1
|
Rao Y, Zhang L, Jing R, Huo J, Yan K, He J, Hou X, Mu J, Geng W, Cui H, Hao Z, Zan X, Ma J, Chou X. An optimized EEGNet decoder for decoding motor image of four class fingers flexion. Brain Res 2024; 1841:149085. [PMID: 38876320 DOI: 10.1016/j.brainres.2024.149085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
As a cutting-edge technology of connecting biological brain and external devices, brain-computer interface (BCI) exhibits promising applications on extensive fields such as medical and military. As for the disable individuals with four limbs losing the motor functions, it is a potential treatment way to drive mechanical equipments by the means of non-invasive BCI, which is badly depended on the accuracy of the decoded electroencephalogram (EEG) singles. In this study, an explanatory convolutional neural network namely EEGNet based on SimAM attention module was proposed to enhance the accuracy of decoding the EEG singles of index and thumb fingers for both left and right hand using sensory motor rhythm (SMR). An average classification accuracy of 72.91% the data of eight healthy subjects was obtained, which were captured from the one second before finger movement to two seconds after action. Furthermore, the character of event-related desynchronization (ERD) and event related synchronization (ERS) of index and thumb fingers was also studied in this study. These findings have significant importance for controlling external devices or other rehabilitation equipment using BCI in a fine way.
Collapse
Affiliation(s)
- Yongkang Rao
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Le Zhang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Ruijun Jing
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Jiabing Huo
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Kunxian Yan
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Jian He
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Xiaojuan Hou
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Jiliang Mu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Wenping Geng
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Haoran Cui
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Zeyu Hao
- Science and Technology on Electronic Test & Measurement Laboratory, The 41st Institute of China Electronic Technology Group Corporation, Qingdao 266555, China
| | - Xiang Zan
- Shanxi Provincial People's Hospital, the Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China
| | - Jiuhong Ma
- Shanxi Provincial People's Hospital, the Fifth Clinical Medical College of Shanxi Medical University, Taiyuan 030012, China
| | - Xiujian Chou
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| |
Collapse
|
2
|
Springer SD, Erker TD, Schantell M, Johnson HJ, Willett MP, Okelberry HJ, Rempe MP, Wilson TW. Disturbances in primary visual processing as a function of healthy aging. Neuroimage 2023; 271:120020. [PMID: 36914104 PMCID: PMC10123380 DOI: 10.1016/j.neuroimage.2023.120020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
For decades, visual entrainment paradigms have been widely used to investigate basic visual processing in healthy individuals and those with neurological disorders. While healthy aging is known to be associated with alterations in visual processing, whether this extends to visual entrainment responses and the precise cortical regions involved is not fully understood. Such knowledge is imperative given the recent surge in interest surrounding the use of flicker stimulation and entrainment in the context of identifying and treating Alzheimer's disease (AD). In the current study, we examined visual entrainment in eighty healthy aging adults using magnetoencephalography (MEG) and a 15 Hz entrainment paradigm, while controlling for age-related cortical thinning. MEG data were imaged using a time-frequency resolved beamformer and peak voxel time series were extracted to quantify the oscillatory dynamics underlying the processing of the visual flicker stimuli. We found that, as age increased, the mean amplitude of entrainment responses decreased and the latency of these responses increased. However, there was no effect of age on the trial-to-trial consistency in phase (i.e., inter-trial phase locking) nor amplitude (i.e., coefficient of variation) of these visual responses. Importantly, we discovered that the relationship between age and response amplitude was fully mediated by the latency of visual processing. These results indicate that aging is associated with robust changes in the latency and amplitude of visual entrainment responses within regions surrounding the calcarine fissure, which should be considered in studies examining neurological disorders such as AD and other conditions associated with increased age.
Collapse
Affiliation(s)
- Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tara D Erker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Engineering, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
3
|
Developmental trajectory of transmission speed in the human brain. Nat Neurosci 2023; 26:537-541. [PMID: 36894655 PMCID: PMC10076215 DOI: 10.1038/s41593-023-01272-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
The structure of the human connectome develops from childhood throughout adolescence to middle age, but how these structural changes affect the speed of neuronal signaling is not well described. In 74 subjects, we measured the latency of cortico-cortical evoked responses across association and U-fibers and calculated their corresponding transmission speeds. Decreases in conduction delays until at least 30 years show that the speed of neuronal communication develops well into adulthood.
Collapse
|
4
|
Caffarra S, Joo SJ, Bloom D, Kruper J, Rokem A, Yeatman JD. Development of the visual white matter pathways mediates development of electrophysiological responses in visual cortex. Hum Brain Mapp 2021; 42:5785-5797. [PMID: 34487405 PMCID: PMC8559498 DOI: 10.1002/hbm.25654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
The latency of neural responses in the visual cortex changes systematically across the lifespan. Here, we test the hypothesis that development of visual white matter pathways mediates maturational changes in the latency of visual signals. Thirty-eight children participated in a cross-sectional study including diffusion magnetic resonance imaging (MRI) and magnetoencephalography (MEG) sessions. During the MEG acquisition, participants performed a lexical decision and a fixation task on words presented at varying levels of contrast and noise. For all stimuli and tasks, early evoked fields were observed around 100 ms after stimulus onset (M100), with slower and lower amplitude responses for low as compared to high contrast stimuli. The optic radiations and optic tracts were identified in each individual's brain based on diffusion MRI tractography. The diffusion properties of the optic radiations predicted M100 responses, especially for high contrast stimuli. Higher optic radiation fractional anisotropy (FA) values were associated with faster and larger M100 responses. Over this developmental window, the M100 responses to high contrast stimuli became faster with age and the optic radiation FA mediated this effect. These findings suggest that the maturation of the optic radiations over childhood accounts for individual variations observed in the developmental trajectory of visual cortex responses.
Collapse
Affiliation(s)
- Sendy Caffarra
- Division of Developmental‐Behavioral PediatricsStanford University School of MedicineStanfordCalifornia
- Stanford University Graduate School of EducationStanfordCalifornia
- Basque Center on Cognition Brain and LanguageSan SebastianSpain
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sung Jun Joo
- Department of PsychologyPusan National UniversityPusanRepublic of Korea
| | - David Bloom
- Department of PsychologyUniversity of WashingtonSeattleWashington
- eScience InstituteUniversity of WashingtonSeattleWashington
| | - John Kruper
- Department of PsychologyUniversity of WashingtonSeattleWashington
- eScience InstituteUniversity of WashingtonSeattleWashington
| | - Ariel Rokem
- Department of PsychologyUniversity of WashingtonSeattleWashington
- eScience InstituteUniversity of WashingtonSeattleWashington
| | - Jason D. Yeatman
- Division of Developmental‐Behavioral PediatricsStanford University School of MedicineStanfordCalifornia
- Stanford University Graduate School of EducationStanfordCalifornia
| |
Collapse
|
5
|
Context Memory Encoding and Retrieval Temporal Dynamics are Modulated by Attention across the Adult Lifespan. eNeuro 2021; 8:ENEURO.0387-20.2020. [PMID: 33436445 PMCID: PMC7877465 DOI: 10.1523/eneuro.0387-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022] Open
Abstract
Episodic memories are multidimensional, including simple and complex features. How we successful encode and recover these features in time, whether these temporal dynamics are preserved across age, even under conditions of reduced memory performance, and the role of attention on these temporal dynamics is unknown. In the current study, we applied time-resolved multivariate decoding to oscillatory electroencephalography (EEG) in an adult lifespan sample to investigate the temporal order of successful encoding and recognition of simple and complex perceptual context features. At encoding, participants studied pictures of black and white objects presented with both color (low-level/simple) and scene (high-level/complex) context features and subsequently made context memory decisions for both features. Attentional demands were manipulated by having participants attend to the relationship between the object and either the color or scene while ignoring the other context feature. Consistent with hierarchical visual perception models, simple visual features (color) were successfully encoded earlier than were complex features (scenes). These features were successfully recognized in the reverse temporal order. Importantly, these temporal dynamics were both dependent on whether these context features were in the focus of one's attention, and preserved across age, despite age-related context memory impairments. These novel results support the idea that episodic memories are encoded and retrieved successively, likely dependent on the input and output pathways of the medial temporal lobe (MTL), and attentional influences that bias activity within these pathways across age.
Collapse
|
6
|
Marcellin B, Olivier M, Marième Soda DS, Daniel Gams M, Lala Bouna S. Visual evoked potentials: Normative values from healthy Senegalese adults. JOURNAL OF NEUROSCIENCE AND NEUROLOGICAL DISORDERS 2020. [DOI: 10.29328/journal.jnnd.1001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Effects of aging on event-related potentials to single-cycle binaural beats and diotic amplitude modulation of a tone. Brain Res 2020; 1740:146849. [PMID: 32330517 DOI: 10.1016/j.brainres.2020.146849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Abstract
Aim of the study is to determine whether the auditory processing of temporal fine structure (TFS) is affected with normal aging, even in the presence of normal audiometric hearing and fine cognitive state; and, if it is, to see whether a comparable effect is also observed in the processing of a diotic change in sound envelope. The event-related potentials (ERPs) to binaural beats (BBs), which are the responses of the binaural mechanisms processing TFS of a sound, and the ERPs to diotic amplitude modulation (AM) stimuli, which are the responses of the monaural mechanisms processing the changes in its envelope, were recorded from thirteen young university students and ten senior but active university professors, all with normal hearing in low frequencies. To obtain directly the specific BB responses without confounding monaural frequency change-evoked responses, we used single-cycle BB stimuli with temporary sub-threshold frequency shifts. BBs of a 250-Hz tone and diotic AM of the same tone with similar perceptual salience were presented with 2-second stimulus onset asynchrony. The N1 components of the ERPs to both stimuli displayed notable age-dependent changes in their scalp topography and significant amplitude reduction and latency prolongation in the elderly. These amplitude and latency changes were at similar rates for the two stimulus types, implying that the auditory TFS and envelope processing mechanisms are proportionally affected by physiological aging. These results may serve as control data in future studies investigating the effect of aging-associated cognitive pathologies on auditory TFS processing.
Collapse
|
8
|
Kang S, Hayashi Y, Bruyns-Haylett M, Delivopoulos E, Zheng Y. Model-Predicted Balance Between Neural Excitation and Inhibition Was Maintained Despite of Age-Related Decline in Sensory Evoked Local Field Potential in Rat Barrel Cortex. Front Syst Neurosci 2020; 14:24. [PMID: 32528256 PMCID: PMC7247833 DOI: 10.3389/fnsys.2020.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/08/2020] [Indexed: 11/25/2022] Open
Abstract
The balance between neural excitation and inhibition has been shown to be crucial for normal brain function. However, it is unclear whether this balance is maintained through healthy aging. This study investigated the effect of aging on the temporal dynamics of the somatosensory evoked local field potential (LFP) in rats and tested the hypothesis that excitatory and inhibitory post-synaptic activities remain balanced during the aging process. The LFP signal was obtained from the barrel cortex of three different age groups of anesthetized rats (pre-adolescence: 4–6 weeks, young adult: 2–3 months, middle-aged adult: 10–20 months) under whisker pad stimulation. To confirm our previous finding that the initial segment of the evoked LFP was solely associated with excitatory post-synaptic activity, we micro-injected gabazine into the barrel cortex to block inhibition while LFP was collected continuously under the same stimulus condition. As expected, the initial slope of the evoked LFP in the granular layer was unaffected by gabazine injection. We subsequently estimated the excitatory and inhibitory post-synaptic activities through a balanced model of the LFP with delayed inhibition as an explicit constraint, and calculated the amplitude ratio of inhibition to excitation. We found an age-dependent slowing of the temporal dynamics in the somatosensory-evoked post-synaptic activity, as well as a significant age-related decrease in the amplitude of the excitatory component and a decreasing trend in the amplitude of the inhibitory component. Furthermore, the delay of inhibition with respect to excitation was significantly increased with age, but the amplitude ratio was maintained. Our findings suggest that aging reduces the amplitude of neural responses, but the balance between sensory evoked excitatory and inhibitory post-synaptic activities is maintained to support normal brain function during healthy aging. Further whole cell patch clamp experiments will be needed to confirm or refute these findings by measuring sensory evoked synaptic excitatory and inhibitory activities in vivo during the normal aging process.
Collapse
Affiliation(s)
- Sungmin Kang
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| | - Yurie Hayashi
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Michael Bruyns-Haylett
- Department of Bioengineering, Imperial College, South Kensington Campus, London, United Kingdom
| | - Evangelos Delivopoulos
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| | - Ying Zheng
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| |
Collapse
|
9
|
Bruffaerts R, Tyler LK, Shafto M, Tsvetanov KA, Clarke A. Perceptual and conceptual processing of visual objects across the adult lifespan. Sci Rep 2019; 9:13771. [PMID: 31551468 PMCID: PMC6760174 DOI: 10.1038/s41598-019-50254-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022] Open
Abstract
Making sense of the external world is vital for multiple domains of cognition, and so it is crucial that object recognition is maintained across the lifespan. We investigated age differences in perceptual and conceptual processing of visual objects in a population-derived sample of 85 healthy adults (24-87 years old) by relating measures of object processing to cognition across the lifespan. Magnetoencephalography (MEG) was recorded during a picture naming task to provide a direct measure of neural activity, that is not confounded by age-related vascular changes. Multiple linear regression was used to estimate neural responsivity for each individual, namely the capacity to represent visual or semantic information relating to the pictures. We find that the capacity to represent semantic information is linked to higher naming accuracy, a measure of task-specific performance. In mature adults, the capacity to represent semantic information also correlated with higher levels of fluid intelligence, reflecting domain-general performance. In contrast, the latency of visual processing did not relate to measures of cognition. These results indicate that neural responsivity measures relate to naming accuracy and fluid intelligence. We propose that maintaining neural responsivity in older age confers benefits in task-related and domain-general cognitive processes, supporting the brain maintenance view of healthy cognitive ageing.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, 3000, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Lorraine K Tyler
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge and MRC Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK.
| | - Meredith Shafto
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Kamen A Tsvetanov
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge and MRC Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
| | - Alex Clarke
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
10
|
Scally B, Burke MR, Bunce D, Delvenne JF. Visual and visuomotor interhemispheric transfer time in older adults. Neurobiol Aging 2018; 65:69-76. [DOI: 10.1016/j.neurobiolaging.2018.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 11/07/2017] [Accepted: 01/09/2018] [Indexed: 12/01/2022]
|
11
|
Price D, Tyler LK, Neto Henriques R, Campbell KL, Williams N, Treder M, Taylor JR, Henson RNA. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences. Nat Commun 2017; 8:15671. [PMID: 28598417 PMCID: PMC5472747 DOI: 10.1038/ncomms15671] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 04/18/2017] [Indexed: 12/02/2022] Open
Abstract
Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy.
Collapse
Affiliation(s)
- D. Price
- Medical Research Council, Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - L. K. Tyler
- Cambridge Centre for Ageing and Neuroscience, University of Cambridge and MRC Cognition and Brain Sciences Unit, Cambridge CB2 3EB, UK
| | - R. Neto Henriques
- Medical Research Council, Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - K. L. Campbell
- Department of Psychology, Harvard University, Harvard, Massachusetts 02138, USA
| | - N. Williams
- Neuroscience Centre, University of Helsinki, Helsinki, FI-00014, Finland
| | - M.S. Treder
- Cambridge Centre for Ageing and Neuroscience, University of Cambridge and MRC Cognition and Brain Sciences Unit, Cambridge CB2 3EB, UK
| | - J. R. Taylor
- Division of Neuroscience and Experimental Psychology, School of Psychological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - R. N. A. Henson
- Medical Research Council, Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| |
Collapse
|
12
|
Niu YN, Zhu X, Li J. The Age Effects on the Cognitive Processes of Intention-Based and Stimulus-Based Actions: An ERP Study. Front Psychol 2017; 8:803. [PMID: 28611699 PMCID: PMC5447090 DOI: 10.3389/fpsyg.2017.00803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/02/2017] [Indexed: 11/30/2022] Open
Abstract
The functional decline in action among older adults is caused not only by physical weakness but also by cognitive decline. In this study, we aimed to compare the cognitive effects of age between intention-based and stimulus-based action modes electrophysiologically. Because age-related declines in cognitive function might proceed distinctly according to specific action modes and processes, four specific cognitive processes, action-effect binding, stimulus-response linkage, action-effect feedback control, and effect-action retrieval, were investigated. We recorded event-related potentials (ERPs) during a modified acquisition-test paradigm in young (mean age = 21, SD = 2) and old (mean age = 69, SD = 5) groups. A temporal bisection task and a movement pre-cuing task were used during the acquisition and test phases, respectively. Using ERP indices including readiness potential (RP), P3, N2 and contingent negative variation (CNV) to identify these four specific processes for the two action modes, we revealed the effects of age on each ERP index. The results showed similar patterns of waveforms but consistently decreasing amplitudes of all four ERP indices in the old age group compared with the young age group, which indicates not only generally declining functions of action preparation in older adults but also age effects specific to the action modes and processes that might otherwise be mixed together under confounding experimental conditions. Particularly, an interference effect indexed by the differences in the amplitudes of CNV between congruent and incongruent tasks was observed in the young age group, which is consistent with previous behavioral reports. However, this effect was absent in the old age group, indicating a specific age-related deficit in the effect-action retrieval process of intention-based action, which might be caused by an age-related deficit in associative memory. In sum, this study investigated the cognitive processes of two action modes from a developmental perspective and suggests the importance of adding associative memory training to interventions for older adults with the aim of improving intention-based action.
Collapse
Affiliation(s)
- Ya-Nan Niu
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Xinyi Zhu
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| | - Juan Li
- Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
13
|
Toledo DR, Manzano GM, Barela JA, Kohn AF. Cortical correlates of response time slowing in older adults: ERP and ERD/ERS analyses during passive ankle movement. Clin Neurophysiol 2016; 127:655-663. [DOI: 10.1016/j.clinph.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 04/25/2015] [Accepted: 05/02/2015] [Indexed: 11/25/2022]
|
14
|
How Reproducible Are Transcranial Magnetic Stimulation–Induced MEPs in Subacute Stroke? J Clin Neurophysiol 2014; 31:556-62. [DOI: 10.1097/wnp.0000000000000114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Reuter EM, Voelcker-Rehage C, Vieluf S, Winneke AH, Godde B. A parietal-to-frontal shift in the P300 is associated with compensation of tactile discrimination deficits in late middle-aged adults. Psychophysiology 2013; 50:583-93. [DOI: 10.1111/psyp.12037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/23/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Eva-Maria Reuter
- Jacobs Center on Lifelong Learning and Institutional Development; Jacobs University Bremen; Bremen; Germany
| | | | - Solveig Vieluf
- Jacobs Center on Lifelong Learning and Institutional Development; Jacobs University Bremen; Bremen; Germany
| | | | | |
Collapse
|
16
|
Luo JJ, Khurana DS, Kothare SV. Brainstem auditory evoked potentials and middle latency auditory evoked potentials in young children. J Clin Neurosci 2013; 20:383-8. [DOI: 10.1016/j.jocn.2012.02.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/16/2012] [Accepted: 02/26/2012] [Indexed: 11/25/2022]
|
17
|
Bruckmann S, Hauk D, Roessner V, Resch F, Freitag CM, Kammer T, Ziemann U, Rothenberger A, Weisbrod M, Bender S. Cortical inhibition in attention deficit hyperactivity disorder: new insights from the electroencephalographic response to transcranial magnetic stimulation. Brain 2012; 135:2215-30. [PMID: 22492560 DOI: 10.1093/brain/aws071] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Attention deficit hyperactivity disorder is one of the most frequent neuropsychiatric disorders in childhood. Transcranial magnetic stimulation studies based on muscle responses (motor-evoked potentials) suggested that reduced motor inhibition contributes to hyperactivity, a core symptom of the disease. Here we employed the N100 component of the electroencephalographic response to transcranial magnetic stimulation as a novel marker for a direct assessment of cortical inhibitory processes, which has not been examined in attention deficit hyperactivity disorder so far. We further investigated to what extent affected children were able to regulate motor cortical inhibition, and whether effects of age on the electroencephalographic response to transcranial magnetic stimulation were compatible with either a delay in brain maturation or a qualitatively different development. N100 amplitude evoked by transcranial magnetic stimulation and its age-dependent development were assessed in 20 children with attention deficit hyperactivity disorder and 19 healthy control children (8-14 years) by 64-channel electroencephalography. Amplitude and latency of the N100 component were compared at rest, during response preparation in a forewarned motor reaction time task and during movement execution. The amplitude of the N100 component at rest was significantly lower and its latency tended to be shorter in children with attention deficit hyperactivity disorder. Only in controls, N100 amplitude to transcranial magnetic stimulation was reduced by response preparation. During movement execution, N100 amplitude decreased while motor evoked potential amplitudes showed facilitation, indicating that the electroencephalographic response to transcranial magnetic stimulation provides further information on cortical excitability independent of motor evoked potential amplitudes and spinal influences. Children with attention deficit hyperactivity disorder showed a smaller N100 amplitude reduction during movement execution compared with control children. The N100 amplitude evoked by transcranial magnetic stimulation decreased with increasing age in both groups. The N100 reduction in children with attention deficit hyperactivity disorder at all ages suggests a qualitative difference rather than delayed development of cortical inhibition in this disease. Findings further suggest that top-down control of motor cortical inhibition is reduced in children with attention deficit hyperactivity disorder. We conclude that evoked potentials in response to transcranial magnetic stimulation are a promising new marker of cortical inhibition in attention deficit hyperactivity disorder during childhood.
Collapse
Affiliation(s)
- Sarah Bruckmann
- Department for Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Blumenstr. 8, 69115 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nagamatsu LS, Carolan P, Liu-Ambrose TYL, Handy TC. Age-related changes in the attentional control of visual cortex: a selective problem in the left visual hemifield. Neuropsychologia 2011; 49:1670-8. [PMID: 21356222 DOI: 10.1016/j.neuropsychologia.2011.02.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 02/18/2011] [Accepted: 02/19/2011] [Indexed: 10/18/2022]
Abstract
To what extent does our visual-spatial attention change with age? In this regard, it has been previously reported that relative to young controls, seniors show delays in attention-related sensory facilitation. Given this finding, our study was designed to examine two key questions regarding age-related changes in the effect of spatial attention on sensory-evoked responses in visual cortex--are there visual field differences in the age-related impairments in sensory processing, and do these impairments co-occur with changes in the executive control signals associated with visual spatial orienting? Therefore, our study examined both attentional control and attentional facilitation in seniors (aged 66-74 years) and young adults (aged 18-25 years) using a canonical spatial orienting task. Participants responded to attended and unattended peripheral targets while we recorded event-related potentials (ERPs) to both targets and attention-directing spatial cues. We found that not only were sensory-evoked responses delayed in seniors specifically for unattended events in the left visual field as measured via latency shifts in the lateral occipital P1 elicited by visual targets, but seniors also showed amplitude reductions in the anterior directing attentional negativity (ADAN) component elicited by cues directing attention to the left visual field. At the same time, seniors also had significantly higher error rates for targets presented in the left vs. right visual field. Taken together, our data thus converge on the conclusion that age-related changes in visual spatial attention involve both sensory-level and executive attentional control processes, and that these effects appear to be strongly associated with the left visual field.
Collapse
|
19
|
Missonnier P, Herrmann FR, Rodriguez C, Deiber MP, Millet P, Fazio-costa L, Gold G, Giannakopoulos P. Age-related differences on event-related potentials and brain rhythm oscillations during working memory activation. J Neural Transm (Vienna) 2011; 118:945-55. [DOI: 10.1007/s00702-011-0600-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
|
20
|
Guergova S, Dufour A. Thermal sensitivity in the elderly: a review. Ageing Res Rev 2011; 10:80-92. [PMID: 20685262 DOI: 10.1016/j.arr.2010.04.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/19/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
Aging is associated with a progressive decrease in thermal perception, as revealed by increased thermal detection thresholds in the elderly. This reduction in thermosensitivity follows a distal-proximal pattern, with more pronounced decrements observed in the limbs and in the perception of warmth vs. cold. The main underlying causes of this seem to be aging of the skin and subsequent reductions in thermoreceptor density and superficial skin blood flow. However, the results from some animal studies also suggest that changes in the peripheral nerve system, particularly fiber loss and decreased conduction velocity, may also be involved. In this paper, we review age-related changes in the thermal sensitivity of humans, their underlying mechanisms, and the strengths and limitations of some of the methodologies used to assess these changes.
Collapse
|
21
|
Lu MK, Jung P, Bliem B, Shih HT, Hseu YT, Yang YW, Ziemann U, Tsai CH. The Bereitschaftspotential in essential tremor. Clin Neurophysiol 2010; 121:622-30. [PMID: 20097128 DOI: 10.1016/j.clinph.2009.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/01/2009] [Accepted: 12/14/2009] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Essential tremor (ET) is an involuntary postural oscillation. It is unclear to which extent motor cortical activity in preparation of volitional movement is abnormal in ET. We measured the Bereitschaftspotential (BP) to address this question. METHODS Given the known influence of the cerebello-dentato-thalamo-cortical projection in the generation of the BP, patients were divided into two groups, defined by purely postural tremor (ET(PT)) or additional presence of intention tremor (ET(IT)) and compared to healthy controls. BP was recorded during self-paced rapid wrist extension movements. RESULTS The late BP (500-0 ms before movement onset) was increased over the mid-frontal area in ET(PT), whereas it was reduced over the mid-parietal area in ET(IT) when compared to healthy controls. In addition, the late BP was reduced over a widespread centro-parietal area in ET(IT) compared to ET(PT). CONCLUSIONS Findings suggest that presence vs. absence of cerebellar signs (intention tremor) in ET results in differential affection of volitional preparatory motor cortical activity. The BP increase in ET(PT) may indicate compensatory activity, whereas the widespread centro-parietal BP reduction in ET(IT) suggests dysfunction of the cerebello-dentato-thalamo-cortical projection. SIGNIFICANCE Reduction of the late BP amplitude may serve as a surrogate marker for dysfunction of the cerebello-dentato-thalamo-cortical projection in ET.
Collapse
Affiliation(s)
- Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sharma A, Gilley PM, Dorman MF, Baldwin R. Deprivation-induced cortical reorganization in children with cochlear implants. Int J Audiol 2009; 46:494-9. [PMID: 17828665 DOI: 10.1080/14992020701524836] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A basic finding in developmental neurophysiology is that some areas of the cortex cortical areas will reorganize following a period of stimulus deprivation. In this review, we discuss mainly electroencephalography (EEG) studies of normal and deprivation-induced abnormal development of the central auditory pathways in children and in animal models. We describe age cut-off for sensitive periods for central auditory development in congenitally deaf children who are fitted with a cochlear implant. We speculate on mechanisms of decoupling and reorganization which may underlie the end of the sensitive period. Finally, we describe new magentoencephalography (MEG) evidence of somatosensory cross-modal plasticity following long-term auditory deprivation.
Collapse
Affiliation(s)
- Anu Sharma
- Brain and Behavior Laboratory, Dept. of Speech Language and Hearing Sciences, University of Colorado at Boulder, CO 80309-0409, USA.
| | | | | | | |
Collapse
|
23
|
Goffeng LO, Heier MS, Kjuus H, Sjöholm H, Sørensen KA, Skaug V. Nerve conduction, visual evoked responses and electroretinography in tunnel workers previously exposed to acrylamide and N-methylolacrylamide containing grouting agents. Neurotoxicol Teratol 2008; 30:186-94. [PMID: 18353610 DOI: 10.1016/j.ntt.2008.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 12/11/2007] [Accepted: 01/26/2008] [Indexed: 11/28/2022]
Abstract
The study examines possible persisting effects on the peripheral nervous system and visual system in tunnel workers previously exposed to acrylamide and N-methylolacrylamide during grouting work. We compared neurophysiological function in 44 tunnel workers previously exposed during grouting operations (2-10 years post exposure), with 49 tunnel workers with no history of exposure to acrylamide. Nerve conduction velocities (NCV), distal delay, F-response and amplitude in median and ulnar nerves of the right arm, peroneal, sural and tibial nerves of the right leg, visual evoked response (VER) and electroretinography (ERG) were measured. VER and ERG were also performed in 24 subjects more recently exposed to acrylamide grout (16 months post exposure). Exposure to acrylamide containing grouts was assessed by questionnaires. A statistically significant reduction in the mean sensory NCV of the sural nerve (p=0.005), as well as a non-significant reduction of sural amplitude was found in the previously exposed group compared to the control group. VER latencies to the onset of the occipital potential (N75) were prolonged in both exposed groups compared to the control group (p<0.05). ERG 30 Hz flicker amplitude was reduced in the recently exposed group compared to the referents (p<0.05). The results indicate slight subclinical, but persistent toxic effects in the sural nerve and the visual system in tunnel workers exposed to N-methylolacrylamide and acrylamide during grouting operations.
Collapse
Affiliation(s)
- Lars Ole Goffeng
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, P.O. Box 8149 Dep, N-0033 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Roggeveen AB, Prime DJ, Ward LM. Lateralized Readiness Potentials Reveal Motor Slowing in the Aging Brain. J Gerontol B Psychol Sci Soc Sci 2007; 62:P78-84. [PMID: 17379675 DOI: 10.1093/geronb/62.2.p78] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Older adults consistently show slower reaction times (RTs) to the onset of motion. Both cognitive slowing and motor slowing have been suggested as causes of this effect. The lateralized readiness potential (LRP) of the electroencephalogram can be used to separate perceptual and decision processes from motor programming and execution as causes of RT differences. We used the LRP to discern the origin of slowing in RT to motion onset that occurs in elderly individuals. After the onset of motion in a visual display, we asked participants to identify the direction of that motion (up or down) by pressing a button. Older participants showed significantly slower RTs than did younger participants. The LRP showed that the bulk of slowed response arose from slowed motor processes, rather than perceptual processing. We discuss the differences found in amplitude and onset latency of the LRP in the context of theories of motion processing and inhibition in the aging brain.
Collapse
Affiliation(s)
- Alexa B Roggeveen
- 2136 West Mall, Department of Psychology, University of British Columbia, British Columbia, Canada.
| | | | | |
Collapse
|
26
|
Leocani L, Rovaris M, Boneschi FM, Medaglini S, Rossi P, Martinelli V, Amadio S, Comi G. Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 2006; 77:1030-5. [PMID: 16735397 PMCID: PMC2077734 DOI: 10.1136/jnnp.2005.086280] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/19/2006] [Accepted: 04/27/2006] [Indexed: 11/03/2022]
Abstract
BACKGROUND Evoked potentials are used in the functional assessment of sensory and motor pathways. Their usefulness in monitoring the evolution of multiple sclerosis has not been fully clarified. OBJECTIVE The aim of this longitudinal study was to examine the usefulness of multimodal evoked potential in predicting paraclinical outcomes of disease severity and as a prognostic marker in multiple sclerosis. METHODS Eighty four patients with clinically definite multiple sclerosis underwent Expanded Disability Status Scale (EDSS) and functional system scoring at study entry and after a mean (standard deviation) follow-up of 30.5 (11.7) months. Sensory and motor evoked potentials were obtained in all patients at study entry and at follow-up in 64 of them, and quantified according to a conventional score. RESULTS Cross-sectionally, the severity of each evoked potential score significantly correlated with the corresponding functional system (0.32 < R < 0.60, p < 0.01, for all but follow-up visual evoked potential) and with EDSS (0.34 < R < 0.61; p < 0.001 for all but brain stem evoked potential). EDSS significantly correlated with global evoked potential score severity (baseline R = 0.60, follow-up R = 0.46, p < 0.001). Using longitudinal analysis, only changes in somatosensory evoked potential scores were significantly correlated with changes of sensory functional system (R = 0.34, p = 0.006). However, patients with multiple sclerosis with disability progression at follow-up had more severe baseline evoked potential scores than patients who remained stable. Patients with severe baseline global evoked potential score (higher than the median value) had a risk of 72.5% to progress on disability at follow-up, whereas patients with multiple sclerosis with lower scores had a risk of only 36.3%. CONCLUSIONS These results suggest that evoked potential is a good marker of the severity of nervous damage in multiple sclerosis and may have a predictive value regarding the evolution of disability.
Collapse
Affiliation(s)
- L Leocani
- Department of Neurology, Clinical Neurophysiology and Neurorehabilitation, Scientific Institute Hospital San Raffaele, University Vita-Salute, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hoeksma MR, Kemner C, Kenemans JL, van Engeland H. Abnormal Selective Attention Normalizes P3 Amplitudes in PDD. J Autism Dev Disord 2006; 36:643-54. [PMID: 16652236 DOI: 10.1007/s10803-006-0102-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in selective attention. Adolescents with PDD showed abnormal selective attention, as reflected by larger auditory Processing Negativity (PN) and visual N2b, but no P3 abnormalities. Dipole localizations revealed that the locations of PN generators in subjects with PDD differed from controls. It was concluded that the abnormalities in selective attention in adolescents with PDD have a normalizing effect on P3, and possibly act as a compensatory process.
Collapse
Affiliation(s)
- Marco R Hoeksma
- Department of Psychopharmacology, Faculty of Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584CA, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Hoeksma MR, Kenemans JL, Kemner C, van Engeland H. Variability in spatial normalization of pediatric and adult brain images. Clin Neurophysiol 2005; 116:1188-94. [PMID: 15826861 DOI: 10.1016/j.clinph.2004.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 12/16/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Normalization of brain images is a necessity for group comparisons of source analyses based on realistic head models. In this paper we compared the outcome of a linear registration method for brain images of psychiatric and control groups of different ages in order to assess the relative adequacy of normalization in such diverse groups. METHODS Magnetic Resonance images (MRI) of the brains of pediatric and adolescent subjects (mean ages 19 and 10.5 years) with a pervasive developmental disorder (PDD) and their healthy controls were included. A simple voxel-wise test of the group variances in image intensities was performed to evaluate regional differences in registration quality. Dipole analysis of visual P1 was performed to establish whether source locations were comparable across groups. RESULTS Significant differences between pediatric groups were found in white matter and thalamic regions of the brain. For all other group-wise comparisons, differences were confined to skull and neck regions. Dipole locations were found to be more anteriorly located in the adolescent groups. CONCLUSIONS The normalization procedure used in this paper is based on a brain template of normal adult brains from a restricted age group, and the results show that the use of this method in pediatric groups is less adequate. The method seems suitable for use in psychiatric groups. Also, the generators of visual P1 in PDD patients were found to be comparable to controls. SIGNIFICANCE The results suggest that this existing normalization method can be used in diverse populations, but is less suitable for pediatric images.
Collapse
Affiliation(s)
- Marco R Hoeksma
- Department of Psychopharmacology, Faculty of Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Kemmer L, Coulson S, De Ochoa E, Kutas M. Syntactic processing with aging: an event-related potential study. Psychophysiology 2004; 41:372-84. [PMID: 15102122 DOI: 10.1111/1469-8986.2004.00180.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To assess age-related changes in simple syntactic processing with normal aging, event-related brain potentials (ERPs) elicited by grammatical number violations as individuals read sentences for comprehension were analyzed. Violations were found to elicit a P600 of equal amplitude and latency regardless of an individual's age. Instead, advancing age was associated with a change in the scalp distribution of the P600 effect, being less asymmetric and more frontal (though still with a parietal maximum) in older than younger adults. Our results thus show that the brain's response to simple syntactic violations, unlike those reported for simple binary categorizations and simple semantic violations, is neither slowed nor diminished in amplitude by age. At the same time, the brain's processing of these grammatical number violations did engage at least somewhat different brain regions as a function of age, suggesting a qualitative change rather than any simple quantitative change in speed of processing.
Collapse
Affiliation(s)
- Laura Kemmer
- Department of Cognitive Science, University of California, San Diego, La Jolla, California 92093-0515, USA.
| | | | | | | |
Collapse
|
30
|
Montes C, Mertens P, Convers P, Peyron R, Sindou M, Laurent B, Mauguière F, Garcia-Larrea L. Cognitive effects of precentral cortical stimulation for pain control: an ERP study. Neurophysiol Clin 2002; 32:313-25. [PMID: 12490329 DOI: 10.1016/s0987-7053(02)00340-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Electrical stimulation of the motor cortex (MCS) is a promising and increasingly used neurosurgical technique for the control of refractory neuropathic pain. Although its mechanisms of action remain unknown, recent functional imaging data suggest involvement of the thalamus, brainstem and anterior cingulate/orbitofrontal cortex. Since some of these areas are also implicated in higher cognitive functions, notably attentional processes, we analysed cognitive ERPs and behavioural performance during an "oddball" auditory detection task in patients submitted to this procedure. Eleven consecutive patients undergoing MCS because of neuropathic refractory pain, ranging in age from 25 to 71 years, were included in the study. ERPs were obtained in all cases both during the application ("MCS-on") and within the 10 min that followed discontinuation of the procedure ("MCS-off"). In five patients, ERPs could also be obtained just before the start of MCS. When the patients' sample was taken as a whole, there were no consistent effects of MCS on the ERPs. There was, however, a significant interaction of MCS action with the patients' age, reflecting a significant delay during MCS of the cognitive responses N2 and P3 (N200 and P300) in the group of patients older than 50 years exclusively. This effect was rapidly reversible after MCS discontinuation. No MCS-related changes were observed in the N1 component. At the individual level, the effect of MCS on the endogenous ERPs was highly variable, ranging from a total stability of ERPs (mostly in younger subjects) to latency differences of tens of milliseconds in the older group. These results, together with recent experiments showing P300 alteration during repetitive transcranial stimulation, suggest that motor cortex stimulation may interfere with relatively simple cognitive processes such as those underlying target detection, and that the risk of abnormal cognitive effects related to cortical stimulation may increase with age. Although the procedure appears on the whole remarkably safe, complementary neuropsychological studies in this category of patients are advised, as well as caution to possible adverse cognitive effects when using MCS in the elderly, notably in the presence of pre-existent cerebral lesions.
Collapse
Affiliation(s)
- C Montes
- Equipe d'accueil, EA1880 UCB, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|