1
|
Coronado-Parra T, Roldán M, Aboal M. Confocal Microscopy in Ecophysiological Studies of Algae: A Door to Understanding Autofluorescence in Red Algae. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:218-226. [PMID: 35177134 DOI: 10.1017/s1431927621013660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alga in the genus Chroothece have been reported mostly from aquatic or subaerial continental environments, where they grow in extreme conditions. The strain Chroothece mobilis MAESE 20.29 was exposed to different light intensities, red and green monochromatic light, ultraviolet (UV) radiation, high nitrogen concentrations, and high salinity to assess the effect of those environmental parameters on its growth. Confocal laser scanning microscopy (CLSM) was used as an “in vivo” noninvasive single-cell method for the study. The strain seemed to prefer fairly high light intensities and showed a significant increase in allophycocyanin (APC) and chlorophyll a [photosystem I (PSI) and photosystem II (PSII)] fluorescence with 330 and 789 μM/cm2/s intensities. Green monochromatic light promoted a significant increase in the fluorescence of APC and chlorophyll a (PSI and PSII). UV-A significantly decreased phycocyanin and increased APC, while UV-A + B showed a greater decreasing effect on c-Phycocyanin but did not significantly change concentrations of APC. The increase in nitrogen concentration in the culture medium significantly and negatively affected all pigments, and no effect was observed with an increase in salinity. Our data show that CLSM represents a very powerful tool for ecological research of microalgae in small volumes and may contribute to the knowledge of phycobiliproteins in vivo behavior and the parameters for the large-scale production of these pigments.
Collapse
Affiliation(s)
- Teresa Coronado-Parra
- Servicio de Microscopía del Área Científica y Técnica de Investigación (ACTI) de la Universidad de Murcia, Murcia30100, Spain
| | - Mónica Roldán
- Unidad de Microscopía Confocal e Imagen Celular, Servicio de Medicina Genética y Molecular, Instituto Pediátrico de Enfermedades Raras (IPER), Hospital Sant Joan de Déu, e Instituto de Investigación Sant Joan de Déu, Esplugues de Llobregat08950, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, Esplugues de Llobregat08950, Spain
| | - Marina Aboal
- Laboratorio de Algología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, MurciaE-30100, Spain
| |
Collapse
|
2
|
Chen P, Xu Y, Yang S, Chang Q, Zheng B, Zhang Y, Hu X, Zeng H. Application of X-ray diffraction and energy dispersive spectroscopy in the isolation of sulfated polysaccharide from Porphyra haitanensis and its antioxidant capacity under in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6452-6462. [PMID: 33997981 DOI: 10.1002/jsfa.11316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The separation and purification of Porphyra haitanensis polysaccharide (PHP), and the determination of changes in molecular weight (Mw) and antioxidant capacity after in vitro digestion, were undertaken. RESULTS Analysis of two polysaccharide fractions (PHP0.5-1-UF and PHP1.0-1-UF) by various techniques showed that they were very pure sulfated polysaccharides without pigment or protein. PHP0.5-1-UF was filamentous or 'tape-like' sheets, whereas PHP1.0-1-UF had some filaments and large numbers of rounded aggregates. The Mw of PHP, PHP0.5-1-UF and PHP1.0-1-UF was 2.06 × 106 (±2.02%), 6.68 × 106 (±3.17%), and 1.14 × 106 (±3.44%) (g mol-1 ), respectively. After in vitro digestion, the Mw of PHP, PHP0.5-1-UF, and PHP1.0-1-UF decreased. Their antioxidant capacities were markedly higher than before digestion, especially PHP0.5-1-UF and its digestion products, which might be related to the reductions in Mw. CONCLUSION These findings provide a greater understanding of the separation and purification of sulfated polysaccharides and the influence of digestion on biological activity. They also contribute to the practical application of sulfated polysaccharides in functional foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peilin Chen
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhong Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Chang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Zhang D, Xu J, Beer S, Beardall J, Zhou C, Gao K. Increased CO 2 Relevant to Future Ocean Acidification Alleviates the Sensitivity of a Red Macroalgae to Solar Ultraviolet Irradiance by Modulating the Synergy Between Photosystems II and I. FRONTIERS IN PLANT SCIENCE 2021; 12:726538. [PMID: 34603355 PMCID: PMC8481898 DOI: 10.3389/fpls.2021.726538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
While intertidal macroalgae are exposed to drastic changes in solar photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) during a diel cycle, and to ocean acidification (OA) associated with increasing CO2 levels, little is known about their photosynthetic performance under the combined influences of these drivers. In this work, we examined the photoprotective strategies controlling electron flow through photosystems II (PSII) and photosystem I (PSI) in response to solar radiation with or without UVR and an elevated CO2 concentration in the intertidal, commercially important, red macroalgae Pyropia (previously Porphyra) yezoensis. By using chlorophyll fluorescence techniques, we found that high levels of PAR alone induced photoinhibition of the inter-photosystem electron transport carriers, as evidenced by the increase of chlorophyll fluorescence in both the J- and I-steps of Kautsky curves. In the presence of UVR, photoinduced inhibition was mainly identified in the O2-evolving complex (OEC) and PSII, as evidenced by a significant increase in the variable fluorescence at the K-step (F k) of Kautsky curves relative to the amplitude of F J-F o (Wk) and a decrease of the maximum quantum yield of PSII (F v/F m). Such inhibition appeared to ameliorate the function of downstream electron acceptors, protecting PSI from over-reduction. In turn, the stable PSI activity increased the efficiency of cyclic electron transport (CET) around PSI, dissipating excess energy and supplying ATP for CO2 assimilation. When the algal thalli were grown under increased CO2 and OA conditions, the CET activity became further enhanced, which maintained the OEC stability and thus markedly alleviating the UVR-induced photoinhibition. In conclusion, the well-established coordination between PSII and PSI endows P. yezoensis with a highly efficient photochemical performance in response to UVR, especially under the scenario of future increased CO2 levels and OA.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Sven Beer
- Department of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - John Beardall
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Cong Zhou
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Enhancement of Xanthophyll Synthesis in Porphyra/Pyropia Species (Rhodophyta, Bangiales) by Controlled Abiotic Factors: A Systematic Review and Meta-Analysis. Mar Drugs 2021; 19:md19040221. [PMID: 33921190 PMCID: PMC8071490 DOI: 10.3390/md19040221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Red alga species belonging to the Porphyra and Pyropia genera (commonly known as Nori), which are widely consumed and commercialized due to their high nutritional value. These species have a carotenoid profile dominated by xanthophylls, mostly lutein and zeaxanthin, which have relevant benefits for human health. The effects of different abiotic factors on xanthophyll synthesis in these species have been scarcely studied, despite their health benefits. The objectives of this study were (i) to identify the abiotic factors that enhance the synthesis of xanthophylls in Porphyra/Pyropia species by conducting a systematic review and meta-analysis of the xanthophyll content found in the literature, and (ii) to recommend a culture method that would allow a significant accumulation of these compounds in the biomass of these species. The results show that salinity significantly affected the content of total carotenoids and led to higher values under hypersaline conditions (70,247.91 µg/g dm at 55 psu). For lutein and zeaxanthin, the wavelength treatment caused significant differences between the basal and maximum content (4.16–23.47 µg/g dm). Additionally, in Pyropia spp., the total carotenoids were considerably higher than in Porphyra spp.; however, the lutein and zeaxanthin contents were lower. We discuss the specific conditions for each treatment and the relation to the ecological distribution of these species.
Collapse
|
5
|
Fu S, Xue S, Chen J, Shang S, Xiao H, Zang Y, Tang X. Effects of Different Short-Term UV-B Radiation Intensities on Metabolic Characteristics of Porphyra haitanensis. Int J Mol Sci 2021; 22:ijms22042180. [PMID: 33671697 PMCID: PMC7927003 DOI: 10.3390/ijms22042180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/03/2022] Open
Abstract
The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.
Collapse
Affiliation(s)
- Shimei Fu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
| | - Shuai Shang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China;
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266000, China
- Correspondence: (Y.Z.); (X.T.)
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence: (Y.Z.); (X.T.)
| |
Collapse
|
6
|
Saluri M, Kaldmäe M, Rospu M, Sirkel H, Paalme T, Landreh M, Tuvikene R. Spatial variation and structural characteristics of phycobiliproteins from the red algae Furcellaria lumbricalis and Coccotylus truncatus. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Álvarez-Gómez F, Korbee N, Figueroa FL. Effects of UV Radiation on Photosynthesis, Antioxidant Capacity and the Accumulation of Bioactive Compounds in Gracilariopsis longissima, Hydropuntia cornea and Halopithys incurva (Rhodophyta). JOURNAL OF PHYCOLOGY 2019; 55:1258-1273. [PMID: 31257593 DOI: 10.1111/jpy.12899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
The red macroalgae Hydropuntia cornea, Gracilariopsis longissima and Halopithys incurva were cultured for 14 d under laboratory conditions, in enriched seawater with a high nutrient content (N-NH4+ and P-PO43- ) and two radiation regimes: PAR (400-700 nm) and PAB (280-700 nm). The UV radiation effects under high availability of nutrients on growth, photosynthetic pigments (chlorophyll a, carotenoids and phycobiliproteins), photosynthetic activity and biochemical composition were studied. Maximum quantum yield (Fv /Fm ) was not significantly different among the PAR and PAB treatments during the experiment. However, the maximum electronic transport rate (ETRmax ) increased over time, showing the highest values in PAR for H. incurva and H. cornea, whereas for G. longissima it was found in PAB. Photosynthetic efficiency (αETR ) decreased over time in the first two species, but increased in G. longissima. Saturation irradiance (EkETR ) and maximum nonphotochemical quenching (NPQmax ) increased in PAB with time up to 80% and 30%, respectively, indicating a photosynthetic acclimatization like that of sun-type algae. Five MAAs were identified in all species using high performance liquid chromatography (HPLC). The total content of MAAs increased over time, being 30% higher in H. incurva, 40% in G. longissima and 50% in H. cornea in PAB than in the PAR treatment. Finally, the antioxidant activity was also higher in the PAB treatment. All of the species presented an effective mechanism of photoprotection based on the accumulation of photoprotective compounds with antioxidant activity, as well as a high dissipation of excitation energy (high NPQmax ).
Collapse
Affiliation(s)
- Félix Álvarez-Gómez
- Department of Ecology and Geology, Faculty of Sciences, University of Malaga, Campus Universitario de Teatinos s/n, 29071, Malaga, Spain
| | - Nathalie Korbee
- Department of Ecology and Geology, Faculty of Sciences, University of Malaga, Campus Universitario de Teatinos s/n, 29071, Malaga, Spain
| | - Félix L Figueroa
- Department of Ecology and Geology, Faculty of Sciences, University of Malaga, Campus Universitario de Teatinos s/n, 29071, Malaga, Spain
| |
Collapse
|
8
|
Nascimento A, Coelho-Gomes C, Barbarino E, Lourenço SO. Temporal Variations of the Chemical Composition of Three Seaweeds in Two Tropical Coastal Environments. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojms.2014.42013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Xu Z, Gao K. NH4+ enrichment and UV radiation interact to affect the photosynthesis and nitrogen uptake of Gracilaria lemaneiformis (Rhodophyta). MARINE POLLUTION BULLETIN 2012; 64:99-105. [PMID: 22104717 DOI: 10.1016/j.marpolbul.2011.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/17/2011] [Indexed: 05/31/2023]
Abstract
Solar ultraviolet radiation (UVR, 280-400 nm) is known to inhibit the photosynthesis of macroalgae, whereas nitrogen availability may alter the sensitivity of the algae to UVR. Here, we show that UV-B (280-315 nm) significantly reduced the net photosynthetic rate of Gracilaria lemaneiformis. This inhibition was alleviated by enrichment with ammonia, which also caused a decrease in dark respiration. The presence of both UV-A (315-400 nm) and UV-B stimulated the accumulation of UV-absorbing compounds. However, this stimulation was not affected by enrichment with ammonia. The content of phycoerythrin (PE) was increased by the enrichment of ammonia only in the absence of UVR. Ammonia uptake and the activity of nitrate reductase were repressed by UVR. However, exposure to UVR had an insignificant effect on the rate of nitrate uptake. In conclusion, increased PE content associated with ammonia enrichment played a protective role against UVR in this alga, and UVR differentially affected the uptake of nitrate and ammonia.
Collapse
Affiliation(s)
- Zhiguang Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China; Mariculture Institute of Shandong Province, Qingdao, Shandong 266002, China.
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
10
|
Xu Z, Gao K. Impacts of UV radiation on growth and photosynthetic carbon acquisition in Gracilaria lemaneiformis (Rhodophyta) under phosphorus-limited and replete conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2010; 36:1057-1064. [PMID: 32688717 DOI: 10.1071/fp09092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/24/2009] [Indexed: 06/11/2023]
Abstract
Solar ultraviolet radiation (UVR, 280-400 nm) is known to negatively affect macroalgal growth and photosynthesis, while phosphorus availability may affect their sensitivity to UVR. Here, we show that UV-A enhanced the growth rate of the red macroalga, Gracilaria lemaneiformis Bory de Saint-Vincent under inorganic phosphorus (Pi)-replete but reduced it under Pi-limited conditions. Maximal net photosynthetic rates were significantly reduced by both UV-A and UV-B, but the apparent photosynthetic efficiency was enhanced in the presence of UV-A. The UV-induced inhibition was exacerbated under Pi-limited conditions. The activity of total carbonic anhydrase was enhanced and the photosynthetic affinity for exogenous inorganic carbon (Ci) was raised for thalli grown in the presence of UVR under both Pi-replete and Pi-limited conditions. The relative growth rate was closely related to Ci acquisition capability (Vmax/KDIC), which was enhanced by UVR exposure under Pi-replete but not significantly affected under Pi-limited conditions.
Collapse
Affiliation(s)
- Zhiguang Xu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
11
|
Xue L, Zhang Y, Zhang T, An L, Wang X. Effects of Enhanced Ultraviolet-B Radiation on Algae and Cyanobacteria. Crit Rev Microbiol 2008; 31:79-89. [PMID: 15986833 DOI: 10.1080/10408410590921727] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This article provides an overview of existing literature on the ultraviolet-B (UV-B) radiation effects on algae and cyanobacteria. We report on the effects of UV-B radiation to the growth and development, biomass, sensitivity, photosynthetic pigments, UV-B absorbing compounds, photosynthesis, protein and DNA damage, enzyme activity, nitrogen fixation and assimilation of nitrogen, protective mechanisms of algae and cyanobacteria, the accommodation of algae and cyanobacteria to environmental stress, and the effects to ecology system. Many of the studies show the dramatic effects of UV-B radiation; but typically these studies were conducted under conditions with supplemental UV-B irradiance that was higher than would ever occur outside experimental conditions or natural condition. A few of the studies reviewed used experimental conditions and supplemental UV-B irradiance that approached realism. Enhanced UV-B generally decreased chlorophyll content, whereas it increased UV-B absorbing compounds in many algae. Decrease in photosynthesis, particularly at higher UV-B doses, was due to both direct (effect on photosystem) and indirect (decrease in pigments) effects. The decreases in chlorophyll pigments and photosynthesis resulted in lower biomass. However, algae and cyanobacteria have evolved various avoidance and repair mechanisms to protect themselves against the damaging effects of UV radiation to acclimate to enhanced UV-B radiation. The review points to areas where further studies on the relationships among nitrogenase, Rubisco, antioxidase activity, signal, antioxidants, and free radicals under enhanced UV-B are needed to quantify the effects of UV-B radiation on algae and cyanobacteria. These studies are needed in order to develop dose response functions that can facilitate development of dynamic simulation models for use in UV-B and other environmental impact assessments.
Collapse
Affiliation(s)
- Lingui Xue
- State Key Laboratory of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | | | |
Collapse
|
12
|
Farooq M, Shankar U, Ray RS, Misra RB, Agrawal N, Verma K, Hans RK. Morphological and metabolic alterations in duckweed (Spirodela polyrhiza) on long-term low-level chronic UV-B exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2005; 62:408-14. [PMID: 16216635 DOI: 10.1016/j.ecoenv.2005.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 01/04/2005] [Accepted: 01/28/2005] [Indexed: 05/04/2023]
Abstract
Laboratory grown duckweed (Spirodela polyrhiza) plants were exposed to 0.72 and 1.44J of UV-B radiation daily for 7 days at 0.4mW/cm(2) intensity. Chlorosis and necrosis were observed along with depletion in protein, pigments (chlorophyll, pheophytin, carotenoids, phycoerythrin, phycocyanin, and flavoxanthin), biomass, root length, and frond size in UV-B-exposed plants. The study confirms morphological and metabolic alterations leading to reduction in the productivity of duckweed following long-term exposure to UV-B radiation.
Collapse
Affiliation(s)
- M Farooq
- Photobiology Division, Industrial Toxicology Research Centre, Mahatma Gandhi Marg, Post Box No. 80, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Helbling EW, Barbieri ES, Sinha RP, Villafañe VE, Häder DP. Dynamics of potentially protective compounds in Rhodophyta species from Patagonia (Argentina) exposed to solar radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2004; 75:63-71. [PMID: 15246352 DOI: 10.1016/j.jphotobiol.2004.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/16/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
The impact of solar radiation upon potentially protective compounds (i.e., UV-absorbing compounds and carotenoids) was assessed in four Rhodophyte species from Patagonia (i.e., Ceramium sp. Lyngbye, Corallina officinalis Linnaeus, Callithamnion gaudichaudii Agardh and Porphyra columbina Montagne) during short-term (i.e., 46 h) experiments. Algae were exposed to solar radiation under two treatments (PAR only: 400-700 nm, and PAR+UVR: 280-700 nm) and sub-samples were taken every 3 h (or longer periods at night) to determine the spectral absorption characteristics and concentration of UV-absorbing compounds, carotenoids and photosynthetic pigments. Except for C. gaudichaudii which displayed a decrease in chl-a concentration throughout the experiment, photosynthetic pigments had small variations in all species. UV-absorbing compounds concentration had species-specific responses: Ceramium sp. was the only species in which UV-absorbing compounds concentration varied as a function of solar irradiance, with maximum values around local noon. In C. officinalis and P. columbina UV-absorbing compounds concentration increased as compared to that of chl-a; in Ceramium sp. and C. gaudichaudii, however, there was no relationship between UV-absorbing compounds content and chl-a concentration. Carotenoids, on the other hand, did co-vary with chl-a in all species. Our data suggest that, with the exception of C. gaudichaudii, the differential responses of UV-absorbing compounds concentrations are more associated to the previous light history of the algae (i.e., in turn due to their position in the intertidal zone) rather than to the radiation treatment imposed to the samples. Based on our results, the variable impact of solar radiation upon productivity (and eventually biodiversity) of macroalgae from Patagonia might consequently differentially affect higher trophic levels of the aquatic food web.
Collapse
Affiliation(s)
- E Walter Helbling
- Estación de Fotobiología Playa Unión and Consejo Nacional de Investigaciones Científicas y Técnicas, Rifleros 227 - Playa Unión, Rawson, Chubut, Argentina.
| | | | | | | | | |
Collapse
|
14
|
Pérez-Rodríguez E, Aguilera J, Figueroa FL. Tissular localization of coumarins in the green alga Dasycladus vermicularis (Scopoli) Krasser: a photoprotective role? JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:1093-100. [PMID: 12598579 DOI: 10.1093/jxb/erg111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cell distribution of coumarins, a group of UV-absorbing substances, was analysed by epifluorescence optical microscopy in the green macroalga Dasycladus vermicularis. Maximal concentration of 3,6,7-trihydroxycoumarin (THC), which corresponds to almost 100% of the total coumarins in D. vermicularis, was found in the apical part of the thallus, which is more exposed to solar radiation. At a cell level, two blue, highly fluorescent layers, corresponding to a large accumulation of THC, were found in the internal part of the cell wall and around the vacuolar membrane. The percentage of UV radiation absorbed by each THC layer could be measured from the in vitro total thallus concentration of THC and histological measurements of the layers. The THC layer close to the cell wall absorbed 88% of the incident irradiance at 346 nm (corresponding to the maximum of absorbance of THC in the UVA region), while that close to the vacuole membrane absorbed 87.5%. These results agree with the hypothesis of a natural sunscreen role, significantly reducing harmful UV radiation reaching the cell. Owing to the release of this substance into the medium under different stress conditions, its capacity as a UV filter for other macroalgae has been tested. The ecological relevance of the release process of this UV-absorbing substance in specific environments is discussed.
Collapse
Affiliation(s)
- Eduardo Pérez-Rodríguez
- Universidad de Málaga, Facultad de Ciencias, Departamento de Ecología, Campus Universitario de Teatinos s/n, 29071 Málaga, Spain
| | | | | |
Collapse
|
15
|
Häder DP, Lebert M, Sinha RP, Barbieri ES, Helbling EW. Role of protective and repair mechanisms in the inhibition of photosynthesis in marine macroalgae. Photochem Photobiol Sci 2002; 1:809-14. [PMID: 12656483 DOI: 10.1039/b206152j] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of photoinhibition was investigated in three representative macroalgal species growing on the coast of Patagonia: the chlorophyte Ulva rigida C. Agardh, the rhodophyte Porphyra columbina Montagne and the phaeophyte Dictyota dichotoma (Huds.) Lamour. Dark adapted specimens were exposed to 15 min unfiltered solar radiation to induce photoinhibition, and subsequently the recovery of the photosynthetic quantum yield was followed for up to 6 h. Photoinhibition is believed to be due to the damage and proteolysis of the D1 protein in the reaction center of Photosystem II. During recovery this protein is resynthesized. In order to prove this hypothesis, inhibitors of the chloroplast protein synthesis, streptomycin and chloramphenicol were applied. Both retarded the repair process indicating an inhibition of the D1 protein resynthesis during recovery after the damage they experienced during light exposure. Some algal groups use the xanthophyll cycle to ameliorate the inhibition by excessive light. Dithiothreitol, an inhibitor of violaxanthin de-epoxidase, was administered, to impair the xanthophyll cycle. It strongly affected both photoinhibition and recovery even in the red algal species, which do not have the xanthophyll cycle, indicating that this drug has significant side effects and should be used with caution for the study of the involvement of this protective cycle in algae. Pigmentation was followed in the three species using absorption spectroscopy of thallus extracts at 665 nm during continuous exposure to natural solar radiation or radiation deprived of the UV component during two days. The results indicated a pronounced variation in pigmentation over time due to bleaching and resynthesis. Solar radiation was monitored during the experiments in three channels (UV-B, UV-A and PAR) using an ELDONET instrument on site.
Collapse
Affiliation(s)
- Donat P Häder
- Institut für Botanik und Pharmazeutische Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | | | | | | | | |
Collapse
|
16
|
Misra RB, Babu GS, Ray RS, Hans RK. Tubifex: a sensitive model for UV-B-induced phototoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2002; 52:288-295. [PMID: 12297092 DOI: 10.1006/eesa.2002.2184] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The natural increase of UV-B radiation levels due to depletion of the ozone layer in the atmosphere may impose additional stress for the survival of zooplanktons which serve as a major constituent of the aquatic food chain. To study the adverse effects of UV-B radiation on the aquatic biomass, studies were conducted using the aquatic organism Tubifex as a model, as UV-B radiation is known to penetrate into the natural waters. UV-B radiation induced mortality in tubifex and the production of activated oxygen species by these organisms. Alterations in DNA, RNA, protein, glutathione (GSH), hydrogen peroxide H(2)O(2), thiobarbituric acid-reactive substance (TBA-RS), ATPase, AChE, GST, and LDH activities in Tubifex at various doses (0-2.0 J) of UV-B radiation were found. LC(50) value for UV-B-induced mortality of Tubifex was 0.80+/-0.15 J and the threshold dose was 0.35+/-0.05 J; mortality began within 3h postirradiation. UV-B dose-dependent production of singlet oxygen, superoxide anion, and hydroxyl radicals by Tubifex was observed. DNA, RNA, protein, and GSH contents were found to decrease significantly (P<0.001) while H(2)O(2) and TBA-RS increased (P<0.01) under the influence of UV-B radiation. The activities of ATpase, AChE, and GST enzymes were inhibited (P<0.01) and LDH activity was significantly increased (P<0.001) in Tubifex exposed to UV-B radiation. The results suggest that an increase in UV-B radiation alters several biochemical processes, leading to the mortality of the organism. Tubifex could be useful as a sensitive alternate model for studying UV-B-induced phototoxicity and possible mechanisms of action.
Collapse
Affiliation(s)
- R B Misra
- Photobiology Division, Industrial Toxicology Research Centre, Lucknow, India
| | | | | | | |
Collapse
|
17
|
Sinha RP, Hader DP. Life under solar UV radiation in aquatic organisms. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2002; 30:1547-1556. [PMID: 12575720 DOI: 10.1016/s0273-1177(02)00370-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aquatic photosynthetic organisms are exposed to solar ultraviolet (UV) radiation while they harvest longer wavelength radiation for energetic reasons. Solar UV-B radiation (280-315 nm) affects motility and orientation in motile organisms and impairs photosynthesis in cyanobacteria, phytoplankton and macroalgae as measured by monitoring oxygen production or pulse amplitude modulated fluorescence analysis. Upon moderate UV stress most organisms respond by photoinhibition which is an active downregulation of the photosynthetic electron transport in photosystem II by degradation of UV-damaged D1 protein. Photoinhibition is readily reversible during recovery in shaded conditions. Excessive UV stress causes photodamage which is not easily reversible. Another major target is the DNA where UV-B mainly induces thymine dimers. Cyanobacteria, phytoplankton and macroalgae produce scytonemin, mycosporine-like amino acids and other UV-absorbing substances to protect themselves from short wavelength solar radiation.
Collapse
Affiliation(s)
- R P Sinha
- Friedrich-Alexander-Universität, Institut für Botanik und Pharmazeutische Biologie, Erlangen, Germany
| | | |
Collapse
|