1
|
Fang X, Zheng P, Wang H, Wang K, Shi C, Shi F. Phytoremediation of Oil-Contaminated Soil by Tagetes erecta L. Combined with Biochar and Microbial Agent. PLANTS (BASEL, SWITZERLAND) 2025; 14:243. [PMID: 39861597 PMCID: PMC11768401 DOI: 10.3390/plants14020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Crude oil pollution of soil is an important issue that has serious effects on both the environment and human health. Phytoremediation is a promising approach to cleaning up oil-contaminated soil. In order to facilitate phytoremediation effects for oil-contaminated soil, this study set up a pot experiment to explore the co-application potentiality of Tagetes erecta L. with two other methods: microbial agent and biochar. Results showed that the greatest total petroleum hydrocarbon (TPH) biodegradation (76.60%) occurred in the soil treated with T. erecta, a microbial agent, and biochar; the highest biomass and root activity also occurred in this treatment.GC-MS analysis showed that petroleum hydrocarbon components in the range from C10 to C40 all reduced in different treatments, and intermediate-chain alkanes were preferred by our bioremediation methods. Compared with the treatments with biochar, the chlorophyll fluorescence parameter NPQ_Lss and plant antioxidant enzyme activities significantly decreased in the treatments applied with the microbial agent, while soil enzyme activities, especially oxidoreductase activities, significantly increased. Although the correlation between biochar and most plant growth and soil enzyme activity indicators was not significant in this study, the interaction effect analysis found a synergistic effect between microbial agents and biochar. Overall, this study suggests the co-addition of microbial agents and biochar as an excellent method to improve the phytoremediation effects of oil-contaminated soil and enhances our understanding of the inner mechanism.
Collapse
Affiliation(s)
- Xin Fang
- College of Life Sciences, Nankai University, Tianjin 300071, China; (X.F.); (H.W.); (K.W.)
| | - Pufan Zheng
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering and Technology Research Center for Preservation of Agricultural Products), Tianjin Academy of Agricultural Sciences, Key Laboratory of Storage and Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage and Preservation of Agricultural Products, Tianjin 300384, China;
| | - Haomin Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China; (X.F.); (H.W.); (K.W.)
| | - Kefan Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China; (X.F.); (H.W.); (K.W.)
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Fuchen Shi
- College of Life Sciences, Nankai University, Tianjin 300071, China; (X.F.); (H.W.); (K.W.)
| |
Collapse
|
2
|
Rani MHS, Nandana RK, Khatun A, Brindha V, Midhun D, Gowtham P, Mani SSD, Kumar SR, Aswini A, Muthukumar S. Three strategy rules of filamentous fungi in hydrocarbon remediation: an overview. Biodegradation 2024; 35:833-861. [PMID: 38733427 DOI: 10.1007/s10532-024-10086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
Remediation of hydrocarbon contaminations requires much attention nowadays since it causes detrimental effects on land and even worse impacts on aquatic environments. Tools of bioremediation especially filamentous fungi permissible for cleaning up as much as conceivable, at least they turn into non-toxic residues with less consumed periods. Inorganic chemicals, CO2, H2O, and cell biomass are produced as a result of the breakdown and mineralization of petroleum hydrocarbon pollutants. This paper presents a detailed overview of three strategic rules of filamentous fungi in remediating the various aliphatic, and aromatic hydrocarbon compounds: utilizing carbons from hydrocarbons as sole energy, Co-metabolism manners (Enzymatic and Non-enzymatic theories), and Biosorption approaches. Upliftment in the degradation rate of complex hydrocarbon by the Filamentous Fungi in consortia scenario we can say, "Fungal Talk", which includes a variety of cellular mechanisms, including biosurfactant production, biomineralization, and precipitation, etc., This review not only displays its efficiency but showcases the field applications - cost-effective, reliable, eco-friendly, easy to culture as biomass, applicable in both land and any water bodies in operational environment cleanups. Nevertheless, the potentiality of fungi-human interaction has not been fully understood, henceforth further studies are highly endorsed with spore pathogenicity of the fungal species capable of high remediation rate, and the gene knockout study, if the specific peptides cause toxicity to any living matters via Genomics and Proteomics approaches, before application of any in situ or ex situ environments.
Collapse
Affiliation(s)
| | - Ramesh Kumar Nandana
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Alisha Khatun
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Velumani Brindha
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Durairaj Midhun
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Ponnusamy Gowtham
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | | | | | - Anguraj Aswini
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Sugumar Muthukumar
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| |
Collapse
|
3
|
Wu M, Feng S, Liu Z, Tang S. Bioremediation of petroleum-contaminated soil based on both toxicity risk control and hydrocarbon removal-progress and prospect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59795-59818. [PMID: 39388086 DOI: 10.1007/s11356-024-34614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Abstract
Petroleum contamination remains a worldwide issue requiring cost-effective bioremediation techniques. However, establishing a universal bioremediation strategy for all types of oil-polluted sites is challenging. This difficulty arises from the heterogeneity of soil textures, the complexity of oil products, and the variations in local climate and environment across different oil-contaminated regions. Several factors can impede bioremediation efficacy: (i) differences in bioavailability and biodegradability between aliphatic and aromatic fractions of crude oil; (ii) inconsistencies between hydrocarbon removal efficiency and toxicity attenuation during remediation; (iii) varying adverse effect of aliphatic and aromatic fractions on soil microorganisms. This review examines the ecotoxicity risk of petroleum contamination to soil fauna and flora. It also discusses three primary bioremediation strategies: biostimulation with nutrients, bioaugmentation with petroleum degraders, and phytoremediation with plants. Based on current research and state-of-the-art challenges, we highlighted future research scopes should focus on (i) exploring the ecotoxicity differentiation of aliphatic and aromatic fractions of crude oil, (ii) establishing unified risk factors and indicators for evaluating oil pollution toxicity, (iii) determining the fate and transformation of aliphatic and aromatic fractions of crude oil using advanced analytical techniques, and (iv) developing combined bioremediation techniques that improve petroleum removal and ecotoxicity attenuation.
Collapse
Affiliation(s)
- Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Shuang Feng
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Zeliang Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Shiwei Tang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| |
Collapse
|
4
|
Pal S, Hait A, Mandal S, Roy A, Sar P, Kazy SK. Crude oil degrading efficiency of formulated consortium of bacterial strains isolated from petroleum-contaminated sludge. 3 Biotech 2024; 14:220. [PMID: 39247458 PMCID: PMC11377402 DOI: 10.1007/s13205-024-04066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Crude oil contamination has been widely recognized as a major environmental issue due to its various adverse effects. The use of inhabitant microorganisms (native to the contaminated sites) to detoxify/remove pollutants owing to their diverse metabolic capabilities is an evolving method for the removal/degradation of petroleum industry contaminants. The present study deals with the exploitation of native resident bacteria from crude oil contaminated site (oil exploration field) for bioremediation procedures. Fifteen (out of forty-four) bioremediation-relevant aerobic bacterial strains, belonging to the genera of Bacillus, Stenotrophomonas, Pseudomonas, Paenibacillus, Rhizobium, Burkholderia, and Franconibacter, isolated from crude oil containing sludge, have been selected for the present bioremediation study. Crude oil bioremediation performance of the selected bacterial consortium was assessed using microcosm-based studies. Stimulation of the microbial consortium with nitrogen or phosphorous led to the degradation of 60-70% of total petroleum hydrocarbon (TPH) in 0.25% and 0.5% crude oil experimental sets. CO2 evolution, indicative of crude oil mineralization, was evident with the highest evolution being 28.6 mg mL-1. Ecotoxicity of treated crude oil-containing media was assessed using plant seed germination assay, in which most of the 0.25% and 0.5% treated crude oil sets gave positive results thereby suggesting a reduction in crude oil toxicity.
Collapse
Affiliation(s)
- Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Arpita Hait
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Sunanda Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Pinaki Sar
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| |
Collapse
|
5
|
Zhao Y, Sun Y, Sun H, Zuo F, Kuang S, Zhang S, Wang F. Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge. TOXICS 2024; 12:648. [PMID: 39330576 PMCID: PMC11436144 DOI: 10.3390/toxics12090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
As the energy demand increases, there is a significant expansion and utilization of oil resources, resulting in the inevitable occurrence of environmental pollution. Oil has been identified as a prevalent soil contaminant, posing substantial risks to the soil ecosystems. The remediation of soil contaminated with oil is a formidable undertaking. Increasing evidence shows that chemical washing, a remediation technique employing chemical reagents like surfactants to augment the solubilization, desorption, and separation of petroleum hydrocarbons in soil, proves to be an efficacious approach, but the latest advances on this topic have not been systematically reviewed. Here, we present the state of knowledge about the surfactant-based chemical washing to remediate oil-contaminated soil. Using the latest data, the present article systematically summarizes the advancements on ex situ chemical washing of oil pollution and provides a concise summary of the underlying principles. The use of various surfactants in chemical washing and the factors influencing remediation efficiency are highlighted. Based on the current research status and knowledge gaps, future perspectives are proposed to facilitate chemical washing of oil-polluted soil. This review can help recognize the application of chemical washing in the remediation of oil-polluted soil.
Collapse
Affiliation(s)
- Yanxin Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haihan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fang Zuo
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Resitano M, Tucci M, Mezzi A, Kaciulis S, Matturro B, D'Ugo E, Bertuccini L, Fazi S, Rossetti S, Aulenta F, Cruz Viggi C. Anaerobic treatment of groundwater co-contaminated by toluene and copper in a single chamber bioelectrochemical system. Bioelectrochemistry 2024; 158:108711. [PMID: 38626620 DOI: 10.1016/j.bioelechem.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Addressing the simultaneous removal of multiple coexisting groundwater contaminants poses a significant challenge, primarily because of their different physicochemical properties. Indeed, different chemical compounds may necessitate establishing distinct, and sometimes conflicting, (bio)degradation and/or removal pathways. In this work, we investigated the concomitant anaerobic treatment of toluene and copper in a single-chamber bioelectrochemical cell with a potential difference of 1 V applied between the anode and the cathode. As a result, the electric current generated by the bioelectrocatalytic oxidation of toluene at the anode caused the abiotic reduction and precipitation of copper at the cathode, until the complete removal of both contaminants was achieved. Open circuit potential (OCP) experiments confirmed that the removal of copper and toluene was primarily associated with polarization. Analogously, abiotic experiments, at an applied potential of 1 V, confirmed that neither toluene was oxidized nor copper was reduced in the absence of microbial activity. At the end of each experiment, both electrodes were characterized by means of a comprehensive suite of chemical and microbiological analyses, evidencing a highly selected microbial community competent in the biodegradation of toluene in the anodic biofilm, and a uniform electrodeposition of spherical Cu2O nanoparticles over the cathode surface.
Collapse
Affiliation(s)
- Marco Resitano
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials, National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials, National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Emilio D'Ugo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Stefano Fazi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, (RM), Italy.
| |
Collapse
|
7
|
Lou Q, Lei M, Wang Y, Wang S, Guo G, Xiong W, Jiang Y, Ju T, Zhao X, Coulon F. Diagnostic features emerging in near-infrared reflectance spectroscopy for low petroleum hydrocarbon pollution after spectral subtraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172264. [PMID: 38583635 DOI: 10.1016/j.scitotenv.2024.172264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Diagnostic features in near-infrared reflectance spectroscopy (NIRS) are the foundation of knowledge-based approach of petroleum hydrocarbon determination. However, a significant challenge arises when analyzing samples with low levels of petroleum hydrocarbon pollution, as they often lack distinctive diagnostic features in their sample NIRS spectra, limiting the effectiveness of this approach. To address this issue, we have developed a technical workflow for diagnostic spectrum construction and parameterization based on spectral subtraction. This method was applied on a set of NIRS spectra from soil samples that were contaminated with petroleum hydrocarbons (ranged between 178 and 1716 mg/kg of total petroleum hydrocarbon). Then two diagnostic features for low-level petroleum hydrocarbon pollution were found: (1) An overall downward concave emerged on diagnostic spectrum within both 2290-2370 nm and 1700-1780 nm for all low pollution levels even below 200 mg/kg; (2) An indicative pattern of asymmetric "W-shaped" double absorption valley occurred for those exceeding 1000 mg/kg, and its valleys located near 2310 nm, 2348 nm or 1727 nm, 1762 nm stably. These two features on diagnostic spectrum could be parameterized to detect, and the detection limit was at least about 10-50 times lower than that based on sample spectrum. These findings update our understanding on the detectability of spectral response from low petroleum hydrocarbon pollution, and widely extend the application of knowledge-based NIRS approach in either field detection or remote sensing identification for environmental management.
Collapse
Affiliation(s)
- Qijia Lou
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Wang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Shaobin Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghui Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Wencheng Xiong
- Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, Beijing 100094, China
| | - Ying Jiang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Tienan Ju
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Zhao
- Command Center for Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
8
|
Fang W, Zhou L, Li Y, Li H, Zhong H, Zha Y. Heat and mass transfer based on the low-temperature thermal treatment of hydrocarbons-impacted soil: A numerical simulation and sandbox validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133999. [PMID: 38493627 DOI: 10.1016/j.jhazmat.2024.133999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Thermal treatment can be an effective method for soil remediation, and numerical models play a crucial role in elucidating the underlying processes that affect efficacy. In this study, experiments were conducted to examine the low-temperature thermal treatment for removing n-hexane and n-octane from soil. The results showed that the removal of two alkanes followed the pseudo-first-order kinetics. Additionally, a quantitative relationship between kinetics constant and temperature was established. Based on experimental results, a simple mathematical model was presented via COMSOL Multiphysics 6.0. The processes considered in the model incorporated conductive and convective heat transfer, the vaporization latent heat, and the removal of organic contaminants which was quantified using an advection-dispersion equation combined with a pseudo-first-order kinetic. The developed model was first validated by a thermal treatment in a soil column, demonstrating conformity with the measured temperature and concentration values. Subsequently, the temporal and spatial changes in soil temperature and contaminant levels were evaluated for different heating temperatures. It was found that thermal conduction dominated heat transfer, whereas thermal convection caused by the migration of liquid water intensified when the temperature was higher than the boiling point. The completion time exhibited a correlation with the heating temperature. It was predicted that the time required to achieve a 90% removal efficiency could be shortened from 14 h to 9.5 h by elevating the heating temperature from 80 ℃ to 120 ℃. The study also investigated the impact of the initial water content on heat transfer. It was observed that the saturated soil showed the slowest heating rate and the longest boiling stage.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
| | - Lian Zhou
- Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315200, China
| | - Yan Li
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
| | - Haixiao Li
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Hua Zhong
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China; Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315200, China.
| | - Yuanyuan Zha
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
9
|
Ma M, An N, Wang Y, Zhao C, Cui Z, Zhou W, Gu M, Li Q. Sulfur-containing iron carbon nanocomposites activate persulfate for combined chemical oxidation and microbial remediation of petroleum-polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133889. [PMID: 38422735 DOI: 10.1016/j.jhazmat.2024.133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
In this study, sulfur-containing iron carbon nanocomposites (S@Fe-CN) were synthesized by calcining iron-loaded biomass and utilized to activate persulfate (PS) for the combined chemical oxidation and microbial remediation of petroleum-polluted soil. The highest removal efficiency of total petroleum hydrocarbons (TPHs) was achieved at 0.2% of activator, 1% of PS and 1:1 soil-water ratio. The EPR and quenching experiments demonstrated that the degradation of TPHs was caused by the combination of 1O2,·OH, SO4·-, and O2·-. In the S@Fe-CN activated PS (S@Fe-CN/PS) system, the degradation of TPHs underwent two phases: chemical oxidation (days 0 to 3) and microbial degradation (days 3 to 28), with kinetic constants consistent with the pseudo-first-order kinetics of chemical and microbial remediation, respectively. In the S@Fe-CN/PS system, soil enzyme activities decreased and then increased, indicating that microbial activities were restored after chemical oxidation under the protection of the activators. The microbial community analysis showed that the S@Fe-CN/PS group affected the abundance and structure of microorganisms, with the relative abundance of TPH-degrading bacteria increased after 28 days. Moreover, S@Fe-CN/PS enhanced the microbial interactions and mitigated microbial competition, thereby improving the ability of indigenous microorganisms to degrade TPHs.
Collapse
Affiliation(s)
- Mengyu Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Ning An
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Yanqin Wang
- Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Chao Zhao
- Shandong Provincial Soil Pollution Prevention and Control Centre, Jinan 250012, PR China
| | - Zhaojie Cui
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan 250100, PR China
| | - Meixia Gu
- Sinopec Petroleum Engineering & Design Co., Ltd., Dongying 257100, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China.
| |
Collapse
|
10
|
Alsharyani AK, Muruganandam L. Fabrication of zinc oxide nanorods for photocatalytic degradation of docosane, a petroleum pollutant, under solar light simulator. RSC Adv 2024; 14:9038-9049. [PMID: 38500622 PMCID: PMC10945516 DOI: 10.1039/d4ra00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
The use of advanced oxidation processes (AOP) in photocatalysis is critical for treating hazardous chemical compounds in oil-produced water (OPW). ZnO NRs are one of the most important modern and safe photocatalysts and have been easily prepared by a microwave-assisted hydrothermal method and grown on glass substrates. Hexagonal-shaped ZnO NRs and a bandgap energy (Eg) of up to 3.2 eV were characterized using SEM, XRD, UV-Vis, and PL devices, respectively. The effectiveness of photocatalytic degradation on the organic docosane solution was evaluated using a solar light simulator. On the surface area of the ZnO NRs, high photon absorption causes e-/h+ pairs to be excited between the VB and CB, producing free radicals that immediately react with organic contaminants and transform them into harmless chemicals. The photocatalytic degradation efficiency of the compound docosane analysed using GC-MS/MS reached 68.5% at 5 hours of irradiation. A mechanism for the photocatalytic degradation of docosane was proposed at pH ∼ 6.5, and a reduction of 60.5% of the total organic carbon (TOC) was achieved. Thus, the photocatalytic treatment of organic compounds contained in OPW has great potential and serves an important environmental purpose.
Collapse
Affiliation(s)
- Ahmed K Alsharyani
- School of Chemical Engineering, Vellore Institute of Technology University India
- Nanotechnology Research Center, Sultan Qaboos University Muscat Oman
| | - L Muruganandam
- School of Chemical Engineering, Vellore Institute of Technology University India
| |
Collapse
|
11
|
Li X, Li X, Li M, Li N, Hu Y, Jiang L, Murati H, Su Y. Assessment of tolerance limits of petroleum residues in soil organic matter: sorption of dichlorobenzene by soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:16. [PMID: 38147141 DOI: 10.1007/s10653-023-01798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 12/27/2023]
Abstract
Soil organic matter can protect plants and microorganisms from toxic substances. Beyond the tolerance limit, the toxicity of petroleum pollution to soil organisms may increase rapidly with the increase of petroleum content. However, the method for evaluating the petroleum tolerance limit of soil organic matter (SOM) is still lacking. In this study, the petroleum saturation limit in SOM was first evaluated by the sorption coefficient (Kd) of 1,2-dichlorobenzene (DCB) from water to soils containing different petroleum levels. The sorption isotherm of dichlorobenzene in several petroleum-contaminated soils with different organic matter content and the microbial toxicity test of several petroleum-contaminated soils were determined. It is found that when the petroleum content is about 5% of the soil organic matter content, the sorption of petroleum to organic matter reached saturation limit. When organic matter reaches petroleum saturation limit, the sorption coefficient of DCB by soil particles increased linearly with the increase of petroleum content (R2 > 0.991). The results provided important insights into the understanding the fate of petroleum pollutants in soil and the analysis of soil toxicity.
Collapse
Affiliation(s)
- Xiaokang Li
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi, 830046, China
| | - Xiaofei Li
- Xinjiang Products Quality Supervision and Inspection Institute, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Xinjiang University, Urumqi, 830046, China
| | - Maohua Li
- Xinjiang Products Quality Supervision and Inspection Institute, Xinjiang University, Urumqi, 830046, China
- Key Laboratory of Improvised Explosive Chemicals for State Market Regulation, Xinjiang University, Urumqi, 830046, China
| | - Ning Li
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi, 830046, China
| | - Yuanfang Hu
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi, 830046, China
| | - Lu Jiang
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi, 830046, China
| | - Hashar Murati
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi, 830046, China
| | - Yuhong Su
- College of Chemical Engineering, Petroleum and Natural Gas and Fine Chemicals Key Laboratory, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
12
|
Yang J, Yang R, Zhao N, Shi G, Liu W. Correction method of the fluorescence intensity of petroleum hydrocarbons in different soil types based on resonance scattering spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123174. [PMID: 37517270 DOI: 10.1016/j.saa.2023.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Soil types has an obvious impact influence on the fluorescence intensity of soil petroleum hydrocarbons. To reduce the interference caused by soil types, this paper proposes a calibration method using resonance scattering spectroscopy. To establish the correction method, 100 g/kg crude oil samples from six soil types were prepared. The mission and resonance scattering spectrum under 280 nm excitation were measured for all samples. The results showed that the fluorescence spectra and resonance scattering spectra of soil crude oil vary with different soil types. And the fluorescence peak intensity and the resonance scattering peak intensity at 360 nm of soil petroleum hydrocarbons are highly correlated in different soil types. The fluorescence peak intensity at 360 nm was divided by the resonance scattering light intensity at 360 nm to obtain the corrected fluorescence intensity, which can effectively reduce the influence of soil type on fluorescence intensity. The feasibility of correction method was further verified for different types and concentrations of soil crude oil. The results showed better linearity between the fluorescence intensity and the concentration of Petroleum Hydrocarbons after the correction (with a correlation coefficient R2 of 0.96) than before the correction (with R2 of 0.72), the mean relative prediction error of all samples decreased from 31.92 % to 4.71 % after correction. The research can provide theoretical basis and technical support for the accurate and rapid detection of Petroleum Hydrocarbons in soil by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Jinqiang Yang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China/PR China; University of Science and Technology of China, Hefei 230026, Anhui, China/PR China; Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, Anhui, China
| | - Ruifang Yang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China/PR China; Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, Anhui, China.
| | - Nanjing Zhao
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China/PR China; Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, Anhui, China.
| | - Gaoyong Shi
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China/PR China; University of Science and Technology of China, Hefei 230026, Anhui, China/PR China; Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, Anhui, China
| | - Wenqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China/PR China; Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, Anhui, China
| |
Collapse
|
13
|
Li P, Liang X, Shi R, Wang Y, Han S, Zhang Y. Unraveling the functional instability of bacterial consortia in crude oil degradation via integrated co-occurrence networks. Front Microbiol 2023; 14:1270916. [PMID: 37901814 PMCID: PMC10602786 DOI: 10.3389/fmicb.2023.1270916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Soil ecosystems are threatened by crude oil contamination, requiring effective microbial remediation. However, our understanding of the key microbial taxa within the community, their interactions impacting crude oil degradation, and the stability of microbial functionality in oil degradation remain limited. Methods To better understand these key points, we enriched a crude oil-degrading bacterial consortium generation 1 (G1) from contaminated soil and conducted three successive transfer passages (G2, G3, and G4). Integrated Co-occurrence Networks method was used to analyze microbial species correlation with crude oil components across G1-G4. Results and discussion In this study, G1 achieved a total petroleum hydrocarbon (TPH) degradation rate of 32.29% within 10 days. Through three successive transfer passages, G2-G4 consortia were established, resulting in a gradual decrease in TPH degradation to 23.14% at the same time. Specifically, saturated hydrocarbon degradation rates ranged from 18.32% to 14.17% among G1-G4, and only G1 exhibited significant aromatic hydrocarbon degradation (15.59%). Functional annotation based on PICRUSt2 and FAPROTAX showed that functional potential of hydrocarbons degradation diminished across generations. These results demonstrated the functional instability of the bacterial consortium in crude oil degradation. The relative abundance of the Dietzia genus showed the highest positive correlation with the degradation efficiency of TPH and saturated hydrocarbons (19.48, 18.38, p < 0.05, respectively), Bacillus genus demonstrated the highest positive correlation (21.94, p < 0.05) with the efficiency of aromatic hydrocarbon degradation. The key scores of Dietzia genus decreased in successive generations. A significant positive correlation (16.56, p < 0.05) was observed between the Bacillus and Mycetocola genera exclusively in the G1 generation. The decline in crude oil degradation function during transfers was closely related to changes in the relative abundance of key genera such as Dietzia and Bacillus as well as their interactions with other genera including Mycetocola genus. Our study identified key bacterial genera involved in crude oil remediation microbiome construction, providing a theoretical basis for the next step in the construction of the oil pollution remediation microbiome.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Rongjiu Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yongfeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Siqin Han
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Ying Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
14
|
Lin R, Wu H, Kong X, Ren H, Lu Z. Ribosomal RNA gene operon copy number, a functional trait indicating the hydrocarbon degradation level of bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132100. [PMID: 37523962 DOI: 10.1016/j.jhazmat.2023.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Kumari S, Gautam K, Seth M, Anbumani S, Manickam N. Bioremediation of polycyclic aromatic hydrocarbons in crude oil by bacterial consortium in soil amended with Eisenia fetida and rhamnolipid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82517-82531. [PMID: 37326724 DOI: 10.1007/s11356-023-28082-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
The present study investigated the concerted effort of Eisenia fetida and rhamnolipid JBR-425 in combination with a five-member bacterial consortium exhibiting elevated degradation levels of low and high molecular weight polycyclic aromatic hydrocarbons (PAH) from soil contaminated with Digboi crude oil. Application of bacterial consortium (G2) degraded 30-89% of selected PAH from the artificial soil after a 45-day post-exposure, in which chrysene showed the highest level of degradation with 89% and benzo(a)pyrene is the lowest with 30%, respectively. Moreover, an acute exposure study observed that earthworm biomass decreased, and mortality rates increased with increasing crude oil concentrations (0.25 to 2%). Earthworms with a 100% survival rate at 1% crude oil exposure suggest the tolerance potential and its mutual involvement in the bioremediation of crude oil with selected bacterial consortia. Bacterial consortium assisted with E. fetida (G3) showed 98% chrysene degradation with a slight change in benzo(a)pyrene degradation (35%) in crude oil spiked soil. Besides, the most dominant PAH in crude oil found in the current work, fluoranthene, undergoes 93% and 70% degradation in G3 and G5 groups, respectively. However, rhamnolipid JBR-425 coupled with the bacterial consortium (G5) has resulted in 97% degradation of chrysene and 33% for benzo(a)pyrene. Overall, bacterial consortium assisted with earthworm group has shown better degradation of selected PAH than bacterial consortium with biosurfactant. Catalase (CAT), glutathione reductase (GST) activity and MDA content was found to be reduced in earthworms after sub-lethal exposure, suggesting oxidative stress prevalence via reactive oxygen species (ROS). Hence, the findings of the present work suggest that the application of a bacterial consortium, along with earthworm E. fetida, has huge potential for field restoration of contaminated soil with PAH and ecosystem sustainability.
Collapse
Affiliation(s)
- Smita Kumari
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Seth
- Ecotoxicology Laboratory, Regulatory Toxicology Group, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Tulcan RXS, Ouyang W, Guo Z, Lin C, Cui X, Hu J, He M. Industrial impacts on vanadium contamination in sediments of Chinese rivers and bays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162379. [PMID: 36828061 DOI: 10.1016/j.scitotenv.2023.162379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Vanadium, like many trace metals, is persistent and detrimental to ecosystems at elevated concentrations. Likewise, it is versatile, functional, and used in many industries. Jiaozhou Bay (JZB) and Laizhou Bay (LZB) are valuable coastal ecosystems in China coexisting with several of these vanadium-related industries; however, limited studies have been conducted regarding vanadium occurrence, distribution, sources and risks in sediments. 208 surface sediment samples were collected from rivers and bays over two years and analyzed using inductively coupled plasma optical emission spectrometry. Overall, sediments near vanadium-related industries have significantly higher vanadium concentrations than those near traditional industries, with 30.3% and 22.9% higher average concentrations of vanadium in sediments of JZB and LZB, respectively. Vanadium accumulation at LZB is positively correlated with fine sediment, oxides (e.g., Fe, Ti, Mn), and organic matter content, while temporal changes in parts of JZB highlight the impacts of oxides, pH, and redox conditions on its accumulation. After geochemical normalization, the concentrations in marine samples from LZB showed slightly polluted sediments under the Modified Nemerow pollution index. Likewise, the elevated concentrations of vanadium in JZB, rivers and bay, were classified as slightly polluted and correlated with anthropogenic activities, such as the coal and petrochemical industries. Temporal changes indicated higher enrichments in 2019. Last, humans could be responsible for up to 46.8% and 16.2% of the vanadium accumulation in JZB and LZB, respectively, yet risks to species remain limited.
Collapse
Affiliation(s)
- Roberto Xavier Supe Tulcan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China.
| | - Zewei Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xintong Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jingyi Hu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Li YQ, Xin Y, Li C, Liu J, Huang T. Metagenomics-metabolomics analysis of microbial function and metabolism in petroleum-contaminated soil. Braz J Microbiol 2023:10.1007/s42770-023-01000-7. [PMID: 37162704 DOI: 10.1007/s42770-023-01000-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Contamination of soil by petroleum is becoming increasingly serious in the world today. However, the research on gene functional characteristics, metabolites and distribution of microbial genomes in oil-contaminated soil is limited. Considering that, metagenomic and metabonomic were used to detect microbes and metabolites in oil-contaminated soil, and the changes of functional pathways were analyzed. We found that oil pollution significantly changed the composition of soil microorganisms and metabolites, and promoted the relative abundance of Pseudoxanthomonas, Pseudomonas, Mycobacterium, Immundisolibacter, etc. The degradation of toluene, xylene, polycyclic aromatic hydrocarbon and fluorobenzoate increased in Xenobiotics biodegradation and metabolism. Key monooxygenases and dioxygenase systems were regulated to promote ring opening and degradation of aromatic hydrocarbons. Metabolite contents of polycyclic aromatic hydrocarbons (PAHs) such as 9-fluoronone and gentisic acid increased significantly. The soil microbiome degraded petroleum pollutants into small molecular substances and promoted the bioremediation of petroleum-contaminated soil. Besides, we discovered the complete degradation pathway of petroleum-contaminated soil microorganisms to generate gentisic acid from the hydroxylation of naphthalene in PAHs by salicylic acid. This study offers important insights into bioremediation of oil-contaminated soil from the aspect of molecular regulation mechanism and provides a theoretical basis for the screening of new oil degrading bacteria.
Collapse
Affiliation(s)
- Yong-Quan Li
- School of Medicine, Northwest Minzu University, Lanzhou, China.
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, State Ethnic Affairs Commission, Lanzhou, China.
| | - Ying Xin
- School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Caili Li
- School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Jin Liu
- School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Tao Huang
- School of Medicine, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
18
|
Shen Y, Ji Y, Wang W, Gao T, Li H, Xiao M. Temporal effect of phytoremediation on the bacterial community in petroleum-contaminated soil. HUMAN AND ECOLOGICAL RISK ASSESSMENT: AN INTERNATIONAL JOURNAL 2023; 29:427-448. [DOI: 10.1080/10807039.2022.2102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 03/06/2025]
Affiliation(s)
- Yuanyuan Shen
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Yu Ji
- School of Water and Environment, Chang’an University, Xi’an, China
| | - Wenke Wang
- School of Water and Environment, Chang’an University, Xi’an, China
| | - Tianpeng Gao
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Haijuan Li
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Mingyan Xiao
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| |
Collapse
|
19
|
Li Y, Sanfilippo JE, Kearns D, Yang JQ. Corner Flows Induced by Surfactant-Producing Bacteria Bacillus subtilis and Pseudomonas fluorescens. Microbiol Spectr 2022; 10:e0323322. [PMID: 36214703 PMCID: PMC9603562 DOI: 10.1128/spectrum.03233-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 01/04/2023] Open
Abstract
A mechanistic understanding of bacterial spreading in soil, which has both air and water in angular pore spaces, is critical to control pathogenic contamination of soil and to design bioremediation projects. A recent study (J. Q. Yang, J. E. Sanfilippo, N. Abbasi, Z. Gitai, et al., Proc Natl Acad Sci U S A 118:e2111060118, 2021, https://doi.org/10.1073/pnas.2111060118) shows that Pseudomonas aeruginosa can self-generate flows along sharp corners by producing rhamnolipids, a type of biosurfactants that change the hydrophobicity of solid surfaces. We hypothesize that other types of biosurfactants and biosurfactant-producing bacteria can also generate corner flows. Here, we first demonstrate that rhamnolipids and surfactin, biosurfactants with different chemical structures, can generate corner flows. We identify the critical concentrations of these two biosurfactants to generate corner flow. Second, we demonstrate that two common soil bacteria, Pseudomonas fluorescens and Bacillus subtilis (which produce rhamnolipids and surfactin, respectively), can generate corner flows along sharp corners at the speed of several millimeters per hour. We further show that a surfactin-deficient mutant of B. subtilis cannot generate corner flow. Third, we show that, similar to the finding for P. aeruginosa, the critical corner angle for P. fluorescens and B. subtilis to generate corner flows can be predicted from classic corner flow theories. Finally, we show that the height of corner flows is limited by the roundness of corners. Our results suggest that biosurfactant-induced corner flows are prevalent in soil and should be considered in the modeling and prediction of bacterial spreading in soil. The critical biosurfactant concentrations we identify and the mathematical models we propose will provide a theoretical foundation for future predictions of bacterial spreading in soil. IMPORTANCE The spread of bacteria in soil is critical in soil biogeochemical cycles, soil and groundwater contamination, and the efficiency of soil-based bioremediation projects. However, the mechanistic understanding of bacterial spreading in soil remains incomplete due to a lack of direct observations. Here, we simulate confined spaces of hydrocarbon-covered soil using a transparent material with similar hydrophobicity and visualize the spread of two common soil bacteria, Pseudomonas fluorescens and Bacillus subtilis. We show that both bacteria can generate corner flows at the velocity of several millimeters per hour by producing biosurfactants, soap-like chemicals. We provide quantitative equations to predict the critical corner angle for bacterial corner flow and the maximum distance of the corner spreading. We anticipate that bacterial corner flow is prevalent because biosurfactant-producing bacteria and angular pores are common in soil. Our results will help improve predictions of bacterial spreading in soil and facilitate the design of soil-related bioremediation projects.
Collapse
Affiliation(s)
- Yuan Li
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana—Champaign, Urbana, Illinois, USA
| | - Daniel Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Judy Q. Yang
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Chávez-Álvarez K, Del Carmen Rivera-Cruz M, Aceves-Navarro LA, Trujillo-Narcía A, García-de la Cruz R, Vega-López A. Physiological and microbiological hormesis in sedge Eleocharis palustris induced by crude oil in phytoremediation of flooded clay soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1241-1253. [PMID: 36112299 DOI: 10.1007/s10646-022-02583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination with petroleum hydrocarbons affects plants and rhizospheric microorganisms. Microbial activity participates in important biochemical processes that stimulate, together with plants, the modification of toxic compounds for organisms. A nine-month experiment was set up to study the effect over time of oil on plant height (cm), formation of new plants, plant matter production (gravimetry), and population of rhizospheric microorganisms (serial dilution) in the sedge Eleocharis palustris. Removal of total petroleum hydrocarbons (soxhlet and gravimetry) from the soil was also evaluated. The means of the evaluated variables registered significant statistical differences (Duncan, p < 0.05) regarding the age of the plant and the amount of crude oil. There was a high correlation between oil and plant height (0.848) and with new plants (0.994). 60 mg oil dose promoted the greatest statistical difference in the amounts of roots and plant biomass (p < 0.05). E. palustris exposed to 60 and 75 mg of oil stimulated high densities of microalgae, actinomycetes, fungi, hydrocarbonoclastic bacteria and Pseudomonas spp; the overall ratio was 2:1 relative to natural attenuation. Plant and microorganism variables evaluated registered physiological and microbiological hormetic indices ≥1, showing a positive linear relationship. Natural attenuation was more efficient in removing crude oil. We conclude that E. palustris is tolerant to oil exposure. It is suggested to combine it with natural attenuation for the optimization of soils contaminated with crude oil.
Collapse
Affiliation(s)
- Karla Chávez-Álvarez
- Colegio de Postgraduados Campus Tabasco, Laboratorio de Microbiología Agrícola y Ambiental. Km 2.5 Periférico Carlos A. Molina, CP 86570 H, Cárdenas, Tabasco, México
| | - María Del Carmen Rivera-Cruz
- Colegio de Postgraduados Campus Tabasco, Laboratorio de Microbiología Agrícola y Ambiental. Km 2.5 Periférico Carlos A. Molina, CP 86570 H, Cárdenas, Tabasco, México.
| | - Lorenzo A Aceves-Navarro
- Colegio de Postgraduados Campus Tabasco, Laboratorio de Microbiología Agrícola y Ambiental. Km 2.5 Periférico Carlos A. Molina, CP 86570 H, Cárdenas, Tabasco, México
| | - Antonio Trujillo-Narcía
- Universidad Popular de la Chontalpa, Cuerpo Académico Energía y Medioambiente. Chontalpa, Carretera Cárdenas-Huimanguillo km 2, Ra. Paso y Playa, H. Cárdenas, CP 86500 H, Cárdenas, Tabasco, México
| | - Rubén García-de la Cruz
- Colegio de Postgraduados Campus Tabasco, Laboratorio de Microbiología Agrícola y Ambiental. Km 2.5 Periférico Carlos A. Molina, CP 86570 H, Cárdenas, Tabasco, México
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Ciudad de México, CP 07738, México
| |
Collapse
|
21
|
Callejas-Chavero A, Reyes-Lechuga G, García-Gómez A, Palacios-Vargas JG, Flores-Martínez A, Castaño-Meneses G. Diesel effects on some population attributes of Orthonychiurus folsomi Schäffer 1900 (Collembola: Onychiuridae) under laboratory conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:702. [PMID: 35996025 DOI: 10.1007/s10661-022-10385-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination by hydrocarbons and its effects on population health and welfare is a growing concern, especially in urban environments with industrial activity. Indicator species complement the information obtained from the measurement of environment quality by using physicochemical variables. The objective of this study was to evaluate the response of a springtail species that could be potentially used as a bioindicator of hydrocarbon contaminated sites. We studied the effects of seven diesel concentrations on survival and other population parameters of Orthonychiurus folsomi under laboratory conditions; we evaluated the springtails response on survival, fecundity, population size, hatching and development time. Survival and fertility were analyzed by using generalized linear models (GLM). An ANOVA test was used to analyze the final population size and a Kruskal-Wallis test for oviposition, hatching, and development times. Results showed that diesel has negative effects on some population parameters. The most evident effects were recorded above 500 mg/kg concentrations. A significant decrease in survival, fertility, and population size was recorded in function of diesel concentration increase. The estimated LC50 for survival was 955 mg/kg. Oviposition and hatching time increased significantly when diesel concentrations were above 500 mg/kg, while development time increased slightly at low diesel concentrations but decreased at concentrations above 500 mg/kg. Population final size decreased as soil diesel concentrations increased. Due to the sensitive and rapid response of O. folsomi, it could be useful to detect diesel-contaminated soil, mainly in urban areas.
Collapse
Affiliation(s)
- Alicia Callejas-Chavero
- Ecología y Sistemática de Microartrópodos, Facultad de Ciencias, UNAM, Ciudad Universitaria, Ciudad de Mexico, México
- Departamento de Botánica, Ecología Vegetal, Escuela Nacional de Ciencias Biológicas, IPN, Ciudad de Mexico, México
| | - Gabriela Reyes-Lechuga
- Ecología y Sistemática de Microartrópodos, Facultad de Ciencias, UNAM, Ciudad Universitaria, Ciudad de Mexico, México
| | - Arturo García-Gómez
- Ecología y Sistemática de Microartrópodos, Facultad de Ciencias, UNAM, Ciudad Universitaria, Ciudad de Mexico, México
| | - José G Palacios-Vargas
- Ecología y Sistemática de Microartrópodos, Facultad de Ciencias, UNAM, Ciudad Universitaria, Ciudad de Mexico, México
| | - Arturo Flores-Martínez
- Departamento de Botánica, Ecología Vegetal, Escuela Nacional de Ciencias Biológicas, IPN, Ciudad de Mexico, México
| | - Gabriela Castaño-Meneses
- Ecología y Sistemática de Microartrópodos, Facultad de Ciencias, UNAM, Ciudad Universitaria, Ciudad de Mexico, México.
- Ecología de Artrópodos en Ambientes Extremos, Facultad de Ciencias, UMDI, UNAM, Campus Juriquilla, Querétaro, México.
| |
Collapse
|
22
|
Migration Behavior and Influencing Factors of Petroleum Hydrocarbon Phenanthrene in Soil around Typical Oilfields of China. Processes (Basel) 2022. [DOI: 10.3390/pr10081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Petroleum spills and land contamination are becoming increasingly common around the world. Polycyclic aromatic hydrocarbons (PAHs) and other pollutants found in petroleum are constantly migrating underground, making their migration in soil a hot research topic. Therefore, it is of great significance to evaluate the migratory process of petroleum hydrocarbons in petroleum-polluted soil to clarify its ecological and environmental risks. In this study, Phenanthrene (PHE) was used as a typical pollutant of PAHs. The soil was gathered from three typical oilfields in China, and a soil column apparatus was built to simulate the vertical migration of PHE in the soil. The migration law and penetration effect of PHE in various environmental conditions of soil were investigated by varying the ionic strength (IS), pH, particle size, and type of soil. According to the literature, pH has no discernible effect on the migration of PHE. The migration of PHE was adversely and positively linked with changes in IS and soil particle size, respectively. The influence of soil type was mainly manifested in the difference of organic matter and clay content. In the Yanchang Oilfield (YC) soil with the largest soil particle size and the least clay content, the mobility of PHE was the highest. This study may reveal the migration law of PAHs in soils around typical oilfields, establish a new foundation for PAH migration in the soil, and also provide new ideas for the management and control of petroleum pollution in the soil and groundwater.
Collapse
|
23
|
Haghsheno H, Arabani M. Geotechnical properties of oil-polluted soil: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32670-32701. [PMID: 35220539 DOI: 10.1007/s11356-022-19418-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Soil polluted by oil and its derivatives is a critical environmental issue worldwide that jeopardizes ecological systems and causes geotechnical problems. This review paper focuses on the previous studies concerning the impacts of oil pollution on soil geotechnical properties. To this end, related academic literature on this topic was investigated and discussed. The findings of this study demonstrated that the addition of oil pollution in coarse-grained soils significantly reduces particle surface roughness. On the other hand, in fine-grained soils, it results in flocculation and secondary aggregation of clay particles, less aggregated and loose packing in the soil matrix, the formation of isometric pores, the formation of fissure-like pores, and an increase in mesoporosity. In general, it was found that the geotechnical properties of oil-polluted soils are mostly determined by the physicochemical and/or physical interactions between the soil and contaminant. Additionally, previous research has demonstrated that oil pollutants alter the geotechnical properties of cohesive and non-cohesive soils significantly, including the Atterberg limits, particle-size distribution, compaction behavior, unconfined compressive strength, friction angle, cohesion, hydraulic conductivity, and consolidation characteristics. However, no general pattern could be established for the majority of them. Besides, it was found that the degree of geotechnical property alteration of oil-polluted soil is strongly influenced by the soil type and features, as well as the quantity, type, and chemical composition of oil pollutants.
Collapse
Affiliation(s)
- Hamed Haghsheno
- Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Mahyar Arabani
- Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran.
| |
Collapse
|
24
|
Hoang SA, Lamb D, Sarkar B, Seshadri B, Kit Yu RM, Anh Tran TK, O'Connor J, Rinklebe J, Kirkham MB, Vo HT, Bolan NS. Phosphorus application enhances alkane hydroxylase gene abundance in the rhizosphere of wild plants grown in petroleum-hydrocarbon-contaminated soil. ENVIRONMENTAL RESEARCH 2022; 204:111924. [PMID: 34487695 DOI: 10.1016/j.envres.2021.111924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
This study assessed the ability of phosphorus (P) fertilizer to remediate the rhizosphere of three wild plant species (Banksia seminuda, a tree; Chloris truncata, a grass; and Hakea prostrata, a shrub) growing in a soil contaminated with total (aliphatic) petroleum hydrocarbon (TPH). Plant growth, photosynthesis (via chlorophyll fluorescence), soil microbial activity, alkane hydroxylase AlkB (aliphatic hydrocarbon-degrading) gene abundance, and TPH removal were evaluated 120 days after planting. Overall, although TPH served as an additional carbon source for soil microorganisms, the presence of TPH in soil resulted in decreased plant growth and photosynthesis. However, growth, photosynthesis, microbial activities, and AlkB gene abundance were enhanced by the application of P fertilizer, thereby increasing TPH removal rates, although the extent and optimum P dosage varied among the plant species. The highest TPH removal (64.66%) was observed in soil planted with the Poaceae species, C. truncata, and amended with 100 mg P kg-1 soil, while H. prostrata showed higher TPH removal compared to the plant belonging to the same Proteaceae family, B. seminuda. The presence of plants resulted in higher AlkB gene abundance and TPH removal relative to the unplanted control. The removal of TPH was associated directly with AlkB gene abundance (R2 > 0.9, p < 0.001), which was affected by plant identity and P levels. The results indicated that an integrated approach involving wild plant species and optimum P amendment, which was determined through experimentation using different plant species, was an efficient way to remediate soil contaminated with TPH.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Dane Lamb
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - James O'Connor
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Huy Thanh Vo
- Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Nanthi S Bolan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
25
|
Wu B, Guo S, Zhang L, Wang S, Liu D, Cheng Z, Shi N. Spatial variation of residual total petroleum hydrocarbons and ecological risk in oilfield soils. CHEMOSPHERE 2022; 291:132916. [PMID: 34793846 DOI: 10.1016/j.chemosphere.2021.132916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Total petroleum hydrocarbon (TPH) pollution in oilfield soils is a worldwide environmental problem. In this study, we analysed the spatial variation of residual TPH components and the ecological risk they pose. The soils of five selected oilfields in China, across 11 degrees of latitude and 17 degrees of longitude were selected for the investigation. The results showed that the non-zonal composition of the residual TPHs in the soil was similar to the that of the crude oil input. Principal component analysis (PCA) suggested that the effect of zonal environmental factors explained 81.5% of the variability in the residual indexes of saturated and aromatic hydrocarbons. The first principal component, the soil clay and organic matter, correlated positively with the residual TPH index. The second principal component, the accumulated temperature, however, correlated negatively with the residual TPH index in the soil. Moreover, the application of the soil quality index (SoQI) and a Monte Carlo simulation for estimating the residual TPH content suggested that the ecological risk caused by residual TPHs in the soil decreased when the oilfield latitude and clay and organic matter content in the oilfield soil were lower. This study provides a basis for the assessment and monitoring of ecological risk in oilfield soils worldwide.
Collapse
Affiliation(s)
- Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Lingyan Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Dong Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, PR China.
| | - Zhigao Cheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Nan Shi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, PR China.
| |
Collapse
|
26
|
Miri S, Davoodi SM, Robert T, Brar SK, Martel R, Rouissi T. Enzymatic biodegradation of highly p-xylene contaminated soil using cold-active enzymes: A soil column study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127099. [PMID: 34523486 DOI: 10.1016/j.jhazmat.2021.127099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Enzymatic bioremediation is a sustainable and environment-friendly method for the clean-up of contaminated soil and water. In the present study, enzymatic bioremediation was designed using cold-active enzymes (psychrozymes) which catalyze oxidation steps of p-xylene biodegradation in highly contaminated soil (initial concentration of 13,000 mg/kg). The enzymes were obtained via co-culture of two psychrophilic Pseudomonas strains and characterized by kinetic studies and tandem LC-MS/MS. To mimic in situ application of enzyme mixture, bioremediation of p-xylene contaminated soil was carried out in soil column (140 mL) tests with the injection (3 pore volume) of different concentrations of enzyme cocktails (X, X/5, and X/10). Enzyme cocktail in X concentration contained about 10 U/mL of xylene monooxygenase (XMO) and 20 U/mL of catechol 2, 3 dioxygenases (C2,3D). X/5 and X/10 correspond to 5x and 10x dilution of enzyme cocktail respectively. The results showed that around 92-94% p-xylene removal was achieved in the treated soil column with enzyme concentration X, X/5 after second enzyme injection. While the p-xylene removal rate obtained by X/10 concentration of enzyme was less than 30% and near to untreated soil column (22.2%). The analysis of microbial diversity and biotoxicity assay (root elongation and seed germination) confirmed the advantage of using enzymes as a green and environmentally friendly approach for decontamination of pollutants with minimal or even positive effects on microbial community and also enrichment of soil after treatment.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Thomas Robert
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
27
|
Hussain F, Khan AHA, Hussain I, Farooqi A, Muhammad YS, Iqbal M, Arslan M, Yousaf S. Soil conditioners improve rhizodegradation of aged petroleum hydrocarbons and enhance the growth of Lolium multiflorum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9097-9109. [PMID: 34495472 DOI: 10.1007/s11356-021-16149-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Bioremediation and phytoremediation have demonstrated potential for decontamination of petroleum hydrocarbon-impacted soils. The total petroleum hydrocarbons (TPHs) are known to induce phytotoxicity, reduce water retention in soil, associate hydrophobic nature and contaminants' in situ heterogeneous distribution, limit soil nutrient release and reduce soil aeration and compaction. The ageing of TPHs in contaminated soils further hinders the degradation process. Soil amendments can promote plant growth and enhance the TPH removal from contaminated aged soil. In the present experiment, remediation of TPH-contaminated aged soil was performed by Italian ryegrass, with compost (COM, 5%), biochar (BC, 5%) and immobilized microorganisms' technique (IMT). Results revealed that significantly highest hydrocarbon removal (40%) was noted in mixed amendments (MAA) which contained BC + COM + IMT, followed by COM (36%), compared to vegetative control and other treatments. The higher TPH removal in aged soil corresponds with the stimulated rhizospheric effects, as evidenced by higher root biomass (85-159% increase), and bacterial count compared to NA control. Phyto-stimulants actions of biochar and IMT improved seed germination of Italian ryegrass. The compost co-amendment with other treatments showed improvement in plant physiological status. These results suggested that plant growth and TPH removal from aged, contaminated soils using BC, COM and IMT can improve bioremediation efficiency.
Collapse
Affiliation(s)
- Fida Hussain
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Biological Environment, Kangwon National University, Gangwon, 24341, South Korea
| | - Aqib Hassan Ali Khan
- Department of Earth and Environmental Sciences, Bahria University (Karachi Campus), Karachi, 75260, Pakistan
| | - Imran Hussain
- Environmental Sustainability Section, Sustainable Development Policy Institute, Islamabad, 44000, Pakistan
| | - Asifa Farooqi
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yousaf Shad Muhammad
- Department of Statistics, Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Arslan
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
28
|
Li M, Sun K, Fang Y, Zheng M, Xie X, Tang J, Liu R. Toxic effects of acetone, 2-pentanone, and 2-hexanone on physiological indices of wheat (Triticum aestivum L.) germination and seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64552-64560. [PMID: 34312749 DOI: 10.1007/s11356-021-15496-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Petroleum hydrocarbons are important characteristic pollutants in the process of oil exploitation in the Yellow River Delta (China), and they cause a potential hazard to the surrounding ecological environment. The research on eco-toxicological effects of petroleum-derived products still needs to be studied in depth. This paper describes the physiological indices of wheat (Triticum aestivum L.) seeds and seedlings under independent stresses of acetone, 2-pentanone, and 2-hexanone to determine the toxicological effects of ketones derived from petroleum products on typical crops. The experimental results indicated that ketones with concentrations lower than 0.4 mg·cm-2 and 800 mg·kg-1 the germination of wheat seeds and the growth of seedlings were promoted to 113.32-127.27% and 105.41-126.39%, respectively, thus exhibiting low-dose excitatory effects. However, when the concentration was higher than 0.4 mg·cm-2 and 800 mg·kg-1, germination and seedlings' growth were significantly reduced to 7.14-2.12% and 35.09-13.33%, respectively. At the same time, acetone had a greater impact on the growth of wheat seed roots, the malondialdehyde (MDA), and chlorophyll contents in leaf tissues. The low concentration of acetone had a significant promoting effect on the activity of α-amylase in wheat seeds. 2-Pentanone reduced the electrical conductivity of wheat seed extract, and it significantly promoted the catalase (CAT) activity at low concentrations. 2-Hexanone had a strong inhibitory effect on wheat germination and growth. This study provided new research results to determine the toxic effects of petroleum-derived products and provided a basis for the environmental management of such substances.
Collapse
Affiliation(s)
- Meifei Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Kailun Sun
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Youshuai Fang
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Meng Zheng
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiaoyu Xie
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
29
|
Ambust S, Das AJ, Kumar R. Bioremediation of petroleum contaminated soil through biosurfactant and Pseudomonas sp. SA3 amended design treatments. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100031. [PMID: 34841322 PMCID: PMC8610309 DOI: 10.1016/j.crmicr.2021.100031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 01/05/2023] Open
Abstract
Potent PGP strain Pseudomonas sp SA3 was isolated from oil contaminated zone. PGPR strain SA3 produce biosurfactant under petroleum stress. Biosurfactant and strain SA3 amended treatments were developed. Amended treatments effects the plant growth and pigments. Treatment are efficient in reclamation of petroleum contaminated soil.
Toxicity of agricultural soil due to petroleum contamination has become a serious issue in recent times. Petrol oil exhibits toxic effects in agricultural crops due to the presence of various hazardous hydrocarbons. The degradation of petroleum hydrocarbon has been widely studied by the researchers that signify the requirement of effective treatments for the detoxification of petroleum contaminated soil and their reuse for growing crops. Hence, with this intention in the present study secondary metabolites “biosurfactant” (natural surfactant) along with the potent plant growth promoting (PGP) bacterial strain Pseudomonas sp. SA3 was used in the designed treatments for growing agricultural crop. The biosurfactant produced by the strain has the emulsification capacity of 43% and surface tension reduction ability to 34.5 mN/m whereas the plant growth promoting traits demonstrates 93.46 µg/mL phosphate solubilisation ability, siderophores (iron chelating compound) production upto 69.41% units and 81.41 µg/mL indole acetic acid (IAA) production ability. Further, the results of the design treatments signifies that treatments amended with the strain SA3 and biosurfactant is effective in the management of petroleum contaminated soil indicating treatment EX 5 (1 kg soil + 1 L water + Pseudomonas sp. SA3 + 300 mL crude biosurfactant), as an efficient treatment in increment of phytochemical constituents and 10–15% enhancement in growth parameters as compared to negative control. Hence, the developed treatments can be efficaciously used for the management of petroleum contaminated soil for agronomy.
Collapse
|
30
|
Zhang T, Liu F, Yu X, Jiang X, Cui Y, Li M. Risk assessment and ecotoxicological diagnosis of soil from a chemical industry park in Nanjing, China. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1303-1314. [PMID: 33405002 DOI: 10.1007/s10646-020-02320-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Soil pollution due to the activities of industrial parks, is becoming an increasingly serious issue, particularly throughout China. Therefore, it is essential to explore the soil pollution characteristics and its ecotoxicological effects on model species, such as higher plant species, in typical industrial areas. In this study, concentrations of heavy metals and polycyclic aromatic hydrocarbons (PAHs) were examined in the soil collected from 10 sampling sites at a chemical industry park in Nanjing, China. The pollution index was used to assess the heavy metal pollution level of soils, while the hazard index (HI) and carcinogenic risk index (RI) were calculated to assess the human health risk of soil PAHs. In addition, wheat (Triticum aestivum L.) was used as the model species to evaluate the ecotoxicological effects of polluted soil in pot experiments. Results showed that the content of heavy metals and PAHs varied greatly in soil samples, among which the heavy metal pollution at S1, S2 and S3 was the most serious. The health risk assessment of PAHs indicated that non-carcinogenic and carcinogenic values for all soil samples were below the threshold levels. Statistical analysis of the correlation between contaminated soil and toxic effects in wheat found that the significance values of regression equations were all less than 0.05 for chlorophyll content, peroxidase (POD) and amylase (AMS) activity. This indicates that the chlorophyll content, POD and AMS activity in wheat leaves could be suitable biomarkers for evaluation of the combined toxicity of multiple pollutants. This study provides a reference for future research on the risk assessment of soil containing multiple pollutants from industrial chemical parks.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Feng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Xiezhi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
31
|
Nebeská D, Trögl J, Ševců A, Špánek R, Marková K, Davis L, Burdová H, Pidlisnyuk V. Miscanthus x giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112630. [PMID: 34392149 DOI: 10.1016/j.ecoenv.2021.112630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 05/27/2023]
Abstract
The second generation energy crop Miscanthus x giganteus (Mxg) was cultivated in pots with mixtures of clean and petroleum industry contaminated soil affected by petroleum, Pb, Zn contamination and high salinity. The survival rate reached 100%, nevertheless the biomass parameters were negatively affected even in the lowest proportion of contaminated soil. In the lowest contamination, where the plant grew still quite successfully, C10-C40 degradation was significantly enhanced compared to the unplanted control with degradation of 58 ± 14%. The plant contribution to aliphatics degradation was significantly correlated with biomass, thus it was negligible in higher contamination. A similar pattern was documented in development of the soil bacterial community. The shift in community structure after Mxg cultivation was observed mainly in the soil with the lowest contaminant proportion, though an increase of bacterial diversity in the miscanthus rhizosphere was observed in all cases. Relative abundance of Actinobacteria was reduced on behalf of several less abundant phyla (Verrucomicrobia, Bacterioides, Acidobacteria). The majority of genera identified as potential petroleum degraders (Pseudomonas, Shinella, Altererythrobacter, Azospirillum, Mesorhizobium, Dyella) were more abundant in contaminated soil with miscanthus, suggesting that Mxg could be a promising crop for phytomanagement of petroleum contaminated soils but salt phytotoxicity needs to be mitigated first.
Collapse
Affiliation(s)
- Diana Nebeská
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096 Ústí nad Labem, Czech Republic.
| | - Josef Trögl
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096 Ústí nad Labem, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 46117 Liberec, Czech Republic
| | - Roman Špánek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 46117 Liberec, Czech Republic
| | - Kristýna Marková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 46117 Liberec, Czech Republic
| | - Lawrence Davis
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Charmers Hall, Manhattan, KS 66506, USA
| | - Hana Burdová
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096 Ústí nad Labem, Czech Republic
| | - Valentina Pidlisnyuk
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 40096 Ústí nad Labem, Czech Republic
| |
Collapse
|
32
|
Buzmakov SA, Andreev DN, Nazarov AV, Dzyuba EA, Shestakov IE, Kuyukina MS, El’kin AA, Egorova DO, Khotyanovskaya YV. Responses of Different Test Objects to Experimental Soil Contamination with Crude Oil. RUSS J ECOL+ 2021. [DOI: 10.1134/s1067413621040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Silva-Castro GA, Rodríguez-Calvo A, Robledo-Mahón T, Aranda E, González-López J, Calvo C. Design of Bio-Absorbent Systems for the Removal of Hydrocarbons from Industrial Wastewater: Pilot-Plant Scale. TOXICS 2021; 9:toxics9070162. [PMID: 34357905 PMCID: PMC8309889 DOI: 10.3390/toxics9070162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022]
Abstract
The objective of this study was the development and design of a treatment system at a pilot-plant scale for the remediation of hydrocarbons in industrial wastewater. The treatment consists of a combined approach of absorption and biodegradation to obtain treated water with sufficient quality to be reused in fire defense systems (FDSs). The plant consists of four vertical flow columns (bioreactors) made of stainless steel (ATEX Standard) with dimensions of 1.65 × 0.5 m and water volumes of 192.4 L. Each bioreactor includes a holder to contain the absorbent material (Pad Sentec polypropylene). The effectiveness of the treatment system has been studied in wastewater with high and low pollutant loads (concentrations higher than 60,000 mg L−1 of total petroleum hydrocarbons (TPH) and lower than 500 mg L−1 of TPHs, respectively). The pilot-plant design can function at two different flow rates, Q1 (180 L h−1) and Q2 (780 L h−1), with or without additional aeration. The results obtained for strongly polluted wastewaters showed that, at low flow rates, additional aeration enhanced hydrocarbon removal, while aeration was unnecessary at high flow rates. For wastewater with a low pollutant load, we selected a flow rate of 780 L h−1 without aeration. Different recirculation times were also tested along with the application of a post-treatment lasting 7 days inside the bioreactor without recirculation. The microbial diversity studies showed similar populations of bacteria and fungi in the inlet and outlet wastewater. Likewise, high similarity indices were observed between the adhered and suspended biomass within the bioreactors. The results showed that the setup and optimization of the reactor represent a step forward in the application of bioremediation processes at an industrial/large scale.
Collapse
Affiliation(s)
- Gloria Andrea Silva-Castro
- Institute of Water Research, University of Granada, 18071 Granada, Spain; (G.A.S.-C.); (A.R.-C.); (T.R.-M.); (E.A.); (J.G.-L.)
| | - Alfonso Rodríguez-Calvo
- Institute of Water Research, University of Granada, 18071 Granada, Spain; (G.A.S.-C.); (A.R.-C.); (T.R.-M.); (E.A.); (J.G.-L.)
| | - Tatiana Robledo-Mahón
- Institute of Water Research, University of Granada, 18071 Granada, Spain; (G.A.S.-C.); (A.R.-C.); (T.R.-M.); (E.A.); (J.G.-L.)
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Elisabet Aranda
- Institute of Water Research, University of Granada, 18071 Granada, Spain; (G.A.S.-C.); (A.R.-C.); (T.R.-M.); (E.A.); (J.G.-L.)
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Jesús González-López
- Institute of Water Research, University of Granada, 18071 Granada, Spain; (G.A.S.-C.); (A.R.-C.); (T.R.-M.); (E.A.); (J.G.-L.)
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
| | - Concepción Calvo
- Institute of Water Research, University of Granada, 18071 Granada, Spain; (G.A.S.-C.); (A.R.-C.); (T.R.-M.); (E.A.); (J.G.-L.)
- Department of Microbiology, Pharmacy Faculty, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-248021
| |
Collapse
|
34
|
Xi KF, Hu WF, Li DC, Jiang SF, Jiang H. Investigations on the dissolved organic matter leached from oil-contaminated soils by using pyrolysis remediation method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145921. [PMID: 33640555 DOI: 10.1016/j.scitotenv.2021.145921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Pyrolysis, as a convenient and fast technology, has been proved to be promising in the remediation of oil-contaminated soil. However, little is known about the dissolved organic matter (DOM) associated with pyrolyzed oil-contaminated soil and its environmental impact. Herein, optical spectroscopic techniques (i.e., absorbance and fluorescence) were adopted to reveal the relationship between the pyrolysis temperature and the characteristics of the DOM and the associated phytotoxicity. Results show that one of the main factors determining the properties and phytotoxicity of DOM leached from the pyrolyzed soil is the critical temperature (approximately 325 °C) during pyrolysis. When the temperature was lower than 325 °C, more types and quantities of DOM, mainly fulvic acid-like substances, were desorbed from the soil with the temperature, which have little effect on wheat growth. However, when the temperature was in the range of 325-550 °C, the type and quantity of DOM increased first and then decreased as the temperature increased, during which the organic matter in the soil decomposed. The wheat growth was first inhibited and then promoted. Finally, the correlation between the spectral indices of DOM with the phytotoxicity suggested that fluorescent components identified by parallel factor analysis were positively correlated with phytotoxicity. This study indicates the pyrolytic remediation of oil-contaminated soil should avoid some critical temperature ranges.
Collapse
Affiliation(s)
- Kun-Fang Xi
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Fei Hu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - De-Chang Li
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shun-Feng Jiang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Hong Jiang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
35
|
Fedyaeva ON, Shishkin AV, Vostrikov AA. Effect of the Fuel Equivalence Ratio on the Mechanisms of Thiophene Oxidation in Water Vapor at Increased Density of the Reagents. ACS OMEGA 2021; 6:13134-13143. [PMID: 34056463 PMCID: PMC8158820 DOI: 10.1021/acsomega.1c00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The article presents the results of a study of thiophene oxidation in high-density C4H4S/O2 mixtures (ρThi = 0.12 and 0.15 mol/dm3, ρO2 = 0.74-1.26 mol/dm3), diluted with water vapor and argon (dilution level x D = 35-65% mol), at uniform heating (1 K/min) of a stainless-steel tubular reactor up to 823 K. It is established that the temperature of thiophene oxidation onset weakly depends on the nature of the diluent and the oxygen content in the reaction mixture. From the time dependences of the reaction mixtures on temperature and pressure, it follows that the oxidation of thiophene in the water vapor and argon media proceeds according to the mechanisms of homogeneous and heterogeneous reactions. Upon oxidation of thiophene in the stoichiometric mixtures in argon with a small amount of water vapor, as well as in the lean mixtures in water vapor, the contribution of reactions on the surface of the Pt-Rh/Pt thermocouple, inserted into the center of the reaction volume, is increased. Upon oxidation of thiophene in water vapor in the fuel-enriched and stoichiometric mixtures, reactions on the oxidized surface of the reactor wall (primarily iron oxides) prevail. Increasing the density of water vapor both reduces the contribution of heterogeneous reactions on the reactor wall and prevents complete carbon burnout. It is shown that the neutralization of sulfuric acid, resulting from the oxidation of thiophene, with calcium carbonate reduces the corrosion of stainless steel. The X-ray diffraction analysis revealed the presence of ferrochromite, iron and chromium oxides, iron, nickel, and chromium sulfates in the corrosion products.
Collapse
|
36
|
Zhen L, Hu T, Lv R, Wu Y, Chang F, Jia F, Gu J. Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124869. [PMID: 33422735 DOI: 10.1016/j.jhazmat.2020.124869] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Biotechnologies integrated with chemical techniques are promising in treating the soils contaminated by petroleum hydrocarbons. Experiments by applying the degrading consortium and the modified Fenton (MF) with the chelator sodium citrate simultaneously were carried out to investigate the effects of the MF reagents on the degradation of total petroleum hydrocarbons (TPHs), changes in enzyme activities and the succession of microbial communities at the 0, 20, 100 and 500 mmol/kg hydrogen peroxide concentration levels. The ratio between hydrogen peroxide, ferrous sulfate and sodium citrate in the MF reagents was 100:1:1. The results indicated that the degradation of TPHs conformed to first-order kinetics and MF treatments increased the total removal rates of TPHs (4.73-24.26%) and activated dehydrogenase and polyphenol oxidase activities. A shift in microbial communities from Proteobacteria to Bacteroidetes was observed during the enhanced bioremediation, and the predominant genus shifted from Pseudomonas with an average relative abundance (ARAs) of 76.61% at the beginning to Sphingobacterium with ARAs of 52.06% at the later stage. The MF reagents at the proper level could simplify the relationship among the community populations, alleviate their competition and strengthen their associations, which would optimize the removal efficiency.
Collapse
Affiliation(s)
- Lisha Zhen
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A & Forestry University, Yangling, Shaanxi 712100, China
| | - Rui Lv
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fan Chang
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Feng'an Jia
- Shaanxi Province Institute of Microbiology, Xi'an, Shaanxi 710043, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A & Forestry University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
37
|
Bioremediation of clay with high oil content and biological response after restoration. Sci Rep 2021; 11:9725. [PMID: 33958612 PMCID: PMC8102563 DOI: 10.1038/s41598-021-88033-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 11/09/2022] Open
Abstract
The clay with high oil content form soil lumps, which is hard for microbes to repair. In this paper, the bioaugmentation and biostimulation technology were applied to improve the bioremediation effect of the soil with high oil content, that modified by local cow dung and sandy soil, the ecological toxicity of the soil after restoration was further analyzed. After 53 days of bioremediation, the degradation efficiency with respect to the total petroleum hydrocarbons (TPH) content reached 76.9% ± 2.2%. The soil bacterial count of M5 group reached log10 CFU/g soil = 7.69 ± 0.03 and the results were better than other experimental groups. The relative abundances of petroleum-degrading bacteria added to M5 remained high (Achromobacter 9.44%, Pseudomonas 31.06%, and Acinetobacter 14.11%), and the proportions of some other indigenous bacteria (Alcanivorax and Paenibacillus) also increased. The toxicity of the bioremediated soil was reduced by seed germination and earthworm survival experiments.
Collapse
|
38
|
Box Experiment Study of Thermally Enhanced SVE for Benzene. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084062. [PMID: 33921471 PMCID: PMC8070305 DOI: 10.3390/ijerph18084062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
In order to describe the changes of soil temperature field, air flow field and remediation situation with time during the process of thermally enhanced SVE (soil vapor extraction), a remediation experiment of benzene contaminated soil with single extraction pipe was carried out in a box device. The results showed that the whole temperature of the system was raised to 80 °C in 4 h. 43% of benzene were removed in the first 2% of the extraction time. After 24 h, the repair efficiency was close to 100%. The device can efficiently remove benzene from soil. By continuously monitoring the parameters in the operation process of the system, the spatial distribution of temperature and soil gas pollutant concentration with time was plotted. It showed the benzene concentration distribution in the soil gas was more consistent with the temperature distribution before the start of ventilation, and the concentration of benzene in the soil gas dropped rapidly after ventilation, while the temperature distribution was almost unaffected. In the treatment of soil with a benzene content of 17.8 mg∙kg−1, when the soil gas benzene concentration is the highest at 180 min, the peak value is 11,200 mg∙m−3, and the average concentration is 7629.4 mg∙m−3.
Collapse
|
39
|
Wu B, Guo S, Wang J. Spatial ecological risk assessment for contaminated soil in oiled fields. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123984. [PMID: 33265023 DOI: 10.1016/j.jhazmat.2020.123984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/13/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Soil total petroleum hydrocarbon (TPH) pollution in oil fields is a worldwide environmental problem. In particular, the dense distribution of oil wells in low-permeability oil reservoirs has caused regional pollution superposition. We proposed a feasible method for the spatial ecological assessment for soil pollution in oil fields. Typical TPH-contaminated soil in the Shengli oil field was examined according to the classification of oil well properties, including the spatial structure, distribution density, and exploitation history. Soil TPH concentrations of each oil filed site was calculated by Monte Carlo simulation. The risks were assessed according to multiple receptors and risk sources. The results indicated that the average TPH concentration was greater than 2100 mg·kg-1. The differences of TPH concentrations were mainly correlated to the exploitation period. The soil TPH content demonstrated a spatial cluster pattern according to the Anselin Local Moran's Index (p < 0.01). The risk for wheat and earthworms showed that more than 98% of the study area was under a low risk level. However, high risk accounted for only 0.9% when bacteria was used as a bioindicator, and the composition of different risk levels was similar to that of the ecological risk assessed based on the soil quality index.
Collapse
Affiliation(s)
- Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, PR China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, PR China
| | - Jianing Wang
- Ecology Institute, Qilu University of Technology, Jinan 250353, PR China
| |
Collapse
|
40
|
Liu P, Zhang Y, Tang Q, Shi S. Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Galitskaya P, Biktasheva L, Kuryntseva P, Selivanovskaya S. Response of soil bacterial communities to high petroleum content in the absence of remediation procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9610-9627. [PMID: 33155112 DOI: 10.1007/s11356-020-11290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Oil spills are events that frequently lead to petroleum pollution. This pollution may cause stress to microbial communities, which require long adaption periods. Soil petroleum pollution is currently considered one of the most serious environmental problems. In the present work, processes occurring in the bacterial communities of three soil samples with different physicochemical characteristics, artificially polluted with 12% of crude oil, were investigated in 120-day laboratory experiment. It was found that the total petroleum hydrocarbon content did not decrease during this time; however, the proportion of petroleum fractions was altered. Petroleum pollution led to a short-term decrease in the bacterial 16S rRNA gene copy number. On the basis of amplicon sequencing analysis, it was concluded that bacterial community successions were similar in the three soils investigated. Thus, the phyla Actinobacteria and Proteobacteria and candidate TM7 phylum (Saccaribacteria) were predominant with relative abundances ranging from 35 to 58%, 25 to 30%, and 15 to 35% in different samples, respectively. The predominant operational taxonomic units (OTUs) after pollution belonged to the genera Rhodococcus and Mycobacterium, families Nocardioidaceae and Sinobacteraceae, and candidate class ТМ7-3. Genes from the alkIII group encoding monoxygenases were the most abundant compared with other catabolic genes from the alkI, alkII, GN-PAH, and GP-PAH groups, and their copy number significantly increased after pollution. The copy numbers of expressed genes involved in the horizontal transfer of catabolic genes, FlgC, TraG, and OmpF, also increased after pollution by 11-33, 16-63, and 11-71 times, respectively. The bacterial community structure after a high level of petroleum pollution changed because of proliferation of the cells that initially were able to decompose hydrocarbons, and in the second place, because proliferation of the cells that received these catabolic genes through horizontal transfer.
Collapse
Affiliation(s)
- Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008.
| | - Polina Kuryntseva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | | |
Collapse
|
42
|
Mirjani M, Soleimani M, Salari V. Toxicity assessment of total petroleum hydrocarbons in aquatic environments using the bioluminescent bacterium Aliivibrio fischeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111554. [PMID: 33254411 DOI: 10.1016/j.ecoenv.2020.111554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Toxicity monitoring of environmental pollutants especially petroleum hydrocarbons as priority pollutants is an important environmental issue. This study addresses a rapid, sensitive and cost effective method for the detection of total petroleum hydrocarbons (TPHs) using Aliivibrio fischeri bioluminescence inhibition bioassay. At the first step, the optimum conditions including time, pH and temperature for growth of A. fischeri were determined. Then, two methods were used to evaluate the toxicity of petroleum compounds. In the first method, short-term (15 min) and long-term (16 h) toxicity assays were performed. In the second method luminescence kinetics of A. fischeri was investigated during 24 h. The results demonstrated the most appropriate time for the bacterial growth occurred 16 h after inoculation and optimum temperature and pH were found 25 °C and 7, respectively. Short-term and long-term toxicity did not indicate any toxicity for various concentrations of TPHs (30, 50, 110, 160, 220 mg/L). Considering the luminescence kinetics of A. fischeri the long-term assay was introduced as 6 h. The half maximal effective concentration (EC50) was achieved 1.77 mg/L of TPHs. It is concluded that the luminescence kinetics of A. fischeri can be a valuable approach for assessing toxicity of TPHs in aquatic environments.
Collapse
Affiliation(s)
- Marzieh Mirjani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Vahid Salari
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| |
Collapse
|
43
|
de Almeida KA, Garcia EM, Penteado JO, Tavella RA, Fernandes CLF, Ramires PF, Ramires Júnior OV, Muccillo-Baisch AL, da Luz Mathias M, Dias D, da Siva Júnior FMR. Multimarker approach to assess the exposure of the wild rodent Calomys laucha to a simulated crude oil spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2236-2244. [PMID: 32880044 DOI: 10.1007/s11356-020-10673-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
A mysterious oil spill occurred in the ocean near Brazil in 2019, which affected coastal areas in northeastern Brazil. When oil pollution occurs in coastal zones, organisms such as small mammals can suffer deleterious effects to their health. This study aimed to evaluate the effects of exposure to contaminated sandy soil with different crude oil concentrations in males of the species Calomys laucha. The exposure to crude oil resulted in multiple health issues for the subjects in the very first days of exposure. Furthermore, the exposure resulted in mutagenic damage to bone marrow blood cells and behavioral and morphological alterations, which were almost always in a dose-dependent form. The present study demonstrates the sensibility of the biomarkers used and highlights that small wild mammals such as C. laucha are useful for predicting environmental damage caused by the exposure to crude oil.
Collapse
Affiliation(s)
- Krissia Aparecida de Almeida
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Edariane Menestrino Garcia
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Julia Oliveira Penteado
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Ronan Adler Tavella
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Caroline Lopes Feijo Fernandes
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Paula Florencio Ramires
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | | | - Ana Luíza Muccillo-Baisch
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Maria da Luz Mathias
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon & CESAM - Centre for Environmental and Marine Studies, Campo Grande, 1749-016, Lisbon, Portugal
| | - Deodália Dias
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon & CESAM - Centre for Environmental and Marine Studies, Campo Grande, 1749-016, Lisbon, Portugal
| | - Flavio Manoel Rodrigues da Siva Júnior
- Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil.
- Programa de Pós-graduação em Ciências Da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| |
Collapse
|
44
|
Application of Plant and Earthworm Bioassays for Ecotoxicological Assessment of Hydrocarbon-Contaminated Soil Recovery. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-04883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Asemoloye MD, Tosi S, Daccò C, Wang X, Xu S, Marchisio MA, Gao W, Jonathan SG, Pecoraro L. Hydrocarbon Degradation and Enzyme Activities of Aspergillus oryzae and Mucor irregularis Isolated from Nigerian Crude Oil-Polluted Sites. Microorganisms 2020; 8:E1912. [PMID: 33266344 PMCID: PMC7761101 DOI: 10.3390/microorganisms8121912] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
Many free-living saprobic fungi are nature recruited organisms for the degradation of wastes, ranging from lignocellulose biomass to organic/inorganic chemicals, aided by their production of enzymes. In this study, fungal strains were isolated from contaminated crude-oil fields in Nigeria. The dominant fungi were selected from each site and identified as Aspergillus oryzae and Mucor irregularis based on morphological and molecular characterization, with site percentage incidences of 56.67% and 66.70%, respectively. Selected strains response/tolerance to complex hydrocarbon (used engine oil) was studied by growing them on Bushnell Haas (BH) mineral agar supplemented with the hydrocarbon at different concentrations, i.e., 5%, 10%, 15%, and 20%, with a control having dextrose. Hydrocarbon degradation potentials of these fungi were confirmed in BH broth culture filtrates pre-supplemented with 1% engine oil after 15 days of incubation using GC/MS. In addition, the presence of putative enzymes, laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) was confirmed in culture filtrates using appropriate substrates. The analyzed fungi grew in hydrocarbon supplemented medium with no other carbon source and exhibited 39.40% and 45.85% dose inhibition response (DIR) respectively at 20% hydrocarbon concentration. An enzyme activity test revealed that these two fungi produced more Lac than MnP and LiP. It was also observed through the GC/MS analyses that while A. oryzae acted on all hydrocarbon components in the used engine oil, M. irregularis only degraded the long-chain hydrocarbons and BTEX. This study confirms that A. oryzae and M. irregularis have the potential to be exploited in the bio-treatment and removal of hydrocarbons from polluted soils.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Solveig Tosi
- Laboratory of Mycology, Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (S.T.); (C.D.)
| | - Chiara Daccò
- Laboratory of Mycology, Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (S.T.); (C.D.)
| | - Xiao Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Shihan Xu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| | - Segun Gbolagade Jonathan
- Mycology & Applied Microbiology Group, Department of Botany, University of Ibadan, Ibadan 200284, Oyo State, Nigeria;
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; (M.D.A.); (X.W.); (S.X.); (W.G.)
| |
Collapse
|
46
|
Koshlaf E, Shahsavari E, Haleyur N, Osborn AM, Ball AS. Impact of necrophytoremediation on petroleum hydrocarbon degradation, ecotoxicity and soil bacterial community composition in diesel-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31171-31183. [PMID: 32474790 DOI: 10.1007/s11356-020-09339-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/18/2020] [Indexed: 05/25/2023]
Abstract
Hydrocarbon degradation is usually measured in laboratories under controlled conditions to establish the likely efficacy of a bioremediation process in the field. The present study used greenhouse-based bioremediation to investigate the effects of natural attenuation (NA) and necrophytoremediation (addition of pea straw (PS)) on hydrocarbon degradation, toxicity and the associated bacterial community structure and composition in diesel-contaminated soil. A significant reduction in total petroleum hydrocarbon (TPH) concentration was detected in both treatments; however, PS-treated soil showed more rapid degradation (87%) after 5 months together with a significant reduction in soil toxicity (EC50 = 91 mg diesel/kg). Quantitative PCR analysis revealed an increase in the number of 16S rRNA and alkB genes in the PS-amended soil. Substantial shifts in soil bacterial community were observed during the bioremediation, including an increased abundance of numerous hydrocarbon-degrading bacteria. The bacterial community shifted from dominance by Alphaproteobacteria and Gammaproteobacteria in the original soil to Actinobacteria during bioremediation. The dominance of two genera of bacteria, Sphingobacteria and Betaproteobacteria, in both NA- and PS-treated soil demonstrated changes occurring within the soil bacterial community through the incubation period. Additionally, pea straw itself was found to harbour a diverse hydrocarbonoclastic community including Luteimonas, Achromobacter, Sphingomonas, Rhodococcus and Microbacterium. At the end of the experiment, PS-amended soil exhibited reduced ecotoxicity and increased bacterial diversity as compared with the NA-treated soil. These findings suggest the rapid growth of species stimulated by the bioremediation treatment and strong selection for bacteria capable of degrading petroleum hydrocarbons during necrophytoremediation. Graphical abstract.
Collapse
Affiliation(s)
- Eman Koshlaf
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Nagalakshmi Haleyur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Andrew Mark Osborn
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
47
|
Nascimben Santos E, Ágoston Á, Kertész S, Hodúr C, László Z, Pap Z, Kása Z, Alapi T, Krishnan SG, Arthanareeswaran G, Hernadi K, Veréb G. Investigation of the applicability of TiO
2
, BiVO
4
, and WO
3
nanomaterials for advanced photocatalytic membranes used for oil‐in‐water emulsion separation. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Erika Nascimben Santos
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Áron Ágoston
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Szabolcs Kertész
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Cecilia Hodúr
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
- Institute of Environmental Science and Technology University of Szeged Szeged Hungary
| | - Zsuzsanna László
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Zsolt Pap
- Institute of Environmental Science and Technology University of Szeged Szeged Hungary
| | - Zsolt Kása
- Institute of Environmental Science and Technology University of Szeged Szeged Hungary
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, Institute of Chemistry University of Szeged Szeged Hungary
| | - S.A. Gokula Krishnan
- Department of Chemical Engineering, National Institute of Technology Membrane Research Laboratory Tiruchirappalli India
| | - Gangasalam Arthanareeswaran
- Department of Chemical Engineering, National Institute of Technology Membrane Research Laboratory Tiruchirappalli India
| | - Klara Hernadi
- Department of Applied and Environmental Chemistry, Institute of Chemistry University of Szeged Szeged Hungary
| | - Gábor Veréb
- Institute of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| |
Collapse
|
48
|
Yeung KWY, Giesy JP, Zhou GJ, Leung KMY. Occurrence, toxicity and ecological risk of larvicidal oil in the coastal marine ecosystem of Hong Kong. MARINE POLLUTION BULLETIN 2020; 156:111178. [PMID: 32510357 DOI: 10.1016/j.marpolbul.2020.111178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Application of larvicidal oil (LO) is the most common practice in Hong Kong to control mosquitos, and hence prevent mosquito-borne diseases and protect human health. Globally, this study represented the first comprehensive assessment of toxicity and risk posed by LO to marine organisms. We found concentrations of LO ranged from 0.08 to 0.66 mg/L in coastal seawaters of Hong Kong. Waterborne exposure to water-accommodated fractions of LO resulted in growth inhibition to two microalgal species (72-h EC50: 1.92-2.90 mg/L) and acute mortality to three marine animals (96-h LC50: 3.41-8.10 mg/L). From these toxicity results, a concentration that considered to be hazardous to 5% of species (HC5) was predicted at 1.45 mg/L, while the predicted no-effect concentration was determined to be 0.29 mg/L. The hazard quotient of LO exceeded 1 at 9 out of 15 sites, indicating moderate-to-high ecological risk to exposure of LO in the marine environment of Hong Kong.
Collapse
Affiliation(s)
- Katie W Y Yeung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - John P Giesy
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
49
|
Nascimbén Santos É, László Z, Hodúr C, Arthanareeswaran G, Veréb G. Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: A review. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2533] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Érika Nascimbén Santos
- Department of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
- Doctoral School of Environmental Sciences University of Szeged Szeged Hungary
| | - Zsuzsanna László
- Department of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Cecilia Hodúr
- Department of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
- Institute of Environmental and Technological Sciences University of Szeged Szeged Hungary
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli India
| | - Gábor Veréb
- Department of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| |
Collapse
|
50
|
Liu Y, Zhang Q, Wu B, Li X, Ma F, Li F, Gu Q. Hematite-facilitated pyrolysis: An innovative method for remediating soils contaminated with heavy hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121165. [PMID: 31522067 DOI: 10.1016/j.jhazmat.2019.121165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
As a recalcitrant fraction of petroleum, heavy hydrocarbons (including aromatics, resins, and asphaltenes) can remain in contaminated soils even after decades of weathering, thereby causing serious harm to the soil ecosystem and human health. Pyrolysis is a promising technique for remediating petroleum-contaminated soil. However, this technique still presents some drawbacks, such as high energy consumption and damage to soil properties. Therefore, an innovative method using hematite (Fe2O3) for the catalytic pyrolysis of weathered petroleum-contaminated soil was developed in this study. Compared with soil pyrolyzed without Fe2O3 at 400 °C for 30 min, the residual concentrations of aromatics, resins, and asphaltenes in soil pyrolyzed with 5.0% Fe2O3 were reduced by 67.8%, 52.3%, and 67.9%, respectively. After pyrolysis with 5.0% Fe2O3, the water-holding capacity of soil was considerably increased and the soil became darker and rougher. Scanning electron microscopy analysis showed that many small holes occurred on the surface of the pyrolytic soil. X-ray photoelectron spectrometer analysis showed that a thin layer of graphitic C was formed and deposited on the surface of the pyrolytic soil. We also observed that the wheat germination percentage and biomass yield in the soil pyrolyzed with 5.0% Fe2O3 were even higher than those in clean soil.
Collapse
Affiliation(s)
- Yuqin Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Qian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaodong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|