1
|
Chang JG, Kim SJ, Kim CH. Neuroablative Intervention for Refractory Obsessive-Compulsive Disorder. Psychiatry Investig 2023; 20:997-1006. [PMID: 37997327 PMCID: PMC10678146 DOI: 10.30773/pi.2023.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE This review aims to investigate the progression of neuroablation, along with documented clinical efficacy and safety, in the management of treatment-resistant obsessive-compulsive disorder (OCD). METHODS We searched and compiled clinical research results of neuroablation therapy reported to date. We extracted outcomes related to clinical efficacy, side effects, and surgical complications. Additionally, we summarized key claims and findings. RESULTS Neuroablative intervention is a potential treatment approach for refractory OCD. Recent advancements, such as real-time magnetic resonance monitoring and minimally invasive techniques employing ultrasound and laser, offer distinct advantages in terms of safety and comparative efficacy when compared to conventional methods. However, the absence of randomized controlled trials and long-term outcome data underscores the need for cautious consideration when selecting neuroablation. CONCLUSION Neuroablative intervention shows promise for refractory OCD, but vigilant consideration is essential in both patient selection and surgical method choices due to the potential for rare yet serious complications.
Collapse
Affiliation(s)
- Jhin Goo Chang
- Department of Psychiatry, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Se Joo Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan-Hyung Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Modern Gamma Knife radiosurgery for management of psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:171-183. [PMID: 35396026 DOI: 10.1016/bs.pbr.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Psychiatric disorders result in great suffering of affected patients, who often have rather limited treatment options. In cases refractory to standard medical and behavioral therapy, interventional procedures may be the only feasible solution. The authors experience with Gamma Knife bilateral cingulotomy for treatment-resistant major depression disorder (5 cases) and anorexia nervosa (6 cases), and bilateral anterior capsulotomy for severe obsessive-compulsive disorder (10 cases) shows that such radiosurgical techniques may be applied both effectively and safely. During post-treatment follow-up, the vast majority of patients demonstrated gradual reduction of psychiatric symptoms and improvement of the quality of life, which was confirmed by results of regular neuropsychological testing and imaging examinations. No major side effect was observed in any case. More active application of radiosurgery (using standardized technique) for management of mental illnesses in various Gamma Knife centers worldwide should be encouraged.
Collapse
|
3
|
Messina G, Vetrano IG, Bonomo G, Broggi G. Role of deep brain stimulation in management of psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:61-96. [PMID: 35396031 DOI: 10.1016/bs.pbr.2022.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nowadays, most of patients affected by psychiatric disorders are successfully treated with conservative therapies. Still, a variable percentage of them demonstrate resistance to conventional treatments, and alternative methods can then be considered. During the last 20 years, there is a progressive interest in use of deep brain stimulation (DBS) in mental illnesses. It has become clear nowadays, that this modality may be effectively applied under specific indications in some patients with major depressive disorder, obsessive-compulsive disorder, anorexia nervosa and other eating disorders, Tourette syndrome, schizophrenia, substance use disorder, and even pathologically aggressive behavior. Despite the fact that the efficacy of neuromodulation with DBS, as well as of various lesional interventions, in cases of mental illnesses is still not fully established, there are several premises for wider applications of such "unclassical" psychiatric treatments in the future. Novel technologies of DBS, developments in non-invasive lesioning using stereotactic radiosurgery and transcranial magnetic resonance-guided focused ultrasound, and advances of neurophysiological and neuroimaging modalities may bolster further clinical applications of psychiatric neurosurgery, improve its results, and allow for individually selected treatment strategies tailored to specific needs of the patient.
Collapse
Affiliation(s)
- Giuseppe Messina
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Ignazio G Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giulio Bonomo
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Broggi
- Functional Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Neurosurgery, M Cecilia Hospital-GVM, Ravenna, Italy
| |
Collapse
|
4
|
De Salles A, Lucena L, Paranhos T, Ferragut MA, de Oliveira-Souza R, Gorgulho A. Modern neurosurgical techniques for psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:33-59. [PMID: 35396030 DOI: 10.1016/bs.pbr.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Psychosurgery refers to an ensemble of more or less invasive techniques designed to reduce the burden caused by psychiatric diseases in patients who have failed to respond to conventional therapy. While most surgeries are designed to correct apparent anatomical abnormalities, no discrete cerebral anatomical lesion is evident in most psychiatric diseases amenable to invasive interventions. Finding the optimal surgical targets in mental illness is troublesome. In general, contemporary psychosurgical procedures can be classified into one of two primary modalities: lesioning and stimulation procedures. The first group is divided into (a) thermocoagulation and (b) stereotactic radiosurgery or recently introduced transcranial magnetic resonance-guided focused ultrasound, whereas stimulation techniques mainly include deep brain stimulation (DBS), cortical stimulation, and the vagus nerve stimulation. The most studied psychiatric diseases amenable to psychosurgical interventions are severe treatment-resistant major depressive disorder, obsessive-compulsive disorder, Tourette syndrome, anorexia nervosa, schizophrenia, and substance use disorder. Furthermore, modern neuroimaging techniques spurred the interest of clinicians to identify cerebral regions amenable to be manipulated to control psychiatric symptoms. On this way, the concept of a multi-nodal network need to be embraced, enticing the collaboration of psychiatrists, psychologists, neurologists and neurosurgeons participating in multidisciplinary groups, conducting well-designed clinical trials.
Collapse
Affiliation(s)
- Antonio De Salles
- University of California Los Angeles (UCLA), Los Angeles, CA, United States; NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil.
| | - Luan Lucena
- NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil
| | - Thiago Paranhos
- Hospital Rede D'Or, São Luiz, SP, Brazil; Federal University of Rio De Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Ricardo de Oliveira-Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Federal University of the State of Rio De Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | |
Collapse
|
5
|
Barrios-Anderson A, McLaughlin NCR, Patrick MT, Marsland R, Noren G, Asaad WF, Greenberg BD, Rasmussen S. The Patient Lived-Experience of Ventral Capsulotomy for Obsessive-Compulsive Disorder: An Interpretive Phenomenological Analysis of Neuroablative Psychiatric Neurosurgery. Front Integr Neurosci 2022; 16:802617. [PMID: 35273481 PMCID: PMC8902594 DOI: 10.3389/fnint.2022.802617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ventral Capsulotomy (VC) is a surgical intervention for treatment-resistant Obsessive-Compulsive Disorder (OCD). Despite clinical studies, little is known about patient perception and lived experience after neurosurgery for severe OCD. To examine the lived experiences of patients who have undergone VC for severe, treatment-resistant OCD through qualitative analysis. We conducted semi-structured interviews with six participants treated with VC for OCD. Interviews were analyzed using Interpretive Phenomenological Analysis. The following themes emerged: (1) After years of conventional treatments, patients felt neurosurgery was their “last hope” and described themselves as “desperate,” (2) While some described the surgery as a “supernatural experience,” patients also demonstrated understanding of the scientific procedure, its risks and potential benefits, (3) The surgical experience itself was positive or neutral, which was linked to trust in the clinical team, (4) Post-surgery, participants described months of heightened fear as they awaited lesion formation and functional improvement. (5) Patients consistently contextualized outcome in the context of their own life goals. Patients undergoing VC have positive views of this neurosurgical intervention, but psychiatric neurosurgical teams should anticipate patient discomfort with the time needed to achieve behavioral improvement following surgery and emphasize the importance of post-operative psychiatric care.
Collapse
Affiliation(s)
- Adriel Barrios-Anderson
- Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States
- Psychiatric Neurosurgery Program, Butler Hospital, Providence, RI, United States
- *Correspondence: Adriel Barrios-Anderson,
| | - Nicole C. R. McLaughlin
- Psychiatric Neurosurgery Program, Butler Hospital, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States
| | - Morgan T. Patrick
- Psychiatric Neurosurgery Program, Butler Hospital, Providence, RI, United States
| | - Richard Marsland
- Psychiatric Neurosurgery Program, Butler Hospital, Providence, RI, United States
| | - Georg Noren
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States
- Psychiatric Neurosurgery Program, Butler Hospital, Providence, RI, United States
| | - Wael F. Asaad
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Benjamin D. Greenberg
- Psychiatric Neurosurgery Program, Butler Hospital, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States
- Center for Neurorestoration and Neurotechnology (CfNN), Providence VA Medical Center, Providence, RI, United States
| | - Steven Rasmussen
- Psychiatric Neurosurgery Program, Butler Hospital, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Markowitz JC, Wright JH, Peeters F, Thase ME, Kocsis JH, Sudak DM. The Neglected Role of Psychotherapy for Treatment-Resistant Depression. Am J Psychiatry 2022; 179:90-93. [PMID: 35105164 DOI: 10.1176/appi.ajp.2021.21050535] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John C Markowitz
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, New York (Markowitz); Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville (Wright); Department of Clinical Psychological Science, Maastricht University, Maastricht, the Netherlands (Peeters); Department of Psychiatry, University of Pennsylvania, Philadelphia (Thase); Department of Psychiatry, Weill Medical College of Cornell University, New York (Kocsis); Department of Psychiatry, Drexel University, Philadelphia (Sudak)
| | - Jesse H Wright
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, New York (Markowitz); Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville (Wright); Department of Clinical Psychological Science, Maastricht University, Maastricht, the Netherlands (Peeters); Department of Psychiatry, University of Pennsylvania, Philadelphia (Thase); Department of Psychiatry, Weill Medical College of Cornell University, New York (Kocsis); Department of Psychiatry, Drexel University, Philadelphia (Sudak)
| | - Frenk Peeters
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, New York (Markowitz); Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville (Wright); Department of Clinical Psychological Science, Maastricht University, Maastricht, the Netherlands (Peeters); Department of Psychiatry, University of Pennsylvania, Philadelphia (Thase); Department of Psychiatry, Weill Medical College of Cornell University, New York (Kocsis); Department of Psychiatry, Drexel University, Philadelphia (Sudak)
| | - Michael E Thase
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, New York (Markowitz); Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville (Wright); Department of Clinical Psychological Science, Maastricht University, Maastricht, the Netherlands (Peeters); Department of Psychiatry, University of Pennsylvania, Philadelphia (Thase); Department of Psychiatry, Weill Medical College of Cornell University, New York (Kocsis); Department of Psychiatry, Drexel University, Philadelphia (Sudak)
| | - James H Kocsis
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, New York (Markowitz); Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville (Wright); Department of Clinical Psychological Science, Maastricht University, Maastricht, the Netherlands (Peeters); Department of Psychiatry, University of Pennsylvania, Philadelphia (Thase); Department of Psychiatry, Weill Medical College of Cornell University, New York (Kocsis); Department of Psychiatry, Drexel University, Philadelphia (Sudak)
| | - Donna M Sudak
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, New York (Markowitz); Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville (Wright); Department of Clinical Psychological Science, Maastricht University, Maastricht, the Netherlands (Peeters); Department of Psychiatry, University of Pennsylvania, Philadelphia (Thase); Department of Psychiatry, Weill Medical College of Cornell University, New York (Kocsis); Department of Psychiatry, Drexel University, Philadelphia (Sudak)
| |
Collapse
|
7
|
Optogenetically-inspired neuromodulation: Translating basic discoveries into therapeutic strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:187-219. [PMID: 34446246 DOI: 10.1016/bs.irn.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Optogenetic tools allow for the selective activation, inhibition or modulation of genetically-defined neural circuits with incredible temporal precision. Over the past decade, application of these tools in preclinical models of psychiatric disease has advanced our understanding the neural circuit basis of maladaptive behaviors in these disorders. Despite their power as an investigational tool, optogenetics cannot yet be applied in the clinical for the treatment of neurological and psychiatric disorders. To date, deep brain stimulation (DBS) is the only clinical treatment that can be used to achieve circuit-specific neuromodulation in the context of psychiatric. Despite its increasing clinical indications, the mechanisms underlying the therapeutic effects of DBS for psychiatric disorders are poorly understood, which makes optimization difficult. We discuss the variety of optogenetic tools available for preclinical research, and how these tools have been leveraged to reverse-engineer the mechanisms underlying DBS for movement and compulsive disorders. We review studies that have used optogenetics to induce plasticity within defined basal ganglia circuits, to alter neural circuit function and evaluate the corresponding effects on motor and compulsive behaviors. While not immediately applicable to patient populations, the translational power of optogenetics is in inspiring novel DBS protocols by providing a rationale for targeting defined neural circuits to ameliorate specific behavioral symptoms, and by establishing optimal stimulation paradigms that could selectively compensate for pathological synaptic plasticity within these defined neural circuits.
Collapse
|
8
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
9
|
Kahn L, Sutton B, Winston HR, Abosch A, Thompson JA, Davis RA. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Real World Experience Post-FDA-Humanitarian Use Device Approval. Front Psychiatry 2021; 12:568932. [PMID: 33868034 PMCID: PMC8044872 DOI: 10.3389/fpsyt.2021.568932] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background: While case series have established the efficacy of deep brain stimulation (DBS) in treating obsessive-compulsive disorder (OCD), it has been our experience that few OCD patients present without comorbidities that affect outcomes associated with DBS treatment. Here we present our experience with DBS therapy for OCD in patients who all have comorbid disease, together with the results of our programming strategies. Methods: For this case series, we assessed five patients who underwent ventral capsule/ventral striatum (VC/VS) DBS for OCD between 2015 and 2019 at the University of Colorado Hospital. Every patient in this cohort exhibited comorbidities, including substance use disorders, eating disorder, tic disorder, and autism spectrum disorder. We conducted an IRB-approved, retrospective study of programming modifications and treatment response over the course of DBS therapy. Results: In addition to patients' subjective reports of improvement, we observed significant improvement in the Yale-Brown Obsessive-Compulsive Scale (44%), the Montgomery-Asberg Depression Rating Scale (53%), the Quality of Life Enjoyment and Satisfaction Questionnaire (27%), and the Hamilton Anxiety Rating scales (34.9%) following DBS. With respect to co-morbid disease, there was a significant improvement in a patient with tic disorder's Total Tic Severity Score (TTSS) (p = 0.005). Conclusions: DBS remains an efficacious tool for the treatment of OCD, even in patients with significant comorbidities in whom DBS has not previously been investigated. Efficacious treatment results not only from the accurate placement of the electrodes by the surgeon but also from programming by the psychiatrist.
Collapse
Affiliation(s)
- Lora Kahn
- Department of Neurosurgery, Ochsner Health, Tulane University-Ochsner Health Neurosurgery Program, New Orleans, LA, United States
| | - Brianne Sutton
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Helena R. Winston
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - John A. Thompson
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel A. Davis
- Department of Psychiatry, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Alternatives to Pharmacological and Psychotherapeutic Treatments in Psychiatric Disorders. PSYCHIATRY INTERNATIONAL 2021. [DOI: 10.3390/psychiatryint2010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nowadays, most of the patients affected by psychiatric disorders are successfully treated with psychotherapy and pharmacotherapy. Nevertheless, according to the disease, a variable percentage of patients results resistant to such modalities, and alternative methods can then be considered. The purpose of this review is to summarize the techniques and results of invasive modalities for several treatment-resistant psychiatric diseases. A literature search was performed to provide an up-to-date review of advantages, disadvantages, efficacy, and complications of Deep-Brain Stimulation, Magnetic Resonance-guided Focused-Ultrasound, radiofrequency, and radiotherapy lesioning for depression, obsessive-compulsive disorder, schizophrenia, addiction, anorexia nervosa, and Tourette’s syndrome. The literature search did not strictly follow the criteria for a systematic review: due to the large differences in methodologies and patients’ cohort, we tried to identify the highest quality of available evidence for each technique. We present the data as a comprehensive, narrative review about the role, indication, safety, and results of the contemporary instrumental techniques that opened new therapeutic fields for selected patients unresponsive to psychotherapy and pharmacotherapy.
Collapse
|
11
|
Testo AA, Garnaat SL, Corse AK, McLaughlin N, Greenberg BD, Deckersbach T, Eskandar EN, Dougherty DD, Widge AS. A case of non-affective psychosis followed by extended response to non-stimulation in deep brain stimulation for obsessive-compulsive disorder. Brain Stimul 2020; 13:1317-1319. [PMID: 32622060 DOI: 10.1016/j.brs.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Abigail A Testo
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA.
| | - Sarah L Garnaat
- Butler Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Andrew K Corse
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA; University of California, Department of Psychiatry, Los Angeles, CA, USA
| | - Nicole McLaughlin
- Butler Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Benjamin D Greenberg
- Butler Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Thilo Deckersbach
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - Emad N Eskandar
- Massachusetts General Hospital, Department of Neurosurgery, Boston, MA, USA; Yeshiva University Albert Einstein College of Medicine, Bronx, NY, USA
| | - Darin D Dougherty
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - Alik S Widge
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| |
Collapse
|
12
|
Gupta A, Shepard MJ, Xu Z, Maiti T, Martinez-Moreno N, Silverman J, Iorio-Morin C, Martinez-Alvarez R, Barnett G, Mathieu D, Borghei-Razavi H, Kondziolka D, Sheehan JP. An International Radiosurgery Research Foundation Multicenter Retrospective Study of Gamma Ventral Capsulotomy for Obsessive Compulsive Disorder. Neurosurgery 2020; 85:808-816. [PMID: 30476294 DOI: 10.1093/neuros/nyy536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obsessive compulsive disorder (OCD) across its full spectrum of severity is a psychiatric illness affecting ∼2% to 3% of the general population and results in significant functional impairment. There are few large patient series regarding Gamma ventral capsulotomy (GVC). OBJECTIVE To evaluate clinical outcomes of severe medically refractory OCD treated with GVC. METHODS This is an international, multicenter, retrospective cohort study. Forty patients with pre-GVC Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores ≥ 24 (indicating severe OCD) were included. GVC was performed with 1 or 2 isocenters with a median maximum dose of 135 Gy (range, 120-180 Gy). Patients were deemed "responders" to GVC if there was ≥35% reduction of follow-up Y-BOCS scores, and considered in remission if their Y-BOCS scores were ≤16. The median follow-up was 36 mo (range, 6-96 mo). RESULTS The median pre-SRS Y-BOCS score was 35 (range, 24-40). Eighteen patients (45%) were considered "responders," and 16 (40%) of them were in remission at their last follow-up. Nineteen patients (47.5%) remained stable with Y-BOCS of 33 (range, 26-36) following GVC, whereas 3 patients (7.5%) experienced worsening in Y-BOCS scores. Patients treated with 2 isocenters were more likely to have improvement in Y-BOCS score at 3 and 5 yr (P < .0005). Ten patients (25%) experienced post-GVC mood disturbance and neurological complications in 3 patients (7.5%). One patient developed radiation necrosis with edema that improved with steroids. CONCLUSION GVC serves as a reasonable treatment strategy for severe medical refractory OCD. Patients treated with 2 isocenters were more likely to have substantial improvement in OCD.
Collapse
Affiliation(s)
- Amitabh Gupta
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Matthew J Shepard
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Tanmoy Maiti
- Cleveland Clinic, Department of Neurological Surgery, Cleveland, Ohio
| | - Nuria Martinez-Moreno
- Department of Functional Neurosurgery and Radiosurgery, Ruber International Hospital, Madrid, Spain
| | - Joshua Silverman
- Department of Radiation Oncology, NYU Langone Health System, New York, New York
| | - Christian Iorio-Morin
- Division of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS Sherbrooke, Québec, Canada
| | - Roberto Martinez-Alvarez
- Department of Functional Neurosurgery and Radiosurgery, Ruber International Hospital, Madrid, Spain
| | - Gene Barnett
- Cleveland Clinic, Department of Neurological Surgery, Cleveland, Ohio
| | - David Mathieu
- Division of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS Sherbrooke, Québec, Canada
| | | | - Douglas Kondziolka
- Department of Radiation Oncology, NYU Langone Health System, New York, New York.,Department of Neurosurgery, NYU Langone Health System, New York, New York
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
13
|
Obsessive-Compulsive Disorder: Lesions. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Guzick A, Hunt PJ, Bijanki KR, Schneider SC, Sheth SA, Goodman WK, Storch EA. Improving long term patient outcomes from deep brain stimulation for treatment-refractory obsessive-compulsive disorder. Expert Rev Neurother 2019; 20:95-107. [PMID: 31730752 DOI: 10.1080/14737175.2020.1694409] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Deep brain stimulation (DBS) has emerged as an effective treatment for patients with severe treatment-refractory obsessive-compulsive disorder (OCD). Over the past two decades, several clinical trials with multiple years of follow-up have shown that DBS offers long-term symptom relief for individuals with severe OCD, though a portion of patients do not achieve an adequate response.Areas covered: This review sought to summarize the literature on the efficacy and long-term effectiveness of DBS for OCD, and to identify strategies that have the potential to improve treatment outcomes.Expert opinion: Although this literature is just emerging, a small number of DBS enhancement strategies have shown promising initial results. More posterior targets along the striatal axis and at the bed nucleus of the stria terminalis appear to offer greater symptom relief than more anterior targets. Research is also beginning to demonstrate the feasibility of maximizing treatment outcomes with target selection based on neural activation patterns during symptom provocation and clinical presentation. Finally, integrating DBS with post-surgery exposure and response prevention therapy appears to be another promising approach. Definitive conclusions about these strategies are limited by a low number of studies with small sample sizes that will require multi-site replication.
Collapse
Affiliation(s)
- Andrew Guzick
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Psychology, Texas Children's Hospital, Houston, TX, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Patrick J Hunt
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Kelly R Bijanki
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sophie C Schneider
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Wayne K Goodman
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eric A Storch
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
15
|
Spatola G, Martinez-Alvarez R, Martínez-Moreno N, Rey G, Linera J, Rios-Lago M, Sanz M, Gutiérrez J, Vidal P, Richieri R, Régis J. Results of Gamma Knife anterior capsulotomy for refractory obsessive-compulsive disorder: results in a series of 10 consecutive patients. J Neurosurg 2019; 131:376-383. [PMID: 30215566 DOI: 10.3171/2018.4.jns171525] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 04/02/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is a severe psychiatric condition. The authors present their experience with Gamma Knife radiosurgery (GKRS) in the treatment of patients with OCD resistant to any medical therapy. METHODS Patients with severe OCD resistant to all pharmacological and psychiatric treatments who were treated with anterior GKRS capsulotomy were retrospectively reviewed. These patients were submitted to a physical, neurological, and neuropsychological examination together with structural and functional MRI before and after GKRS treatment. Strict study inclusion criteria were applied. Radiosurgical capsulotomy was performed using two 4-mm isocenters targeted at the midputaminal point of the anterior limb of the capsule. A maximal dose of 120 Gy was prescribed for each side. Clinical global changes were assessed using the Clinical Global Impression (CGI) scale, Global Assessment of Functioning (GAF) scale, EQ-5D, Beck Depression Inventory (BDI), and State-Trait Anxiety Inventory (STAI). OCD symptoms were determined by the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). RESULTS Ten patients with medically refractory OCD (5 women and 5 men) treated between 2006 and 2015 were included in this study. Median age at diagnosis was 22 years, median duration of illness at the time of radiosurgery was 14.5 years, and median age at treatment was 38.8 years. Before GKRS, the median Y-BOCS score was 34.5 with a median obsession score of 18 and compulsion score of 17. Seven (70%) of 10 patients achieved a full response at their last follow-up, 2 patients were nonresponders, and 1 patient was a partial responder. Evaluation of the Y-BOCS, BDI, STAI-Trait, STAI-State, GAF, and EQ-5D showed statistically significant improvement at the last follow-up after GKRS. Neurological examinations were normal in all patients at each visit. At last follow-up, none of the patients had experienced any significant adverse neuropsychological effects or personality changes. CONCLUSIONS GKRS anterior capsulotomy is effective and well tolerated with a maximal dose of 120 Gy. It reduces both obsessions and compulsions, improves quality of life, and diminishes depression and anxiety.
Collapse
Affiliation(s)
- Giorgio Spatola
- 1Department of Neurosurgery, IRCCS Ospedale San Raffaele, Milano, Italy
- 8Department of Functional Neurosurgery, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Roberto Martinez-Alvarez
- 2Department of Radiosurgery and Functional Neurosurgery, Ruber International Hospital, Madrid, Spain
| | - Nuria Martínez-Moreno
- 2Department of Radiosurgery and Functional Neurosurgery, Ruber International Hospital, Madrid, Spain
| | - German Rey
- 2Department of Radiosurgery and Functional Neurosurgery, Ruber International Hospital, Madrid, Spain
| | - Juan Linera
- 3Department of Radiodiagnosis, Ruber International Hospital, Madrid, Spain
| | | | - Marta Sanz
- 5Department of Psychiatry and Neurology, Ruber International Hospital, Madrid, Spain
| | - Jorge Gutiérrez
- 2Department of Radiosurgery and Functional Neurosurgery, Ruber International Hospital, Madrid, Spain
| | - Pablo Vidal
- 6Department of Psychiatry, HM Hospital de Madrid, Spain
| | - Raphaëlle Richieri
- 7Department of Psychiatry, Aix-Marseille University, Marseille, France; and
| | - Jean Régis
- 8Department of Functional Neurosurgery, Timone University Hospital, Aix-Marseille University, Marseille, France
| |
Collapse
|
16
|
Abstract
Neurosurgical interventions have been used for decades to treat severe, refractory obsessive-compulsive disorder (OCD). Deep brain stimulation (DBS) is a neurosurgical procedure that is used routinely to treat movement disorders such as Parkinson's disease and essential tremor. Over the past two decades, DBS has been applied to OCD, building on earlier experience with lesional procedures. Promising results led to Humanitarian Device Exemption (HDE) approval of the therapy from the United States Food and Drug Administration in 2009. In this review, the authors describe the development of DBS for OCD, the most recent outcome data, and areas for future research.
Collapse
Affiliation(s)
- Sruja Arya
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Megan M Filkowski
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | | | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
17
|
Provenza NR, Matteson ER, Allawala AB, Barrios-Anderson A, Sheth SA, Viswanathan A, McIngvale E, Storch EA, Frank MJ, McLaughlin NCR, Cohn JF, Goodman WK, Borton DA. The Case for Adaptive Neuromodulation to Treat Severe Intractable Mental Disorders. Front Neurosci 2019; 13:152. [PMID: 30890909 PMCID: PMC6412779 DOI: 10.3389/fnins.2019.00152] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Mental disorders are a leading cause of disability worldwide, and available treatments have limited efficacy for severe cases unresponsive to conventional therapies. Neurosurgical interventions, such as lesioning procedures, have shown success in treating refractory cases of mental illness, but may have irreversible side effects. Neuromodulation therapies, specifically Deep Brain Stimulation (DBS), may offer similar therapeutic benefits using a reversible (explantable) and adjustable platform. Early DBS trials have been promising, however, pivotal clinical trials have failed to date. These failures may be attributed to targeting, patient selection, or the “open-loop” nature of DBS, where stimulation parameters are chosen ad hoc during infrequent visits to the clinician’s office that take place weeks to months apart. Further, the tonic continuous stimulation fails to address the dynamic nature of mental illness; symptoms often fluctuate over minutes to days. Additionally, stimulation-based interventions can cause undesirable effects if applied when not needed. A responsive, adaptive DBS (aDBS) system may improve efficacy by titrating stimulation parameters in response to neural signatures (i.e., biomarkers) related to symptoms and side effects. Here, we present rationale for the development of a responsive DBS system for treatment of refractory mental illness, detail a strategic approach for identification of electrophysiological and behavioral biomarkers of mental illness, and discuss opportunities for future technological developments that may harness aDBS to deliver improved therapy.
Collapse
Affiliation(s)
- Nicole R Provenza
- Brown University School of Engineering, Providence, RI, United States.,Charles Stark Draper Laboratory, Cambridge, MA, United States
| | - Evan R Matteson
- Brown University School of Engineering, Providence, RI, United States
| | - Anusha B Allawala
- Brown University School of Engineering, Providence, RI, United States
| | - Adriel Barrios-Anderson
- Psychiatric Neurosurgery Program at Butler Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Elizabeth McIngvale
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Michael J Frank
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicole C R McLaughlin
- Psychiatric Neurosurgery Program at Butler Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jeffrey F Cohn
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - David A Borton
- Brown University School of Engineering, Providence, RI, United States.,Carney Institute for Brain Science, Brown University, Providence, RI, United States.,Department of Veterans Affairs, Providence Medical Center, Center for Neurorestoration and Neurotechnology, Providence, RI, United States
| |
Collapse
|
18
|
Staudt MD, Herring EZ, Gao K, Miller JP, Sweet JA. Evolution in the Treatment of Psychiatric Disorders: From Psychosurgery to Psychopharmacology to Neuromodulation. Front Neurosci 2019; 13:108. [PMID: 30828289 PMCID: PMC6384258 DOI: 10.3389/fnins.2019.00108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
The treatment of psychiatric patients presents significant challenges to the clinical community, and a multidisciplinary approach to diagnosis and management is essential to facilitate optimal care. In particular, the neurosurgical treatment of psychiatric disorders, or “psychosurgery,” has held fascination throughout human history as a potential method of influencing behavior and consciousness. Early evidence of such procedures can be traced to prehistory, and interest flourished in the nineteenth and early twentieth century with greater insight into cerebral functional and anatomic localization. However, any discussion of psychosurgery invariably invokes controversy, as the widespread and indiscriminate use of the transorbital lobotomy in the mid-twentieth century resulted in profound ethical ramifications that persist to this day. The concurrent development of effective psychopharmacological treatments virtually eliminated the need and desire for psychosurgical procedures, and accordingly the research and practice of psychosurgery was dormant, but not forgotten. There has been a recent resurgence of interest for non-ablative therapies, due in part to modern advances in functional and structural neuroimaging and neuromodulation technology. In particular, deep brain stimulation is a promising treatment paradigm with the potential to modulate abnormal pathways and networks implicated in psychiatric disease states. Although there is enthusiasm regarding these recent advancements, it is important to reflect on the scientific, social, and ethical considerations of this controversial field.
Collapse
Affiliation(s)
- Michael D Staudt
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States.,Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Eric Z Herring
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Keming Gao
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jonathan P Miller
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jennifer A Sweet
- Department of Neurosurgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Paiva RR, Batistuzzo MC, McLaughlin NC, Canteras MM, de Mathis ME, Requena G, Shavitt RG, Greenberg BD, Norén G, Rasmussen SA, Tavares H, Miguel EC, Lopes AC, Hoexter MQ. Personality measures after gamma ventral capsulotomy in intractable OCD. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:161-168. [PMID: 29100975 DOI: 10.1016/j.pnpbp.2017.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Neurosurgeries such as gamma ventral capsulotomy (GVC) are an option for otherwise intractable obsessive-compulsive disorder (OCD) patients. In general, clinical and neuropsychological status both improve after GVC. However, its consequences on personality traits are not well-studied. The objective of this study was to investigate personality changes after one year of GVC in intractable OCD patients. METHODS The personality assessment was conducted using the Revised NEO Personality Inventory (NEO PI-R) and Cloninger's Temperament and Character Inventory (TCI) in 14 intractable OCD patients before and one year after GVC. Comparisons of personality features between treatment responders (n=5) and non-responders (n=9) were performed. Multiple linear regression was also used for predicting changes in clinical and global functioning variables. RESULTS Overall, no deleterious effect was found in personality after GVC. Responders had a reduction in neuroticism (p=0.043) and an increase in extraversion (p=0.043). No significant changes were observed in non-responders. Increases in novelty seeking and self-directedness, and decreases in persistence and cooperativiness predicted OCD symptom improvement. Similary, improvement in functioning was also predicted by hgher novelty seeking and self-directedness after GVC, whereas better functioning was also associated with lower reward dependence and cooperativeness after surgery. CONCLUSIONS The pattern of changes in personality traits after GVC was generally towards that observed in nonclinical population, and does not raise safety concerns.
Collapse
Affiliation(s)
- Raquel R Paiva
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Marcelo C Batistuzzo
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nicole C McLaughlin
- Department of Psychiatry and Human Behavior, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Miguel M Canteras
- Institute of Neurological Radiosurgery, Hospital Santa Paula, São Paulo, Brazil
| | - Maria E de Mathis
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Guaraci Requena
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Roseli G Shavitt
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA; Center of Neurorestoration and Neurology, Providence VA Medical Center, RI, USA
| | - Georg Norén
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hermano Tavares
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eurípedes C Miguel
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Antonio C Lopes
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcelo Q Hoexter
- Department & Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
20
|
Deep Brain Stimulation for Highly Refractory Depression. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Hoffman KL, Cano-Ramírez H. Lost in translation? A critical look at the role that animal models of obsessive compulsive disorder play in current drug discovery strategies. Expert Opin Drug Discov 2017; 13:211-220. [DOI: 10.1080/17460441.2018.1417379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Hugo Cano-Ramírez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
22
|
Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation Devices for the Treatment of Neurologic Disorders. Mayo Clin Proc 2017; 92:1427-1444. [PMID: 28870357 DOI: 10.1016/j.mayocp.2017.05.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 12/01/2022]
Abstract
Rapid advancements in neurostimulation technologies are providing relief to an unprecedented number of patients affected by debilitating neurologic and psychiatric disorders. Neurostimulation therapies include invasive and noninvasive approaches that involve the application of electrical stimulation to drive neural function within a circuit. This review focuses on established invasive electrical stimulation systems used clinically to induce therapeutic neuromodulation of dysfunctional neural circuitry. These implantable neurostimulation systems target specific deep subcortical, cortical, spinal, cranial, and peripheral nerve structures to modulate neuronal activity, providing therapeutic effects for a myriad of neuropsychiatric disorders. Recent advances in neurotechnologies and neuroimaging, along with an increased understanding of neurocircuitry, are factors contributing to the rapid rise in the use of neurostimulation therapies to treat an increasingly wide range of neurologic and psychiatric disorders. Electrical stimulation technologies are evolving after remaining fairly stagnant for the past 30 years, moving toward potential closed-loop therapeutic control systems with the ability to deliver stimulation with higher spatial resolution to provide continuous customized neuromodulation for optimal clinical outcomes. Even so, there is still much to be learned about disease pathogenesis of these neurodegenerative and psychiatric disorders and the latent mechanisms of neurostimulation that provide therapeutic relief. This review provides an overview of the increasingly common stimulation systems, their clinical indications, and enabling technologies.
Collapse
Affiliation(s)
- Christine A Edwards
- School of Engineering, Deakin University, Geelong, Victoria, Australia; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Abbas Kouzani
- School of Engineering, Deakin University, Geelong, Victoria, Australia
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN.
| |
Collapse
|
23
|
Abstract
Research on deep brain stimulation (DBS) for treatment-resistant psychiatric disorders has established preliminary efficacy signals for treatment-resistant depression. There are only few studies on DBS that included patients suffering from bipolar disorder. This article gives an overview of these studies concerning DBS targets, antidepressant efficacy, and the occurrence of manic/hypomanic symptoms under stimulation. First, promising results show that all patients experienced significant improvement in depressive symptomatology. In a single case, hypomanic symptoms occurred, but they could be resolved by adjusting stimulation parameters. Furthermore, this article highlights important clinical differences between unipolar and bipolar depression that have to be considered throughout the course of treatment.
Collapse
|
24
|
Dougherty DD, Chou T, Corse AK, Arulpragasam AR, Widge AS, Cusin C, Evans KC, Greenberg BD, Haber SN, Deckersbach T. Acute deep brain stimulation changes in regional cerebral blood flow in obsessive-compulsive disorder. J Neurosurg 2016; 125:1087-1093. [PMID: 26894459 PMCID: PMC9884519 DOI: 10.3171/2015.9.jns151387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is a reversible, nonlesion-based treatment for patients with intractable obsessive-compulsive disorder (OCD). The first studies on DBS for OCD stimulating the ventral capsule/ventral striatum (VC/VS) yielded encouraging results for this neuroanatomical site's therapeutic efficacy. This investigation was conducted to better understand which regions of the cortico-striatal-thalamic-cortical network were acutely affected by VC/VS DBS for OCD. Furthermore, the objective was to identify which brain regions demonstrated changes in perfusion, as stimulation was applied across a dorsoventral lead axis that corresponded to different anatomical locations in the VC/VS. METHODS Six patients receiving VC/VS DBS for OCD underwent oxygen-15 positron emission tomography (15O-PET) scanning. Monopolar DBS was delivered at each of the 4 different electrodes on the stimulating lead in the VC/VS. The data were analyzed using SPM5. Paired t-tests were run in SPSS to identify significant changes in regional cerebral blood flow (rCBF) between stimulation conditions. Pearson's r correlations were run between these significant changes in rCBF and changes in OCD and depressive symptom severity. RESULTS Perfusion in the dorsal anterior cingulate cortex (dACC) significantly increased when monopolar DBS was turned on at the most ventral DBS contact, and this increase in dACC activity was correlated with reductions in depressive symptom severity (r(5) = -0.994, p = 0.001). Perfusion in the thalamus, striatum, and globus pallidus significantly increased when DBS was turned on at the most dorsal contact. CONCLUSIONS DBS of the VC/VS appears to modulate activity in the regions implicated in the pathophysiology of OCD. Different regions in the cortico-striatal-thalamic-cortical circuit showed increased perfusion based on whether the stimulation was more ventral or dorsal along the lead axis in the VC/VS. Evidence was found that DBS at the most ventral site was associated with clinical changes in depressive symptom severity, but not OCD symptom severity.
Collapse
Affiliation(s)
- Darin D. Dougherty
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown
| | - Tina Chou
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown,Department of Psychology, Harvard University, Cambridge
| | - Andrew K. Corse
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown
| | - Amanda R. Arulpragasam
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown
| | - Alik S. Widge
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown,Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Cristina Cusin
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown
| | - Karleyton C. Evans
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown
| | - Benjamin D. Greenberg
- Department of Psychiatry and Behavioral Sciences, Butler Hospital and Brown Medical School, Providence, Rhode Island
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Thilo Deckersbach
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown
| |
Collapse
|
25
|
Anterior Cingulate Implant for Obsessive-Compulsive Disorder. World Neurosurg 2016; 97:754.e7-754.e16. [PMID: 27756670 DOI: 10.1016/j.wneu.2016.10.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a brain disorder with a lifetime prevalence of 2.3%, causing severe functional impairment as a result of anxiety and distress, persistent and repetitive, unwanted, intrusive thoughts (obsessions), and repetitive ritualized behavior (compulsions). Approximately 40%-60% of patients with OCD fail to satisfactorily respond to standard treatments. Intractable OCD has been treated by anterior capsulotomy and cingulotomy, but more recently, neurostimulation approaches have become more popular because of their reversibility. OBJECTIVE Implants for OCD are commonly being used, targeting the anterior limb of the internal capsula or the nucleus accumbens, but an implant on the anterior cingulate cortex has never been reported. METHODS We describe a patient who was primarily treated for alcohol addiction, first with transcranial magnetic stimulation, then by implantation of 2 electrodes overlying the rostrodorsal part of the anterior cingulate cortex bilaterally. RESULTS Her alcohol addiction developed as she was relief drinking to self-treat her OCD, anxiety, and depression. After the surgical implant, she underwent placebo stimulation followed by real stimulation of the dorsal anterior cingulate cortex, which dramatically improved her OCD symptoms (decrease of 65.5% on the Yale-Brown Obsessive Compulsive Drinking Scale) as well as her alcohol craving (decrease of 87.5%) after 36 weeks of treatment. Although there were improvements in all the scores, there was only a modest reduction in the patient's weekly alcohol consumption (from 50 units to 32 units). CONCLUSIONS Based on these preliminary positive results we propose to further study the possible beneficial effect of anterior cingulate cortex stimulation for intractable OCD.
Collapse
|
26
|
Maarouf M, Neudorfer C, El Majdoub F, Lenartz D, Kuhn J, Sturm V. Deep Brain Stimulation of Medial Dorsal and Ventral Anterior Nucleus of the Thalamus in OCD: A Retrospective Case Series. PLoS One 2016; 11:e0160750. [PMID: 27504631 PMCID: PMC4978440 DOI: 10.1371/journal.pone.0160750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The current notion that cortico-striato-thalamo-cortical circuits are involved in the pathophysiology of obsessive-compulsive disorder (OCD) has instigated the search for the most suitable target for deep brain stimulation (DBS). However, despite extensive research, uncertainty about the ideal target remains with many structures being underexplored. The aim of this report is to address a new target for DBS, the medial dorsal (MD) and the ventral anterior (VA) nucleus of the thalamus, which has thus far received little attention in the treatment of OCD. METHODS In this retrospective trial, four patients (three female, one male) aged 31-48 years, suffering from therapy-refractory OCD underwent high-frequency DBS of the MD and VA. In two patients (de novo group) the thalamus was chosen as a primary target for DBS, whereas in two patients (rescue DBS group) lead implantation was performed in a rescue DBS attempt following unsuccessful primary stimulation. RESULTS Continuous thalamic stimulation yielded no significant improvement in OCD symptom severity. Over the course of thalamic DBS symptoms improved in only one patient who showed "partial response" on the Yale-Brown Obsessive Compulsive (Y-BOCS) Scale. Beck Depression Inventory scores dropped by around 46% in the de novo group; anxiety symptoms improved by up to 34%. In the de novo DBS group no effect of DBS on anxiety and mood was observable. CONCLUSION MD/VA-DBS yielded no adequate alleviation of therapy-refractory OCD, the overall strategy in targeting MD/VA as described in this paper can thus not be recommended in DBS for OCD. The magnocellular portion of MD (MDMC), however, might prove a promising target in the treatment of mood related and anxiety disorders.
Collapse
Affiliation(s)
- Mohammad Maarouf
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne, Germany
- * E-mail:
| | - Clemens Neudorfer
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne, Germany
| | - Faycal El Majdoub
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne, Germany
| | - Doris Lenartz
- Department of Stereotaxy and Functional Neurosurgery, Cologne-Merheim Medical Center (CMMC), University of Witten/Herdecke, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Volker Sturm
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Abstract
OBJECTIVE Modern research on obsessive-compulsive disorder (OCD) indicates that the primary cause of OCD, which was earlier explained only on basis of psychoanalytical theories, is biological. Our study attempts to investigate the neurobiological signs in form of soft neurological signs and cognitive function in OCD. METHODS A cross sectional study was conducted at psychiatric facility of Seth G.S. Medical College and KEM Hospital. MATERIALS AND METHOD 50 OCD patients and age- and education-matched controls were selected for the study. Established instruments were used to assess the neurological soft signs (NSS) and the cognitive deficits. RESULTS OCD patients had significant more NSS in tests for motor coordination, sensory integration, complex motor tasks, hard signs, and right/left and spatial orientation. Cognitive deficits in the domains of visuospatial ability, executive function, attention, and working memory were significantly more in OCD patients compared to controls. CONCLUSION Our study highlights the role of biological factors in form of soft neurological signs and cognitive dysfunction in the development of the OCD.
Collapse
Affiliation(s)
- Chetali Vijay Dhuri
- Department of Psychiatry, Seth G. S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Shubhangi R Parkar
- Department of Psychiatry, Seth G. S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
28
|
De Ridder D, Vanneste S, Gillett G, Manning P, Glue P, Langguth B. Psychosurgery Reduces Uncertainty and Increases Free Will? A Review. Neuromodulation 2016; 19:239-48. [DOI: 10.1111/ner.12405] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 12/17/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences; Section of Neurosurgery, Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Sven Vanneste
- Laboratory for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences; University of Texas at Dallas; Dallas TX USA
| | - Grant Gillett
- Department of Philosophy; Section of Medical Ethics, Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Patrick Manning
- Department of Internal Medicine; Section of Endocrinology, Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Paul Glue
- Department of Psychological Medicine; Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy; Interdisciplinary Tinnitus Clinic, University of Regensburg; Regensburg Germany
| |
Collapse
|
29
|
Varatharajan R, Joseph K, Neto SC, Hofmann UG, Moser A, Tronnier V. Electrical high frequency stimulation modulates GABAergic activity in the nucleus accumbens of freely moving rats. Neurochem Int 2015; 90:255-60. [DOI: 10.1016/j.neuint.2015.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023]
|
30
|
Jung HH, Kim SJ, Roh D, Chang JG, Chang WS, Kweon EJ, Kim CH, Chang JW. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry 2015; 20:1205-11. [PMID: 25421403 DOI: 10.1038/mp.2014.154] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/29/2014] [Accepted: 10/08/2014] [Indexed: 11/09/2022]
Abstract
Despite optimal pharmacotherapy and cognitive-behavioral treatments, a proportion of patients with obsessive-compulsive disorder (OCD) remain refractory to treatment. Neurosurgical ablative or nondestructive stimulation procedures to treat these refractory patients have been investigated. However, despite the potential benefits of these surgical procedures, patients show significant surgery-related complications. This preliminary study investigated the use of bilateral thermal capsulotomy for patients with treatment-refractory OCD using magnetic resonance-guided focused ultrasound (MRgFUS) as a novel, minimally invasive, non-cranium-opening surgical technique. Between February and May 2013, four patients with medically refractory OCD were treated with MRgFUS to ablate the anterior limb of the internal capsule. Patients underwent comprehensive neuropsychological evaluations and imaging at baseline, 1 week, 1 month and 6 months following treatment. Outcomes were measured with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), the Hamilton Rating Scale for Depression (HAM-D) and the Hamilton Rating Scale for Anxiety (HAM-A), and treatment-related adverse events were evaluated. The results showed gradual improvements in Y-BOCS scores (a mean improvement of 33%) over the 6-month follow-up period, and all patients showed almost immediate and sustained improvements in depression (a mean reduction of 61.1%) and anxiety (a mean reduction of 69.4%). No patients demonstrated any side effects (physical or neuropsychological) in relation to the procedure. In addition, there were no significant differences found in the comprehensive neuropsychological test scores between the baseline and 6-month time points. This study demonstrates that bilateral thermal capsulotomy with MRgFUS can be used without inducing side effects to treat patients with medically refractory OCD. If larger trials validate the safety, effectiveness and long-term durability of this new approach, this procedure could considerably change the clinical management of treatment-refractory OCD.
Collapse
Affiliation(s)
- H H Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - S J Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - D Roh
- Department of Psychiatry, Chunchon Sacred Heart Hospital, Hallym University College of Medicine, Chunchon, Korea
| | - J G Chang
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - W S Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - E J Kweon
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - C-H Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - J W Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Cleary DR, Ozpinar A, Raslan AM, Ko AL. Deep brain stimulation for psychiatric disorders: where we are now. Neurosurg Focus 2015; 38:E2. [DOI: 10.3171/2015.3.focus1546] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fossil records showing trephination in the Stone Age provide evidence that humans have sought to influence the mind through physical means since before the historical record. Attempts to treat psychiatric disease via neurosurgical means in the 20th century provided some intriguing initial results. However, the indiscriminate application of these treatments, lack of rigorous evaluation of the results, and the side effects of ablative, irreversible procedures resulted in a backlash against brain surgery for psychiatric disorders that continues to this day. With the advent of psychotropic medications, interest in invasive procedures for organic brain disease waned.
Diagnosis and classification of psychiatric diseases has improved, due to a better understanding of psychiatric patho-physiology and the development of disease and treatment biomarkers. Meanwhile, a significant percentage of patients remain refractory to multiple modes of treatment, and psychiatric disease remains the number one cause of disability in the world. These data, along with the safe and efficacious application of deep brain stimulation (DBS) for movement disorders, in principle a reversible process, is rekindling interest in the surgical treatment of psychiatric disorders with stimulation of deep brain sites involved in emotional and behavioral circuitry.
This review presents a brief history of psychosurgery and summarizes the development of DBS for psychiatric disease, reviewing the available evidence for the current application of DBS for disorders of the mind.
Collapse
Affiliation(s)
- Daniel R. Cleary
- 1Department of Neurology, Yale Medical School, New Haven, Connecticut
| | - Alp Ozpinar
- 2Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon; and
| | - Ahmed M. Raslan
- 2Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon; and
| | - Andrew L. Ko
- 3Department of Neurological Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
32
|
Schrock LE, Mink JW, Woods DW, Porta M, Servello D, Visser-Vandewalle V, Silburn PA, Foltynie T, Walker HC, Shahed-Jimenez J, Savica R, Klassen BT, Machado AG, Foote KD, Zhang JG, Hu W, Ackermans L, Temel Y, Mari Z, Changizi BK, Lozano A, Auyeung M, Kaido T, Agid Y, Welter ML, Khandhar SM, Mogilner AY, Pourfar MH, Walter BL, Juncos JL, Gross RE, Kuhn J, Leckman JF, Neimat JA, Okun MS. Tourette syndrome deep brain stimulation: a review and updated recommendations. Mov Disord 2014; 30:448-71. [PMID: 25476818 DOI: 10.1002/mds.26094] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/16/2022] Open
Abstract
Deep brain stimulation (DBS) may improve disabling tics in severely affected medication and behaviorally resistant Tourette syndrome (TS). Here we review all reported cases of TS DBS and provide updated recommendations for selection, assessment, and management of potential TS DBS cases based on the literature and implantation experience. Candidates should have a Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V) diagnosis of TS with severe motor and vocal tics, which despite exhaustive medical and behavioral treatment trials result in significant impairment. Deep brain stimulation should be offered to patients only by experienced DBS centers after evaluation by a multidisciplinary team. Rigorous preoperative and postoperative outcome measures of tics and associated comorbidities should be used. Tics and comorbid neuropsychiatric conditions should be optimally treated per current expert standards, and tics should be the major cause of disability. Psychogenic tics, embellishment, and malingering should be recognized and addressed. We have removed the previously suggested 25-year-old age limit, with the specification that a multidisciplinary team approach for screening is employed. A local ethics committee or institutional review board should be consulted for consideration of cases involving persons younger than 18 years of age, as well as in cases with urgent indications. Tourette syndrome patients represent a unique and complex population, and studies reveal a higher risk for post-DBS complications. Successes and failures have been reported for multiple brain targets; however, the optimal surgical approach remains unknown. Tourette syndrome DBS, though still evolving, is a promising approach for a subset of medication refractory and severely affected patients.
Collapse
Affiliation(s)
- Lauren E Schrock
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Haber SN, Behrens TEJ. The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 2014; 83:1019-39. [PMID: 25189208 PMCID: PMC4255982 DOI: 10.1016/j.neuron.2014.08.031] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 02/03/2023]
Abstract
Coupling stimuli and actions with positive or negative outcomes facilitates the selection of appropriate actions. Several brain regions are involved in the development of goal-directed behaviors and habit formation during incentive-based learning. This Review focuses on higher cognitive control of decision making and the cortical and subcortical structures and connections that attribute value to stimuli, associate that value with choices, and select an action plan. Delineating the connectivity between these areas is fundamental for understanding how brain regions work together to evaluate stimuli, develop actions plans, and modify behavior, as well as for elucidating the pathophysiology of psychiatric diseases.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | - Timothy E J Behrens
- FMRIB Centre, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| |
Collapse
|
34
|
Abstract
Neuromodulation techniques in obsessive-compulsive disorder (OCD) involve electroconvulsive therapy (ECT), transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), and deep brain stimulation (DBS). This article reviews the available literature on the efficacy and applicability of these techniques in OCD. ECT is used for the treatment of comorbid depression or psychosis. One case report on tDCS showed no effects in OCD. Low-frequency TMS provides significant but mostly transient improvement of obsessive-compulsive symptoms. DBS shows a response rate of 60% in open and sham-controlled studies. In OCD, it can be concluded that DBS, although more invasive, is the most efficacious technique.
Collapse
Affiliation(s)
- Melisse Bais
- Department of Psychiatry, Academic Medical Center, Meibergdreef 5, Amsterdam 1105 AZ, The Netherlands
| | - Martijn Figee
- Department of Psychiatry, Academic Medical Center, Meibergdreef 5, Amsterdam 1105 AZ, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, Meibergdreef 5, Amsterdam 1105 AZ, The Netherlands; Neuromodulation & Behavior group, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam 1105 BA, The Netherlands.
| |
Collapse
|
35
|
Millet B, Jaafari N, Polosan M, Baup N, Giordana B, Haegelen C, Chabardes S, Fontaine D, Devaux B, Yelnik J, Fossati P, Aouizerate B, Krebs MO, Robert G, Jay T, Cornu P, Vérin M, Drapier S, Drapier D, Sauleau P, Peron J, Le Jeune F, Naudet F, Reymann JM. Limbic versus cognitive target for deep brain stimulation in treatment-resistant depression: accumbens more promising than caudate. Eur Neuropsychopharmacol 2014; 24:1229-39. [PMID: 24950819 DOI: 10.1016/j.euroneuro.2014.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/10/2014] [Accepted: 05/09/2014] [Indexed: 11/24/2022]
Abstract
High-frequency deep brain stimulation (DBS) represents a major stake for treatment for treatment-resistant depression (TRD). We describe a preliminary trial of DBS of two potential brain targets in chronic TRD: the nucleus accumbens (Acb) and, in the event of failure, the caudate nucleus. Patients were followed for 6 months before surgery (M0). From M1 to M5, they underwent stimulation of the Acb target. PET scans allowed us to track metabolic modifications resulting from this stimulation. The caudate target of nonresponders was stimulated between M5 and M9. Patients then entered an extension phase, in which it was possible to adapt stimulation parameters and treatments. Six patients were included and four were operated on. At M5, none of the patients were either responders or remitters, but we did observe a decrease in Hamilton Depression Rating Scale (HDRS) scores. Three patients were switched to caudate stimulation, but no improvement was observed. During the extension phase, the Acb target was stimulated for all patients, three of whom exhibited a significant response. A decrease in glucose metabolism was observed after Acb stimulation, in the posterior cingulate gyrus, left frontal lobe, superior and medial gyrus, and bilateral cerebellum. An increase in metabolism was observed in the bilateral frontal lobe (superior gyrus), left frontal lobe (medial gyrus), and right limbic lobe (anterior cingulate gyrus). The results of this trial suggest that Acb is a more promising target than the caudate. NCT01569711.
Collapse
Affiliation(s)
- Bruno Millet
- University Department of Adult Psychiatry, Guillaume Régnier Hospital, Rennes, France; Behavior and Basal Ganglia Unit (EA-4712), University of Rennes 1, Rennes, France
| | - Nematollah Jaafari
- Intersector Clinical Psychiatric Research Unit (INSERM U 1084), Psychobiology of Compulsive Disorders Team, Experimental and Clinical Neurosciences Laboratory, Henri Laborit Hospital, University of Poitiers, France
| | - Mircea Polosan
- D Villars Ward (Adult Psychiatry), Department of Psychiatry and Neurology, North Hospital, University Hospital, Grenoble, France
| | - Nicolas Baup
- Adolescent and Young Adult Assessment Center, Sainte-Anne Hospital, Paris, France
| | - Bruno Giordana
- Psychiatry and Medical Psychology Clinic, University Department of Clinical Neuroscience, Pasteur University Hospital, Nice, France
| | - Claire Haegelen
- Department of Neurosurgery, Pontchaillou University Hospital, Rennes, France
| | | | - Denys Fontaine
- Department of Neurosurgery, Pasteur University Hospital, Nice, France
| | - Bertrand Devaux
- Department of Neurosurgery, Sainte-Anne Hospital, Paris, France
| | - Jérome Yelnik
- CRICM UPMC/INSERM UMR S 975, CNRS UMR 7225, La Salpêtrière Hospital, Paris, France
| | - Philippe Fossati
- Department of Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Bruno Aouizerate
- University Department of Adult Psychiatry, Charles Perrens Hospital, Bordeaux, France
| | - Marie Odile Krebs
- Adolescent and Young Adult Assessment Center, Sainte-Anne Hospital, Paris, France
| | - Gabriel Robert
- University Department of Adult Psychiatry, Guillaume Régnier Hospital, Rennes, France; Behavior and Basal Ganglia Unit (EA-4712), University of Rennes 1, Rennes, France
| | - Thérèse Jay
- Inserm U894, Center for Psychiatry and Neuroscience, Paris Descartes University, Paris, France
| | - Philippe Cornu
- Department of Neurosurgery, Pitié-Salpêtrière Hospital, Paris, France
| | - Marc Vérin
- Department of Neurology, Pontchaillou University Hosptial, Rennes, France; Behavior and Basal Ganglia Unit (EA-4712), University of Rennes 1, Rennes, France
| | - Sophie Drapier
- Department of Neurology, Pontchaillou University Hospital, Rennes, France
| | - Dominique Drapier
- University Department of Adult Psychiatry, Guillaume Régnier Hospital, Rennes, France; Behavior and Basal Ganglia Unit (EA-4712), University of Rennes 1, Rennes, France
| | - Paul Sauleau
- Functional Neurological Exploration Unit, Pontchaillou University Hospital, Rennes, France; Behavior and Basal Ganglia Unit (EA-4712), University of Rennes 1, Rennes, France
| | - Julie Peron
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Florence Le Jeune
- Department of Nuclear Medicine, Eugène Marquis Center, Rennes, France; Behavior and Basal Ganglia Unit (EA-4712), University of Rennes 1, Rennes, France
| | - Florian Naudet
- Clinical Investigation Center (INSERM 0203), Department of Pharmacology, Pontchaillou University Hospital, Rennes, France; Behavior and Basal Ganglia Unit (EA-4712), University of Rennes 1, Rennes, France.
| | - Jean Michel Reymann
- Clinical Investigation Center (INSERM 0203), Department of Pharmacology, Pontchaillou University Hospital, Rennes, France
| |
Collapse
|
36
|
Morishita T, Fayad SM, Higuchi MA, Nestor KA, Foote KD. Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics 2014; 11:475-84. [PMID: 24867326 PMCID: PMC4121451 DOI: 10.1007/s13311-014-0282-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a widespread, severe, debilitating disorder that markedly diminishes quality of life. Medication is commonly effective, but 20-30 % of patients are refractory to medical therapy. The surgical treatment of psychiatric disorders has a negative stigma associated with it owing to historical abuses. Various ablative surgeries for MDD have been attempted with marginal success, but these studies lacked standardized outcome measures. The recent development of neuromodulation therapy, especially deep brain stimulation (DBS), has enabled controlled studies with sham stimulation and presents a potential therapeutic option that is both reversible and adjustable. We performed a systematic review of the literature pertaining to DBS for treatment-resistant depression to evaluate the safety and efficacy of this procedure. We included only studies using validated outcome measures. Our review identified 22 clinical research papers with 5 unique DBS approaches using different targets, including nucleus accumbens, ventral striatum/ventral capsule, subgenual cingulate cortex, lateral habenula, inferior thalamic nucleus, and medial forebrain bundle. Among the 22 published studies, only 3 were controlled trials, and 2, as yet unpublished, multicenter, randomized, controlled trials evaluating the efficacy of subgenual cingulate cortex and ventral striatum/ventral capsule DBS were recently discontinued owing to inefficacy based on futility analyses. Overall, the published response rate to DBS therapy, defined as the percentage of patients with > 50 % improvement on the Hamilton Depression Rating Scale, is reported to be 40-70 %, and outcomes were comparable across studies. We conclude that DBS for MDD shows promise, but remains experimental and further accumulation of data is warranted.
Collapse
Affiliation(s)
- Takashi Morishita
- />Department of Neurosurgery, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, 1149 South Newell Drive, Gainesville, FL 32611 USA
| | - Sarah M. Fayad
- />Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, Gainesville, FL USA
| | - Masa-aki Higuchi
- />Department of Neurology, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, Gainesville, FL USA
| | - Kelsey A. Nestor
- />Department of Neurosurgery, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, 1149 South Newell Drive, Gainesville, FL 32611 USA
| | - Kelly D. Foote
- />Department of Neurosurgery, McKnight Brain Institute, University of Florida College of Medicine/Shands Hospital, Center for Movement Disorders and Neurorestoration, 1149 South Newell Drive, Gainesville, FL 32611 USA
| |
Collapse
|
37
|
Abstract
Deep brain stimulation (DBS) is a commonly used neurosurgical form of therapeutic brain stimulation that has been demonstrated to be safe, well tolerated, and effective for the treatment of essential tremor, Parkinson's disease, and primary dystonia. These particular uses have been approved by the U.S. Food and Drug Administration (FDA). Investigational studies using DBS have been conducted for refractory epilepsy, obesity, chronic pain, tardive dyskinesia, Tourette syndrome, and other movement disorders, but none of these studies has led to FDA approval for these indications. Although the use of DBS has been approved by the FDA under a Humanitarian Device Exemption for the treatment of treatment-resistant obsessive-compulsive disorder, studies systematically investigating the potential use of DBS for various severe chronic psychiatric disorders are in their earliest stages, and further studies are warranted.
Collapse
|
38
|
Quraan MA, Protzner AB, Daskalakis ZJ, Giacobbe P, Tang CW, Kennedy SH, Lozano AM, McAndrews MP. EEG power asymmetry and functional connectivity as a marker of treatment effectiveness in DBS surgery for depression. Neuropsychopharmacology 2014; 39:1270-81. [PMID: 24285211 PMCID: PMC3957123 DOI: 10.1038/npp.2013.330] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 01/10/2023]
Abstract
Recently, deep brain stimulation (DBS) has been evaluated as an experimental therapy for treatment-resistant depression. Although there have been encouraging results in open-label trials, about half of the patients fail to achieve meaningful benefit. Although progress has been made in understanding the neurobiology of MDD, the ability to characterize differences in brain dynamics between those who do and do not benefit from DBS is lacking. In this study, we investigated EEG resting-state data recorded from 12 patients that have undergone DBS surgery. Of those, six patients were classified as responders to DBS, defined as an improvement of 50% or more on the 17-item Hamilton Rating Scale for Depression (HAMD-17). We compared hemispheric frontal theta and parietal alpha power asymmetry and synchronization asymmetry between responders and non-responders. Hemispheric power asymmetry showed statistically significant differences between responders and non-responders with healthy controls showing an asymmetry similar to responders but opposite to non-responders. This asymmetry was characterized by an increase in frontal theta in the right hemisphere relative to the left combined with an increase in parietal alpha in the left hemisphere relative to the right in non-responders compared with responders. Hemispheric mean synchronization asymmetry showed a statistically significant difference between responders and non-responders in the theta band, with healthy controls showing an asymmetry similar to responders but opposite to non-responders. This asymmetry resulted from an increase in frontal synchronization in the right hemisphere relative to the left combined with an increase in parietal synchronization in the left hemisphere relative to the right in non-responders compared with responders. Connectivity diagrams revealed long-range differences in frontal/central-parietal connectivity between the two groups in the theta band. This pattern was observed irrespective of whether EEG data were collected with active DBS or with the DBS stimulation turned off, suggesting stable functional and possibly structural modifications that may be attributed to plasticity.
Collapse
Affiliation(s)
- Maher A Quraan
- Krembil Neuroscience Center, University Health Network, Toronto, ON, Canada,Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Room 4F-409, Toronto, Ontario M5T 2S8, Canada, Tel: +1 416 603 5800, E-mail:
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada
| | - Chris W Tang
- Department of Psychiatry, University Health Network, Toronto, ON, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Department of Psychiatry, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Krembil Neuroscience Center, University Health Network, Toronto, ON, Canada,Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mary P McAndrews
- Krembil Neuroscience Center, University Health Network, Toronto, ON, Canada,Toronto Western Research Institute, University Health Network, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
George MS, Nahas Z, Borckardt JJ, Anderson B, Burns C, Kose S, Short EB. Vagus nerve stimulation for the treatment of depression and other neuropsychiatric disorders. Expert Rev Neurother 2014; 7:63-74. [PMID: 17187498 DOI: 10.1586/14737175.7.1.63] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vagus nerve stimulation is an interesting new approach to treating neuropsychiatric diseases within the class of brain-stimulation devices sometimes labeled 'neuromodulators'. With vagus nerve stimulation, a battery-powered generator implanted in the chest wall connects to a wire wrapped around the vagus nerve in the neck, and sends intermittent pulses of electricity along the nerve directly into the brain. This mechanism takes advantage of the natural role of the vagus nerve in conveying information into the brain concerning homeostatic information (e.g., hunger, chest pain and respirations). Vagus nerve stimulation therapy is US FDA approved for the adjunctive treatment of epilepsy and has recently been FDA approved for the treatment of medication-resistant depression. Owing to its novel route into the brain, it has no drug-drug interactions or systemic side effects. This treatment also appears to have high long-term tolerability in patients, with low rates of patients relapsing on vagus nerve stimulation or becoming tolerant. However, alongside the excitement and enthusiasm for this new treatment, a lack of Class I evidence of efficacy in treating depression is currently slowing down adoption by psychiatrists. Much more research is needed regarding exactly how to refine and deliver the electrical pulses and how this differentially affects brain function in health and disease.
Collapse
Affiliation(s)
- Mark S George
- Institute of Psychiatry MUSC, Brain Stimulation Laboratory, 67 President Street, Room 502 North, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Arumugham SS, Reddy JYC. Augmentation strategies in obsessive–compulsive disorder. Expert Rev Neurother 2014; 13:187-202; quiz 203. [DOI: 10.1586/ern.12.160] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Spofford CM, McLaughlin NCR, Penzel F, Rasmussen SA, Greenberg BD. OCD behavior therapy before and after gamma ventral capsulotomy: case report. Neurocase 2014; 20:42-5. [PMID: 23057416 PMCID: PMC4599705 DOI: 10.1080/13554794.2012.732083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the case of a patient requiring gamma ventral capsulotomy (GVC), a neurosurgical intervention to address severe refractory obsessive-compulsive disorder (OCD). GVC involves stereotactic lesions in the ventral anterior limb of the internal capsule and adjacent ventral striatum. This study details the course of an extinction-based behavioral therapy, namely exposure and response prevention (ERP). The patient experienced significant changes in motivation and ability to tolerate ERP post-surgery. Furthermore, he was better able to absorb and remember exposure sessions. GVC surgery may affect the neural mechanisms involved in the extinction learning process, the same process implicated in ERP treatment.
Collapse
Affiliation(s)
- Christopher M Spofford
- a Department of Psychiatry and Human Behavior , The Warren Alpert Medical School at Brown University , Providence , RI , USA
| | | | | | | | | |
Collapse
|
42
|
Piras F, Piras F, Caltagirone C, Spalletta G. Brain circuitries of obsessive compulsive disorder: A systematic review and meta-analysis of diffusion tensor imaging studies. Neurosci Biobehav Rev 2013; 37:2856-77. [DOI: 10.1016/j.neubiorev.2013.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/27/2013] [Accepted: 10/19/2013] [Indexed: 12/21/2022]
|
43
|
Andreou C, Leicht G, Popescu V, Pogarell O, Mavrogiorgou P, Rujescu D, Giegling I, Zaudig M, Juckel G, Hegerl U, Mulert C. P300 in obsessive-compulsive disorder: source localization and the effects of treatment. J Psychiatr Res 2013; 47:1975-83. [PMID: 24075207 DOI: 10.1016/j.jpsychires.2013.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Converging evidence suggests that frontostriatal abnormalities underlie OCD symptoms. The event-related potential P300 is generated along a widely distributed network involving several of the areas implicated in OCD. P300 abnormalities reported in patients with OCD suggest increased activity in these areas. The aim of the present study was to investigate this assumption in unmedicated patients with OCD, and to assess the effects of OCD treatment on P300 brain activity patterns. Seventy-one unmedicated patients with a DSM-IV diagnosis of OCD and 71 age- and gender-matched healthy control subjects participated in the study. The P300 was obtained through 32-channel EEG during an auditory oddball paradigm. Forty-three patients underwent a second EEG assessment after treatment with sertraline and behavioural therapy. Low-resolution electromagnetic tomography (LORETA) was used to localize the sources of brain electrical activity. RESULTS Increased P300-related activity was observed predominantly in the left orbitofrontal cortex, but also in left prefrontal, parietal and temporal areas, in patients compared to controls at baseline. After treatment, reduction of left middle frontal cortex hyperactivity was observed in patients. CONCLUSIONS Findings of increased activity in frontoparietal areas in patients are consistent with several previous studies. Importantly, OCD treatment led to reduction of hyperactivity in the left middle frontal cortex, an area associated with context processing and uncertainty that might be important for the emergence of OCD symptoms. Thus, the present study is the first to show an association between P300 abnormalities and activity in brain regions postulated to be involved in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Christina Andreou
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tierney TS, Abd-El-Barr MM, Stanford AD, Foote KD, Okun MS. Deep brain stimulation and ablation for obsessive compulsive disorder: evolution of contemporary indications, targets and techniques. Int J Neurosci 2013; 124:394-402. [PMID: 24099662 DOI: 10.3109/00207454.2013.852086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Surgical therapy for treatment-resistant obsessive compulsive disorder (OCD) remains an effective option for well-selected patients managed within a multidisciplinary setting. Historically, lesions within the limbic system have been used to control both obsessive thoughts and repetitive compulsions associated with this disease. We discuss classical targets as well as contemporary neuromodulatory approaches that have been shown to provide symptomatic relief. Recently, deep brain stimulation (DBS) of the anterior limb of the internal capsule/ventral striatum received Conformité Européene (CE) mark and Food and Drug Administration (FDA) approvals for treatment of intractable OCD. Remarkably, this is the first such approval for neurosurgical intervention in a strictly psychiatric indication in modern times. This target is discussed in detail along with alternative targets currently being proposed. We close with a discussion of gamma knife capsulotomy, a modality with deep historical roots. Further directions in the surgical treatment of OCD will require better preoperative predictors of postoperative responses, optimal selection of individualized targets, and rigorous reporting of adverse events and standardized outcomes. To meet these challenges, centers must be equipped with a multidisciplinary team and patient-centered approach to ensure adequate screening and follow up of patients with this difficult-to-treat condition.
Collapse
Affiliation(s)
- Travis S Tierney
- 1Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
45
|
Aronson JP, Katnani HA, Eskandar EN. Neuromodulation for obsessive-compulsive disorder. Neurosurg Clin N Am 2013; 25:85-101. [PMID: 24262902 DOI: 10.1016/j.nec.2013.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article describes the basis for neuromodulation procedures for obsessive-compulsive disorder (OCD) and summarizes the literature on the efficacy of these interventions. Discussion includes neural circuitry underlying OCD pathology, the history and types of ablative procedures, the targets and modalities used for neuromodulation, and future therapeutic directions.
Collapse
Affiliation(s)
- Joshua P Aronson
- Department of Neurosurgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
46
|
D'Astous M, Cottin S, Roy M, Picard C, Cantin L. Bilateral stereotactic anterior capsulotomy for obsessive-compulsive disorder: long-term follow-up. J Neurol Neurosurg Psychiatry 2013; 84:1208-13. [PMID: 23733922 DOI: 10.1136/jnnp-2012-303826] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND PURPOSE Psychosurgery, such as anterior capsulotomy, is a therapeutic option for treatment-resistant obsessive-compulsive disorder (OCD). In this paper, we present a prospective, long-term follow-up study aimed at evaluating both the efficacy and the safety of anterior capsulotomy for the treatment of severe, refractory OCD. METHODS Twenty-four patients were surgically treated in our centre between 1997 and 2009, 19 of whom were included in this study. Patients were assessed at 3, 6, 12, and 24 months and last follow-up (mean of 7 years) was carried out by phone. OCD symptom severity was evaluated using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). A patient with an improvement rate of over 35% in the Y-BOCS score was considered a responder, while a patient with a 25% improvement was considered a partial responder. RESULTS With a mean improvement of 31% in the Y-BOCS score at long-term follow-up, 36.8% of the patients responded fully to the procedure and 10.5% were considered partial responders, for an overall response rate of 47.3% of patients. At the end of the study, 3/19 patients had recovered (Y-BOCS score <8) and 3/19 were in remission (Y-BOCS score <16). No cases of mortality were reported and the overall adverse event rate was 57.9%. Only 2 patients had permanent surgical complications. CONCLUSIONS Anterior capsulotomy is an effective and safe technique for the treatment of severe refractory OCD in patients who have no other alternative to improve their symptoms.
Collapse
Affiliation(s)
- Myreille D'Astous
- Centre de recherche du CHU de Québec, Department of Neurological Sciences, Université Laval, , Quebec City, Canada
| | | | | | | | | |
Collapse
|
47
|
Williams NR, Okun MS. Deep brain stimulation (DBS) at the interface of neurology and psychiatry. J Clin Invest 2013; 123:4546-56. [PMID: 24177464 DOI: 10.1172/jci68341] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) is an emerging interventional therapy for well-screened patients with specific treatment-resistant neuropsychiatric diseases. Some neuropsychiatric conditions, such as Parkinson disease, have available and reasonable guideline and efficacy data, while other conditions, such as major depressive disorder and Tourette syndrome, have more limited, but promising results. This review summarizes both the efficacy and the neuroanatomical targets for DBS in four common neuropsychiatric conditions: Parkinson disease, Tourette syndrome, major depressive disorder, and obsessive-compulsive disorder. Based on emerging new research, we summarize novel approaches to optimization of stimulation for each neuropsychiatric disease and we review the potential positive and negative effects that may be observed following DBS. Finally, we summarize the likely future innovations in the field of electrical neural-network modulation.
Collapse
|
48
|
The anteromedial GPi as a new target for deep brain stimulation in obsessive compulsive disorder. J Clin Neurosci 2013; 21:815-21. [PMID: 24524950 DOI: 10.1016/j.jocn.2013.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/09/2013] [Indexed: 01/11/2023]
Abstract
Deep brain stimulation (DBS) is now well established in the treatment of intractable movement disorders. Over the past decade the clinical applications have expanded into the realm of psychosurgery, including depression and obsessive compulsive disorder (OCD). The optimal targets for electrode placement in psychosurgery remain unclear, with numerous anatomical targets reported for the treatment of OCD. We present four patients with Tourette's syndrome and prominent features of OCD who underwent DBS of the anteromedial globus pallidus internus (GPi) to treat their movement disorder. Their pre-operative and post-operative OCD symptoms were compared, and responded dramatically to surgery. On the basis of these results, we propose the anteromedial (limbic) GPi as a potential surgical target for the treatment of OCD, and furnish data supporting its further investigation as a DBS target for the treatment of psychiatric conditions.
Collapse
|
49
|
Kubu CS, Malone DA, Chelune G, Malloy P, Rezai AR, Frazier T, Machado A, Rasmussen S, Friehs G, Greenberg BD. Neuropsychological outcome after deep brain stimulation in the ventral capsule/ventral striatum for highly refractory obsessive-compulsive disorder or major depression. Stereotact Funct Neurosurg 2013; 91:374-8. [PMID: 24108099 DOI: 10.1159/000348321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) has shown promise as a treatment for severe, highly treatment-refractory obsessive-compulsive disorder (OCD) or major depressive disorder (MDD). We describe the neuropsychological outcome in 21 patients (10 OCD and 11 MDD) who received DBS in the anterior limb of the internal capsule/ventral striatum (VC/VS). METHODS All patients completed a preoperative and postoperative neuropsychological battery. Average duration of DBS stimulation was 8.91 months (SD = 4.63) at the time of follow-up testing. Data were analyzed using practice-effect-corrected change scores. RESULTS No significant cognitive declines were seen. There were significant improvements in prose passage recall after chronic DBS. The cognitive improvements were not related to change in severity of OCD, depression or global impairment. CONCLUSIONS This preliminary study suggests that VC/VS DBS does not result in cognitive declines. The observations that verbal memory improved are consistent with current theories on the role of the VS in the memory, but require replication in larger studies.
Collapse
|
50
|
Höflich A, Savli M, Comasco E, Moser U, Novak K, Kasper S, Lanzenberger R. Neuropsychiatric deep brain stimulation for translational neuroimaging. Neuroimage 2013; 79:30-41. [DOI: 10.1016/j.neuroimage.2013.04.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022] Open
|