1
|
Qi R, Qian C, Li Y, Wang Y. Biofilm formation on MgFe-LDH@quartz sand as novel wetland substrate under varied C/N ratios for BDE-47 removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124779. [PMID: 39168436 DOI: 10.1016/j.envpol.2024.124779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Layered double hydroxide (LDH)-coated substrates could enhance the removal of various wastewater-born pollutants. However, research on biofilms attached to LDH-coatings and their synergistic purification effects on strongly hydrophobic persistent organic pollutants (POPs) remains limited. This study aims to investigate biofilm formation on MgFe-LDH@quartz sand and its effectiveness in removing tetrabromodiphenyl ether (BDE-47), an emerging halogenated POP in municipal wastewater. Under different C/N ratios (3, 5, and 10), BDE-47 removal rates ranged from 28.0% to 41.6% after 72 h. The optimal performance was achieved with LDH coating at C/N = 5, when substrate biofilm reached its highest extracelluar polymer substances (EPS) content, dehydrogenase activity and relative hydrophobicity. Moreover, distinct distribution patterns of EPS components' fluorescence peaks were observed in the LDH-coating treatment using three dimensional excitation-emission matrix (3D-EEM). While substrate adsorption was the primary mechanism for BDE-47 removal, accounting for 59.6%-83.4% of the total, biofilm adsorption and degradation contributed a relatively lower amount, ranging from 11.5% to 21.4%, and were more dependent on the C/N ratio. Notably, the maximum carrying capacity of protein predicted by the logistic growth model exhibited a strong positive correlation with the total BDE-47 removal rate (R2 = 0.82, p < 0.05), highlighting the importance of biofilm extracelluar proteins.
Collapse
Affiliation(s)
- Rao Qi
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Cheng Qian
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Yi Li
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Yafen Wang
- School of Environmental Studies, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, PR China; Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, PR China.
| |
Collapse
|
2
|
Rodrigues T, Ferreira KC, Isquibola G, Franco DF, Anderson JL, Merib JDO, Lima Gomes PCFD. Investigating a new approach for magnetic ionic liquids: Dispersive liquid-liquid microextraction coupled to pyrolysis gas-chromatography-mass spectrometry to determine flame retardants in sewage sludge samples. J Chromatogr A 2024; 1730:465038. [PMID: 38905945 DOI: 10.1016/j.chroma.2024.465038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
This study addresses the analysis of emerging contaminants, often using chromatographic techniques coupled to mass spectrometry. However, sample preparation is often required prior to instrumental analysis, and dispersive liquid-liquid microextraction (DLLME) is a viable strategy in this context. DLLME stands out for its ability to reduce sample and solvent volumes. Notably, dispersive liquid-liquid microextraction using magnetic ionic liquids (MILs) has gained relevance due to the incorporation of paramagnetic components in the chemical structure, thereby eliminating the centrifugation step. A pyrolizer was selected in this work to introduce sample onto the GC column, since the MIL is extremely viscous and incompatible with direct introduction through an autosampler. This study is the first to report the use of a DLLME/MIL technique for sample introduction through a pyrolizer in gas chromatography coupled to mass spectrometry (GC-MS). This approach enables the MIL to be compatible with gas chromatography systems, resulting in optimized analytical and instrument performance. The analysis of polybrominated diphenyl ether flame retardants (PBDEs) was focused on the PBDE congeners 28, 47, 99, 100, and 153 in sewage sludge samples. The [P6,6,6,14+]2[MnCl42-] MIL was thoroughly characterized using UV-Vis, Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy, as well as thermal analysis. In the chromatographic method, a pyrolyzer was used in the sample introduction step (Py-GC-MS), and critical injection settings were optimized using multivariate approaches. Optimized conditions were achieved with a temperature of 220 °C, a pyrolysis time of 0.60 min, and an injection volume of 9.00 μL. DLLME optimization was performed through central compound planning (CCD), and optimized training conditions were achieved with 10.0 mg of MIL, 3.00 μL of acetonitrile (ACN) as dispersive solvent, extraction time of 60 s, and volume of a sample of 8.50 mL. Precision was observed to range from 0.11 % to 12.5 %, with limits of detection (LOD) of 44.4 μg L-1 for PBDE 28, 16.9 μg L-1 for PBDE 47 and PBDE 99, 33.0 μg L-1 for PBDE 100 and 375 μg L-1 for PBDE 153. PBDE 28 was identified and analyzed in the sludge sample at a concentration of 800 μg L-1. The use of MIL in dispersive liquid-liquid microextraction combined with pyrolysis gas chromatography-mass spectrometry enables identification and quantification of PBDEs in sewage sludge samples at concentrations down to the µg L-1 level.
Collapse
Affiliation(s)
- Thais Rodrigues
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Karen Chibana Ferreira
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Guilherme Isquibola
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil
| | - Douglas Faza Franco
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP 14800-060, Brazil
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Josias de Oliveira Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Paulo Clairmont Feitosa de Lima Gomes
- Department of Analytical Chemistry, Physical Chemistry and Inorganic Chemistry, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil.
| |
Collapse
|
3
|
Lv N, Wang B, Wang H, Xiao T, Dong B, Xu Z. The occurrence characteristics, removal efficiency, and risk assessment of polycyclic aromatic hydrocarbons in sewage sludges from across China. CHEMOSPHERE 2024; 351:141033. [PMID: 38160951 DOI: 10.1016/j.chemosphere.2023.141033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Sewage sludge is considered to be an important sink for polycyclic aromatic hydrocarbons (PAHs) in wastewater treatment plants and the potential risks from sludge contaminated with PAHs during land application has attracted attention. To identify the priority PAHs for control and enhance their removal from sludge, the occurrence characteristics, removal efficiency, and risk assessment of PAHs in sewage sludges from across China were analyzed. Data collection was from 2001 to 2023. Results showed that 16 PAHs were widely detected in Chinese sewage sludge with total amounts (∑16PAHs) between 0.06 and 34.93 mg kg dw-1. Fossil fuel, coal, and biomass combustion are main anthropogenic sources of PAHs in China. In general, phenanthrene (PHE), anthracene (ANT), fluorescein (FL), chrysene (CHR), pyrene (PYR), and benzo[b]fluoranthene (BbF) are regarded as the main components and PAHs with 3-5 rings dominate (84.01%-91.53%) sewage sludge in China. Although aerobic composting and anaerobic treatment significantly improve ∑16PAHs removal, sludge stabilization treatment only reduced the risk by a small amount, especially for high-molecular-weight (HMW) PAHs. The benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and dibenzo[a,h]anthracene (DahA) are proposed as the priority control contaminants for sewage sludge in China because they have consistently high-risk quotient (RQ) values of 2.42-7.47, 1.28-3.16, 1.06-1.83 before and after sludge stabilization, respectively. More attention should be paid to BaA, BbF, benzo[k]fluoranthene (BkF), BaP, DahA, and indeno[1,2,3-cd]pyrene (IcdP) in Beijing; ANT, BaA, and BaP in Shanghai; and BaA and BaP in Guanghzou. Although the toxic equivalent quotient (TEQ) for PAHs met the limit concentration requirements of the national standard, the potential health risks due to long-term exposure to HMW PAHs cannot be ignored because the incremental lifetime cancer risk (ILCR) was consistently in the risk threshold range (>1 × 10-6). Some suggestions on enhanced treatment approaches and land use standards are proposed to further alleviate the risk from HMW PAHs.
Collapse
Affiliation(s)
- Nan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bingqing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Wang G, Li C, Liu S, Xing Z, Guo P, Hao Z, Li M, Wang H, Rong G, Liu Y. Disclosing phototransformation mechanisms of decabromodiphenyl ether (BDE-209) in different media by simulated sunlight: Implication by compound-specific stable isotope analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14980-14989. [PMID: 38286932 DOI: 10.1007/s11356-024-32203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
As one of the typical brominated flame retardants, decabromodiphenyl ether (BDE-209) has been widely detected in environment. However, scarce information was available on BDE-209 phototransformation mechanisms in various media. In this study, compound-specific stable isotope analysis was first applied to investigate BDE-209 phototransformation in n-hexane, MeOH:H2O (v:v, 8:2), and simulated seawater by simulated sunlight. BDE-209 transformation followed pseudo-first-order kinetic, with degradation rate in the following of n-hexane (2.66 × 10-3 min-1) > simulated seawater (1.83 × 10-3 min-1) > MeOH:H2O (1.41 × 10-3 min-1). Pronounced carbon isotope fractionation was first observed for BDE-209 phototransformation, with carbon isotope enrichment factors (εC) of -1.01 ± 0.14‰, -1.77 ± 0.26‰, -2.94 ± 0.38‰ in n-hexane, MeOH:H2O and simulated seawater, respectively. Combination analysis of products and stable carbon isotope, debromination with cleavage of C-Br bonds as rate-limiting step was the main mechanism for BDE-209 phototransformation in n-hexane, debromination and hydroxylation with cleavage of C-Br bonds as rate-limiting steps in MeOH:H2O, and debromination, hydroxylation and chlorination in simulated seawater. This present study confirmed that stable carbon isotope analysis was a robust method to discovery the underlying phototransformation mechanisms of BDE-209 in various solutions.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China.
| | - Chuanyuan Li
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Pengxu Guo
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Zixuan Hao
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Maojiao Li
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Guangzhi Rong
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, 116026, Dalian, People's Republic of China
| |
Collapse
|
5
|
Rede D, Teixeira I, Delerue-Matos C, Fernandes VC. Assessing emerging and priority micropollutants in sewage sludge: environmental insights and analytical approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3152-3168. [PMID: 38085484 PMCID: PMC10791843 DOI: 10.1007/s11356-023-30963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The application of sewage sludge (SS) in agriculture, as an alternative to manufactured fertilizers, is current practice worldwide. However, as wastewater is collected from households, industries, and hospitals, the resulting sludge could contaminate land with creeping levels of pharmaceuticals, pesticides, heavy metals, polycyclic aromatic hydrocarbons, and microplastics, among others. Thus, the sustainable management of SS requires the development of selective methods for the identification and quantification of pollutants, preventing ecological and/or health risks. This study presents a thorough evaluation of emerging and priority micropollutants in SS, through the lens of environmental insights, by developing and implementing an integrated analytical approach. A quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method, coupled with gas chromatography and liquid chromatography, was optimized for the determination of 42 organic compounds. These include organophosphorus pesticides, organochlorine pesticides, pyrethroid pesticides, organophosphate ester flame retardants, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. The optimization of the dispersive-solid phase for clean-up, combined with the optimization of chromatographic parameters, ensured improved sensitivity. Method validation included assessments for recovery, reproducibility, limit of detection (LOD), and limit of quantification (LOQ). Recoveries ranged from 59.5 to 117%, while LODs ranged from 0.00700 to 0.271 µg g-1. Application of the method to seven SS samples from Portuguese wastewater treatment plants revealed the presence of sixteen compounds, including persistent organic pollutants. The quantification of α-endosulfan, an organochlorine pesticide, was consistently observed in all samples, with concentrations ranging from 0.110 to 0.571 µg g-1. Furthermore, the study encompasses the analysis of agronomic parameters, as well as the mineral and metal content in SS samples. The study demonstrates that the levels of heavy metals comply with legal limits. By conducting a comprehensive investigation into the presence of micropollutants in SS, this study contributes to a deeper understanding of the environmental and sustainable implications associated with SS management.
Collapse
Affiliation(s)
- Diana Rede
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ivan Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
| |
Collapse
|
6
|
Košnář Z, Mercl F, Pierdonà L, Chane AD, Míchal P, Tlustoš P. Concentration of the main persistent organic pollutants in sewage sludge in relation to wastewater treatment plant parameters and sludge stabilisation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122060. [PMID: 37330192 DOI: 10.1016/j.envpol.2023.122060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Concentration of 16 polycyclic aromatic hydrocarbons (PAHs), 7 polychlorinated biphenyls (PCBs), and 11 organochlorine pesticides (OCPs) in sewage sludge from 40 wastewater treatment plants (WWTPs) was investigated. Relationship between pollutant sludge contents, main WWTP parameters and type of sludge stabilisation was carefully evaluated. Average load of PAHs, PCBs, and OCPs in different sludges from Czech Republic was 3096, 95.7 and 76.1 μg/kg dry weight, respectively. There were moderate/strong correlations among the individual tested pollutants in sludge (r = 0.40-0.76). Relationship between total pollutant contents in sludge, common WWTP parameters and sludge stabilisation was not evident. Only individual pollutants such anthracene and PCB 52 correlated significantly (P < 0.05) with biochemical oxygen demand (r = -0.35) and chemical oxygen demand removal efficiencies (r = -0.35), suggesting recalcitrance to degradation during wastewater treatment. When sorted according to the design capacity, a linear correlation between WWTP size and pollutant contents in sludge was evident with growing WWTP capacity. Our study indicated that WWTPs with anaerobic digestion are prone to accumulate a statistically higher content of PAHs and PCBs (P < 0.05) in digested sludges compared to aerobically digested ones. The influence of anaerobic digestion temperature of treated sludge on tested pollutants was not evident.
Collapse
Affiliation(s)
- Zdeněk Košnář
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic.
| | - Filip Mercl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Lorenzo Pierdonà
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Abraham Demelash Chane
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Pavel Míchal
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha, Suchdol, Czech Republic
| |
Collapse
|
7
|
Liang Y, Hu W, Jia C, Wang Y, Dong C, Cai Y, Xie Q, Zhu X, Han Y. Rapid screening of polybrominated diphenyl ethers in water by solid-phase microextraction coupled with ultrahigh-resolution mass spectrometry. Anal Bioanal Chem 2023; 415:1437-1444. [PMID: 36648546 DOI: 10.1007/s00216-023-04531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are considered emerging organic contaminants that attract more attention in the environment. Herein, online coupling of solid-phase microextraction and ultrahigh-resolution mass spectrometry was developed for rapid screening of eight PBDEs in water samples. This procedure was completed in 22 min, about 6 times faster than the routine workflow such as solid-phase extraction coupled with gas chromatography-mass spectrometry. Thermal desorption and solvent-assisted atmospheric pressure chemical ionization were developed for the effective coupling of solid-phase microextraction (SPME) with ultrahigh-resolution mass spectrometry (UHRMS), which contributed to the signal enhancement and made the methodology feasible for environmental screening. The limits of detection and quantification were 0.01-0.50 ng/mL and 0.05-4.00 ng/mL, respectively. The recoveries were 57.2-75.2% for quality control samples at spiking levels of 0.8-10 ng/mL (4-50 ng/mL for BDE209), with relative standard deviation less than 19.0%. Twelve water samples from different river sites near industrial areas were screened using the developed method. The results showed that BDE-209 was the dominant PBDE (1.02-1.28 ng/mL in positive samples), but its amount was lower than the human health ambient water quality criteria. Consequently, the developed method provides a rapid and reliable way of evaluating contamination status and risks of PBDEs in aqueous environment.
Collapse
Affiliation(s)
- Yuchen Liang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Wenya Hu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Changcheng Jia
- Beijing 101 Eco-Geology Detection Co., Ltd, Beijing Institute of Geological Engineering Design, Beijing, 101500, China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chenglong Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yan Cai
- Beijing 101 Eco-Geology Detection Co., Ltd, Beijing Institute of Geological Engineering Design, Beijing, 101500, China
| | - Qingqing Xie
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xiaowen Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
8
|
Chen G, Deng X, Wang J. Pollution level, spatial distribution, and congener fractionation characteristics of low-brominated polybrominated diphenyl ethers (PBDEs) in sediments around Chaohu Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:631. [PMID: 35920914 DOI: 10.1007/s10661-022-10246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
As new persistent organic compounds, polybrominated diphenyl ethers (PBDEs) have aroused important concern because of their potential bioaccumulation and possible ecological and health risk. To examine the sources and temporal variation of PBDEs in Chaohu Lake in eastern China, the surface sediments from Nanfei River (NFR) and core sediments from four estuaries were measured. It showed that low-brominated congeners were dominant, from MonoBDEs to HeptaBDEs (referred to as Σ39PBDE). Concentrations of ∑39PBDE and the ratios of (BDE-47 + BDE-99 + BDE-100)/(BDE-153 + BDE-154) were much greater in surface sediments than in core sediments. The highest concentration was observed in a site close to the outfall of a municipal sewage treatment plant (MSTP), and the ratio was significantly correlated with ∑39PBDE. These results suggested that PentaBDE and OctaBDE commercial mixtures were widely used around Chaohu Lake and the effluent of municipal sewage was a dominant source of PBDEs to surface sediment. Compared to data from other freshwater systems around the world, the concentrations of BDE-47 and BDE-99 in this study were in the middle of the range of global data, but BDE-183 concentrations were at the high end of the range. Due to restrictions on the usage of PentanBDE and OctaBDE commercial mixtures, reductions of PBDE levels from subsurface to superficial layer were observed in all estuaries. Elevated contribution by MonoBDEs to ∑39PBDE in the estuary of the only outflow river suggests significant congener fractionation. TriBDEs, TetraBDEs, and HexaBDEs appeared to pose low risks in all surface sediments, but moderate to high risks may be expected for PentaBDEs. Overall, the results would contribute to a better understanding of the sources and environmental fate of PBDEs in the studied eutrophicated lake.
Collapse
Affiliation(s)
- Guangzhou Chen
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilization, Anhui Jianzhu University, Hefei, 230601, China.
- Anhui Key Laboratory of Water Pollution Control and Waste Water Recycling, Anhui Jianzhu University, Hefei, 230601, China.
- Anhui Research Academy of Ecological Civilization, Anhui JianZhu University, Hefei, 230601, China.
| | - Xinyue Deng
- Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilization, Anhui Jianzhu University, Hefei, 230601, China
- Anhui Key Laboratory of Water Pollution Control and Waste Water Recycling, Anhui Jianzhu University, Hefei, 230601, China
| | - Jizhong Wang
- LID, Guangzhou GRG Metrology & Test (Hefei) CO, Hefei, 230088, China.
| |
Collapse
|
9
|
Techniques for the detection and quantification of emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In recent years, the diverse industrial practices and human inputs widely disseminated emerging contaminants (ECs) throughout environmental matrices, which is of great concern. Even at low concentrations, ECs pose major ecological problems and threaten human health and the environment’s biota. Consequently, people’s interest and concerns on the widespread dissemination of environmentally connected ECs of great concern as developed due to their scientific understanding, technical innovation, and socioeconomic awareness. Increased detection of contaminants may occur from climatic, socioeconomic, and demographic changes and the growing sensitivity of analytical techniques. Hence, this article reviews the determination of ECs in ecological specimens, from aquatic setup (river water, marine water, and wastewater), sludge, soil, sediment, and air. Sample collection and the quality measures are summarized. The preparation of samples, including extraction and cleanup and the subsequent instrumental analysis of ECs, are all covered. Traditional and recent extraction and cleanup applications to analyze ECs in samples are reviewed here in this paper. The detection and quantification of ECs using gas chromatography (GC) and liquid chromatography (LC) linked with various detectors, particularly mass spectrometry (MS), is also summarized and explored, as are other possible techniques. This study aims to give readers a more excellent knowledge of how new and improved approaches are being developed and serve as a resource for researchers looking for the best method for detecting ECs in their studies.
Collapse
|
10
|
Liu Q, Xu X, Lin L, Wang D. Occurrence, distribution and ecological risk assessment of polycyclic aromatic hydrocarbons and their derivatives in the effluents of wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147911. [PMID: 34082210 DOI: 10.1016/j.scitotenv.2021.147911] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the concentration distribution of parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives in the effluents of 5 municipal wastewater treatment plants (WWTPs) in Beijing, China for eight months. We first identified the coexistence of PAHs, chlorinated PAHs (Cl-PAHs), brominated PAHs (Br-PAHs) and oxygenated PAHs (OPAHs) in the effluents of WWTPs. Three Cl-PAHs and 7 Br-PAHs were first found. The total concentrations of PAHs, Cl-PAHs, Br-PAHs and OPAHs ranged from 8.99-88.38, n.d.-5.70, n.d.-13.11 ng L-1 and 15.47-106.92 ng L-1, respectively. In terms of temporal distributions, the total concentrations of PAHs and OPAHs presented a decreasing trend from April to November and the total concentrations of Cl-PAHs and Br-PAHs fluctuated at lower levels. These results indicated that these compounds will be long-term discharged into the receiving river. In addition, Cl-PAHs, Br-PAHs and OPAHs were likely generated by transformations occurring during chlorination disinfection. For ecological risk assessment, risk quotients of 6 compounds, indeno[1,2,3-cd] pyrene, benzo[g,h,i]perylene, dibenz[a,h]anthracene, 6-bromobenzo[a]pyrene, 1,8-dibromopyrene and 1,6-dibromopyrene, were thought to indicate high ecological risk (fish). Furthermore, Cl-PAHs, Br-PAHs and OPAHs in the effluents of WWTPs can cause more serious environmental hazards than the corresponding PAHs.
Collapse
Affiliation(s)
- Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lihua Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
11
|
Lu C, Zhao H, Wang S, Tang Y. Theoretical investigation on the gas phase reaction mechanism of methanol with Sn and Pb in sludge incineration. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenggang Lu
- School of Environmental and Municipal Engineering Qingdao University of Technology Qingdao China
| | - Hui Zhao
- School of Environmental and Municipal Engineering Qingdao University of Technology Qingdao China
| | - Shuangjun Wang
- School of Environmental and Municipal Engineering Qingdao University of Technology Qingdao China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering Qingdao University of Technology Qingdao China
| |
Collapse
|
12
|
A Mechanistic Model to Assess the Fate of Naphthalene and Benzo(a)pyrene in a Chilean WWTP. Processes (Basel) 2021. [DOI: 10.3390/pr9081313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a family of organic compounds of widespread presence in the environment. They are recalcitrant, ubiquitous, prone to bioaccumulation, and potentially carcinogenic. Effluent from wastewater treatment plants (WWTPs) constitutes a major source of PAHs into water bodies, and their presence should be closely monitored, especially considering the increasing applications of potable and non-potable reuse of treated wastewater worldwide. Modeling the fate and distribution of PAHs in WWTPs is a valuable tool to overcome the complexity and cost of monitoring and quantifying PAHs. A mechanistic model was built to evaluate the fate of PAHs in both water and sludge lines of a Chilean WWTP. Naphthalene and benzo(a)pyrene were used as models of low-MW and high-MW PAHs. As there were no reported experimental data available for the case study, the influent load was determined through a statistical approach based on reported values worldwide. For both naphthalene and benzo(a)pyrene, the predominant mechanism in the water line was sorption to sludge, while that in the sludge line was desorption. Compared to other studies in the literature, the model satisfactorily describes the mechanisms involved in the fate and distribution of PAHs in a conventional activated sludge WWTP. Even though there is evidence of the presence of PAHs in urban centers in Chile, local regulatory standards do not consider PAHs in the disposal of WWTP effluents. Monitoring of PAHs in both treated effluents and biosolids is imperative, especially when considering de facto reuse and soil amendment in agricultural activities are currently practiced downstream of the studied WWTP.
Collapse
|
13
|
Komolafe O, Mrozik W, Dolfing J, Acharya K, Vassalle L, Mota CR, Davenport R. Occurrence and removal of micropollutants in full-scale aerobic, anaerobic and facultative wastewater treatment plants in Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112286. [PMID: 33706091 DOI: 10.1016/j.jenvman.2021.112286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/23/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
This study aims to evaluate micropollutant occurrence and removal in a low-middle income country (LMIC) by investigating the occurrence of 28 chemicals from different classes (triclosan, 15 polycyclic aromatic hydrocarbons (PAHs), 4 estrogens and 8 polybrominated diphenyl ether (PBDE) congeners) in three technologically diverse full-scale Brazilian wastewater treatment plants (WWTPs). These chemicals were detected at concentrations similar to those reported in other low-middle income countries (LMICs) and high-income countries (HICs) (0.1-49 μg/L) indicating their widespread use globally and the need for more studies in LMICs that are typically characterized by relatively inadequate wastewater treatment barriers. Among the three different WWTPs investigated for removal of these chemicals, the least energy intensive system, waste stabilization ponds (WSPs), was the most effective (95-99%) compared to the activated sludge (79-94%), and Up-flow sludge blanket reactor (UASB) with trickling filters system (89-95%). These results highlight the potential of WSPs for micropollutant removal-especially in warm climates. However, the effluent from all three WWTP could pose a risk to aquatic organisms when discharged into the receiving waters as the effluent concentrations of triclosan, some estrogens, PAHs and BDE 209 were above European environmental quality standards (EQS) or predicted no effect concentration (PNEC values), indicating that receiving water bodies could benefit from further treatment. In combination, these results help to further understand prevailing concentrations of micropollutants globally and fate in current wastewater treatment systems.
Collapse
Affiliation(s)
- Oladapo Komolafe
- GFL Environmental Inc. Greater Toronto Area, L5T 2L2, Ontario, Canada.
| | - Wojciech Mrozik
- School of Engineering, Newcastle University, NE1 7RU, Newcastle Upon Tyne, UK
| | - Jan Dolfing
- Department of Mechanical and Construction Engineering, Northumbria University, NE1 8QH, Newcastle Upon Tyne, UK
| | - Kishor Acharya
- School of Engineering, Newcastle University, NE1 7RU, Newcastle Upon Tyne, UK
| | - Lucas Vassalle
- Departamento de Engenharia Sanitária e Ambiental, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Cesar R Mota
- Departamento de Engenharia Sanitária e Ambiental, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Russell Davenport
- School of Engineering, Newcastle University, NE1 7RU, Newcastle Upon Tyne, UK
| |
Collapse
|
14
|
Mohammed R, Zhang ZF, Jiang C, Hu YH, Liu LY, Ma WL, Song WW, Nikolaev A, Kallenborn R, Li YF. Occurrence, Removal, and Mass Balance of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Wastewater Treatment Plants in Northeast China. TOXICS 2021; 9:toxics9040076. [PMID: 33918398 PMCID: PMC8066243 DOI: 10.3390/toxics9040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), 33 methylated PAHs (Me-PAHs), and 14 nitrated PAHs (NPAHs) were measured in wastewater treatment plants (WWTPs) to study the removal efficiency of these compounds through the WWTPs, as well as their source appointment and potential risk in the effluent. The concentrations of ∑PAHs, ∑Me-PAHs, and ∑NPAHs were 2.01–8.91, 23.0–102, and 6.21–171 µg/L in the influent, and 0.17–1.37, 0.06–0.41 and 0.01–2.41 µg/L in the effluent, respectively. Simple Treat 4.0 and meta-regression methods were applied to calculate the removal efficiencies (REs) for the 63 PAHs and their derivatives in 10 WWTPs and the results were compared with the monitoring data. Overall, the ranges of REs were 55.3–95.4% predicated by the Simple Treat and 47.5–97.7% by the meta-regression. The results by diagnostic ratios and principal component analysis PCA showed that “mixed source” biomass, coal composition, and petroleum could be recognized to either petrogenic or pyrogenic sources. The risk assessment of the effluent was also evaluated, indicating that seven carcinogenic PAHs, Benzo[a]pyrene, Dibenz[a,h]anthracene, and Benzo(a)anthracene were major contributors to the toxics equivalency concentrations (TEQs) in the effluent of WWTPs, to which attention should be paid.
Collapse
Affiliation(s)
- Rashid Mohammed
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- Correspondence: or (Z.-F.Z.); or (Y.-F.L.); Tel.: +86-451-8628-9130 (Z.-F.Z.)
| | - Chao Jiang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin 150028, China; (C.J.); (Y.-H.H.)
| | - Ying-Hua Hu
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin 150028, China; (C.J.); (Y.-H.H.)
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, 677000 Yakutsk, Russia;
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; (R.M.); (L.-Y.L.); (W.-L.M.); (W.-W.S.); (R.K.)
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
- IJRC-PTS-NA, Toronto, ON M2N 6X9, Canada
- Correspondence: or (Z.-F.Z.); or (Y.-F.L.); Tel.: +86-451-8628-9130 (Z.-F.Z.)
| |
Collapse
|
15
|
Liu SZ, Luo YH, Morais CLM, Ma XJ, Yang LJ, Tan DC, Li JB, Liao BY, Wei YF, Martin FL, Pang WY. Spectrochemical determination of effects on rat liver of binary exposure to benzo[a]pyrene and 2,2',4,4'-tetrabromodiphenyl ether. J Appl Toxicol 2021; 41:1816-1825. [PMID: 33759217 DOI: 10.1002/jat.4165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/10/2022]
Abstract
Benzo[a]pyrene (B[a]P) and polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants. The effects in organisms of exposures to binary mixtures of such contaminants remain obscure. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy is a label-free, non-destructive analytical technique allowing spectrochemical analysis of macromolecular components, and alterations thereof, within tissue samples. Herein, we employed ATR-FTIR spectroscopy to identify biomolecular changes in rat liver post-exposure to B[a]P and BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) congener mixtures. Our results demonstrate that significant separation occurs between spectra of tissue samples derived from control versus exposure categories (accuracy = 87%; sensitivity = 95%; specificity = 79%). Additionally, there is significant spectral separation between exposed categories (accuracy = 91%; sensitivity = 98%; specificity = 90%). Segregation between control and all exposure categories were primarily associated with wavenumbers ranging from 1600 to 1700 cm-1 . B[a]P and BDE-47 alone, or in combination, induces liver damage in female rats. However, it is suggested that binary exposure apparently attenuates the toxic effects in rat liver of the individual contaminants. This is supported by morphological observations of liver tissue architecture on hematoxylin and eosin (H&E)-stained liver sections. Such observations highlight the difficulties in predicting the endpoint effects in target tissues of exposures to mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Shu-Zhen Liu
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - You-Hong Luo
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China.,Hengyang Central Hospital, Hengyang, China
| | | | - Xiao-Jun Ma
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Li-Jun Yang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - De-Chan Tan
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jin-Bo Li
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Bao-Yi Liao
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Yuan-Feng Wei
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | | | - Wei-Yi Pang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
16
|
Abstract
The growing world energy consumption, with reliance on conventional energy sources and the associated environmental pollution, are considered the most serious threats faced by mankind. Heterogeneous photocatalysis has become one of the most frequently investigated technologies, due to its dual functionality, i.e., environmental remediation and converting solar energy into chemical energy, especially molecular hydrogen. H2 burns cleanly and has the highest gravimetric gross calorific value among all fuels. However, the use of a suitable electron donor, in what so-called “photocatalytic reforming”, is required to achieve acceptable efficiency. This oxidation half-reaction can be exploited to oxidize the dissolved organic pollutants, thus, simultaneously improving the water quality. Such pollutants would replace other potentially costly electron donors, achieving the dual-functionality purpose. Since the aromatic compounds are widely spread in the environment, they are considered attractive targets to apply this technology. In this review, different aspects are highlighted, including the employing of different polymorphs of pristine titanium dioxide as photocatalysts in the photocatalytic processes, also improving the photocatalytic activity of TiO2 by loading different types of metal co-catalysts, especially platinum nanoparticles, and comparing the effect of various loading methods of such metal co-catalysts. Finally, the photocatalytic reforming of aromatic compounds employing TiO2-based semiconductors is presented.
Collapse
|
17
|
Suzuki G, Matsukami H, Michinaka C, Hashimoto S, Nakayama K, Sakai SI. Emission of Dioxin-like Compounds and Flame Retardants from Commercial Facilities Handling Deca-BDE and Their Downstream Sewage Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2324-2335. [PMID: 33440927 DOI: 10.1021/acs.est.0c06359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Commercial mixtures of decabromodiphenyl ether (deca-BDE), a brominated flame retardant, contain not only polybrominated diphenyl ethers (PBDEs, mainly BDE-209) as the main component but also dioxin-like compounds (DLCs) such as polybrominated dibenzofurans (PBDFs). Deca-BDE handling facilities (DHFs) and sewage treatment plants receiving effluent from DHFs are point sources of DLC and flame retardant (FR) pollution. Here, we examined their emission in Japan. For DHF effluents, DLCs detected by the dioxin-responsive chemically activated luciferase expression (DR-CALUX) assay were 1.3-890 pg TCDD-EQ/L (median 46 pg TCDD-EQ/L), while PBDEs and other FRs were <2.0-110,000 ng/L (610 ng/L) and 150-4,800,000 ng/L (41,000 ng/L). Risk quotients based on predicted no-effect concentrations suggested that DLCs, decabromodiphenyl ethane (DBDPE), tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) present significant risks for aquatic organisms. The concentrations of PBDFs, which are impurities in deca-BDE, were expected to decrease with the inclusion of deca-BDE in the Stockholm Convention list of persistent organic pollutants (May 2017). However, DLCs other than PBDFs and alternative FRs such as DBDPE, TDBP-TAZTO, and BPA-BDPP are likely still discharged. Additional findings indicate that strong (e.g., DLCs, DBDPE, and BPA-BDPP), but not weak (e.g., TDBP-TAZTO), hydrophobic compounds are sufficiently removed by current wastewater treatment processes in Japan.
Collapse
Affiliation(s)
- Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Chieko Michinaka
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Shunji Hashimoto
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shin-Ichi Sakai
- Environment Preservation Research Center, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. EMERGING CONTAMINANTS VOL. 1 2021. [DOI: 10.1007/978-3-030-69079-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Sapozhnikova Y, Salamova A, Haddad SP, Burket SR, Luers M, Brooks BW. Spatial and seasonal occurrence of semi-volatile organic compounds (SVOCs) in fish influenced by snowmelt and municipal effluent discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140222. [PMID: 32783844 DOI: 10.1016/j.scitotenv.2020.140222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
In the present study we examined spatial and seasonal trends in the levels of a wide suite of semi-volatile organic compounds (SVOCs) in brown trout (Salmo trutta) and mottled sculpin (Cottus bairdii) in East Canyon Creek, Utah, USA, an effluent-dominated stream during summer months. Fish samples were collected from four sampling sites, including one reference site upstream, and three sites at incremental distances downstream of the effluent discharge over multiple seasons. The samples were analyzed for 218 lipophilic contaminants, including pesticides and their metabolites, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs) and other flame retardants. Some PAHs, pesticides and their metabolites, PCBs, PBDEs and other flame retardants were measured in mottled sculpin (11 analytes) and brown trout (17 analytes). Hexachlorobenzene (HCB), p,p'-DDE, BDE-47 and triphenyl phosphate (TPHP) were the most frequently detected contaminants in mottled sculpin and brown trout, while BDE-47 and p,p'-DDE were measured at the highest concentrations, reaching up to 73 and 19 ng/g wet weight, respectively. Our results indicated that snowmelt did not alter accumulation of the examined lipophilic contaminants, and no consistent seasonal differences were observed in their accumulation. A spatial pattern was observed for PBDE congeners, where lowest levels were measured in fish tissues from a reference site, and highest concentrations were measured in fish collected downstream of the effluent discharge, indicating that municipal effluent discharge contributes to the elevated PBDE levels in fish residing in this effluent-dominated stream. We further calculated screening level consumption risks following United States Environmental Protection Agency (EPA) methods, and identified the importance of considering discharge gradients in effluent-dominated systems during bioaccumulation assessments.
Collapse
Affiliation(s)
- Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Amina Salamova
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Samuel P Haddad
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - S Rebekah Burket
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Michael Luers
- Snyderville Basin Water Reclamation District, Park City, UT, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Guangdong Key Laboratory for Environmental Pollution and Health, School of the Environment, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Nas B, Argun ME, Dolu T, Ateş H, Yel E, Koyuncu S, Dinç S, Kara M. Occurrence, loadings and removal of EU-priority polycyclic aromatic hydrocarbons (PAHs) in wastewater and sludge by advanced biological treatment, stabilization pond and constructed wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110580. [PMID: 32383663 DOI: 10.1016/j.jenvman.2020.110580] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Eight polycyclic aromatic hydrocarbon (PAH) compounds which have been accepted as priority micropollutants by European Union (EU) were analyzed both in wastewater and sludge lines throughout three full scale (located in city, sub-province and village) WWTPs during 12-month sampling period. Investigated WWTPs have different treatment types including advanced biological treatment, stabilization pond (SP) and constructed wetland (CW). Removal efficiencies for total PAH compounds varied from 48% in CW to 85% in advanced biological treatment plant. The maximum concentrations of 360-2282 ng/L observed for naphthalene in raw wastewater were decreased to 103-370 ng/L by treatment processes. Minimum concentration were detected for benzo(k)fluoranthene (B[k]F) and benzo(g,h,i)perylene (B[g,h,i]P) ranged between 8 and 12 ng/L and 19-33 ng/L, respectively. While minimum removal efficiencies were obtained for B[k]F and B[g,h,i]P maximum removal efficiencies were obtained for naphthalene in all WWTPs. PAHs present in minimum and maximum levels in the sludge samples were detected as 54 and 6826 ng/g for the B[g,h,I]P and naphthalene, respectively. Considering the removal mechanisms, PAHs have been determined to be removed by biodegradation or vaporization up to 84% and by settling (adsorption onto sludge) up to 2%. The greatest portion (99%) of naphthalene and anthracene were determined to be biodegraded or vaporized in biological treatment due to their low molecular weights. On the other hand, mechanism of adsorption onto sludge was determined as negligible for these two compounds. In addition, approximately 14% of PAHs were discharged to the receiving environment. Among the different WWTP types investigated, advanced biological treatment was found to be the most efficient plant for the removal of PAH compounds.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - S Koyuncu
- Konya Metropolitan Municipality, Environmental Protection and Control Department, Konya, Turkey.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Turkey.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Turkey.
| |
Collapse
|
21
|
Ofman P, Struk-Sokołowska J, Skoczko I, Wiater J. Alternated biodegradation of naphthalene (NAP), acenaphthylene (ACY) and acenaphthene (ACE) in an aerobic granular sludge reactor (GSBR). JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121184. [PMID: 31522063 DOI: 10.1016/j.jhazmat.2019.121184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The paper presents quantitative changes of selected 2- and 3-ring PAHs after process phases of GSBR reactor. The studies have been carried out for 264 cycles of GSBR reactor, during which concentration of naphthalene was increased in the range of 3.00-710.00 μg/L, acenaphthylene 1.00-160.00 μg/L, acenaphthene 3.00-440.00 μg/L. GSBR operating cycle consisted of filling (30 min), mixing (90 min), aeration (540 min), sedimentation (10 min), decanting (30 min) and downtime (20 min) phases. Activated sludge dry mass concentration was 4.00 kg/m3. Conducted studies showed that in GSBR reactor naphthalene was degraded with the highest intensity. Results of the statistical analysis confirmed that naphthalene concentrations were statistically significantly different (α = 0.05) after each individual GSBR process phase, while in case of acenaphthene and acenaphthylene, the differences were observed only between mixing and aeration phases. Additionally, equations estimating concentrations of PAHs in treated wastewater were developed. Selected activated sludge technological parameters (sludge volume index, sludge and hydraulic retention time) and concentration of PAHs were used for equations. The R2 coefficients of equations were above 0.99, which indicates a good adjustment of estimation to observed values.
Collapse
Affiliation(s)
- Piotr Ofman
- Bialystok University of Technology, Department of Environmental Engineering Technology and Systems, 15-351 Bialystok, Wiejska 45E, Poland
| | - Joanna Struk-Sokołowska
- Bialystok University of Technology, Department of Environmental Engineering Technology and Systems, 15-351 Bialystok, Wiejska 45E, Poland.
| | - Iwona Skoczko
- Bialystok University of Technology, Department of Environmental Engineering Technology and Systems, 15-351 Bialystok, Wiejska 45E, Poland
| | - Józefa Wiater
- Bialystok University of Technology, Department of Environmental Engineering Technology and Systems, 15-351 Bialystok, Wiejska 45E, Poland
| |
Collapse
|
22
|
Dong WH, Cao Z, Li M, Wan Y, Xie W, Wen C. Natural attenuation of naphthalene along the river-bank infiltration zone of the Liao River, Shenyang, China. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 220:26-32. [PMID: 30502888 DOI: 10.1016/j.jconhyd.2018.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
In this study, the natural attenuation of naphthalene during riverbank infiltration was examined using batch experiments. The results indicated that, as the grain size and the permeability coefficient decreased, the natural attenuation rate of naphthalene increased, and it was highest in loam (62%) and lowest in coarse sand (20%). The half-life of naphthalene was longest in coarse sand (700 d) and shortest in mild clay (250 d). Facultative anaerobes such as Methylophilaceae accounted for about 70% of the total bacteria and played a major role in naphthalene degradation. A high total organic carbon concentration and large specific surface area can promote natural attenuation of naphthalene. Moreover, the adsorption to riverbank sediment in the hyporheic zone and bioremediation by indigenous microorganisms can effectively eliminate naphthalene during river water infiltration to the riverbank aquifer.
Collapse
Affiliation(s)
- Wei-Hong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provineial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Zhipeng Cao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provineial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Menglong Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China; Investigation and Design Institute of Water Resources and Hydropower Liaoning Province, Shenyang 110000, PR China
| | - YuYu Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provineial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China.
| | - Wei Xie
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provineial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Chuanlei Wen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provineial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, PR China
| |
Collapse
|
23
|
García-Córcoles MT, Rodríguez-Gómez R, de Alarcón-Gómez B, Çipa M, Martín-Pozo L, Kauffmann JM, Zafra-Gómez A. Chromatographic Methods for the Determination of Emerging Contaminants in Natural Water and Wastewater Samples: A Review. Crit Rev Anal Chem 2018; 49:160-186. [DOI: 10.1080/10408347.2018.1496010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. T. García-Córcoles
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - R. Rodríguez-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - B. de Alarcón-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - M. Çipa
- Department of Chemistry, University of Tirana, Tirana, Albania
| | | | - J.-M. Kauffmann
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - A. Zafra-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| |
Collapse
|
24
|
Polybrominated Diphenyl Ethers (PBDEs) in a Large, Highly Polluted Freshwater Lake, China: Occurrence, Fate, and Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071529. [PMID: 30029535 PMCID: PMC6068772 DOI: 10.3390/ijerph15071529] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 12/22/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) were extensively investigated in water, sediment, and biota samples collected from Chaohu Lake basin in China. The total concentrations of eight PBDEs (Σ8PBDEs) were in the ranges of 0.11–4.48 ng/L, 0.06–5.41 ng/g, and 0.02–1.50 ng/g dry weight (dw) in the water, sediment, and biota samples, respectively. The concentrations showed wide variations in the monitoring area, while the congener profiles in all the water, sediment, and biota samples were generally characterized by only a few compounds, such as BDE-47, BDE-99, and/or BDE-209. The spatial analysis depicted a decreasing trend of PBDEs from west to east Chaohu Lake, consistent with regional industrialization degree. The distributions of PBDE congeners in the biota samples were similar to the compositional profiles in the water, which were dominated by BDE-47 and/or BDE-99. Nevertheless, BDE-47 and BDE-153 in the brain tissue showed a higher accumulative potential than PBDEs in other tissues as well as the whole body, with 96% relative contribution of Σ8PBDEs. The noncarcinogenic risk values estimated for BDE-47, BDE-99, and BDE-153 indicated that the specific risk associated with the studied water and foodstuffs is limited. However, there is a potential mixture ecotoxicity at three trophic levels at some sampling points in the water, which should draw considerable attention.
Collapse
|
25
|
Li B, Wang K, Ma LX, Sun SJ, Jia LR, Yuan AN, Shen JM, Qi H, Zhang AP. Deca-BDE and alternative halogenated flame retardants in a wastewater treatment plant in Harbin (2009-2016): Occurrence, temporal trends, seasonal variation, and fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1156-1163. [PMID: 29996412 DOI: 10.1016/j.scitotenv.2017.12.346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/31/2017] [Accepted: 12/31/2017] [Indexed: 06/08/2023]
Abstract
This study is the first attempt to comprehensively investigate deca-BDE and alternative flame retardants in a wastewater treatment plant in such a long term in China (2009-2016). Influent, effluent and sludge samples were collected. The mean concentration of deca-BDE, Σ19NBFRs and ΣDPs in influent were 311.5, 76.0 and 1.4ng/L, respectively, which were at the low end of the global range. The levels of deca-BDE, Σ19NBFRs and ΣDPs in effluent were range from 9.5-68.6, 4.1-38.5 and BLD-1.6ng/L, respectively. In sludge samples, the mean concentrations were 406.7, 510.5 and 6.9ng/g dw for deca-BDE, Σ19NBFRs and ΣDPs. The concentration of temporal trends in this study may reflected the release of those compounds. Compared to the beginning year of this study, the usage of deca-BDE was decreased but the usage of total NBFRs and DPs presented sustained increase over the sampling period. There were no significant variation of deca-BDE, NBFRs and DPs in the wastewater treatment plant in Harbin was observed in the four seasons except for NBFRs in influents, which the Σ19NBFRs mean concentration in influents in the summer was statistically significantly higher than that in winter indicating that NBFRs was easier impacted by temperature compared to deca-BDE and DPs. In addition, sorption and accumulation to sludge was the major removal mechanism for those compounds, accounting for 73.3% to 89.0%.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li-Xin Ma
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shao-Jing Sun
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin-Ran Jia
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An-Ni Yuan
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Min Shen
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - An-Ping Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
26
|
Cao W, Qiao M, Liu B, Zhao X. Occurrence of parent and substituted polycyclic aromatic hydrocarbons in typical wastewater treatment plants and effluent receiving rivers of Beijing, and risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:992-999. [PMID: 29764288 DOI: 10.1080/10934529.2018.1471031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sixteen polycyclic aromatic hydrocarbons (PAHs) and some typical substituted polycyclic aromatic hydrocarbons (SPAHs) were investigated in wastewater treatment plants (WWTPs) and effluent effluent-receiving rivers in order to indentify the elimination of these compounds in WWTPs, as well as the potantial potential risk in the effluent-receiving rivers. The concentrations of ΣPAHs in the total phase (combined dissolved and adsorbed phases) in influent were between 944.1 and 1246.5 ng·L-1, and ΣSPAHs, including methyl PAHs (MPAHs) and oxygenated PAHs (OPAHs), between 684.9 and 844.9 ng·L-1. Regarding the SPAHs, the concentrations of ΣOPAHs (312.3 ng·L-1) were higher than those of ΣMPAHs (271.8 ng·L-1). The total removal efficiencies of PAHs in the biological treatment processes were between 59% and 68%, and those of SPAHs were a little lower (58-65%). The removal efficiency in the adsorbed phase was higher than in the dissolved phase. The concentrations of PAHs and SPAHs in the effluent were a little higher than in the receiving river. According to a PAH risk assessment of the effluent, 7 carcinogenic PAHs accounted for a relatively high proportion. Benzo[a]pyrene (BaP) and Dibenz[a,h]anthracene (DBA) were major contributors to the TEQs in the effluent of WWTPs, which should be taken into consideration.
Collapse
Affiliation(s)
- Wei Cao
- a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , China
- b College of Water Sciences, Beijing Normal University , Beijing , China
| | - Meng Qiao
- a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , China
| | - Bochuan Liu
- a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , China
| | - Xu Zhao
- a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
27
|
Sun S, Jia L, Li B, Yuan A, Kong L, Qi H, Ma W, Zhang A, Wu Y. The occurrence and fate of PAHs over multiple years in a wastewater treatment plant of Harbin, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:491-498. [PMID: 29268221 DOI: 10.1016/j.scitotenv.2017.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/09/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
The occurrence and fate of polycyclic aromatic hydrocarbons (PAHs) were investigated in wastewater, sludge and surrounding air from the wastewater treatment plant (WWTP) in Harbin, Northeast China. The concentration of total PAHs in the influent, effluent and sludge were 4080ng/L, 864ng/L and 8200ng/gdw, respectively. The total concentration of PAHs showed a trend of first rising, and then decreasing over years in the influent, effluent and sludge, which was in agreement with the usage of coal and oil in Harbin. The level of PAHs was 26-560ng/m3 in air from site 1 (the top of the A/O tank), 62-608ng/m3 in air from site 2 (the vicinity of the WWTP) and 61-686ng/m3 in air from site 3 (the urban district of Harbin). In the influent and effluent, the mean concentration of PAHs followed the sequence of summer>winter>autumn>spring, while the sequence was winter>summer>autumn>spring in sludge and air. Rainfall may be the main reason for higher contamination in summer. Coal fired central heating and indoor dust may be reasons for higher PAHs in winter. The mean removal efficiency of total PAHs was approximately 85% (20% of which was adsorbed onto sludge, and 65% volatilized into air or degraded by biodegradation), and 15% of PAHs were discharged through the effluent. There was approximately 6240kg of PAHs imported into the WWTP every year, 1005kg discharged into the Songhua River through the effluent, and 327kg absorbed onto sludge and the rest was degraded or volatilized into air. PCA was applied to identify the sources of PAHs for both heating and non-heating seasons. In general, coal combustion was the main source of PAHs during the heating season and vehicle exhaust was the main source of PAHs during the non-heating season.
Collapse
Affiliation(s)
- Shaojing Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Linran Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anni Yuan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingjun Kong
- Wudalianchi Environmental Monitoring Station, Heilongjiang 164155, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wanli Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Anping Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yining Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
28
|
Wang J, Tian Z, Huo Y, Yang M, Zheng X, Zhang Y. Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. J Environ Sci (China) 2018; 67:309-317. [PMID: 29778164 DOI: 10.1016/j.jes.2017.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 05/28/2023]
Abstract
To perform a systematic survey on the occurrence and removal of micropollutants during municipal wastewater treatment, 943 semi-volatile organic chemicals in 32 wastewater samples including influents of secondary treatments, secondary effluents and final effluents (effluents of advanced treatments), which were collected from seven full-scale municipal wastewater treatment plants (MWTPs) in China, were examined by gas chromatography-mass spectrometry (GC-MS) coupled with an automated identification and quantification system with a database (AIQS-DB). In total, 196 and 145 chemicals were detected in secondary and final effluents, respectively. The majority of the total concentrations (average removal efficiency, 87.0%±5.9%) of the micropollutants were removed during secondary treatments. However, advanced treatments achieved different micropollutant removal extents from secondary effluents depending on the different treatment processes employed. Highly variable removal efficiencies of total concentrations (32.7%-99.3%) were observed among the different advanced processes. Among them, ozonation-based processes could remove 70.0%-80.9% of the total concentrations of studied micropollutants. The potentially harmful micropollutants, based on their detection frequency and concentration in secondary and final effluents, were polycyclic aromatic hydrocarbons (PAHs) (2-methylnaphthalene, fluoranthene, pyrene, naphthalene and phenanthrene), phosphorus flame retardants (tributyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP) and tris(1,3-dichloro-2-propyl) phosphate (TDCP)), phthalates (bis(2-ethylhexyl)phthalate (DEHP)), benzothiazoles (benzothiazole, 2-(methylthio)-benzothiazol, and 2(3H)-benzothiazolone) and phenol. This study indicated that the presence of considerable amounts of micropollutants in secondary effluent creates the need for suitable advanced treatment before their reuse.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingbin Huo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingcan Zheng
- North China Municipal Engineering Design & Research Institute, Tianjin 300074, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Lee HJ, Jeong HJ, Jang YL, Kim GB. Distribution, accumulation, and potential risk of polybrominated diphenyl ethers in the marine environment receiving effluents from a sewage treatment plant. MARINE POLLUTION BULLETIN 2018; 129:364-369. [PMID: 29680561 DOI: 10.1016/j.marpolbul.2018.02.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
We investigated the effect of sewage treatment plant effluent on the distribution and accumulation of polybrominated diphenyl ethers (PBDEs) in the marine environment. PBDEs concentrations in seawater and surface sediments were within the ranges 1.58-6.94 ng/L and 2.18-307 ng/g dw, respectively. PBDE concentrations in sediments gradually decreased with increasing distance from inner bay including the sewage outfall. The contribution of effluent to PBDE distributions was very limited. The concentrations of PBDEs in sediment core decreased exponentially with increasing depth. PBDE concentrations in oysters were 4.7-37 ng/g lw. BDE-209 was the dominant congener in marine environmental samples receiving effluent. Estimated dietary exposures of PBDEs by seafood were 0.01-0.08 ng/kg body weight/day, which were more than six orders of magnitude lower than the reported levels of PBDEs with the no observable adverse effects. Hazard quotients demonstrated that, at present, PBDEs posed no potential risk to benthic organisms in the study area.
Collapse
Affiliation(s)
- Hyo Jin Lee
- Institute of Marine Industry College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Hae Jin Jeong
- Department of Ocean System Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Yu Lee Jang
- Department of Ocean System Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Gi Beum Kim
- Institute of Marine Industry College of Marine Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea; Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
30
|
Li YH, Li HB, Xu XY, Xiao SY, Wang SQ. Distributions, sources and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in subsurface water of urban old industrial relocation areas: A case study in Shenyang, China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:971-978. [PMID: 28541771 DOI: 10.1080/10934529.2017.1324709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During a 12-month study period, the levels, distributions, sources and ecological risk of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in subsurface water of Shenyang (the largest urban industrial relocation base in China). The results showed that ΣPAH concentration ranged from 0.21 to 1.07 µg/L, in descending order as follows, summer, autumn, spring and winter. Comparing with the situations before relocation, there was a significant decrease in Fluorene, Phenanthrene and Anthracene levels. The content of Banzo[a]pyrene was in high level. Relatively high 16 EPA-PAHs concentrations were observed at downstream sites suggesting that after the industrial relocation, residual 16 EPA-PAHs in soil and sediments could be desorbed and resuspended in water. From a global perspective, contamination of subsurface water PAHs can be categorized as moderate level. Source analysis suggested that without industrial waste input, pyrogenic soureces were the major contributors for PAHs pollution in winter. Petrogenic and pyrogenic inputs were equally important sources for PAHs pollution in other seasons. Due to incomplete combustion of wood and coal, ecological risk of Banzo[a]pyrene was high in the winter, indicating that to alleviate 16 EPA-PAH contamination, segmented remediation and energy structure adjustment would be equally important in urban industrial relocation areas.
Collapse
Affiliation(s)
- Ying-Hua Li
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| | - Hai-Bo Li
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| | - Xin-Yang Xu
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| | - Si-Yao Xiao
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| | - Si-Qi Wang
- a School of Resources and Civil Engineering , Northeastern University , Shenyang , China
| |
Collapse
|
31
|
Ji X, Ding J, Xie X, Cheng Y, Huang Y, Qin L, Han C. Pollution Status and Human Exposure of Decabromodiphenyl Ether (BDE-209) in China. ACS OMEGA 2017; 2:3333-3348. [PMID: 30023692 PMCID: PMC6044870 DOI: 10.1021/acsomega.7b00559] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 05/26/2023]
Abstract
Decabromodiphenyl ether (BDE-209/decaBDE) is a high-production-volume brominated flame retardant in China, where the decaBDE commercial mixture is manufactured in Laizhou Bay, Shandong Province, even after the prohibition of penta- and octaBDE mixtures. The demand for flame retardants produced in China has been increasing in recent years as China not only produces electronic devices but also has numerous electronic waste (e-waste) recycling regions, which receive e-wastes from both domestic and foreign sources. High concentrations of BDE-209 have been observed in biotic and abiotic media in each of the different areas, especially within the decaBDE manufacturers and e-waste recycling areas. BDE-209 has been viewed as toxic and bioaccumulative because it might debrominate to less brominated polybrominated diphenyl ethers (PBDEs) (lower molecular weight and hydrophobicity), which are more readily absorbed by organisms. The highest concentration of PBDEs in dust within urban areas reached 40 236 ng g-1 in the Pearl River Delta, and BDE-209 contributed the greatest proportion to the total PBDEs (95.1%). Moreover, the maximum hazard quotient was found for toddlers (0.703) for BDE-209, which was close to 1. This suggests that exposure to BDE-209 might lead to increased potential for adverse effects and organ harm (e.g., the lungs) through inhalation, dust ingestion, and dermal absorption, especially for the group of toddlers compared to others. In daily food and human tissues, the amount of BDE-209 was also extensively detected. However, the toxicity and adverse effect of BDE-209 to humans are still not clear; thus, further studies are required to better assess the toxicological effects and exposure scenarios, a more enhanced environmental policy for ecological risks regarding BDE-209 and its debrominated byproducts in China.
Collapse
Affiliation(s)
- Xiaowen Ji
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Jue Ding
- College
of the Environment, Hohai University, Nanjing 210098, P. R. China
| | - Xianchuan Xie
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Yu Cheng
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Yu Huang
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Long Qin
- State
Key Laboratory of Pollution Control and Resource Reuse, Center for
Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210093, P. R. China
| | - Chao Han
- State
Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of
Sciences, Nanjing 210008, P. R. China
| |
Collapse
|
32
|
Man YB, Chow KL, Cheng Z, Mo WY, Chan YH, Lam JCW, Lau FTK, Fung WC, Wong MH. Profiles and removal efficiency of polycyclic aromatic hydrocarbons by two different types of sewage treatment plants in Hong Kong. J Environ Sci (China) 2017; 53:196-206. [PMID: 28372744 DOI: 10.1016/j.jes.2016.04.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/07/2023]
Abstract
Sewage discharge could be a major source of polycyclic aromatic hydrocarbons (PAHs) in the coastal waters. Stonecutters Island and Shatin Sewage Treatment Works (SCISTW and STSTW) in Hong Kong, adopted chemically enhanced primary treatment and biological treatment, respectively. This study aimed at (1) determining the removal efficiencies of PAHs, (2) comparing the capabilities in removing PAHs, and (3) characterizing the profile of each individual PAHs, in the two sewage treatment plants (STPs). Quantification of 16 PAHs was conducted by a Gas Chromatography. The concentrations of total PAHs decreased gradually along the treatment processes (from 301±255 and 307±217ng/L to 14.9±12.1 and 63.3±54.1ng/L in STSTW and SCISTW, respectively). It was noted that STSTW was more capable in removing total PAHs than SCISTW with average total removal efficiency 94.4%±4.12% vs. 79.2%±7.48% (p<0.05). The removal of PAHs was probably due to sorption in particular matter, confirmed by the higher distribution coefficient of individual and total PAHs in solid samples (dewatered sludge contained 92.5% and 74.7% of total PAHs in SCISTW and STSTW, respectively) than liquid samples (final effluent-total contained 7.53% and 25.3% of total PAHs in STSTW and SCISTW, respectively). Despite the impressive capability of STSTW and SCISTW in removing PAHs, there was still a considerable amount of total PAHs (1.85 and 39.3kg/year, respectively for the two STPs) being discharged into Hong Kong coastal waters, which would be an environmental concern.
Collapse
Affiliation(s)
- Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China; Department of Environmental Engineering, Jinan University, Guangzhou 510630, China; State Key Laboratory in Marine Pollution, Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Ka Lai Chow
- Department of Geography, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu 611130, China
| | - Wing Yin Mo
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Yung Hau Chan
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - James Chung Wah Lam
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China; State Key Laboratory in Marine Pollution and Research Centre for the Oceans and Human Health, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Frankie Tat Kwong Lau
- The Drainage Services Department, The Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Wing Cheong Fung
- The Drainage Services Department, The Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China; Department of Environmental Engineering, Jinan University, Guangzhou 510630, China; State Key Laboratory in Marine Pollution, Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
33
|
Zheng B, Ma Y, Qin Y, Zhang L, Zhao Y, Cao W, Yang C, Han C. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water in industrial affected areas of the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23485-23495. [PMID: 27614636 DOI: 10.1007/s11356-016-7524-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Water samples were collected from wastewater treatment plant (WWTP), drain water (DW), major tributaries (MT), and main course of the Yangtze River (MY) in areas of three industrial parks (IPs) in Chongqing city in the Three Gorges Reservoir (TGR). Sixteen EPA priority polycyclic aromatic hydrocarbon (PAH) pollutants were quantified to identify the effects of industrial activities on water quality of the TGR. The results showed that 11 individual PAHs were quantified and 5 PAHs (naphthalene (Nap), acenaphthylene (Acy), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BgP)) were under detection limits in all of the water samples. Three-ring and four-ring PAHs were the most detected PAHs. Concentrations of individual PAHs were in the range of not detected (nd) to 24.3 ng/L. Total PAH concentrations for each site ranged from nd to 42.9 ng/L and were lower compared to those in other studies. The mean PAH concentrations for sites WWTP, DW, MT, and MY showed as follows: DW (25.9 ng/L) > MY (15.5 ng/L) > MT (14.0 ng/L) > WWTP (9.3 ng/L), and DW contains the highest PAH concentrations. Source identification ratios showed that petroleum and combustion of biomass coal and petroleum were the main sources of PAHs. The results of potential ecosystem risk assessment indicated that, although PAH concentrations in MT and MY are likely harmless to ecosystem, contaminations of PAHs in DW were listed as middle levels and some management strategies and remediation actions, like strengthen clean production processes and banning illegal sewage discharging activities, etc., should be taken to lighten the ecosystem risk caused by PAHs especially risks caused by water discharging drains.
Collapse
Affiliation(s)
- Binghui Zheng
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- National Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yingqun Ma
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- National Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yanwen Qin
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- National Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lei Zhang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- National Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yanmin Zhao
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- National Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Cao
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- National Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenchen Yang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- National Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chaonan Han
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- National Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
34
|
Smol M, Włodarczyk-Makuła M. Effectiveness in the Removal of Organic Compounds from Municipal Landfill Leachate in Integrated Membrane Systems: Coagulation – NF/RO. Polycycl Aromat Compd 2016. [DOI: 10.1080/10406638.2016.1138971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marzena Smol
- The Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Krakow, Poland
| | - Maria Włodarczyk-Makuła
- Department of Chemistry, Water and Wastewater Technology, Czestochowa University of Technology, Czestochowa, Poland
| |
Collapse
|
35
|
Zhang L, Bai YS, Wang JZ, Peng SC, Chen TH, Yin DQ. Identification and determination of the contribution of iron-steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22037-22046. [PMID: 27541150 DOI: 10.1007/s11356-016-7328-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Seventeen polycyclic aromatic hydrocarbon (PAH) compounds were determined in surface sediments collected from the Chaohu Lake (a large shallow lake in eastern China) and its tributaries. Both diagnostic ratios and a receptor model (positive matrix factorization, PMF) were applied to identify and determine the contribution of a local iron-steel manufacturing plant located in the Nanfei River (NFR) to the Chaohu Lake basin. The results show that sites located in the downstream of the steel plant contained concentrations of 17 PAH (Σ17PAH) approximately two orders of magnitudes higher than those from other sites. Five factors were identified by the PMF model, including industrial waste, wood/biomass burning, diagenetic origin, domestic coal combustion, and industrial combustion. Our findings suggest that sediments in the downstream of the plant and in the western part of the Chaohu Lake were predominantly affected by industrial coal combustion. A mixture of pyrolytic origins impacted urban sediments in the upstream of the plant, whereas diagenetic origins along with coal and biomass burning were suggested to influence the eastern part and rural tributaries of the lake. To assess the potential ecological risk and toxicity caused by the iron-steel plant, sediment toxicity was evaluated by the PMF model, sediment quality guideline, and toxic equivalent factors. All of the three approaches suggested PAH accumulation in the NFR sediments could produce significant adverse ecological effects and half of the sediment toxicity in the NFR may be attributed to the emissions from the iron-steel plant. Some rural locations also exhibited PAH concentrations above probable effects, most likely contributed by wood/biomass burning.
Collapse
Affiliation(s)
- Liu Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Anhui Academy of Environmental Science Research, Hefei, 230071, China
| | - Ya-Shu Bai
- State Oceanic Administration People's Republic of China, Third Institute of Oceanography, Xiamen, Fujian, 361008, China
| | - Ji-Zhong Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Shu-Chuan Peng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tian-Hu Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Da-Qiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
36
|
Kim UJ, Lee IS, Oh JE. Occurrence, removal and release characteristics of dissolved brominated flame retardants and their potential metabolites in various kinds of wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:551-557. [PMID: 27524250 DOI: 10.1016/j.envpol.2016.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/05/2016] [Accepted: 07/17/2016] [Indexed: 05/22/2023]
Abstract
The dissolved phase compound and congener specific distribution characteristics of three widely used brominated flame retardants (BFRs) comprising 27 polybrominated diphenyl ethers (PBDEs), 12 hydroxylated and methoxylated metabolites (OH- and MeO-BDEs), 3 hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) were investigated in influents and effluents of various kinds of wastewater treatment plants (WWTPs), with varying source of wastewater and type of treatment, and nearby rivers in Korea. The concentration of total BFRs were the highest in industrial WWTPs nearby large industrial complexes specialized in heavy chemicals. The distribution of BFRs was differed according to composition of wastewater, with predominance of TBBPA in WWTPs with higher portion of inflowing industrial wastewater. Among HBCD diastereomers, γ-HBCD was dominant in industrial wastewater as consistent to the previous reports, however, similar contribution of α- and γ-HBCD was found in sewage and human wastewater. Through treatment process, PBDEs were the most effectively removed with a mean removal efficiency of 68.3%. HBCDs and TBBPA had removal efficiencies of 41.3% and 48.7%, respectively. The lowest removal efficiency (10.3%) was observed for PBDE metabolites and their concentration in effluent of human wastewater was even increased at maximum 1.9 fold compared with influent, implying the possibility of transformation during treatment. The estimated dissolved phase daily load of PBDEs was highest in sewage while that of TBBPA was highest in industrial wastewater.
Collapse
Affiliation(s)
- Un-Jung Kim
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - In-Seok Lee
- Marine Environment Research Division, National Fisheries Research and Development Institute (NFRDI), Busan 619-705, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
37
|
Li B, Sun SJ, Huo CY, Li WL, Zhu NZ, Qi H, Kong LJ, Li YF, Ma WL. Occurrence and fate of PBDEs and novel brominated flame retardants in a wastewater treatment plant in Harbin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19246-19256. [PMID: 27364485 DOI: 10.1007/s11356-016-7142-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Wastewater treatment plant (WWTP) is considered to be an important medium for the transport and transformation of organic pollutants. This study attempted to comprehensively investigate polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in a WWTP in Harbin, one of the main "Old Industrial Base" in China. The mean concentrations of the total PBDEs in the influent, effluent, and sludge were 152 ng/L, 16.2 ng/L, and 503 g/g dw, respectively, which were at the low end of the global range. BDE-209 was the most abundant congener, with contributions to the total PBDE ranging from 90.5 to 98.5 %. The level of the total NBFRs ranged from 24.5 to 107 ng/L, 0.95 to 20.3 ng/L, and 305 to 1202 ng/g dw in the influent, effluent, and sludge, respectively. For NBFRs, DBDPE was the most abundant congener (38.8-50.5 %), followed by BEHTBP (11.0-35.0 %). The ratio for DBDPE/BDE-209 (0.62 ± 0.42) was found less than 1 in sludge, which indicated that Deca-BDE is still the major BFR product in this city. Source identification suggested that indoor dust should be an important source of BFRs in the WWTP. Approximately 20.8 and 7.79 kg of PBDEs and NBFRs on annual basis were removed with the sludge. Biodegradation could play an important role on the fate of BFRs in the WWTP, which is required for future research.
Collapse
Affiliation(s)
- Bo Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Shao-Jing Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Ning-Zheng Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Hong Qi
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China.
| | - Ling-Jun Kong
- Wudalianchi Environmental Monitoring Station, Heilongjiang, 164155, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang, 150090, China.
| |
Collapse
|
38
|
Wang Y, Wu Y, Wu Z, Tam NFY. Genotypic responses of bacterial community structure to a mixture of wastewater-borne PAHs and PBDEs in constructed mangrove microcosms. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:91-101. [PMID: 26005923 DOI: 10.1016/j.jhazmat.2015.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 06/04/2023]
Abstract
Mangrove microcosms capable of removing polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs) from wastewater were established under everyday tidal and non-tidal flooding regimes, along with two different mangrove species. Defining how bacterial communities change with pollutants or across treatments will contribute to understanding the microbial ecology of in situ bioremediation systems. A semi-nested PCR-DGGE (denaturing gradient gel electrophoresis) approach was employed, with known genus/species-specific primers targeting the 16S rRNA genes of Sphingomonas and Mycobacterium (related to PAH degradation) and Dehalococcoides (related to PBDE degradation). Results showed that the composition of Mycobacterium- and Dehalococcoides-like populations was critically determined by tidal regime during a medium-term (4-8 months) exposure, while that of Sphingomonas-like population, along with total bacterial community, was more dependent on sediment layer and became prominently affected by tidal regime till the end of 8-month treatment. The effect of plant species was relatively small. Canonical correspondence analysis (CCA) further revealed that Sphingomonas- and Mycobacterium-like populations were significantly associated with phenanthrene and benzo(a)pyrene, respectively, while Dehalococcoides-like population was the only group significantly related to the highest PBDE congener (BDE-209) in the mangrove microcosms.
Collapse
Affiliation(s)
- Yafen Wang
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Yan Wu
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nora Fung-Yee Tam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
39
|
François G, Mélanie D, Marlène F, Michel F. Effects of a municipal effluent on the freshwater mussel Elliptio complanata following challenge with Vibrio anguillarum. J Environ Sci (China) 2015; 37:91-99. [PMID: 26574092 DOI: 10.1016/j.jes.2015.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/11/2015] [Accepted: 03/31/2015] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to examine the cumulative effects of exposure to a pathogenic bacteria and municipal effluent in the freshwater mussel Elliptio complanata. Mussels were exposed to increasing concentrations of an ozone-treated effluent at 15°C for 7days. A sub-group of mussels was inoculated with Vibrio anguillarum and exposed to the same conditions as above. After the exposure period, mussels were collected to assess hemocyte count and viability, immunocompetence (phagocytosis and nitrite production), oxidative stress/inflammation (cyclooxygenase and lipid peroxidation) and oxygen radical/xenobiotic scavenging activity (metallothioniens, glutathione S-transferase). The results showed that mussels exposed to municipal effluent had increased hemocyte counts, phagocytosis, nitrites, lipid peroxidation and metallothioneins. In the inoculated mussels, the same responses were observed, in addition to cyclooxygenase and glutathione S-transferase activities. Multivariate analyses revealed that (1) the response pattern changed with effluent concentration, where increased responses observed at low effluent concentrations (>10%, V/V) were attenuated at higher effluent concentrations, (2) the effluent produced more pronounced changes in lipid peroxidation, metallothionein and hemocyte viability, and (3) the simultaneous presence of V. anguillarum led to more important changes in hemocyte count and viability and nitrite levels. In conclusion, the presence of V. anguillarum could alter the response of mussels to municipal effluent, which could lead to increased inflammation in mussels.
Collapse
Affiliation(s)
- Gagné François
- Aquatic Contaminants Research Division, Water Science and Technology, 105 McGill, Montreal, QC H27 2E7, Canada.
| | - Douville Mélanie
- Aquatic Contaminants Research Division, Water Science and Technology, 105 McGill, Montreal, QC H27 2E7, Canada
| | - Fortier Marlène
- INRS-Institut Armand-Frappier, 531 Rue des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Fournier Michel
- INRS-Institut Armand-Frappier, 531 Rue des Prairies, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
40
|
Ren C, Wu Y, Zhang S, Wu LL, Liang XG, Chen TH, Zhu CZ, Sojinu SO, Wang JZ. PAHs in sediment cores at main river estuaries of Chaohu Lake: implication for the change of local anthropogenic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1687-1696. [PMID: 24946702 DOI: 10.1007/s11356-014-3141-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
In the present study, 28 polycyclic aromatic hydrocarbons (PAHs) were investigated in four sediment cores collected from the main river estuaries of Chaohu Lake, one of the severely polluted lakes in China. The results indicate that elevated concentrations of total PAHs (Σ28PAH) were found in the samples from the estuary of Nanfei River (ENF), considering BaP-based total toxicity equivalent (TEQ-BaP) and toxic unit (TU) results; there are potential adverse environmental implications. The total organic carbon (TOC) played an important role on the accumulation of PAHs at ENF and the estuary of Tongyang River (ETY). The predominant PAHs are high molecular weight (HMW) homologous for all samples; as a result, industrial wastewater from a steel company is expectedly the key source of PAHs in ENF, while coke consumption would be the important source of PAHs at other three sampling sites. Vertical distribution of PAHs in the sediment cores could be explained by the local social and economic activities. Furthermore, a minor variation of PAH composition in the sediment core could be justified by the stable structure of energy consumption in the Anhui Province. These results justify the need for further enhancement of industrial wastewater treatment and development of renewable energies which are the key factors on the control of PAH pollution in China.
Collapse
Affiliation(s)
- Chen Ren
- School of Resources & Environmental Engineering, Hefei University of Technology, Hefei, Anhui, 23009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang X, Xi B, Huo S, Deng L, Pan H, Xia X, Zhang J, Ren Y, Liu H. Polybrominated diphenyl ethers occurrence in major inflowing rivers of Lake Chaohu (China): characteristics, potential sources and inputs to lake. CHEMOSPHERE 2013; 93:1624-1631. [PMID: 24025535 DOI: 10.1016/j.chemosphere.2013.08.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Eight commonly occurring polybrominated diphenyl ethers (PBDEs), including BDE 28, 47, 99, 100, 153, 154, 183, 207, and 209, were investigated in water samples from seven major inflowing rivers of Lake Chaohu to determine the distribution characteristics, potential sources and inputs to the lake. The sum of 8 BDE congeners (Σ8PBDEs) had a concentration varied from 0.31 to 84 ng L(-1), with those of BDE 209, BDE 47, BDE 99, and BDE 153 being 0.31-83, <0.012-0.36, <0.012-1.3, and <0.012-0.77 ng L(-1), respectively. These levels were in the high range of the global PBDEs concentrations in the water environments. The highest concentrations of Σ8PBDEs were detected in the western rivers, of which the main pollution sources were strongly related to human activities in urban centers, such as automobile-derived wastes. A sewage treatment plant was likely an important source of the lower brominated BDEs input to one western river. The correlation analyses (all p<0.05) between PBDEs and DOC, TN, TP, and EC, suggested that the distributions and sources of PBDEs in rivers might also be related with the soil erosion by heave floods. Σ8PBDEs input to Lake Chaohu from the rivers outlets was estimated at 344 kg yr(-1) during the flood season. BDE 209 was the dominant contributor with an input of 340 kg yr(-1), followed by BDE 99 (1.3 kg yr(-1)), BDE 47 (0.83 kg yr(-1)) and BDE 153 (0.60 kg yr(-1)).
Collapse
Affiliation(s)
- Xiaowei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | | | | | | | | | | | | | | | | |
Collapse
|