1
|
Wang Y, Cheng P, Zhao G, Li L, Shen W. Phytomelatonin and gasotransmitters: a crucial combination for plant physiological functions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5851-5862. [PMID: 35430633 DOI: 10.1093/jxb/erac159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/13/2022] [Indexed: 05/05/2023]
Abstract
Melatonin, a molecule that was first identified in animal tissues, has been confirmed to be involved as a potential phytohormone in a variety of plant physiological responses. It is considered primarily as an antioxidant with important actions in controlling reactive oxygen and reactive nitrogen species. In addition to its role in regulating plant growth and development, phytomelatonin is involved in protection against abiotic and biotic stresses. The 'gasotransmitter'-that is, a gaseous signaling molecule-is a new concept that has been advanced in the past two decades, with functions in animal and plant physiological regulation. Gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide, methane, and, more recently identified, hydrogen gas are critical and indispensable in a wide range of biological processes. This review investigates the interrelationship between phytomelatonin and the above-mentioned gasotransmitters from the perspective of biosynthetic origin and functions. Moreover, the potential future research directions for phytomelatonin and gasotransmitters interactions are discussed.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Bui XT, Wei W, Ni B, Varjani S, Hoang NB. Enhanced photo-fermentative biohydrogen production from biowastes: An overview. BIORESOURCE TECHNOLOGY 2022; 357:127341. [PMID: 35605780 DOI: 10.1016/j.biortech.2022.127341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Clean energy like hydrogen can be a promising strategy to solve problems of global warming. Photo-fermentation (PF) is an attractive technology for producing biohydrogen from various biowastes cost-effectively and environmentally friendly. However, challenges of low light conversion efficiency and small yields of biohydrogen production still limit its application. Thus, advanced strategies have been investigated to enhance photo-fermentative biohydrogen production. This review discusses advanced technologies that show positive outcomes in improving biohydrogen production by PF, including the following. Firstly, genetic engineering enhances light transfer efficiency, change the activity of enzymes, and improves the content of ATP, ammonium and antibiotic tolerance of photosynthetic bacteria. Secondly, immobilization technology is refined. Thirdly, nanotechnology makes great strides as a scientific technique and fourthly, integration of dark and photo-fermentation technology is possible. Some suggestions for further studies to achieve high levels of efficiency of photo-fermentative biohydrogen production are mentioned in this paper.
Collapse
Affiliation(s)
- Dongle Cheng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Viet Nam
| | - Wei Wei
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bingjie Ni
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, Gandhinagar 382 010, Gujarat, India
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
3
|
The relationship between photosystem II regulation and light-dependent hydrogen production by microalgae. Biophys Rev 2022; 14:893-904. [DOI: 10.1007/s12551-022-00977-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023] Open
|
4
|
Lupacchini S, Appel J, Stauder R, Bolay P, Klähn S, Lettau E, Adrian L, Lauterbach L, Bühler B, Schmid A, Toepel J. Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase. Metab Eng 2021; 68:199-209. [PMID: 34673236 DOI: 10.1016/j.ymben.2021.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Molecular hydrogen (H2) is considered as an ideal energy carrier to replace fossil fuels in future. Biotechnological H2 production driven by oxygenic photosynthesis appears highly promising, as biocatalyst and H2 syntheses rely mainly on light, water, and CO2 and not on rare metals. This biological process requires coupling of the photosynthetic water oxidizing apparatus to a H2-producing hydrogenase. However, this strategy is impeded by the simultaneous release of oxygen (O2) which is a strong inhibitor of most hydrogenases. Here, we addressed this challenge, by the introduction of an O2-tolerant hydrogenase into phototrophic bacteria, namely the cyanobacterial model strain Synechocystis sp. PCC 6803. To this end, the gene cluster encoding the soluble, O2-tolerant, and NAD(H)-dependent hydrogenase from Ralstonia eutropha (ReSH) was functionally transferred to a Synechocystis strain featuring a knockout of the native O2 sensitive hydrogenase. Intriguingly, photosynthetically active cells produced the O2 tolerant ReSH, and activity was confirmed in vitro and in vivo. Further, ReSH enabled the constructed strain Syn_ReSH+ to utilize H2 as sole electron source to fix CO2. Syn_ReSH+ also was able to produce H2 under dark fermentative conditions as well as in presence of light, under conditions fostering intracellular NADH excess. These findings highlight a high level of interconnection between ReSH and cyanobacterial redox metabolism. This study lays a foundation for further engineering, e.g., of electron transfer to ReSH via NADPH or ferredoxin, to finally enable photosynthesis-driven H2 production.
Collapse
Affiliation(s)
- Sara Lupacchini
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Jens Appel
- Department of Biology, Botanical Institute, University Kiel, 24118, Kiel, Germany
| | - Ron Stauder
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Paul Bolay
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Elisabeth Lettau
- Institute for Chemistry, Technische Universität Berlin, 10623, Berlin, Germany
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, 10923, Berlin, Germany
| | - Lars Lauterbach
- Institute for Chemistry, Technische Universität Berlin, 10623, Berlin, Germany; Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen, 52074, Aachen, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research -UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
5
|
Khasimov MK, Laurinavichene TV, Petushkova EP, Tsygankov AA. Relations between Hydrogen and Sulfur Metabolism in Purple Sulfur Bacteria. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Kholssi R, Ramos PV, Marks EA, Montero O, Rad C. 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Li L, Lou W, Kong L, Shen W. Hydrogen Commonly Applicable from Medicine to Agriculture: From Molecular Mechanisms to the Field. Curr Pharm Des 2021; 27:747-759. [PMID: 33290194 DOI: 10.2174/1381612826666201207220051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
The emerging field of hydrogen biology has to date mainly been applied in medicine. However, hydrogen biology can also enable positive outcomes in agriculture. Agriculture faces significant challenges resulting from a growing population, climate change, natural disasters, environmental pollution, and food safety issues. In fact, hydrogen agriculture is a practical application of hydrogen biology, which may assist in addressing many of these challenges. It has been demonstrated that hydrogen gas (H2) may enhance plant tolerance towards abiotic and biotic stresses, regulate plant growth and development, increase nutritional values, prolong the shelf life, and decrease the nitrite accumulation during the storage of vegetables, as well as increase the resilience of livestock to pathogens. Our field trials show that H2 may have a promising potential to increase yield and improve the quality of agricultural products. This review aims to elucidate mechanisms for a novel agricultural application of H2 in China. Future development of hydrogen agriculture is proposed as well. Obviously, hydrogen agriculture belongs to a low carbon economy, and has great potential to provide "safe, tasty, healthy, and high-yield" agricultural products so that it may improve the sustainability of agriculture.
Collapse
Affiliation(s)
- Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Lou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingshuai Kong
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Muturi SM, Muthui LW, Njogu PM, Onguso JM, Wachira FN, Opiyo SO, Pelle R. Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya. PLoS One 2021; 16:e0244755. [PMID: 33395690 PMCID: PMC7781671 DOI: 10.1371/journal.pone.0244755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
The obstacle to optimal utilization of biogas technology is poor understanding of biogas microbiomes diversities over a wide geographical coverage. We performed random shotgun sequencing on twelve environmental samples. Randomized complete block design was utilized to assign the twelve treatments to four blocks, within eastern and central regions of Kenya. We obtained 42 million paired-end reads that were annotated against sixteen reference databases using two ENVO ontologies, prior to β-diversity studies. We identified 37 phyla, 65 classes and 132 orders. Bacteria dominated and comprised 28 phyla, 42 classes and 92 orders, conveying substrate's versatility in the treatments. Though, Fungi and Archaea comprised 5 phyla, the Fungi were richer; suggesting the importance of hydrolysis and fermentation in biogas production. High β-diversity within the taxa was largely linked to communities' metabolic capabilities. Clostridiales and Bacteroidales, the most prevalent guilds, metabolize organic macromolecules. The identified Cytophagales, Alteromonadales, Flavobacteriales, Fusobacteriales, Deferribacterales, Elusimicrobiales, Chlamydiales, Synergistales to mention but few, also catabolize macromolecules into smaller substrates to conserve energy. Furthermore, δ-Proteobacteria, Gloeobacteria and Clostridia affiliates syntrophically regulate PH2 and reduce metal to provide reducing equivalents. Methanomicrobiales and other Methanomicrobia species were the most prevalence Archaea, converting formate, CO2(g), acetate and methylated substrates into CH4(g). Thermococci, Thermoplasmata and Thermoprotei were among the sulfur and other metal reducing Archaea that contributed to redox balancing and other metabolism within treatments. Eukaryotes, mainly fungi were the least abundant guild, comprising largely Ascomycota and Basidiomycota species. Chytridiomycetes, Blastocladiomycetes and Mortierellomycetes were among the rare species, suggesting their metabolic and substrates limitations. Generally, we observed that environmental and treatment perturbations influenced communities' abundance, β-diversity and reactor performance largely through stochastic effect. Understanding diversity of biogas microbiomes over wide environmental variables and its' productivity provided insights into better management strategies that ameliorate biochemical limitations to effective biogas production.
Collapse
Affiliation(s)
- Samuel Mwangangi Muturi
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
- Institute for Bioteschnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Lucy Wangui Muthui
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Paul Mwangi Njogu
- Institute for Energy and Environmental Technology, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Justus Mong’are Onguso
- Institute for Bioteschnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | | | - Stephen Obol Opiyo
- OARDC, Molecular and Cellular Imaging Center-Columbus, Ohio State University, Columbus, Ohio, United States of America
- The University of Sacread Heart, Gulu, Uganda
| | - Roger Pelle
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
9
|
Theune ML, Hildebrandt S, Steffen-Heins A, Bilger W, Gutekunst K, Appel J. In-vivo quantification of electron flow through photosystem I - Cyclic electron transport makes up about 35% in a cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148353. [PMID: 33346012 DOI: 10.1016/j.bbabio.2020.148353] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Photosynthetic electron flow, driven by photosystem I and II, provides chemical energy for carbon fixation. In addition to a linear mode a second cyclic route exists, which only involves photosystem I. The exact contributions of linear and cyclic transport are still a matter of debate. Here, we describe the development of a method that allows quantification of electron flow in absolute terms through photosystem I in a photosynthetic organism for the first time. Specific in-vivo protocols allowed to discern the redox states of plastocyanin, P700 and the FeS-clusters including ferredoxin at the acceptor site of PSI in the cyanobacterium Synechocystis sp. PCC 6803 with the near-infrared spectrometer Dual-KLAS/NIR. P700 absorbance changes determined with the Dual-KLAS/NIR correlated linearly with direct determinations of PSI concentrations using EPR. Dark-interval relaxation kinetics measurements (DIRKPSI) were applied to determine electron flow through PSI. Counting electrons from hydrogen oxidation as electron donor to photosystem I in parallel to DIRKPSI measurements confirmed the validity of the method. Electron flow determination by classical PSI yield measurements overestimates electron flow at low light intensities and saturates earlier compared to DIRKPSI. Combination of DIRKPSI with oxygen evolution measurements yielded a proportion of 35% of surplus electrons passing PSI compared to PSII. We attribute these electrons to cyclic electron transport, which is twice as high as assumed for plants. Counting electrons flowing through the photosystems allowed determination of the number of quanta required for photosynthesis to 11 per oxygen produced, which is close to published values.
Collapse
Affiliation(s)
- Marius L Theune
- Department of Biology, Botanical Institute, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Sarah Hildebrandt
- Department of Biology, Botanical Institute, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Anja Steffen-Heins
- Division of Food Technology, Institute of Human Nutrition and Food Science, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Wolfgang Bilger
- Department of Biology, Botanical Institute, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Kirstin Gutekunst
- Department of Biology, Botanical Institute, Christian-Albrechts-University, 24118 Kiel, Germany
| | - Jens Appel
- Department of Biology, Botanical Institute, Christian-Albrechts-University, 24118 Kiel, Germany.
| |
Collapse
|
10
|
Water oxidation by photosystem II is the primary source of electrons for sustained H 2 photoproduction in nutrient-replete green algae. Proc Natl Acad Sci U S A 2020; 117:29629-29636. [PMID: 33168746 PMCID: PMC7703569 DOI: 10.1073/pnas.2009210117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Photosynthetic H2 production in the green alga Chlamydomonas reinhardtii is catalyzed by O2-sensitive [FeFe]-hydrogenases, which accept electrons from photosynthetically reduced ferredoxin and reduce protons to H2. Since the process occurs downstream of photosystem I, the contribution of photosystem II (PSII) in H2 photoproduction has long been a subject of debate. Indeed, water oxidation by PSII results in O2 accumulation in chloroplasts, which inhibits H2 evolution. Therefore, clear evidence for direct water biophotolysis resulting in simultaneous H2 and O2 releases in algae has never been presented. This paper demonstrates that sustained H2 photoproduction in C. reinhardtii is directly linked to PSII-dependent water oxidation and brings insights into regulation of PSII activity and H2 production by CO2/HCO3– under microoxic conditions. The unicellular green alga Chlamydomonas reinhardtii is capable of photosynthetic H2 production. H2 evolution occurs under anaerobic conditions and is difficult to sustain due to 1) competition between [FeFe]-hydrogenase (H2ase), the key enzyme responsible for H2 metabolism in algae, and the Calvin–Benson–Bassham (CBB) cycle for photosynthetic reductants and 2) inactivation of H2ase by O2 coevolved in photosynthesis. Recently, we achieved sustainable H2 photoproduction by shifting algae from continuous illumination to a train of short (1 s) light pulses, interrupted by longer (9 s) dark periods. This illumination regime prevents activation of the CBB cycle and redirects photosynthetic electrons to H2ase. Employing membrane-inlet mass spectrometry and H218O, we now present clear evidence that efficient H2 photoproduction in pulse-illuminated algae depends primarily on direct water biophotolysis, where water oxidation at the donor side of photosystem II (PSII) provides electrons for the reduction of protons by H2ase downstream of photosystem I. This occurs exclusively in the absence of CO2 fixation, while with the activation of the CBB cycle by longer (8 s) light pulses the H2 photoproduction ceases and instead a slow overall H2 uptake is observed. We also demonstrate that the loss of PSII activity in DCMU-treated algae or in PSII-deficient mutant cells can be partly compensated for by the indirect (PSII-independent) H2 photoproduction pathway, but only for a short (<1 h) period. Thus, PSII activity is indispensable for a sustained process, where it is responsible for more than 92% of the final H2 yield.
Collapse
|
11
|
Eichner M, Basu S, Gledhill M, de Beer D, Shaked Y. Hydrogen Dynamics in Trichodesmium Colonies and Their Potential Role in Mineral Iron Acquisition. Front Microbiol 2019; 10:1565. [PMID: 31354665 PMCID: PMC6636555 DOI: 10.3389/fmicb.2019.01565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
N2-fixing cyanobacteria mediate H2 fluxes through the opposing processes of H2 evolution, which is a by-product of the N2 fixation reaction, and H2 uptake, which is driven by uptake hydrogenases. Here, we used microelectrodes to characterize H2 and O2 dynamics in single natural colonies of the globally important N2 fixer Trichodesmium collected from the Gulf of Eilat. We observed gradually changing H2 dynamics over the course of the day, including both net H2 evolution and net H2 uptake, as well as large differences in H2 fluxes between individual colonies. Net H2 uptake was observed in colonies amended with H2 in both light and dark. Net H2 evolution was recorded in the light only, reflecting light-dependent N2 fixation coupled to H2 evolution. Both net H2 evolution and H2 uptake rates were higher before 2 pm than later in the day. These pronounced H2 dynamics in the morning coincided with strong net O2 uptake and the previously reported diel peak in N2 fixation. Later in the afternoon, when photosynthesis rates determined by O2 measurements were highest, and N2 fixation rates decrease according to previous studies, the H2 dynamics were also less pronounced. Thus, the observed diel variations in H2 dynamics reflect diel changes in the rates of O2 consumption and N2 fixation. Remarkably, the presence of H2 strongly stimulated the uptake of mineral iron by natural colonies. The magnitude of this effect was dependent on the time of day, with the strongest response in incubations that started before 2 pm, i.e., the period that covered the time of highest uptake hydrogenase activity. Based on these findings, we propose that by providing an electron source for mineral iron reduction in N2-fixing cells, H2 may contribute to iron uptake in Trichodesmium colonies.
Collapse
Affiliation(s)
- Meri Eichner
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Subhajit Basu
- The Freddy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Martha Gledhill
- GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Dirk de Beer
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yeala Shaked
- The Freddy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
12
|
Nagy V, Podmaniczki A, Vidal-Meireles A, Tengölics R, Kovács L, Rákhely G, Scoma A, Tóth SZ. Water-splitting-based, sustainable and efficient H 2 production in green algae as achieved by substrate limitation of the Calvin-Benson-Bassham cycle. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:69. [PMID: 29560024 PMCID: PMC5858145 DOI: 10.1186/s13068-018-1069-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/07/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Photobiological H2 production has the potential of becoming a carbon-free renewable energy source, because upon the combustion of H2, only water is produced. The [Fe-Fe]-type hydrogenases of green algae are highly active, although extremely O2-sensitive. Sulphur deprivation is a common way to induce H2 production, which, however, relies substantially on organic substrates and imposes a severe stress effect resulting in the degradation of the photosynthetic apparatus. RESULTS We report on the establishment of an alternative H2 production method by green algae that is based on a short anaerobic induction, keeping the Calvin-Benson-Bassham cycle inactive by substrate limitation and preserving hydrogenase activity by applying a simple catalyst to remove the evolved O2. Cultures remain photosynthetically active for several days, with the electrons feeding the hydrogenases mostly derived from water. The amount of H2 produced is higher as compared to the sulphur-deprivation procedure and the process is photoautotrophic. CONCLUSION Our protocol demonstrates that it is possible to sustainably use algal cells as whole-cell catalysts for H2 production, which enables industrial application of algal biohydrogen production.
Collapse
Affiliation(s)
- Valéria Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Roland Tengölics
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Alberto Scoma
- Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| | - Szilvia Z. Tóth
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Temesvári krt. 62, 6726 Szeged, Hungary
| |
Collapse
|
13
|
Effect of Metal Cofactors of Key Enzymes on Biohydrogen Production by Nitrogen Fixing Cyanobacterium Anabaena siamensis TISIR 8012. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.egypro.2017.10.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
El-Khouly ME, El-Mohsnawy E, Fukuzumi S. Solar energy conversion: From natural to artificial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.02.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Everroad RC, Stuart RK, Bebout BM, Detweiler AM, Lee JZ, Woebken D, Prufert-Bebout L, Pett-Ridge J. Permanent draft genome of strain ESFC-1: ecological genomics of a newly discovered lineage of filamentous diazotrophic cyanobacteria. Stand Genomic Sci 2016; 11:53. [PMID: 27559430 PMCID: PMC4995827 DOI: 10.1186/s40793-016-0174-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/15/2016] [Indexed: 11/10/2022] Open
Abstract
The nonheterocystous filamentous cyanobacterium, strain ESFC-1, is a recently described member of the order Oscillatoriales within the Cyanobacteria. ESFC-1 has been shown to be a major diazotroph in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16S RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence; the draft genome sequence of this strain has now been determined. Here we report features of this genome as they relate to the ecological functions and capabilities of strain ESFC-1. The 5,632,035 bp genome sequence encodes 4914 protein-coding genes and 92 RNA genes. One striking feature of this cyanobacterium is the apparent lack of either uptake or bi-directional hydrogenases typically expected within a diazotroph. Additionally, a large genomic island is found that contains numerous low GC-content genes and genes related to extracellular polysaccharide production and cell wall synthesis and maintenance.
Collapse
Affiliation(s)
- R. Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Rhona K. Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Brad M. Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
| | - Angela M. Detweiler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Jackson Z. Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Dagmar Woebken
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Current address: Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | | | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| |
Collapse
|
16
|
Peltier G, Aro EM, Shikanai T. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:55-80. [PMID: 26735062 DOI: 10.1146/annurev-arplant-043014-114752] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oxygenic photosynthesis converts solar energy into chemical energy in the chloroplasts of plants and microalgae as well as in prokaryotic cyanobacteria using a complex machinery composed of two photosystems and both membrane-bound and soluble electron carriers. In addition to the major photosynthetic complexes photosystem II (PSII), cytochrome b6f, and photosystem I (PSI), chloroplasts also contain minor components, including a well-conserved type I NADH dehydrogenase (NDH-1) complex that functions in close relationship with photosynthesis and likewise originated from the endosymbiotic cyanobacterial ancestor. Some plants and many microalgal species have lost plastidial ndh genes and a functional NDH-1 complex during evolution, and studies have suggested that a plastidial type II NADH dehydrogenase (NDH-2) complex substitutes for the electron transport activity of NDH-1. However, although NDH-1 was initially thought to use NAD(P)H as an electron donor, recent research has demonstrated that both chloroplast and cyanobacterial NDH-1s oxidize reduced ferredoxin. We discuss more recent findings related to the biochemical composition and activity of NDH-1 and NDH-2 in relation to the physiology and regulation of photosynthesis, particularly focusing on their roles in cyclic electron flow around PSI, chlororespiration, and acclimation to changing environments.
Collapse
Affiliation(s)
- Gilles Peltier
- Institute of Environmental Biology and Biotechnology, CEA, CNRS, Aix-Marseille University, CEA Cadarache, 13018 Saint-Paul-lès-Durance, France;
| | - Eva-Mari Aro
- Department of Biochemistry, University of Turku, 20014 Turku, Finland;
| | | |
Collapse
|
17
|
Ji C, Cao X, Liu H, Qu J, Yao C, Zou H, Xue S. Investigating Cellular Responses During Photohydrogen Production by the Marine Microalga Tetraselmis subcordiformis by Quantitative Proteome Analysis. Appl Biochem Biotechnol 2015; 177:649-61. [DOI: 10.1007/s12010-015-1769-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/17/2015] [Indexed: 11/24/2022]
|
18
|
Khanna N, Lindblad P. Cyanobacterial hydrogenases and hydrogen metabolism revisited: recent progress and future prospects. Int J Mol Sci 2015; 16:10537-61. [PMID: 26006225 PMCID: PMC4463661 DOI: 10.3390/ijms160510537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria have garnered interest as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms can utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical processes. Our limited understanding of the cellular hydrogen production pathway is a primary setback in the potential scale-up of this process. In this regard, the present review discusses the recent insight around ferredoxin/flavodoxin as the likely electron donor to the bidirectional Hox hydrogenase instead of the generally accepted NAD(P)H. This may have far reaching implications in powering solar driven hydrogen production. However, it is evident that a successful hydrogen-producing candidate would likely integrate enzymatic traits from different species. Engineering the [NiFe] hydrogenases for optimal catalytic efficiency or expression of a high turnover [FeFe] hydrogenase in these photo-autotrophs may facilitate the development of strains to reach target levels of biohydrogen production in cyanobacteria. The fundamental advancements achieved in these fields are also summarized in this review.
Collapse
Affiliation(s)
- Namita Khanna
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-75120, Sweden.
| |
Collapse
|
19
|
Tsygankov AA, Khusnutdinova AN. Hydrogen in metabolism of purple bacteria and prospects of practical application. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715010154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Scoma A, Durante L, Bertin L, Fava F. Acclimation to hypoxia in Chlamydomonas reinhardtii: can biophotolysis be the major trigger for long-term H2 production? THE NEW PHYTOLOGIST 2014; 204:890-900. [PMID: 25103459 DOI: 10.1111/nph.12964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/04/2014] [Indexed: 05/10/2023]
Abstract
In anaerobiosis, the microalga Chlamydomonas reinhardtii is able to produce H2 gas. Electrons mainly derive from mobilization of internal reserves or from water through biophotolysis. However, the exact mechanisms triggering this process are still unclear. Our hypothesis was that, once a proper redox state has been achieved, H2 production is eventually observed. To avoid nutrient depletion, which would result in enhanced fermentative pathways, we aimed to induce long-lasting H2 production solely through a photosynthesis : respiration equilibrium. Thus, growing cells were incubated in Tris Acetate Phosphate (TAP) medium under low light and high chlorophyll content. After a 250-h acclimation phase, a 350-h H2 production phase was observed. The light-to-H2 conversion efficiency was comparable to that given in some reports operating under sulphur starvation. Electron sources were found to be water, through biophotolysis, and proteins, particularly through photofermentation. Nonetheless, a substantial contribution from acetate could not be ruled out. In addition, photosystem II (PSII) inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) showed that it actively contributed to maintaining a redox balance during cell acclimation. In appropriate conditions, PSII may represent the major source of reducing power to feed the H2 evolution process, by inducing and maintaining an ideal excess of reducing power.
Collapse
Affiliation(s)
- Alberto Scoma
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), School of Engineering and Architecture, Alma Mater Studiorum, University of Bologna, Via U. Terracini 28, I-40131, Bologna, Italy
| | | | | | | |
Collapse
|
21
|
|
22
|
Hydrogen photoproduction by immobilized n2-fixing cyanobacteria: understanding the role of the uptake hydrogenase in the long-term process. Appl Environ Microbiol 2014; 80:5807-17. [PMID: 25015894 DOI: 10.1128/aem.01776-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have investigated two approaches to enhance and extend H2 photoproduction yields in heterocystous, N2-fixing cyanobacteria entrapped in thin alginate films. In the first approach, periodic CO2 supplementation was provided to alginate-entrapped, N-deprived cells. N deprivation led to the inhibition of photosynthetic activity in vegetative cells and the attenuation of H2 production over time. Our results demonstrated that alginate-entrapped ΔhupL cells were considerably more sensitive to high light intensity, N deficiency, and imbalances in C/N ratios than wild-type cells. In the second approach, Anabaena strain PCC 7120, its ΔhupL mutant, and Calothrix strain 336/3 films were supplemented with N2 by periodic treatments of air, or air plus CO2. These treatments restored the photosynthetic activity of the cells and led to a high level of H2 production in Calothrix 336/3 and ΔhupL cells (except for the treatment air plus CO2) but not in the Anabaena PCC 7120 strain (for which H2 yields did not change after air treatments). The highest H2 yield was obtained by the air treatment of ΔhupL cells. Notably, the supplementation of CO2 under an air atmosphere led to prominent symptoms of N deficiency in the ΔhupL strain but not in the wild-type strain. We propose that uptake hydrogenase activity in heterocystous cyanobacteria not only supports nitrogenase activity by removing excess O2 from heterocysts but also indirectly protects the photosynthetic apparatus of vegetative cells from photoinhibition, especially under stressful conditions that cause an imbalance in the C/N ratio in cells.
Collapse
|
23
|
Shen Y. Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Adv 2014. [DOI: 10.1039/c4ra06441k] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Utilizing the energy, nutrients and CO2held within residual waste materials to provide all necessary inputs except for sunlight, the cultivation of algae becomes a closed-loop engineered ecosystem. Developing this green biotechnology is a tangible step towards a waste-free sustainable society.
Collapse
Affiliation(s)
- Yafei Shen
- Department of Environmental Science and Technology
- Interdisciplinary Graduate School of Science and Engineering
- Tokyo Institute of Technology
- Yokohama, Japan
| |
Collapse
|
24
|
Tsygankov A, Kosourov S. Immobilization of Photosynthetic Microorganisms for Efficient Hydrogen Production. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Khetkorn W, Baebprasert W, Lindblad P, Incharoensakdi A. Redirecting the electron flow towards the nitrogenase and bidirectional Hox-hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012. BIORESOURCE TECHNOLOGY 2012; 118:265-271. [PMID: 22705533 DOI: 10.1016/j.biortech.2012.05.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
The inhibition of competitive metabolic pathways by various inhibitors in order to redirect electron flow towards nitrogenase and bidirectional Hox-hydrogenase was investigated in Anabaena siamensis TISTR 8012. Cells grown in BG11(0) supplemented with KCN, rotenone, DCMU, and DL-glyceraldehyde under light condition for 24 h showed enhanced H(2) production. Cells grown in BG11 medium showed only marginal H(2) production and its production was hardly increased by the inhibitors tested. H(2) production with either 20mM KCN or 50 μM DCMU in BG11(0) medium was 22 μmol H(2) mg chl a(-1) h(-1), threefold higher than the control. The increased H(2) production caused by inhibitors was consistent with the increase in the respective Hox-hydrogenase activities and nifD transcript levels, as well as the decrease in hupL transcript levels. The results suggested that interruption of metabolic pathways essential for growth could redirect electrons flow towards nitrogenase and bidirectional Hox-hydrogenase resulting in increased H(2) production.
Collapse
Affiliation(s)
- Wanthanee Khetkorn
- Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
26
|
Kothari A, Potrafka R, Garcia-Pichel F. Diversity in hydrogen evolution from bidirectional hydrogenases in cyanobacteria from terrestrial, freshwater and marine intertidal environments. J Biotechnol 2012; 162:105-14. [PMID: 22771887 DOI: 10.1016/j.jbiotec.2012.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/20/2012] [Accepted: 04/17/2012] [Indexed: 11/28/2022]
Abstract
We characterized a set of 36 strains of cyanobacteria isolated from terrestrial, freshwater and marine intertidal settings to probe their potential to produce hydrogen from excess reductant, in the hope of finding novel strains with improved traits for biohydrogen production. The set was diverse with respect to origin, morphology, taxonomy and phylogeny. We found that about one half of the strains could produce hydrogen from hydrogenases in standard assays, a trait that corresponded invariably with the presence of homologues of the gene hoxH, coding for subunit H in the bidirectional Ni-Fe hydrogenase. Strains from freshwater and intertidal settings had a high incidence of hydrogen producing, hoxH containing strains, but all terrestrial isolates were negative for both. While specific rates of hydrogen production varied among strains, some novel strains displayed rates several fold higher than those previously reported. We detected two different patterns in hydrogen production. Pattern 1, corresponding to that previously known in Synechocystis PCC 6803, encompassed strains whose hydrogenase system produced hydrogen only temporarily to revert to hydrogen consumption within a short time and after reaching moderate hydrogen concentrations. Cyanobacteria displaying pattern 2, in the genera Lyngbya and Microcoleus, tended to have higher rates, did not reverse the direction of the reaction and reached much higher concentrations of hydrogen at steady state, making them of interest as potential platforms for biohydrogen production.
Collapse
Affiliation(s)
- Ankita Kothari
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | |
Collapse
|
27
|
Pinto F, van Elburg KA, Pacheco CC, Lopo M, Noirel J, Montagud A, Urchueguía JF, Wright PC, Tamagnini P. Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. MICROBIOLOGY-SGM 2011; 158:448-464. [PMID: 22096147 DOI: 10.1099/mic.0.052282-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyanobacteria are photosynthetic prokaryotes that are promising 'low-cost' microbial cell factories due to their simple nutritional requirements and metabolic plasticity, and the availability of tools for their genetic manipulation. The unicellular non-nitrogen-fixing Synechocystis sp. PCC 6803 is the best studied cyanobacterial strain and its genome was the first to be sequenced. The vast amount of physiological and molecular data available, together with a relatively small genome, makes Synechocystis suitable for computational metabolic modelling and to be used as a photoautotrophic chassis in synthetic biology applications. To prepare it for the introduction of a synthetic hydrogen producing device, a Synechocystis sp. PCC 6803 deletion mutant lacking an active bidirectional hydrogenase (ΔhoxYH) was produced and characterized at different levels: physiological, proteomic and transcriptional. The results showed that, under conditions favouring hydrogenase activity, 17 of the 210 identified proteins had significant differential fold changes in comparisons of the mutant with the wild-type. Most of these proteins are related to the redox and energy state of the cell. Transcriptional studies revealed that only six genes encoding those proteins exhibited significant differences in transcript levels. Moreover, the mutant exhibits similar growth behaviour compared with the wild-type, reflecting Synechocystis plasticity and metabolic adaptability. Overall, this study reveals that the Synechocystis ΔhoxYH mutant is robust and can be used as a photoautotrophic chassis for the integration of synthetic constructs, i.e. molecular constructs assembled from well characterized biological and/or synthetic parts (e.g. promoters, regulators, coding regions, terminators) designed for a specific purpose.
Collapse
Affiliation(s)
- Filipe Pinto
- Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Karin A van Elburg
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Catarina C Pacheco
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Miguel Lopo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Josselin Noirel
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Arnau Montagud
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camí de Vera, E-46071 Valencia, Spain
| | - Javier F Urchueguía
- Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camí de Vera, E-46071 Valencia, Spain
| | - Phillip C Wright
- Biological and Environmental Systems Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
| | - Paula Tamagnini
- Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|
28
|
Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC. The role of the bidirectional hydrogenase in cyanobacteria. BIORESOURCE TECHNOLOGY 2011; 102:8368-8377. [PMID: 21514820 DOI: 10.1016/j.biortech.2011.03.103] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 05/30/2023]
Abstract
Cyanobacteria have tremendous potential to produce clean, renewable fuel in the form of hydrogen gas derived from solar energy and water. Of the two cyanobacterial enzymes capable of evolving hydrogen gas (nitrogenase and the bidirectional hydrogenase), the hox-encoded bidirectional Ni-Fe hydrogenase has a high theoretical potential. The physiological role of this hydrogenase is a highly debated topic and is poorly understood relative to that of the nitrogenase. Here the structure, assembly, and expression of this enzyme, as well as its probable roles in metabolism, are discussed and analyzed to gain perspective on its physiological role. It is concluded that the bidirectional hydrogenase in cyanobacteria primarily functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell. Recommendations for future research to test this hypothesis are discussed.
Collapse
Affiliation(s)
- Damian Carrieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | | | | | | | | |
Collapse
|
29
|
Srirangan K, Pyne ME, Perry Chou C. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. BIORESOURCE TECHNOLOGY 2011; 102:8589-8604. [PMID: 21514821 DOI: 10.1016/j.biortech.2011.03.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems.
Collapse
Affiliation(s)
- Kajan Srirangan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
30
|
McIntosh CL, Germer F, Schulz R, Appel J, Jones AK. The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 works bidirectionally with a bias to H2 production. J Am Chem Soc 2011; 133:11308-19. [PMID: 21675712 DOI: 10.1021/ja203376y] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein film electrochemistry (PFE) was utilized to characterize the catalytic activity and oxidative inactivation of a bidirectional [NiFe]-hydrogenase (HoxEFUYH) from the cyanobacterium Synechocystis sp. PCC 6803. PFE provides precise control of the redox potential of the adsorbed enzyme so that its activity can be monitored under changing experimental conditions as current. The properties of HoxEFUYH are different from those of both the standard uptake and the "oxygen-tolerant" [NiFe]-hydrogenases. First, HoxEFUYH is biased toward proton reduction as opposed to hydrogen oxidation. Second, despite being expressed under aerobic conditions in vivo, HoxEFUYH is clearly not oxygen-tolerant. Aerobic inactivation of catalytic hydrogen oxidation by HoxEFUYH is total and nearly instantaneous, producing two inactive states. However, unlike the Ni-A and Ni-B inactive states of standard [NiFe]-hydrogenases, both of these states are quickly (<90 s) reactivated by removal of oxygen and exposure to reducing conditions. Third, proton reduction continues at 25-50% of the maximal rate in the presence of 1% oxygen. Whereas most previously characterized [NiFe]-hydrogenases seem to be preferential hydrogen oxidizing catalysts, the cyanobacterial enzyme works effectively in both directions. This unusual catalytic bias as well as the ability to be quickly reactivated may be essential to fulfilling the physiological role in cyanobacteria, organisms expected to experience swings in cellular reduction potential as they switch between aerobic conditions in the light and dark anaerobic conditions. Our results suggest that the uptake [NiFe]-hydrogenases alone are not representative of the catalytic diversity of [NiFe]-hydrogenases, and the bidirectional heteromultimeric enzymes may serve as valuable models to understand the diverse mechanisms of tuning the reactivity of the hydrogen activating site.
Collapse
Affiliation(s)
- Chelsea L McIntosh
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | |
Collapse
|
31
|
Terashima M, Specht M, Hippler M. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 2011; 57:151-68. [PMID: 21533645 DOI: 10.1007/s00294-011-0339-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.
Collapse
Affiliation(s)
- Mia Terashima
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Hindenburgplatz 55, 48143, Münster, Germany
| | | | | |
Collapse
|
32
|
Bothe H, Schmitz O, Yates MG, Newton WE. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 2010; 74:529-51. [PMID: 21119016 PMCID: PMC3008169 DOI: 10.1128/mmbr.00033-10] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N(2) fixation and/or H(2) formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H(2) as a source of combustible energy. To enhance the rates of H(2) production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H(2) formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zülpicher Str. 47b, D-50923 Cologne, Germany.
| | | | | | | |
Collapse
|
33
|
Barz M, Beimgraben C, Staller T, Germer F, Opitz F, Marquardt C, Schwarz C, Gutekunst K, Vanselow KH, Schmitz R, LaRoche J, Schulz R, Appel J. Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. PLoS One 2010; 5:e13846. [PMID: 21079771 PMCID: PMC2974642 DOI: 10.1371/journal.pone.0013846] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/17/2010] [Indexed: 12/31/2022] Open
Abstract
Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles.
Collapse
Affiliation(s)
- Martin Barz
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | | | - Torsten Staller
- Forschungs- und Technologiezentrum Westküste (FTZ) der Christian-Albrechts-Universität, Büsum, Germany
| | - Frauke Germer
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Friederike Opitz
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Claudia Marquardt
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Christoph Schwarz
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Kirstin Gutekunst
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Klaus Heinrich Vanselow
- Forschungs- und Technologiezentrum Westküste (FTZ) der Christian-Albrechts-Universität, Büsum, Germany
| | - Ruth Schmitz
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany
| | - Julie LaRoche
- Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany
| | - Rüdiger Schulz
- Botanisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | - Jens Appel
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
34
|
Schwarz C, Poss Z, Hoffmann D, Appel J. Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:305-48. [DOI: 10.1007/978-1-4419-1528-3_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Germer F, Zebger I, Saggu M, Lendzian F, Schulz R, Appel J. Overexpression, isolation, and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803. J Biol Chem 2009; 284:36462-36472. [PMID: 19801638 DOI: 10.1074/jbc.m109.028795] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bidirectional [NiFe] hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 was purified to apparent homogeneity by a single affinity chromatography step using a Synechocystis mutant with a Strep-tag II fused to the C terminus of HoxF. To increase the yield of purified enzyme and to test its overexpression capacity in Synechocystis the psbAII promoter was inserted upstream of the hoxE gene. In addition, the accessory genes (hypF, C, D, E, A, and B) from Nostoc sp. PCC 7120 were expressed under control of the psbAII promoter. The respective strains show higher hydrogenase activities compared with the wild type. For the first time a Fourier transform infrared (FTIR) spectroscopic characterization of a [NiFe] hydrogenase from an oxygenic phototroph is presented, revealing that two cyanides and one carbon monoxide coordinate the iron of the active site. At least four different redox states of the active site were detected during the reversible activation/inactivation. Although these states appear similar to those observed in standard [NiFe] hydrogenases, no paramagnetic nickel state could be detected in the fully oxidized and reduced forms. Electron paramagnetic resonance spectroscopy confirms the presence of several iron-sulfur clusters after reductive activation. One [4Fe4S](+) and at least one [2Fe2S](+) cluster could be identified. Catalytic amounts of NADH or NADPH are sufficient to activate the reaction of this enzyme with hydrogen.
Collapse
Affiliation(s)
- Frauke Germer
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Ingo Zebger
- Max-Volmer-Laboratorium, Technische Universität Berlin, Strasse des 17, Juni 135, D-10623 Berlin, Germany
| | - Miguel Saggu
- Max-Volmer-Laboratorium, Technische Universität Berlin, Strasse des 17, Juni 135, D-10623 Berlin, Germany
| | - Friedhelm Lendzian
- Max-Volmer-Laboratorium, Technische Universität Berlin, Strasse des 17, Juni 135, D-10623 Berlin, Germany
| | - Rüdiger Schulz
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Jens Appel
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287.
| |
Collapse
|
36
|
|
37
|
|
38
|
Chang CH, King PW, Ghirardi ML, Kim K. Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii. Biophys J 2007; 93:3034-45. [PMID: 17660315 PMCID: PMC2025642 DOI: 10.1529/biophysj.107.108589] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 07/06/2007] [Indexed: 11/18/2022] Open
Abstract
The [FeFe] hydrogenases HydA1 and HydA2 in the green alga Chlamydomonas reinhardtii catalyze the final reaction in a remarkable metabolic pathway allowing this photosynthetic organism to produce H(2) from water in the chloroplast. A [2Fe-2S] ferredoxin is a critical branch point in electron flow from Photosystem I toward a variety of metabolic fates, including proton reduction by hydrogenases. To better understand the binding determinants involved in ferredoxin:hydrogenase interactions, we have modeled Chlamydomonas PetF1 and HydA2 based on amino-acid sequence homology, and produced two promising electron-transfer model complexes by computational docking. To characterize these models, quantitative free energy calculations at atomic resolution were carried out, and detailed analysis of the interprotein interactions undertaken. The protein complex model we propose for ferredoxin:HydA2 interaction is energetically favored over the alternative candidate by 20 kcal/mol. This proposed model of the electron-transfer complex between PetF1 and HydA2 permits a more detailed view of the molecular events leading up to H(2) evolution, and suggests potential mutagenic strategies to modulate electron flow to HydA2.
Collapse
|
39
|
Melis A. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). PLANTA 2007; 226:1075-86. [PMID: 17721788 DOI: 10.1007/s00425-007-0609-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 07/27/2007] [Indexed: 05/16/2023]
Abstract
Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.
Collapse
Affiliation(s)
- Anastasios Melis
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
40
|
Serebriakova LT, Sheremet'eva ME. Characterization of catalytic properties of hydrogenase isolated from the unicellular cyanobacterium Gloeocapsa alpicola CALU 743. BIOCHEMISTRY (MOSCOW) 2007; 71:1370-6. [PMID: 17223791 DOI: 10.1134/s0006297906120133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The main catalytic properties of the Hox type hydrogenase isolated from the Gloeocapsa alpicola cells have been studied. The enzyme effectively catalyzes reactions of oxidation and evolution of H2 in the presence of methyl viologen (MV) and benzyl viologen (BV). The rates of these reactions in the interaction with the physiological electron donor/acceptor NADH/NAD+ are only 3-8% of the MV(BV)-dependent values. The enzyme interacts with NADP+ and NADPH, but is more specific to NAD+ and NADH. Purification of the hydrogenase was accompanied by destruction of its multimeric structure and the loss of ability to interact with pyridine nucleotides with retained activity of the hydrogenase component (HoxYH). To show the catalytic activity, the enzyme requires reductive activation, which occurs in the presence of H2, and NADH accelerates this process. The final hydrogenase activity depends on the redox potential of the activation medium (E(h)). At pH 7.0, the enzyme activity in the MV-dependent oxidation of H2 increased with a decrease in E(h) from -350 mV and reached the maximum at E(h) of about -390 mV. However, the rate of H2 oxidation in the presence of NAD+ in the E(h) range under study was virtually constant and equal to 7-8% of the maximal rate of H2 oxidation in the presence of MV.
Collapse
Affiliation(s)
- L T Serebriakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia.
| | | |
Collapse
|
41
|
Rákhely G, Laurinavichene TV, Tsygankov AA, Kovács KL. The role of Hox hydrogenase in the H2 metabolism of Thiocapsa roseopersicina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:671-6. [PMID: 17376400 DOI: 10.1016/j.bbabio.2007.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/09/2007] [Accepted: 02/05/2007] [Indexed: 11/18/2022]
Abstract
The purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS synthesizes at least three NiFe hydrogenases (Hox, Hup, Hyn). We characterized the physiological H(2) consumption/evolution reactions in mutants having deletions of the structural genes of two hydrogenases in various combinations. This made possible the separation of the functionally distinct roles of the three hydrogenases. Data showed that Hox hydrogenase (unlike the Hup and Hyn hydrogenases) catalyzed the dark fermentative H(2) evolution and the light-dependent H(2) production in the presence of thiosulfate. Both Hox(+) and Hup(+) mutants demonstrated light-dependent H(2) uptake stimulated by CO(2) but only the Hup(+) mutant was able to mediate O(2)-dependent H(2) consumption in the dark. The ability of the Hox(+) mutant to evolve or consume hydrogen was found to depend on a number of interplaying factors including both growth and reaction conditions (availability of glucose, sulfur compounds, CO(2), H(2), light). The study of the redox properties of Hox hydrogenase supported the reversibility of its action. Based on the results a scheme is suggested to describe the role of Hox hydrogenase in light-dependent and dark hydrogen metabolism in T. roseopersicina BBS.
Collapse
Affiliation(s)
- Gábor Rákhely
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Department of Biotechnology, University of Szeged, Szeged, Hungary
| | | | | | | |
Collapse
|
42
|
|
43
|
|
44
|
Abstract
Hydrogenases are metalloenzymes subdivided into two classes that contain iron-sulfur clusters and catalyze the reversible oxidation of hydrogen gas (H(2)[Symbol: see text]left arrow over right arrow[Symbol: see text]2H(+)[Symbol: see text]+[Symbol: see text]2e(-)). Two metal atoms are present at their active center: either a Ni and an Fe atom in the [NiFe]hydrogenases, or two Fe atoms in the [FeFe]hydrogenases. They are phylogenetically distinct classes of proteins. The catalytic core of [NiFe]hydrogenases is a heterodimeric protein associated with additional subunits in many of these enzymes. The catalytic core of [FeFe]hydrogenases is a domain of about 350 residues that accommodates the active site (H cluster). Many [FeFe]hydrogenases are monomeric but possess additional domains that contain redox centers, mostly Fe-S clusters. A third class of hydrogenase, characterized by a specific iron-containing cofactor and by the absence of Fe-S cluster, is found in some methanogenic archaea; this Hmd hydrogenase has catalytic properties different from those of [NiFe]- and [FeFe]hydrogenases. The [NiFe]hydrogenases can be subdivided into four subgroups: (1) the H(2) uptake [NiFe]hydrogenases (group 1); (2) the cyanobacterial uptake hydrogenases and the cytoplasmic H(2) sensors (group 2); (3) the bidirectional cytoplasmic hydrogenases able to bind soluble cofactors (group 3); and (4) the membrane-associated, energy-converting, H(2) evolving hydrogenases (group 4). Unlike the [NiFe]hydrogenases, the [FeFe]hydrogenases form a homogeneous group and are primarily involved in H(2) evolution. This review recapitulates the classification of hydrogenases based on phylogenetic analysis and the correlation with hydrogenase function of the different phylogenetic groupings, discusses the possible role of the [FeFe]hydrogenases in the genesis of the eukaryotic cell, and emphasizes the structural and functional relationships of hydrogenase subunits with those of complex I of the respiratory electron transport chain.
Collapse
Affiliation(s)
- Paulette M Vignais
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF no. 5092, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble cedex 9, France.
| |
Collapse
|
45
|
|
46
|
Ludwig M, Schulz-Friedrich R, Appel J. Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J Mol Evol 2006; 63:758-68. [PMID: 17103058 DOI: 10.1007/s00239-006-0001-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 08/17/2006] [Indexed: 10/23/2022]
Abstract
Hydrogenases are important enzymes in the energy metabolism of microorganisms. Therefore, they are widespread in prokaryotes. We analyzed the occurrence of hydrogenases in cyanobacteria and deduced a FeFe-hydrogenase in three different heliobacterial strains. This allowed the first phylogenetic analysis of the hydrogenases of all five major groups of photosynthetic bacteria (heliobacteria, green nonsulfur bacteria, green sulfur bacteria, photosynthetic proteobacteria, and cyanobacteria). In the case of both hydrogenases found in cyanobacteria (uptake and bidirectional), the green nonsulfur bacterium Chloroflexus aurantiacus was found to be the closest ancestor. Apart from a close relation between the archaebacterial and the green sulfur bacterial sulfhydrogenase, we could not find any evidence for horizontal gene transfer. Therefore, it would be most parsimonious if a Chloroflexus-like bacterium was the ancestor of Chloroflexus aurantiacus and cyanobacteria. After having transmitted both hydrogenase genes vertically to the different cyanobacterial species, either no, one, or both enzymes were lost, thus producing the current distribution. Our data and the available data from the literature on the occurrence of cyanobacterial hydrogenases show that the cyanobacterial uptake hydrogenase is strictly linked to the occurrence of the nitrogenase. Nevertheless, we did identify a nitrogen-fixing Synechococcus strain without an uptake hydrogenase. Since we could not find genes of a FeFe-hydrogenase in any of the tested cyanobacteria, although strains performing anoxygenic photosynthesis were also included in the analysis, a cyanobacterial origin of the contemporary FeFe-hydrogenase of algal plastids seems unlikely.
Collapse
Affiliation(s)
- Marcus Ludwig
- Botanisches Institut, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, D-24118, Kiel, Germany
| | | | | |
Collapse
|
47
|
Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J. LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 2006; 58:810-23. [PMID: 16238629 DOI: 10.1111/j.1365-2958.2005.04867.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The bidirectional NiFe-hydrogenase of Synechocystis sp. PCC 6803 is encoded by five genes (hoxEFUYH) which are transcribed as one unit. The transcription of the hox-operon is regulated by a promoter situated upstream of hoxE. The transcription start point was located at -168 by 5'Race. Several promoter probe vectors carrying different promoter fragments revealed two regions to be essential for the promoter activity. One is situated in the untranslated 5'leader region and the other is found -569 to -690 nucleotides upstream of the ATG. The region further upstream was shown to bind a protein. Even though an imperfect NtcA binding site was identified, NtcA did not bind to this region. The protein binding to the DNA was purified and found to be LexA by MALDI-TOF. The complete LexA and its DNA binding domain were overexpressed in Escherichia coli. Both were able to bind to two sites in the examined region in band-shift-assays. Accordingly, the hydrogenase activity of a LexA-depleted mutant was reduced. This is the first report on LexA acting not as a repressor but as a transcriptional activator. Furthermore, LexA is the first transcription factor identified so far for the expression of bidirectional hydrogenases in cyanobacteria.
Collapse
Affiliation(s)
- Kirstin Gutekunst
- Botanisches Institut, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Cournac L, Guedeney G, Peltier G, Vignais PM. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 2004; 186:1737-46. [PMID: 14996805 PMCID: PMC355973 DOI: 10.1128/jb.186.6.1737-1746.2003] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between hydrogen metabolism, respiration, and photosynthesis was studied in vivo in whole cells of Synechocystis sp. strain PCC 6803 by continuously monitoring the changes in gas concentrations (H2, CO2, and O2) with an online mass spectrometer. The in vivo activity of the bidirectional [NiFe]hydrogenase [H2:NAD(P) oxidoreductase], encoded by the hoxEFUYH genes, was also measured independently by the proton-deuterium (H-D) exchange reaction in the presence of D2. This technique allowed us to demonstrate that the hydrogenase was insensitive to light, was reversibly inactivated by O2, and could be quickly reactivated by NADH or NADPH (+H2). H2 was evolved by cells incubated anaerobically in the dark, after an adaptation period. This dark H2 evolution was enhanced by exogenously added glucose and resulted from the oxidation of NAD(P)H produced by fermentation reactions. Upon illumination, a short (less than 30-s) burst of H2 output was observed, followed by rapid H2 uptake and a concomitant decrease in CO2 concentration in the cyanobacterial cell suspension. Uptake of both H2 and CO2 was linked to photosynthetic electron transport in the thylakoids. In the ndhB mutant M55, which is defective in the type I NADPH-dehydrogenase complex (NDH-1) and produces only low amounts of O2 in the light, H2 uptake was negligible during dark-to-light transitions, allowing several minutes of continuous H2 production. A sustained rate of photoevolution of H2 corresponding to 6 micro mol of H2 mg of chlorophyll(-1) h(-1) or 2 ml of H2 liter(-1) h(-1) was observed over a longer time period in the presence of glucose and was slightly enhanced by the addition of the O2 scavenger glucose oxidase. By the use of the inhibitors DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), it was shown that two pathways of electron supply for H2 production operate in M55, namely photolysis of water at the level of photosystem II and carbohydrate-mediated reduction of the plastoquinone pool.
Collapse
Affiliation(s)
- Laurent Cournac
- CEA Cadarache, DSV, DEVM, Département d'Ecophysiologie Végétale et de Microbiologie, Laboratoire d'Ecophysiologie de la Photosynthèse, UMR 163 CNRS CEA, Univ-Méditerranée CEA 1000 F-13108 Saint Paul-Lez Durance, France
| | | | | | | |
Collapse
|
49
|
Melis A, Seibert M, Happe T. Genomics of green algal hydrogen research. PHOTOSYNTHESIS RESEARCH 2004; 82:277-88. [PMID: 16143840 DOI: 10.1007/s11120-004-2050-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 07/16/2004] [Indexed: 05/04/2023]
Abstract
This article summarizes knowledge on genes and their respective proteins in the field of green algal hydrogen research. Emphasis is placed on recently cloned genes from the unicellular green alga Chlamydomonas reinhardtii, including HydA1 and HydA2, which encode homologous [Fe]-hydrogenases, Tla1, which encodes a chlorophyll antenna size regulatory gene, SulP, which encodes a chloroplast sulfate permease, and Sta7, which encodes an isoamylase. Analysis of the structure and function of these genes and of their respective proteins in C. reinhardtii, and related unicellular green algae, is presented in light of the role they play in the hydrogen metabolism in these organisms. A discussion is offered as to the potential application of these genes in the field of hydrogen photoproduction.
Collapse
Affiliation(s)
- Anastasios Melis
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA,
| | | | | |
Collapse
|
50
|
Zhang L, Melis A. Probing green algal hydrogen production. Philos Trans R Soc Lond B Biol Sci 2002; 357:1499-507; discussion 1507-11. [PMID: 12437889 PMCID: PMC1693051 DOI: 10.1098/rstb.2002.1152] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recently developed two-stage photosynthesis and H(2)-production protocol with green algae is further investigated in this work. The method employs S deprivation as a tool for the metabolic regulation of photosynthesis. In the presence of S, green algae perform normal photosynthesis, carbohydrate accumulation and oxygen production. In the absence of S, normal photosynthesis stops and the algae slip into the H(2)-production mode. For the first time, to our knowledge, significant amounts of H(2) gas were generated, essentially from sunlight and water. Rates of H(2) production could be sustained continuously for ca. 80 h in the light, but gradually declined thereafter. This work examines biochemical and physiological aspects of this process in the absence or presence of limiting amounts of S nutrients. Moreover, the effects of salinity and of uncouplers of phosphorylation are investigated. It is shown that limiting levels of S can sustain intermediate levels of oxygenic photosynthesis, in essence raising the prospect of a calibration of the rate of photosynthesis by the S content in the growth medium of the algae. It is concluded that careful titration of the supply of S nutrients in the green alga medium might permit the development of a continuous H(2)-production process.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|