 1 equiv of ATP. Structural insights into this reaction were obtained by growing protein crystals under saturating ATP conditions. The resulting crystal structure refined to 1.8 A resolution reveals that this man-made protein binds ATP in an unusual bent conformation that is metal-independent and held in place by a key bridging water molecule. Removal of this interaction using a null mutant results in a variant that binds ATP in a normal linear geometry and is incapable of ATP hydrolysis. Biochemical analysis, including high-resolution mass spectrometry performed on dissolved protein crystals, confirms that the reaction is accelerated in the crystalline environment. This observation suggests that proteins with weak chemical reactivity can emerge from high affinity ligand binding sites and that constrained ligand-binding geometries could have helped to facilitate the emergence of early protein enzymes.
Collapse
Affiliation(s)
- Chad R. Simmons
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| | - Joshua M. Stomel
- Center for BioOptical Nanotechnology, The Biodesign Institute
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-5201
| | - Michael D. McConnell
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| | - Daniel A. Smith
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| | - Jennifer L. Watkins
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| | | | - John C. Chaput
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| |
Collapse
|